551
|
Hyman J, Chen H, Di Fiore PP, De Camilli P, Brunger AT. Epsin 1 undergoes nucleocytosolic shuttling and its eps15 interactor NH(2)-terminal homology (ENTH) domain, structurally similar to Armadillo and HEAT repeats, interacts with the transcription factor promyelocytic leukemia Zn(2)+ finger protein (PLZF). J Cell Biol 2000; 149:537-46. [PMID: 10791968 PMCID: PMC2174850 DOI: 10.1083/jcb.149.3.537] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2000] [Accepted: 03/17/2000] [Indexed: 11/22/2022] Open
Abstract
Epsin (Eps15 interactor) is a cytosolic protein involved in clathrin-mediated endocytosis via its direct interactions with clathrin, the clathrin adaptor AP-2, and Eps15. The NH(2)-terminal portion of epsin contains a phylogenetically conserved module of unknown function, known as the ENTH domain (epsin NH(2)-terminal homology domain). We have now solved the crystal structure of rat epsin 1 ENTH domain to 1.8 A resolution. This domain is structurally similar to armadillo and Heat repeats of beta-catenin and karyopherin-beta, respectively. We have also identified and characterized the interaction of epsin 1, via the ENTH domain, with the transcription factor promyelocytic leukemia Zn(2)+ finger protein (PLZF). Leptomycin B, an antifungal antibiotic, which inhibits the Crm1- dependent nuclear export pathway, induces an accumulation of epsin 1 in the nucleus. These findings suggest that epsin 1 may function in a signaling pathway connecting the endocytic machinery to the regulation of nuclear function.
Collapse
Affiliation(s)
- Joel Hyman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520
| | - Hong Chen
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520
| | - Pier Paolo Di Fiore
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Pietro De Camilli
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520
| | - Axel T. Brunger
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
552
|
Li S, Kelly SJ, Lamani E, Ferraroni M, Jedrzejas MJ. Structural basis of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. EMBO J 2000; 19:1228-40. [PMID: 10716923 PMCID: PMC305664 DOI: 10.1093/emboj/19.6.1228] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/1999] [Revised: 01/13/2000] [Accepted: 01/31/2000] [Indexed: 11/12/2022] Open
Abstract
Streptococcus pneumoniae hyaluronate lyase (spnHL) is a pathogenic bacterial spreading factor and cleaves hyaluronan, an important constituent of the extra- cellular matrix of connective tissues, through an enzymatic beta-elimination process, different from the hyaluronan degradation by hydrolases in animals. The mechanism of hyaluronan binding and degradation was proposed based on the 1.56 A resolution crystal structure, substrate modeling and mutagenesis studies on spnHL. Five mutants, R243V, N349A, H399A, Y408F and N580G, were constructed and their activities confirmed our mechanism hypothesis. The important roles of Tyr408, Asn349 and His399 in enzyme catalysis were proposed, explained and confirmed by mutant studies. The remaining weak enzymatic activity of the H399A mutant, the role of the free carboxylate group on the glucuronate residue, the enzymatic behavior on chondroitin and chondroitin sulfate, and the small activity increase in the N580G mutant were explained based on this mechanism. A possible function of the C-terminal beta-sheet domain is to modulate enzyme activity through binding to calcium ions.
Collapse
Affiliation(s)
- S Li
- Department of Microbiology, 933 19th Street South, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
553
|
Nix J, Sussman D, Wilson C. The 1.3 A crystal structure of a biotin-binding pseudoknot and the basis for RNA molecular recognition. J Mol Biol 2000; 296:1235-44. [PMID: 10698630 DOI: 10.1006/jmbi.2000.3539] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A pseudoknot-containing aptamer isolated from a pool of random sequence molecules has been shown previously to represent an optimal RNA solution to the problem of binding biotin. The affinity of this RNA molecule is nonetheless orders of magnitude weaker than that of its highly evolved protein analogs, avidin and streptavidin. To understand the structural basis for biotin binding and to compare directly strategies for ligand recognition available to proteins and RNA molecules, we have determined the 1.3 A crystal structure of the aptamer complexed with its ligand. Biotin is bound at the interface between the pseudoknot's stacked helices in a pocket defined almost entirely by base-paired nucleotides. In comparison to the protein avidin, the aptamer packs more tightly around the biotin headgroup and makes fewer contacts with its fatty acid tail. Whereas biotin is deeply buried within the hydrophobic core in the avidin complex, the aptamer relies on a combination of hydrated magnesium ions and immobilized water molecules to surround its ligand. In addition to demonstrating fundamentally different approaches to molecular recognition by proteins and RNA, the structure provides general insight into the mechanisms by which RNA function is mediated by divalent metals.
Collapse
Affiliation(s)
- J Nix
- Department of Biology and Center for the Molecular Biology of RNA, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| | | | | |
Collapse
|
554
|
Appleby TC, Kinsland C, Begley TP, Ealick SE. The crystal structure and mechanism of orotidine 5'-monophosphate decarboxylase. Proc Natl Acad Sci U S A 2000; 97:2005-10. [PMID: 10681442 PMCID: PMC15744 DOI: 10.1073/pnas.259441296] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of Bacillus subtilis orotidine 5'-monophosphate (OMP) decarboxylase with bound uridine 5'-monophosphate has been determined by multiple wavelength anomalous diffraction phasing techniques and refined to an R-factor of 19.3% at 2.4 A resolution. OMP decarboxylase is a dimer of two identical subunits. Each monomer consists of a triosephosphate isomerase barrel and contains an active site that is located across one end of the barrel and near the dimer interface. For each active site, most of the residues are contributed by one monomer with a few residues contributed from the adjacent monomer. The most highly conserved residues are located in the active site and suggest a novel catalytic mechanism for decarboxylation that is different from any previously proposed OMP decarboxylase mechanism. The uridine 5'-monophosphate molecule is bound to the active site such that the phosphate group is most exposed and the C5-C6 edge of the pyrimidine base is most buried. In the proposed catalytic mechanism, the ground state of the substrate is destabilized by electrostatic repulsion between the carboxylate of the substrate and the carboxylate of Asp60. This repulsion is reduced in the transition state by shifting negative charge from the carboxylate to C6 of the pyrimidine, which is close to the protonated amine of Lys62. We propose that the decarboxylation of OMP proceeds by an electrophilic substitution mechanism in which decarboxylation and carbon-carbon bond protonation by Lys62 occur in a concerted reaction.
Collapse
Affiliation(s)
- T C Appleby
- Department of Chemistry, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
555
|
Mitsuhashi S, Mizushima T, Yamashita E, Yamamoto M, Kumasaka T, Moriyama H, Ueki T, Miyachi S, Tsukihara T. X-ray structure of beta-carbonic anhydrase from the red alga, Porphyridium purpureum, reveals a novel catalytic site for CO(2) hydration. J Biol Chem 2000; 275:5521-6. [PMID: 10681531 DOI: 10.1074/jbc.275.8.5521] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carbonic anhydrases (CAs) fall into three evolutionarily distinct families designated alpha-, beta-, and gamma-CAs based on their primary structure. beta-CAs are present in higher plants, algae, and prokaryotes, and are involved in inorganic carbon utilization. Here, we describe the novel x-ray structure of beta-CA from the red alga, Porphyridium purpureum, at 2.2-A resolution using intrinsic zinc multiwavelength anomalous diffraction phasing. The CA monomer is composed of two internally repeating structures, being folded as a pair of fundamentally equivalent motifs of an alpha/beta domain and three projecting alpha-helices. The motif is obviously distinct from that of either alpha- or gamma-CAs. This homodimeric CA appears like a tetramer with a pseudo 222 symmetry. The active site zinc is coordinated by a Cys-Asp-His-Cys tetrad that is strictly conserved among the beta-CAs. No water molecule is found in a zinc-liganding radius, indicating that the zinc-hydroxide mechanism in alpha-CAs, and possibly in gamma-CAs, is not directly applicable to the case in beta-CAs. Zinc coordination environments of the CAs provide an interesting example of the convergent evolution of distinct catalytic sites required for the same CO(2) hydration reaction.
Collapse
Affiliation(s)
- S Mitsuhashi
- Marine Biotechnology Institute, Kamaishi Laboratories, Heita, Kamaishi, Iwate, 026-0001 Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
556
|
Lewis HA, Musunuru K, Jensen KB, Edo C, Chen H, Darnell RB, Burley SK. Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome. Cell 2000; 100:323-32. [PMID: 10676814 DOI: 10.1016/s0092-8674(00)80668-6] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of a Nova protein K homology (KH) domain recognizing single-stranded RNA has been determined at 2.4 A resolution. Mammalian Nova antigens (1 and 2) constitute an important family of regulators of RNA metabolism in neurons, first identified using sera from cancer patients with the autoimmune disorder paraneoplastic opsoclonus-myoclonus ataxia (POMA). The structure of the third KH domain (KH3) of Nova-2 bound to a stem loop RNA resembles a molecular vise, with 5'-Ura-Cyt-Ade-Cyt-3' pinioned between an invariant Gly-X-X-Gly motif and the variable loop. Tetranucleotide recognition is supported by an aliphatic alpha helix/beta sheet RNA-binding platform, which mimics 5'-Ura-Gua-3' by making Watson-Crick-like hydrogen bonds with 5'-Cyt-Ade-3'. Sequence conservation suggests that fragile X mental retardation results from perturbation of RNA binding by the FMR1 protein.
Collapse
Affiliation(s)
- H A Lewis
- Laboratories of Molecular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
557
|
Abstract
The recent availability of whole-genome sequences and large numbers of protein-coding regions from high-throughput cDNA analysis has fundamentally changed experimental biology. These efforts have provided huge databases of protein sequences, many of which are of unknown function. Deciphering the functions of these myriad proteins presents a major intellectual challenge.
Collapse
Affiliation(s)
- L Shapiro
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
558
|
Cohen SL, Padovan JC, Chait BT. Mass spectrometric analysis of mercury incorporation into proteins for X-ray diffraction phase determination. Anal Chem 2000; 72:574-9. [PMID: 10695144 DOI: 10.1021/ac990938e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heavy-atom incorporation is an essential and often rate-limiting step in the determination of phases for X-ray diffraction studies of protein structures. Until the present, there has been no practical method (short of the X-ray diffraction experiment itself) to judge the success and extent of incorporation. Here we show that mass spectrometry is an effective tool for determining the extent of heavy-atom incorporation in proteins. In particular, we demonstrate the utility of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS) for assaying mercury derivatization of cysteinyl thiol groups in proteins. Each of these mass spectrometric methods has advantages and drawbacks. ESI-MS provides a more accurate quantitative measurement of the extent of mercury incorporation, while MALDI-MS provides a useful lower limit to the level of mercury incorporation. Conversely, MALDI-MS does not require removal of excess derivatization reagents, salts and buffers, thus permitting facile analysis of single protein crystals as well as rapid, semiquantitative evaluation of the extent of protein mercuration. The approaches described in the present paper have contributed to the successful X-ray analyses of several noteworthy protein structures.
Collapse
Affiliation(s)
- S L Cohen
- Rockefeller University, New York, New York 10021, USA.
| | | | | |
Collapse
|
559
|
Harrenga A, Reincke B, Rüterjans H, Ludwig B, Michel H. Structure of the soluble domain of cytochrome c(552) from Paracoccus denitrificans in the oxidized and reduced states. J Mol Biol 2000; 295:667-78. [PMID: 10623555 DOI: 10.1006/jmbi.1999.3382] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of the soluble domain of the membrane bound cytochrome c(552) (cytochrome c(552)') from Paracoccus denitrificans was determined using the multiwavelength anomalous diffraction technique and refined at 1.5 A resolution for the oxidized and at 1. 4 A for the reduced state. This is the first high-resolution crystal structure of a cytochrome c at low ionic strength in both redox states. The atomic model allowed for a detailed assessment of the structural properties including the secondary structure, the heme geometry and interactions, and the redox-coupled structural changes. In general, the structure has the same features as that of known eukaryotic cytochromes c. However, the surface properties are very different. Cytochrome c(552)' has a large strongly negatively charged surface part and a smaller positively charged area around the solvent-exposed heme atoms. One of the internal water molecules conserved in all structures of eukaryotic cytochromes c is also present in this bacterial cytochrome c. It contributes to the interactions between the side-chain of Arg36 and the heme propionate connected to pyrrole ring A. Reduction of the oxidized crystals does not influence the conformation of cytochrome c(552)' in contrast to eukaryotic cytochromes c. The oxidized cytochrome c(552)', especially the region of amino acid residues 40 to 56, appears to be more flexible than the reduced one.
Collapse
Affiliation(s)
- A Harrenga
- Abteilung für molekulare Membranbiologie, Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Strasse 7, Frankfurt am Main, D-60528, Germany
| | | | | | | | | |
Collapse
|
560
|
Weik M, Ravelli RB, Kryger G, McSweeney S, Raves ML, Harel M, Gros P, Silman I, Kroon J, Sussman JL. Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc Natl Acad Sci U S A 2000; 97:623-8. [PMID: 10639129 PMCID: PMC15380 DOI: 10.1073/pnas.97.2.623] [Citation(s) in RCA: 347] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Radiation damage is an inherent problem in x-ray crystallography. It usually is presumed to be nonspecific and manifested as a gradual decay in the overall quality of data obtained for a given crystal as data collection proceeds. Based on third-generation synchrotron x-ray data, collected at cryogenic temperatures, we show for the enzymes Torpedo californica acetylcholinesterase and hen egg white lysozyme that synchrotron radiation also can cause highly specific damage. Disulfide bridges break, and carboxyl groups of acidic residues lose their definition. Highly exposed carboxyls, and those in the active site of both enzymes, appear particularly susceptible. The catalytic triad residue, His-440, in acetylcholinesterase, also appears to be much more sensitive to radiation damage than other histidine residues. Our findings have direct practical implications for routine x-ray data collection at high-energy synchrotron sources. Furthermore, they provide a direct approach for studying the radiation chemistry of proteins and nucleic acids at a detailed, structural level and also may yield information concerning putative "weak links" in a given biological macromolecule, which may be of structural and functional significance.
Collapse
Affiliation(s)
- M Weik
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, NL-3584 CH, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
561
|
Stauber DJ, DiGabriele AD, Hendrickson WA. Structural interactions of fibroblast growth factor receptor with its ligands. Proc Natl Acad Sci U S A 2000; 97:49-54. [PMID: 10618369 PMCID: PMC26614 DOI: 10.1073/pnas.97.1.49] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/1999] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factors (FGFs) effect cellular responses by binding to FGF receptors (FGFRs). FGF bound to extracellular domains on the FGFR in the presence of heparin activates the cytoplasmic receptor tyrosine kinase through autophosphorylation. We have crystallized a complex between human FGF1 and a two-domain extracellular fragment of human FGFR2. The crystal structure, determined by multiwavelength anomalous diffraction analysis of the selenomethionyl protein, is a dimeric assemblage of 1:1 ligand:receptor complexes. FGF is bound at the junction between the two domains of one FGFR, and two such units are associated through receptor:receptor and secondary ligand:receptor interfaces. Sulfate ion positions appear to mark the course of heparin binding between FGF molecules through a basic region on receptor D2 domains. This dimeric assemblage provides a structural mechanism for FGF signal transduction.
Collapse
Affiliation(s)
- D J Stauber
- Department of Biochemistry, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
562
|
Abstract
Protein crystallography has become a major technique for understanding cellular processes. This has come about through great advances in the technology of data collection and interpretation, particularly the use of synchrotron radiation. The ability to express eukaryotic genes in Escherichia coli is also important. Analysis of known structures shows that all proteins are built from about 1000 primeval folds. The collection of all primeval folds provides a basis for predicting structure from sequence. At present about 450 are known. Of the presently sequenced genomes only a fraction can be related to known proteins on the basis of sequence alone. Attempts are being made to determine all (or as many as possible) of the structures from some bacterial genomes in the expectation that structure will point to function more reliably than does sequence. Membrane proteins present a special problem. The next 20 years may see the experimental determination of another 40,000 protein structures. This will make considerable demands on synchrotron sources and will require many more biochemists than are currently available. The availability of massive structure databases will alter the way biochemistry is done.
Collapse
Affiliation(s)
- K C Holmes
- Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany.
| |
Collapse
|
563
|
Boggon TJ, Shan WS, Santagata S, Myers SC, Shapiro L. Implication of tubby proteins as transcription factors by structure-based functional analysis. Science 1999; 286:2119-25. [PMID: 10591637 DOI: 10.1126/science.286.5447.2119] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tubby-like proteins (TULPs) are found in a broad range of multicellular organisms. In mammals, genetic mutation of tubby or other TULPs can result in one or more of three disease phenotypes: obesity (from which the name "tubby" is derived), retinal degeneration, and hearing loss. These disease phenotypes indicate a vital role for tubby proteins; however, no biochemical function has yet been ascribed to any member of this protein family. A structure-directed approach was employed to investigate the biological function of these proteins. The crystal structure of the core domain from mouse tubby was determined at a resolution of 1.9 angstroms. From primarily structural clues, experiments were devised, the results of which suggest that TULPs are a unique family of bipartite transcription factors.
Collapse
Affiliation(s)
- T J Boggon
- Structural Biology Program, Department of Physiology and Biophysics, Ruttenberg Cancer Center, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
564
|
|
565
|
Challenges at the frontiers of structural biology. Trends Genet 1999. [DOI: 10.1016/s0168-9525(99)01908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
566
|
|
567
|
Xiao T, Towb P, Wasserman SA, Sprang SR. Three-dimensional structure of a complex between the death domains of Pelle and Tube. Cell 1999; 99:545-55. [PMID: 10589682 PMCID: PMC4372121 DOI: 10.1016/s0092-8674(00)81542-1] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction of the serine/threonine kinase Pelle and adaptor protein Tube through their N-terminal death domains leads to the nuclear translocation of the transcription factor Dorsal and activation of zygotic patterning genes during Drosophila embryogenesis. Crystal structure of the Pelle and Tube death domain heterodimer reveals that the two death domains adopt a six-helix bundle fold and are arranged in an open-ended linear array with plastic interfaces mediating their interactions. The Tube death domain has an insertion between helices 2 and 3, and a C-terminal tail making significant and indispensable contacts in the heterodimer. In vivo assays of Pelle and Tube mutants confirmed that the integrity of the major heterodimer interface is critical to the activity of these molecules.
Collapse
Affiliation(s)
- Tsan Xiao
- The Howard Hughes Medical Institute and Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-9050
| | - Par Towb
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0634
| | - Steven A. Wasserman
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0634
| | - Stephen R. Sprang
- The Howard Hughes Medical Institute and Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-9050
- To whom correspondence should be addressed ()
| |
Collapse
|
568
|
Gassner NC, Baase WA, Hausrath AC, Matthews BW. Substitution with selenomethionine can enhance the stability of methionine-rich proteins. J Mol Biol 1999; 294:17-20. [PMID: 10556025 DOI: 10.1006/jmbi.1999.3220] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The availability of a series of phage T4 lysozymes with up to 14 methionine residues incorporated within the protein has made it possible to systematically compare the effect on protein stability of selenomethionine relative to methionine. Wild-type lysozyme contains two fully buried methionine residues plus three more on the surface. The substitution of these methionine residues with selenomethionine slightly stabilizes the protein. As more and more methionine residues are substituted into the protein, there is a progressive loss of stability. This is, however, increasingly offset in the selenomethionine variants, ultimately resulting in a differential increase in melting temperature of about 7 degrees C. This increase, corresponding to about 0.25 kcal/mol per substitution, is in reasonable agreement with the difference in the solvent transfer free energy between the two amino acids.
Collapse
Affiliation(s)
- N C Gassner
- Institute of Molecular Biology, Howard Hughes Medical Institute, Department of Physics, 1229 University of Oregon, Eugene, OR, 97403-1229, USA
| | | | | | | |
Collapse
|
569
|
Bellizzi JJ, Widom J, Kemp CW, Clardy J. Producing selenomethionine-labeled proteins with a baculovirus expression vector system. Structure 1999; 7:R263-7. [PMID: 10574801 DOI: 10.1016/s0969-2126(00)80020-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J J Bellizzi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA
| | | | | | | |
Collapse
|
570
|
Bressanelli S, Tomei L, Roussel A, Incitti I, Vitale RL, Mathieu M, De Francesco R, Rey FA. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc Natl Acad Sci U S A 1999; 96:13034-9. [PMID: 10557268 PMCID: PMC23895 DOI: 10.1073/pnas.96.23.13034] [Citation(s) in RCA: 455] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We report the crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus, a major human pathogen, to 2.8-A resolution. This enzyme is a key target for developing specific antiviral therapy. The structure of the catalytic domain contains 531 residues folded in the characteristic fingers, palm, and thumb subdomains. The fingers subdomain contains a region, the "fingertips," that shares the same fold with reverse transcriptases. Superposition to the available structures of the latter shows that residues from the palm and fingertips are structurally equivalent. In addition, it shows that the hepatitis C virus polymerase was crystallized in a closed fingers conformation, similar to HIV-1 reverse transcriptase in ternary complex with DNA and dTTP [Huang H., Chopra, R., Verdine, G. L. & Harrison, S. C. (1998) Science 282, 1669-1675]. This superposition reveals the majority of the amino acid residues of the hepatitis C virus enzyme that are likely to be implicated in binding to the replicating RNA molecule and to the incoming NTP. It also suggests a rearrangement of the thumb domain as well as a possible concerted movement of thumb and fingertips during translocation of the RNA template-primer in successive polymerization rounds.
Collapse
Affiliation(s)
- S Bressanelli
- Virologie Moléculaire Structurale, Laboratoire de Génétique des Virus, Centre National de la Recherche Scientifique/Unité Propre de Recherche 9053 1, Avenue de la Terrasse, F-91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
571
|
Brunger AT, Adams PD, Rice LM. Annealing in crystallography: a powerful optimization tool. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 72:135-55. [PMID: 10511798 DOI: 10.1016/s0079-6107(99)00004-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A T Brunger
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA.
| | | | | |
Collapse
|
572
|
Eckert DM, Malashkevich VN, Hong LH, Carr PA, Kim PS. Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell 1999; 99:103-15. [PMID: 10520998 DOI: 10.1016/s0092-8674(00)80066-5] [Citation(s) in RCA: 369] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The HIV-1 gp41 protein promotes viral entry by mediating the fusion of viral and cellular membranes. A prominent pocket on the surface of a central trimeric coiled coil within gp41 was previously identified as a potential target for drugs that inhibit HIV-1 entry. We designed a peptide, IQN17, which properly presents this pocket. Utilizing IQN17 and mirror-image phage display, we identified cyclic, D-peptide inhibitors of HIV-1 infection that share a sequence motif. A 1.5 A cocrystal structure of IQN17 in complex with a D-peptide, and NMR studies, show that conserved residues of these inhibitors make intimate contact with the gp41 pocket. Our studies validate the pocket per se as a target for drug development. IQN17 and these D-peptide inhibitors are likely to be useful for development and identification of a new class of orally bioavailable anti-HIV drugs.
Collapse
Affiliation(s)
- D M Eckert
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA
| | | | | | | | | |
Collapse
|
573
|
Clemons WM, Gowda K, Black SD, Zwieb C, Ramakrishnan V. Crystal structure of the conserved subdomain of human protein SRP54M at 2.1 A resolution: evidence for the mechanism of signal peptide binding. J Mol Biol 1999; 292:697-705. [PMID: 10497032 DOI: 10.1006/jmbi.1999.3090] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein SRP54 is an integral part of the mammalian signal recognition particle (SRP), a cytosolic ribonucleoprotein complex which associates with ribosomes and serves to recognize, bind, and transport proteins destined for the membrane or secretion. The methionine-rich M-domain of protein SRP54 (SRP54M) binds the SRP RNA and the signal peptide as the nascent protein emerges from the ribosome. A focal point of this critical cellular function is the detailed understanding of how different hydrophobic signal peptides are recognized efficiently and transported specifically, despite considerable variation in sequence. We have solved the crystal structure of a conserved functional subdomain of the human SRP54 protein (hSRP54m) at 2.1 A resolution showing a predominantly alpha helical protein with a large fraction of the structure available for binding. RNA binding is predicted to occur in the vicinity of helices 4 to 6. The N-terminal helix extends significantly from the core of the structure into a large but constricted hydrophobic groove of an adjacent molecule, thus revealing molecular details of possible interactions between alpha helical signal peptides and human SRP54.
Collapse
Affiliation(s)
- W M Clemons
- Department of Biochemistry, The University of Utah, School of Medicine, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
574
|
Alphey MS, Leonard GA, Gourley DG, Tetaud E, Fairlamb AH, Hunter WN. The high resolution crystal structure of recombinant Crithidia fasciculata tryparedoxin-I. J Biol Chem 1999; 274:25613-22. [PMID: 10464297 DOI: 10.1074/jbc.274.36.25613] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tryparedoxin-I is a recently discovered thiol-disulfide oxidoreductase involved in the regulation of oxidative stress in parasitic trypanosomatids. The crystal structure of recombinant Crithidia fasciculata tryparedoxin-I in the oxidized state has been determined using multi-wavelength anomalous dispersion methods applied to a selenomethionyl derivative. The model comprises residues 3 to 145 with 236 water molecules and has been refined using all data between a 19- and 1.4-A resolution to an R-factor and R-free of 19.1 and 22.3%, respectively. Despite sharing only about 20% sequence identity, tryparedoxin-I presents a five-stranded twisted beta-sheet and two elements of helical structure in the same type of fold as displayed by thioredoxin, the archetypal thiol-disulfide oxidoreductase. However, the relationship of secondary structure with the linear amino acid sequences is different for each protein, producing a distinctive topology. The beta-sheet core is extended in the trypanosomatid protein with an N-terminal beta-hairpin. There are also differences in the content and orientation of helical elements of secondary structure positioned at the surface of the proteins, which leads to different shapes and charge distributions between human thioredoxin and tryparedoxin-I. A right-handed redox-active disulfide is formed between Cys-40 and Cys-43 at the N-terminal region of a distorted alpha-helix (alpha1). Cys-40 is solvent-accessible, and Cys-43 is positioned in a hydrophilic cavity. Three C-H...O hydrogen bonds donated from two proline residues serve to stabilize the disulfide-carrying helix and support the correct alignment of active site residues. The accurate model for tryparedoxin-I allows for comparisons with the family of thiol-disulfide oxidoreductases and provides a template for the discovery or design of selective inhibitors of hydroperoxide metabolism in trypanosomes. Such inhibitors are sought as potential therapies against a range of human pathogens.
Collapse
Affiliation(s)
- M S Alphey
- Department of Biochemistry, The Wellcome Trust Building, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
575
|
Abstract
The ability to assemble a target protein from a series of peptide fragments, either synthetic or biosynthetic in origin, enables the covalent structure of a protein to be modified in an unprecedented fashion. The present technologies available for performing such peptide ligations are discussed, with an emphasis on how these methodologies have been utilized in protein engineering to investigate biological processes.
Collapse
Affiliation(s)
- G J Cotton
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
576
|
Abstract
Spectacular achievements in whole genome sequencing open up new possibilities for structural research. Protein structures can now be studied in their natural genomic context. On the other hand, structure prediction algorithms can be improved using species-specific tendencies in folding patterns. Finally, efficient strategies to select targets for structure determination can be devised. In this review we consider new computational approaches and results in protein structure analysis stemming from the availability of complete genomes.
Collapse
Affiliation(s)
- D Frishman
- GSF-Forschungszentrum fuer Umwelt und Gesundheit, Munich Information Center for Protein Sequences, am Max-Planck-Institut für Biochemie, Martinsried, Germany.
| | | |
Collapse
|
577
|
Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ, Knight SD. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 1999; 285:1061-6. [PMID: 10446051 DOI: 10.1126/science.285.5430.1061] [Citation(s) in RCA: 477] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Type 1 pili-adhesive fibers expressed in most members of the Enterobacteriaceae family-mediate binding to mannose receptors on host cells through the FimH adhesin. Pilus biogenesis proceeds by way of the chaperone/usher pathway. The x-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli at 2.5 angstrom resolution reveals the basis for carbohydrate recognition and for pilus assembly. The carboxyl-terminal pilin domain of FimH has an immunoglobulin-like fold, except that the seventh strand is missing, leaving part of the hydrophobic core exposed. A donor strand complementation mechanism in which the chaperone donates a strand to complete the pilin domain explains the basis for both chaperone function and pilus biogenesis.
Collapse
Affiliation(s)
- D Choudhury
- Department of Molecular Biology, Uppsala Biomedical Center, Swedish University of Agricultural Sciences, Box 590, S-753 24 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
578
|
Traub LM, Downs MA, Westrich JL, Fremont DH. Crystal structure of the alpha appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. Proc Natl Acad Sci U S A 1999; 96:8907-12. [PMID: 10430869 PMCID: PMC17706 DOI: 10.1073/pnas.96.16.8907] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AP-2 adaptors regulate clathrin-bud formation at the cell surface by recruiting clathrin trimers to the plasma membrane and by selecting certain membrane proteins for inclusion within the developing clathrin-coat structure. These functions are performed by discrete subunits of the adaptor heterotetramer. The carboxyl-terminal appendage of the AP-2 alpha subunit appears to regulate the translocation of several endocytic accessory proteins to the bud site. We have determined the crystal structure of the alpha appendage at 1.4-A resolution by multiwavelength anomalous diffraction phasing. It is composed of two distinct structural modules, a beta-sandwich domain and a mixed alpha-beta platform domain. Structure-based mutagenesis shows that alterations to the molecular surface of a highly conserved region on the platform domain differentially affect associations of the appendage with amphiphysin, eps15, epsin, and AP180, revealing a common protein-binding interface.
Collapse
Affiliation(s)
- L M Traub
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
579
|
Xu Y, Bhargava G, Wu H, Loeber G, Tong L. Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases. Structure 1999. [DOI: 10.1016/s0969-2126(99)80115-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
580
|
Bradley D, Roy S, Kissel L, Pratt R. Anomalous scattering effects in elastic photon-atom scattering from biomedically important elements. Radiat Phys Chem Oxf Engl 1993 1999. [DOI: 10.1016/s0969-806x(99)00280-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
581
|
Bhargava G, Mui S, Pav S, Wu H, Loeber G, Tong L. Preliminary crystallographic studies of human mitochondrial NAD(P)(+)-dependent malic enzyme. J Struct Biol 1999; 127:72-5. [PMID: 10479619 DOI: 10.1006/jsbi.1999.4126] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human mitochondrial NAD(P)(+)-dependent malic enzyme was overexpressed in Escherichia coli and purified by anion-exchange, ATP affinity, and gel filtration chromatography. The protein was crystallized with the hanging-drop vapor diffusion method. Many different crystal forms were observed, five of which were characterized in some detail. A 2.5-A multiple-wavelength anomalous diffraction data set and a 2.1-A native data set were collected using synchrotron radiation on crystals containing selenomethionyl residues. These crystals belong to space group B2, with a = 204.4 A, b = 107.0 A, c = 59.2 A, and gamma = 101.9 degrees. Self-rotation functions demonstrated that the tetramer of this enzyme obeys 222 symmetry.
Collapse
Affiliation(s)
- G Bhargava
- Department of Biological Sciences, Columbia University, New York, New York, 10027, USA
| | | | | | | | | | | |
Collapse
|
582
|
Affiliation(s)
- A M Deacon
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
583
|
Abstract
N-ethylmaleimide-sensitive factor (NSF) is a hexameric ATPase essential for eukaryotic vesicle fusion. Along with SNAP proteins, it disassembles cis-SNARE complexes upon ATP hydrolysis, preparing SNAREs for trans complex formation. We have determined the crystal structure of the N-terminal domain of NSF (N) to 1.9 A resolution. N contains two subdomains which form a groove that is a likely SNAP interaction site. Unexpectedly, both N subdomains are structurally similar to domains in EF-Tu. Based on this similarity, we propose a model for a large conformational change in NSF that drives SNARE complex disassembly.
Collapse
Affiliation(s)
- R C Yu
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
584
|
Appleby TC, Erion MD, Ealick SE. The structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase at 1.7 A resolution provides insights into substrate binding and catalysis. Structure 1999; 7:629-41. [PMID: 10404592 DOI: 10.1016/s0969-2126(99)80084-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND 5'-Deoxy-5'-methylthioadenosine phosphorylase (MTAP) catalyzes the reversible phosphorolysis of 5'-deoxy-5'-methylthioadenosine (MTA) to adenine and 5-methylthio-D-ribose-1-phosphate. MTA is a by-product of polyamine biosynthesis, which is essential for cell growth and proliferation. This salvage reaction is the principle source of free adenine in human cells. Because of its importance in coupling the purine salvage pathway to polyamine biosynthesis MTAP is a potential chemotherapeutic target. RESULTS We have determined the crystal structure of MTAP at 1.7 A resolution using multiwavelength anomalous diffraction phasing techniques. MTAP is a trimer comprised of three identical subunits. Each subunit consists of a single alpha/beta domain containing a central eight-stranded mixed beta sheet, a smaller five-stranded mixed beta sheet and six alpha helices. The native structure revealed the presence of an adenine molecule in the purine-binding site. The structure of MTAP with methylthioadenosine and sulfate ion soaked into the active site was also determined using diffraction data to 1.7 A resolution. CONCLUSIONS The overall quaternary structure and subunit topology of MTAP are similar to mammalian purine nucleoside phosphorylase (PNP). The structures of the MTAP-ligand complexes provide a map of the active site and suggest possible roles for specific residues in substrate binding and catalysis. Residues accounting for the differences in substrate specificity between MTAP and PNP are also identified. Detailed information about the structure and chemical nature of the MTAP active site will aid in the rational design of inhibitors of this potential chemotherapeutic target. The MTAP structure represents the first structure of a mammalian PNP that is specific for 6-aminopurines.
Collapse
Affiliation(s)
- T C Appleby
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
585
|
Abstract
The papillomavirus E2 protein regulates viral transcription and DNA replication through interactions with cellular and viral proteins. The amino-terminal activation domain, which represents a protein class whose structural themes are poorly understood, contains key residues that mediate these functional contacts. The crystal structure of a protease-resistant core of the human papillomavirus type 18 E2 activation domain reveals a novel fold creating a cashew-shaped form with a glutamine-rich alpha helix packed against a beta-sheet framework. The protein surface shows extensive overlap of determinants for replication and transcription. The structure broadens the concept of activators to include proteins with potentially malleable, but certainly ordered, structures.
Collapse
Affiliation(s)
- S F Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA
| | | |
Collapse
|
586
|
Fan QR, Mosyak L, Garboczi DN, Winter CC, Wagtmann N, Long EO, Wiley DC. Structure of a human natural killer cell inhibitory receptor. Transplant Proc 1999; 31:1871-2. [PMID: 10371978 DOI: 10.1016/s0041-1345(99)00193-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Q R Fan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard Universty, Cambridge, MA, USA
| | | | | | | | | | | | | |
Collapse
|
587
|
Misra S, Hurley JH. Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell 1999; 97:657-66. [PMID: 10367894 DOI: 10.1016/s0092-8674(00)80776-x] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphatidylinositol 3-phosphate regulates membrane trafficking and signaling pathways by interacting with the FYVE domains of target proteins. The 1.15 A structure of the Vps27p FYVE domain reveals two antiparallel beta sheets and an alpha helix stabilized by two Zn2+-binding clusters. The core secondary structures are similar to a rabphilin-3A Zn2+-binding domain and to the C1 and LIM domains. Phosphatidylinositol 3-phosphate binds to a pocket formed by the (R/K)(R/K)HHCR motif. A lattice contact shows how anionic ligands can interact with the phosphatidylinositol 3-phosphate-binding site. The tip of the FYVE domain has basic and hydrophobic surfaces positioned so that nonspecific interactions with the phospholipid bilayer can abet specific binding to phosphatidylinositol 3-phosphate.
Collapse
Affiliation(s)
- S Misra
- Laboratory of Molecular Biology, National Institute of Digestive, Diabetes, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0580, USA
| | | |
Collapse
|
588
|
Chiu HJ, Reddick JJ, Begley TP, Ealick SE. Crystal structure of thiamin phosphate synthase from Bacillus subtilis at 1.25 A resolution. Biochemistry 1999; 38:6460-70. [PMID: 10350464 DOI: 10.1021/bi982903z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of Bacillus subtilis thiamin phosphate synthase complexed with the reaction products thiamin phosphate and pyrophosphate has been determined by multiwavelength anomalous diffraction phasing techniques and refined to 1.25 A resolution. Thiamin phosphate synthase is an alpha/beta protein with a triosephosphate isomerase fold. The active site is in a pocket formed primarily by the loop regions, residues 59-67 (A loop, joining alpha3 and beta2), residues 109-114 (B loop, joining alpha5 and beta4), and residues 151-168 (C loop, joining alpha7 and beta6). The high-resolution structure of thiamin phosphate synthase complexed with its reaction products described here provides a detailed picture of the catalytically important interactions between the enzyme and the substrates. The structure and other mechanistic studies are consistent with a reaction mechanism involving the ionization of 4-amino-2-methyl-5-hydroxymethylpyrimidine pyrophosphate at the active site to give the pyrimidine carbocation. Trapping of the carbocation by the thiazole followed by product dissociation completes the reaction. The ionization step is catalyzed by orienting the C-O bond perpendicular to the plane of the pyrimidine, by hydrogen bonding between the C4' amino group and one of the terminal oxygen atoms of the pyrophosphate, and by extensive hydrogen bonding and electrostatic interactions between the pyrophosphate and the enzyme.
Collapse
Affiliation(s)
- H J Chiu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
589
|
Féthière J, Eggimann B, Cygler M. Crystal structure of chondroitin AC lyase, a representative of a family of glycosaminoglycan degrading enzymes. J Mol Biol 1999; 288:635-47. [PMID: 10329169 DOI: 10.1006/jmbi.1999.2698] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycosaminoglycans (GAGs), highly sulfated polymers built of hexosamine-uronic acid disaccharide units, are major components of the extracellular matrix, mostly in the form of proteoglycans. They interact with a large array of proteins, in particular of the blood coagulation cascade. Degradation of GAGs in mammalian systems occurs by the action of GAG hydrolases. Bacteria express a large number of GAG-degrading lyases that break the hexosamine-uronic acid bond to create an unsaturated sugar ring. Flavobacterium heparinum produces at least five GAG lyases of different specificity. Chondroitin AC lyase (chondroitinase AC, 75 kDa) is highly active toward chondroitin 4-sulfate and chondroitin-6 sulfate. Its crystal structure has been determined to 1.9 A resolution. The enzyme is composed of two domains. The N-terminal domain of approximately 300 residues contains mostly alpha-helices which form a doubly-layered horseshoe (a subset of the (alpha/alpha)6 toroidal topology). The approximately 370 residues long C-terminal domain is made of beta-strands arranged in a four layered beta-sheet sandwich, with the first two sheets having nine strands each. This fold is novel and has no counterpart in full among known structures. The sequence of chondroitinase AC shows low level of homology to several hyaluronate lyases, which likely share its fold. The shape of the molecule, distribution of electrostatic potential, the pattern of conservation of the amino acids and the results of mutagenesis of hyaluronate lyases, indicate that the enzymatic activity resides primarily within the N-terminal domain. The most likely candidate for the catalytic base is His225. Other residues involved in catalysis and/or substrate binding are Arg288, Arg292, Lys298 and Lys299.
Collapse
Affiliation(s)
- J Féthière
- NRC, Biotechnology Research Institute, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
| | | | | |
Collapse
|
590
|
Wimberly BT, Guymon R, McCutcheon JP, White SW, Ramakrishnan V. A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell 1999; 97:491-502. [PMID: 10338213 DOI: 10.1016/s0092-8674(00)80759-x] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report the crystal structure of a 58 nucleotide fragment of 23S ribosomal RNA bound to ribosomal protein L11. This highly conserved ribonucleoprotein domain is the target for the thiostrepton family of antibiotics that disrupt elongation factor function. The highly compact RNA has both familiar and novel structural motifs. While the C-terminal domain of L11 binds RNA tightly, the N-terminal domain makes only limited contacts with RNA and is proposed to function as a switch that reversibly associates with an adjacent region of RNA. The sites of mutations conferring resistance to thiostrepton and micrococcin line a narrow cleft between the RNA and the N-terminal domain. These antibiotics are proposed to bind in this cleft, locking the putative switch and interfering with the function of elongation factors.
Collapse
Affiliation(s)
- B T Wimberly
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | | | | | | | |
Collapse
|
591
|
Barycki JJ, O'Brien LK, Bratt JM, Zhang R, Sanishvili R, Strauss AW, Banaszak LJ. Biochemical characterization and crystal structure determination of human heart short chain L-3-hydroxyacyl-CoA dehydrogenase provide insights into catalytic mechanism. Biochemistry 1999; 38:5786-98. [PMID: 10231530 DOI: 10.1021/bi9829027] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human heart short chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) catalyzes the oxidation of the hydroxyl group of L-3-hydroxyacyl-CoA to a keto group, concomitant with the reduction of NAD+ to NADH, as part of the beta-oxidation pathway. The homodimeric enzyme has been overexpressed in Escherichia coli, purified to homogeneity, and studied using biochemical and crystallographic techniques. The dissociation constants of NAD+ and NADH have been determined over a broad pH range and indicate that SCHAD binds reduced cofactor preferentially. Examination of apparent catalytic constants reveals that SCHAD displays optimal enzymatic activity near neutral pH, with catalytic efficiency diminishing rapidly toward pH extremes. The crystal structure of SCHAD complexed with NAD+ has been solved using multiwavelength anomalous diffraction techniques and a selenomethionine-substituted analogue of the enzyme. The subunit structure is comprised of two domains. The first domain is similar to other alpha/beta dinucleotide folds but includes an unusual helix-turn-helix motif which extends from the central beta-sheet. The second, or C-terminal, domain is primarily alpha-helical and mediates subunit dimerization and, presumably, L-3-hydroxyacyl-CoA binding. Molecular modeling studies in which L-3-hydroxybutyryl-CoA was docked into the enzyme-NAD+ complex suggest that His 158 serves as a general base, abstracting a proton from the 3-OH group of the substrate. Furthermore, the ability of His 158 to perform such a function may be enhanced by an electrostatic interaction with Glu 170, consistent with previous biochemical observations. These studies provide further understanding of the molecular basis of several inherited metabolic disease states correlated with L-3-hydroxyacyl-CoA dehydrogenase deficiencies.
Collapse
Affiliation(s)
- J J Barycki
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | | | |
Collapse
|
592
|
Ekstrom JL, Mathews II, Stanley BA, Pegg AE, Ealick SE. The crystal structure of human S-adenosylmethionine decarboxylase at 2.25 A resolution reveals a novel fold. Structure 1999; 7:583-95. [PMID: 10378277 DOI: 10.1016/s0969-2126(99)80074-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical regulatory enzyme of the polyamine synthetic pathway, and a well-studied drug target. The AdoMetDC decarboxylation reaction depends upon a pyruvoyl cofactor generated via an intramolecular proenzyme self-cleavage reaction. Both the proenzyme-processing and substrate-decarboxylation reactions are allosterically enhanced by putrescine. Structural elucidation of this enzyme is necessary to fully interpret the existing mutational and inhibitor-binding data, and to suggest further experimental studies. RESULTS The structure of human AdoMetDC has been determined to 2.25 A resolution using multiwavelength anomalous diffraction (MAD) phasing methods based on 22 selenium-atom positions. The quaternary structure of the mature AdoMetDC is an (alpha beta)2 dimer, where alpha and beta represent the products of the proenzyme self-cleavage reaction. The architecture of each (alpha beta) monomer is a novel four-layer alpha/beta-sandwich fold, comprised of two antiparallel eight-stranded beta sheets flanked by several alpha and 3(10) helices. CONCLUSIONS The structure and topology of AdoMetDC display internal symmetry, suggesting that this protein may be the product of an ancient gene duplication. The positions of conserved, functionally important residues suggest the location of the active site and a possible binding site for the effector molecule putrescine.
Collapse
Affiliation(s)
- J L Ekstrom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
593
|
Dessen A, Tang J, Schmidt H, Stahl M, Clark JD, Seehra J, Somers WS. Crystal structure of human cytosolic phospholipase A2 reveals a novel topology and catalytic mechanism. Cell 1999; 97:349-60. [PMID: 10319815 DOI: 10.1016/s0092-8674(00)80744-8] [Citation(s) in RCA: 277] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytosolic phospholipase A2 initiates the biosynthesis of prostaglandins, leukotrienes, and platelet-activating factor (PAF), mediators of the pathophysiology of asthma and arthritis. Here, we report the X-ray crystal structure of human cPLA2 at 2.5 A. cPLA2 consists of an N-terminal calcium-dependent lipid-binding/C2 domain and a catalytic unit whose topology is distinct from that of other lipases. An unusual Ser-Asp dyad located in a deep cleft at the center of a predominantly hydrophobic funnel selectively cleaves arachidonyl phospholipids. The structure reveals a flexible lid that must move to allow substrate access to the active site, thus explaining the interfacial activation of this important lipase.
Collapse
Affiliation(s)
- A Dessen
- Biochemistry, Wyeth Research, Cambridge, Massachusetts 02140, USA.
| | | | | | | | | | | | | |
Collapse
|
594
|
Hirsch JA, Schubert C, Gurevich VV, Sigler PB. The 2.8 A crystal structure of visual arrestin: a model for arrestin's regulation. Cell 1999; 97:257-269. [PMID: 10219246 DOI: 10.1016/s0092-8674(00)80735-7] [Citation(s) in RCA: 337] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
G protein-coupled signaling is utilized by a wide variety of eukaryotes for communicating information from the extracellular environment. Signal termination is achieved by the action of the arrestins, which bind to activated, phosphorylated G protein-coupled receptors. We describe here crystallographic studies of visual arrestin in its basal conformation. The salient features of the structure are a bipartite molecule with an unusual polar core. This core is stabilized in part by an extended carboxy-terminal tail that locks the molecule into an inactive state. In addition, arrestin is found to be a dimer of two asymmetric molecules, suggesting an intrinsic conformational plasticity. In conjunction with biochemical and mutagenesis data, we propose a molecular mechanism by which arrestin is activated for receptor binding.
Collapse
Affiliation(s)
- J A Hirsch
- Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | | | | | | |
Collapse
|
595
|
Coste F, Malinge JM, Serre L, Shepard W, Roth M, Leng M, Zelwer C. Crystal structure of a double-stranded DNA containing a cisplatin interstrand cross-link at 1.63 A resolution: hydration at the platinated site. Nucleic Acids Res 1999; 27:1837-46. [PMID: 10101191 PMCID: PMC148391 DOI: 10.1093/nar/27.8.1837] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
cis-diamminedichloroplatinum (II) (cisplatin) is a powerful anti-tumor drug whose target is cellular DNA. In the reaction between DNA and cisplatin, covalent intrastrand and interstrand cross-links (ICL) are formed. Two solution structures of the ICL have been published recently. In both models the double-helix is bent and unwound but with significantly different angle values. We solved the crystal structure at 100K of a double-stranded DNA decamer containing a single cisplatin ICL, using the anomalous scattering (MAD) of platinum as a unique source of phase information. We found 47 degrees for double-helix bending and 70 degrees for unwinding in agreement with previous electrophoretic assays. The crystals are stabilized by intermolecular contacts involving two cytosines extruded from the double-helix, one of which makes a triplet with a terminal G.C pair. The platinum coordination is nearly square and the platinum residue is embedded into a cage of nine water molecules linked to the cross-linked guanines, to the two amine groups, and to the phosphodiester backbone through other water molecules. This water molecule organization is discussed in relation with the chemical stability of the ICL.
Collapse
Affiliation(s)
- F Coste
- Centre de Biophysique Moléculaire, Centre de National de la Recherche Scientifique, affiliated to the Université d'Orléans, rue Charles Sadron, 45071 Orleans Cedex, France
| | | | | | | | | | | | | |
Collapse
|
596
|
Zhang R, Evans G, Rotella FJ, Westbrook EM, Beno D, Huberman E, Joachimiak A, Collart FR. Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase. Biochemistry 1999; 38:4691-700. [PMID: 10200156 DOI: 10.1021/bi982858v] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the first step unique to GTP synthesis. To provide a basis for the evaluation of IMPDH inhibitors as antimicrobial agents, we have expressed and characterized IMPDH from the pathogenic bacterium Streptococcus pyogenes. Our results show that the biochemical and kinetic characteristics of S. pyogenes IMPDH are similar to other bacterial IMPDH enzymes. However, the lack of sensitivity to mycophenolic acid and the Km for NAD (1180 microM) exemplify some of the differences between the bacterial and mammalian IMPDH enzymes, making it an attractive target for antimicrobial agents. To evaluate the basis for these differences, we determined the crystal structure of the bacterial enzyme at 1.9 A with substrate bound in the catalytic site. The structure was determined using selenomethionine-substituted protein and multiwavelength anomalous (MAD) analysis of data obtained with synchrotron radiation from the undulator beamline (19ID) of the Structural Biology Center at Argonne's Advanced Photon Source. S. pyogenes IMPDH is a tetramer with its four subunits related by a crystallographic 4-fold axis. The protein is composed of two domains: a TIM barrel domain that embodies the catalytic framework and a cystathione beta-synthase (CBS) dimer domain of so far unknown function. Using information provided by sequence alignments and the crystal structure, we prepared several site-specific mutants to examine the role of various active site regions in catalysis. These variants implicate the active site flap as an essential catalytic element and indicate there are significant differences in the catalytic environment of bacterial and mammalian IMPDH enzymes. Comparison of the structure of bacterial IMPDH with the known partial structures from eukaryotic organisms will provide an explanation of their distinct properties and contribute to the design of specific bacterial IMPDH inhibitors.
Collapse
Affiliation(s)
- R Zhang
- Center for Mechanistic Biology and Biotechnology, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4833, USA.
| | | | | | | | | | | | | | | |
Collapse
|
597
|
Snyder GA, Brooks AG, Sun PD. Crystal structure of the HLA-Cw3 allotype-specific killer cell inhibitory receptor KIR2DL2. Proc Natl Acad Sci U S A 1999; 96:3864-9. [PMID: 10097129 PMCID: PMC22386 DOI: 10.1073/pnas.96.7.3864] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Killer cell inhibitory receptors (KIR) protect class I HLAs expressing target cells from natural killer (NK) cell-mediated lysis. To understand the molecular basis of this receptor-ligand recognition, we have crystallized the extracellular ligand-binding domains of KIR2DL2, a member of the Ig superfamily receptors that recognize HLA-Cw1, 3, 7, and 8 allotypes. The structure was determined in two different crystal forms, an orthorhombic P212121 and a trigonal P3221 space group, to resolutions of 3.0 and 2.9 A, respectively. The overall fold of this structure, like KIR2DL1, exhibits K-type Ig topology with cis-proline residues in both domains that define beta-strand switching, which sets KIR apart from the C2-type hematopoietic growth hormone receptor fold. The hinge angle of KIR2DL2 is approximately 80 degrees, 14 degrees larger than that observed in KIR2DL1 despite the existence of conserved hydrophobic residues near the hinge region. There is also a 5 degrees difference in the observed hinge angles in two crystal forms of 2DL2, suggesting that the interdomain hinge angle is not fixed. The putative ligand-binding site is formed by residues from several variable loops with charge distribution apparently complementary to that of HLA-C. The packing of the receptors in the orthorhombic crystal form offers an intriguing model for receptor aggregation on the cell surface.
Collapse
MESH Headings
- Amino Acid Sequence
- Computer Graphics
- Conserved Sequence
- Crystallography, X-Ray/methods
- HLA-C Antigens/immunology
- Humans
- Immunoglobulin Allotypes/immunology
- Killer Cells, Natural/immunology
- Models, Molecular
- Molecular Sequence Data
- Proline
- Protein Folding
- Protein Structure, Secondary
- Receptors, Colony-Stimulating Factor/chemistry
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/immunology
- Receptors, KIR
- Receptors, KIR2DL1
- Receptors, KIR2DL2
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- G A Snyder
- Department of Biochemistry, Molecular Biology, and Cell Biology, 2153 Sheridan, O. T. Hogan Hall, Room 2-100, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
598
|
Hennig M, Dale GE, D'arcy A, Danel F, Fischer S, Gray CP, Jolidon S, Müller F, Page MG, Pattison P, Oefner C. The structure and function of the 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase from Haemophilus influenzae. J Mol Biol 1999; 287:211-9. [PMID: 10080886 DOI: 10.1006/jmbi.1999.2623] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene encoding the 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase of Haemophilus influenzae has been cloned and expressed in Escherichia coli. A complex of the purified protein with a substrate analog has been crystallized and its structure solved by multiple anomalous dispersion using phase information obtained from a single crystal of selenomethione-labeled protein. The enzyme folds into a four-stranded antiparallel beta-sheet flanked on one side by two alpha-helices and on the other by three consecutive alpha-helices, giving a novel beta1alpha1beta2beta3alpha2beta4alpha3alpha4alpha5 polypeptide topology. The three-dimensional structure of a binary complex has been refined at 2.1 A resolution. The location of the substrate analog and a sulfate ion gives important insight into the molecular mechanism of the enzyme.
Collapse
Affiliation(s)
- M Hennig
- F. Hoffmann-La Roche Ltd, Pharma Preclinical Research, Basel, CH-4070, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
599
|
Sharma A, Askari JA, Humphries MJ, Jones EY, Stuart DI. Crystal structure of a heparin- and integrin-binding segment of human fibronectin. EMBO J 1999; 18:1468-79. [PMID: 10075919 PMCID: PMC1171236 DOI: 10.1093/emboj/18.6.1468] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The crystal structure of human fibronectin (FN) type III repeats 12-14 reveals the primary heparin-binding site, a clump of positively charged residues in FN13, and a putative minor site approximately 60 A away in FN14. The IDAPS motif implicated in integrin alpha4beta1 binding is at the FN13-14 junction, rendering the critical Asp184 inaccessible to integrin. Asp184 clamps the BC loop of FN14, whose sequence (PRARI) is reminiscent of the synergy sequence (PHSRN) of FN9. Mutagenesis studies prompted by this observation reveal that both arginines of the PRARI sequence are important for alpha4beta1 binding to FN12-14. The PRARI motif may represent a new class of integrin-binding sites. The spatial organization of the binding sites suggests that heparin and integrin may bind in concert.
Collapse
Affiliation(s)
- A Sharma
- Laboratory of Molecular Biophysics, University of Oxford, Rex Richardson Building, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | | | |
Collapse
|
600
|
Silva GH, Dalgaard JZ, Belfort M, Van Roey P. Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI. J Mol Biol 1999; 286:1123-36. [PMID: 10047486 DOI: 10.1006/jmbi.1998.2519] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
I-DmoI is a 22 kDa endonuclease encoded by an intron in the 23 S rRNA gene of the hyperthermophilic archaeon Desulfurococcus mobilis. The structure of I-DmoI has been determined to 2.2 A resolution using multi-wavelength anomalous diffraction techniques. I-DmoI, a protein of the LAGLIDADG motif family, represents the first structure of a freestanding endonuclease with two LAGLIDADG motifs, and the first of a thermostable homing endonuclease. I-DmoI consists of two similar alpha/beta domains (alphabetabetaalphabetabetaalpha) related by pseudo 2-fold symmetry. The LAGLIDADG motifs are located at the carboxy-terminal end of the first alpha-helix of each domain. These helices form a two-helix bundle at the interface between the domains and are perpendicular to a saddle-shaped DNA binding surface, formed by two four-stranded antiparallel beta-sheets. Despite substantially different sequences, the overall fold of I-DmoI is similar to that of two other LAGLIDADG proteins for which the structures are known, I-CreI and the endonuclease domain of PI-SceI. The three structures differ most in the loops connecting the beta-strands, relating to the respective DNA target site sizes and geometries. In addition, the absence of conserved residues surrounding the active site, other than those within the LAGLIDADG motif, is of mechanistic importance. Finally, the carboxy-terminal domain of I-DmoI is smaller and has a more irregular fold than the amino-terminal domain, which is more similar to I-CreI, a symmetric homodimeric endonuclease. This is reversed compared to PI-SceI, where the amino-terminal domain is more similar to carboxy-terminal domain of I-DmoI and to I-CreI, with interesting evolutionary implications.
Collapse
Affiliation(s)
- G H Silva
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201-0509, USA
| | | | | | | |
Collapse
|