551
|
Lamelas A, Gosalbes MJ, Manzano-Marín A, Peretó J, Moya A, Latorre A. Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont. PLoS Genet 2011; 7:e1002357. [PMID: 22102823 PMCID: PMC3213167 DOI: 10.1371/journal.pgen.1002357] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/10/2011] [Indexed: 02/07/2023] Open
Abstract
The genome sequencing of Buchnera aphidicola BCc from the aphid Cinara cedri, which is the smallest known Buchnera genome, revealed that this bacterium had lost its symbiotic role, as it was not able to synthesize tryptophan and riboflavin. Moreover, the biosynthesis of tryptophan is shared with the endosymbiont Serratia symbiotica SCc, which coexists with B. aphidicola in this aphid. The whole-genome sequencing of S. symbiotica SCc reveals an endosymbiont in a stage of genome reduction that is closer to an obligate endosymbiont, such as B. aphidicola from Acyrthosiphon pisum, than to another S. symbiotica, which is a facultative endosymbiont in this aphid, and presents much less gene decay. The comparison between both S. symbiotica enables us to propose an evolutionary scenario of the transition from facultative to obligate endosymbiont. Metabolic inferences of B. aphidicola BCc and S. symbiotica SCc reveal that most of the functions carried out by B. aphidicola in A. pisum are now either conserved in B. aphidicola BCc or taken over by S. symbiotica. In addition, there are several cases of metabolic complementation giving functional stability to the whole consortium and evolutionary preservation of the actors involved.
Collapse
Affiliation(s)
- Araceli Lamelas
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
552
|
MARTINEZ J, FLEURY F, VARALDI J. Heritable variation in an extended phenotype: the case of a parasitoid manipulated by a virus. J Evol Biol 2011; 25:54-65. [DOI: 10.1111/j.1420-9101.2011.02405.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
553
|
Liu S, Vijayendran D, Bonning BC. Next generation sequencing technologies for insect virus discovery. Viruses 2011; 3:1849-69. [PMID: 22069519 PMCID: PMC3205385 DOI: 10.3390/v3101849] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 12/21/2022] Open
Abstract
Insects are commonly infected with multiple viruses including those that cause sublethal, asymptomatic, and latent infections. Traditional methods for virus isolation typically lack the sensitivity required for detection of such viruses that are present at low abundance. In this respect, next generation sequencing technologies have revolutionized methods for the discovery and identification of new viruses from insects. Here we review both traditional and modern methods for virus discovery, and outline analysis of transcriptome and small RNA data for identification of viral sequences. We will introduce methods for de novo assembly of viral sequences, identification of potential viral sequences from BLAST data, and bioinformatics for generating full-length or near full-length viral genome sequences. We will also discuss implications of the ubiquity of viruses in insects and in insect cell lines. All of the methods described in this article can also apply to the discovery of viruses in other organisms.
Collapse
Affiliation(s)
- Sijun Liu
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | | | | |
Collapse
|
554
|
Altincicek B, Ter Braak B, Laughton AM, Udekwu KI, Gerardo NM. Escherichia coli K-12 pathogenicity in the pea aphid, Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1091-1097. [PMID: 21527277 DOI: 10.1016/j.dci.2011.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 05/30/2023]
Abstract
To better understand the molecular basis underlying aphid immune tolerance to beneficial bacteria and immune defense to pathogenic bacteria, we characterized how the pea aphid Acyrthosiphon pisum responds to Escherichia coli K-12 infections. E. coli bacteria, usually cleared in the hemolymph of other insect species, were capable of growing exponentially and killing aphids within a few days. Red fluorescence protein expressing E. coli K-12 laboratory strain multiplied in the aphid hemolymph as well as in the digestive tract, resulting in death of infected aphids. Selected gene deletion mutants of the E. coli K-12 predicted to have reduced virulence during systemic infections showed no difference in either replication or killing rate when compared to the wild type E. coli strain. Of note, however, the XL1-Blue E. coli K-12 strain exhibited a significant lag phase before multiplying and killing aphids. This bacterial strain has recently been shown to be more sensitive to oxidative stress than other E. coli K-12 strains, revealing a potential role for reactive oxygen species-mediated defenses in the otherwise reduced aphid immune system.
Collapse
Affiliation(s)
- Boran Altincicek
- Department of Biology, Emory University, O. Wayne Rollins Research Center, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
555
|
Altincicek B, Kovacs JL, Gerardo NM. Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae. Biol Lett 2011; 8:253-7. [PMID: 21920958 DOI: 10.1098/rsbl.2011.0704] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are organic pigments commonly synthesized by plants, algae and some micro-organisms. Through absorption of light energy, carotenoids facilitate photosynthesis and provide protection against photo-oxidation. While it was presumed that all carotenoids in animals were sequestered from their diets, aphids were recently shown to harbour genomic copies of functional carotenoid biosynthesis genes that were acquired via horizontal gene transfer from fungi. Our search of available animal transcripts revealed the presence of two related genes in the two-spotted spider mite Tetranychus urticae. Phylogenetic analyses suggest that the T. urticae genes were transferred from fungi into the spider mite genome, probably in a similar manner as recently suggested for aphids. The genes are expressed in both green and red morphs, with red morphs exhibiting higher levels of gene expression. Additionally, there appear to be changes in the expression of these genes during diapause. As carotenoids are associated with diapause induction in these animals, our results add to recent findings highlighting the importance of eukaryotic horizontal gene transfer in the ecology and evolution of higher animals.
Collapse
|
556
|
White JA. Caught in the act: rapid, symbiont-driven evolution: endosymbiont infection is a mechanism generating rapid evolution in some arthropods--but how widespread is the phenomenon? Bioessays 2011; 33:823-9. [PMID: 22006824 DOI: 10.1002/bies.201100095] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Facultative bacterial endosymbionts can transfer horizontally among lineages of their arthropod hosts, providing the recipient with a suite of traits that can lead to rapid evolutionary response, as has been recently demonstrated. But how common is symbiont-driven evolution? Evidence suggests that successful symbiont transfers are most likely within a species or among closely related species, although more distant transfers have occurred over evolutionary history. Symbiont-driven evolution need not be a function of a recent horizontal transfer, however. Many endosymbionts infect only a small proportion of a host population, but could quickly increase in frequency under favorable selection regimes. Some host species appear to accumulate a diversity of facultative endosymbionts, and it is among these species that symbiont-driven evolution should be most prevalent. It remains to be determined how frequently symbionts enable rapid evolutionary response by their hosts, but substantial ecological effects are a likely consequence whenever it does occur.
Collapse
Affiliation(s)
- Jennifer A White
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY, USA.
| |
Collapse
|
557
|
Ferrari J, Vavre F. Bacterial symbionts in insects or the story of communities affecting communities. Philos Trans R Soc Lond B Biol Sci 2011; 366:1389-400. [PMID: 21444313 DOI: 10.1098/rstb.2010.0226] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacterial symbionts are widespread in insects and other animals. Most of them are predominantly vertically transmitted, along with their hosts' genes, and thus extend the heritable genetic variation present in one species. These passengers have a variety of repercussions on the host's phenotypes: besides the cost imposed on the host for maintaining the symbiont population, they can provide fitness advantages to the host or manipulate the host's reproduction. We argue that insect symbioses are ideal model systems for community genetics. First, bacterial symbionts directly or indirectly affect the interactions with other species within a community. Examples include their involvement in modifying the use of host plants by phytophagous insects, in providing resistance to natural enemies, but also in reducing the global genetic diversity or gene flow between populations within some species. Second, one emerging picture in insect symbioses is that many species are simultaneously infected with more than one symbiont, which permits studying the factors that shape bacterial communities; for example, horizontal transmission, interactions between host genotype, symbiont genotype and the environment and interactions among symbionts. One conclusion is that insects' symbiotic complements are dynamic communities that affect and are affected by the communities in which they are embedded.
Collapse
Affiliation(s)
- Julia Ferrari
- Department of Biology, University of York, PO Box 373, York YO10 5YW, UK.
| | | |
Collapse
|
558
|
Simon JC, Boutin S, Tsuchida T, Koga R, Le Gallic JF, Frantz A, Outreman Y, Fukatsu T. Facultative symbiont infections affect aphid reproduction. PLoS One 2011; 6:e21831. [PMID: 21818272 PMCID: PMC3144876 DOI: 10.1371/journal.pone.0021831] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 06/08/2011] [Indexed: 11/18/2022] Open
Abstract
Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction.
Collapse
Affiliation(s)
- Jean-Christophe Simon
- INRA, UMR 1099 INRA-Agrocampus Ouest-Université de Rennes 1 Biologie des Organismes et des Populations appliquée à la Protection des Plantes (BiO3P), Le Rheu, France.
| | | | | | | | | | | | | | | |
Collapse
|
559
|
Li T, Xiao JH, Xu ZH, Murphy RW, Huang DW. Cellular tropism, population dynamics, host range and taxonomic status of an aphid secondary symbiont, SMLS (Sitobion miscanthi L type symbiont). PLoS One 2011; 6:e21944. [PMID: 21789197 PMCID: PMC3137594 DOI: 10.1371/journal.pone.0021944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 06/13/2011] [Indexed: 11/18/2022] Open
Abstract
SMLS (Sitobion miscanthi L type symbiont) is a newly reported aphid secondary symbiont. Phylogenetic evidence from molecular markers indicates that SMLS belongs to the Rickettsiaceae and has a sibling relationship with Orientia tsutsugamushi. A comparative analysis of coxA nucleotide sequences further supports recognition of SMLS as a new genus in the Rickettsiaceae. In situ hybridization reveals that SMLS is housed in both sheath cells and secondary bacteriocytes and it is also detected in aphid hemolymph. The population dynamics of SMLS differ from those of Buchnera aphidicola and titer levels of SMLS increase in older aphids. A survey of 13 other aphids reveals that SMLS only occurs in wheat-associated species.
Collapse
Affiliation(s)
- Tong Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Jin-Hua Xiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Huan Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Robert W. Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Da-Wei Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Hebei University, Baoding, Hebei, China
- * E-mail:
| |
Collapse
|
560
|
Bosch TCG, McFall-Ngai MJ. Metaorganisms as the new frontier. ZOOLOGY 2011; 114:185-90. [PMID: 21737250 DOI: 10.1016/j.zool.2011.04.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 04/03/2011] [Accepted: 04/08/2011] [Indexed: 11/29/2022]
Abstract
Because it appears that almost all organisms are part of an interdependent metaorganism, an understanding of the underlying host-microbe species associations, and of evolution and molecular underpinnings, has become the new frontier in zoology. The availability of novel high-throughput sequencing methods, together with the conceptual understanding that advances mostly originate at the intersection of traditional disciplinary boundaries, enable biologists to dissect the mechanisms that control the interdependent associations of species. In this review article, we outline some of the issues in inter-species interactions, present two case studies illuminating the necessity of interfacial research when addressing complex and fundamental zoological problems, and show that an interdisciplinary approach that seeks to understand co-evolved multi-species relationships will connect genomes, phenotypes, ecosystems and the evolutionary forces that have shaped them. We hope that this article inspires other collaborations of a similar nature on the diverse landscape commonly referred to as "zoology".
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany.
| | | |
Collapse
|
561
|
Lamelas A, Gosalbes MJ, Moya A, Latorre A. New clues about the evolutionary history of metabolic losses in bacterial endosymbionts, provided by the genome of Buchnera aphidicola from the aphid Cinara tujafilina. Appl Environ Microbiol 2011; 77:4446-54. [PMID: 21571878 PMCID: PMC3127723 DOI: 10.1128/aem.00141-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The symbiotic association between aphids (Homoptera) and Buchnera aphidicola (Gammaproteobacteria) started about 100 to 200 million years ago. As a consequence of this relationship, the bacterial genome has undergone a prominent size reduction. The downsize genome process starts when the bacterium enters the host and will probably end with its extinction and replacement by another healthier bacterium or with the establishment of metabolic complementation between two or more bacteria. Nowadays, several complete genomes of Buchnera aphidicola from four different aphid species (Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistacea, and Cinara cedri) have been fully sequenced. C. cedri belongs to the subfamily Lachninae and harbors two coprimary bacteria that fulfill the metabolic needs of the whole consortium: B. aphidicola with the smallest genome reported so far and "Candidatus Serratia symbiotica." In addition, Cinara tujafilina, another member of the subfamily Lachninae, closely related to C. cedri, also harbors "Ca. Serratia symbiotica" but with a different phylogenetic status than the one from C. cedri. In this study, we present the complete genome sequence of B. aphidicola from C. tujafilina and the phylogenetic analysis and comparative genomics with the other Buchnera genomes. Furthermore, the gene repertoire of the last common ancestor has been inferred, and the evolutionary history of the metabolic losses that occurred in the different lineages has been analyzed. Although stochastic gene loss plays a role in the genome reduction process, it is also clear that metabolism, as a functional constraint, is also a powerful evolutionary force in insect endosymbionts.
Collapse
Affiliation(s)
- Araceli Lamelas
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
| | - María José Gosalbes
- Unidad Mixta de Investigación en Genómica y Salud-Centro Superior Investigación Salud Pública (Generalitat Valenciana)/Instituto Cavanilles de Biodiversidad y Biologia Evolutiva (Universidad Valencia), València, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
- Unidad Mixta de Investigación en Genómica y Salud-Centro Superior Investigación Salud Pública (Generalitat Valenciana)/Instituto Cavanilles de Biodiversidad y Biologia Evolutiva (Universidad Valencia), València, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
- Unidad Mixta de Investigación en Genómica y Salud-Centro Superior Investigación Salud Pública (Generalitat Valenciana)/Instituto Cavanilles de Biodiversidad y Biologia Evolutiva (Universidad Valencia), València, Spain
- Corresponding author. Mailing address: Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado de Correos 2085, 46071 Valencia, Spain. Phone: (34) 963543649. Fax: (34) 963543670. E-mail:
| |
Collapse
|
562
|
Bouvaine S, Boonham N, Douglas AE. Interactions between a luteovirus and the GroEL chaperonin protein of the symbiotic bacterium Buchnera aphidicola of aphids. J Gen Virol 2011; 92:1467-1474. [DOI: 10.1099/vir.0.029355-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Luteoviruses and poleroviruses are important plant viruses transmitted exclusively by aphids in a circulative manner via the aphid haemolymph. A chaperonin protein, GroEL, synthesized in aphids by a symbiotic bacterium, Buchnera aphidicola, is hypothesized to bind to virus particles in the haemolymph, thereby promoting transmission. To investigate this hypothesis, the GroEL-binding site for barley yellow dwarf virus (BYDV) was determined in vitro, and the abundance of GroEL protein in different aphid tissues was investigated. Virus binding to a peptide library representing the full GroEL molecule revealed a single binding site that coincides with the site that anchors two GroEL rings to form the native GroEL tetradecamer. In the functional form of the GroEL protein, virus binding would compete with the formation of the two GroEL rings. Using a mAb raised against a Buchnera-specific GroEL epitope, GroEL was detected in Buchnera cells by immunoblotting and immunocytochemistry, but not in the aphid haemolymph, fat body or gut. From the prediction here that GroEL–virus interactions are probably severely limited by competition with other GroEL molecules, and the evidence that GroEL is not available to interact with virus particles in vivo, it is concluded that GroEL–virus interactions are unlikely to contribute to virus transmission by aphids.
Collapse
Affiliation(s)
- Sophie Bouvaine
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14850, USA
- Department of Biology, University of York, York YO10 5YW, UK
| | - Neil Boonham
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK
| | - Angela E. Douglas
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14850, USA
- Department of Biology, University of York, York YO10 5YW, UK
| |
Collapse
|
563
|
Poliakov A, Russell CW, Ponnala L, Hoops HJ, Sun Q, Douglas AE, van Wijk KJ. Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis. Mol Cell Proteomics 2011; 10:M110.007039. [PMID: 21421797 PMCID: PMC3108839 DOI: 10.1074/mcp.m110.007039] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/10/2011] [Indexed: 11/06/2022] Open
Abstract
Many insects are nutritionally dependent on symbiotic microorganisms that have tiny genomes and are housed in specialized host cells called bacteriocytes. The obligate symbiosis between the pea aphid Acyrthosiphon pisum and the γ-proteobacterium Buchnera aphidicola (only 584 predicted proteins) is particularly amenable for molecular analysis because the genomes of both partners have been sequenced. To better define the symbiotic relationship between this aphid and Buchnera, we used large-scale, high accuracy tandem mass spectrometry (nanoLC-LTQ-Orbtrap) to identify aphid and Buchnera proteins in the whole aphid body, purified bacteriocytes, isolated Buchnera cells and the residual bacteriocyte fraction. More than 1900 aphid and 400 Buchnera proteins were identified. All enzymes in amino acid metabolism annotated in the Buchnera genome were detected, reflecting the high (68%) coverage of the proteome and supporting the core function of Buchnera in the aphid symbiosis. Transporters mediating the transport of predicted metabolites were present in the bacteriocyte. Label-free spectral counting combined with hierarchical clustering, allowed to define the quantitative distribution of a subset of these proteins across both symbiotic partners, yielding no evidence for the selective transfer of protein among the partners in either direction. This is the first quantitative proteome analysis of bacteriocyte symbiosis, providing a wealth of information about molecular function of both the host cell and bacterial symbiont.
Collapse
Affiliation(s)
| | | | - Lalit Ponnala
- ¶Computational Biology Service Unit, Cornell University, Ithaca, NY 14853
| | | | - Qi Sun
- ¶Computational Biology Service Unit, Cornell University, Ithaca, NY 14853
| | | | | |
Collapse
|
564
|
Laughton AM, Garcia JR, Altincicek B, Strand MR, Gerardo NM. Characterisation of immune responses in the pea aphid, Acyrthosiphon pisum. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:830-839. [PMID: 21439291 DOI: 10.1016/j.jinsphys.2011.03.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/10/2011] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
The innate immune system of insects provides effective defence against a range of parasites and pathogens. The pea aphid, Acyrthosiphon pisum, is a novel study system for investigating host-parasite interactions due to its complex associations with both well-characterised bacterial symbionts and a diversity of pathogens and parasites, including several important biological control agents. However, little is known about the cellular and humoral immune responses of aphids. Here we identify three morphologically distinct types of haemocytes in circulation that we name prohemocytes, granulocytes and oenocytoids. Granulocytes avidly phagocytose Gram negative Escherechia coli and Gram positive Micrococcus luteus while oenocytoids exhibit melanotic activity. Prohaemocytes increase in abundance immediately following an immune challenge, irrespective of the source of stimulus. Pea aphids form melanotic capsules around Sephadex beads but do not form cellular capsules. We also did not detect any antimicrobial peptide activity in the haemolymph using zone of inhibition assays. We discuss these results in relation to recent findings from the pea aphid genome annotation project that suggest that aphids have a reduced immune gene repertoire compared to other insects.
Collapse
Affiliation(s)
- Alice M Laughton
- Biology Department, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
565
|
Burke GR, Moran NA. Responses of the pea aphid transcriptome to infection by facultative symbionts. INSECT MOLECULAR BIOLOGY 2011; 20:357-365. [PMID: 21382108 DOI: 10.1111/j.1365-2583.2011.01070.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Serratia symbiotica is a facultative symbiont of pea aphids (Acyrthosiphon pisum) that provides tolerance to heat stress. Although the phenotypic effects of facultative symbionts upon hosts have been studied in some detail, little is known about the molecular and genomic basis of these interactions. Previous studies show a large impact of S. symbiotica upon the aphid metabolome. Whole-genome transcriptional profiling and next-generation sequencing demonstrated expression of 94% of RefSeq genes from the pea aphid genome, providing the largest dataset to date on aphid gene expression. However, only 28 genes showed changes in expression with S. symbiotica infection, and these changes were of small magnitude. No expression differences in genes involved in innate immunity in other insects were observed. Therefore, the large metabolic impact of S. symbiotica is most likely a result of metabolism of the symbiont itself, or of post-transcriptional modification of host gene expression. Although S. symbiotica has a major influence on its host's metabolome and resistance to heat, it induces little change in gene expression in its host.
Collapse
Affiliation(s)
- G R Burke
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA.
| | | |
Collapse
|
566
|
Anthropogenic effects on interaction outcomes: examples from insect-microbial symbioses in forest and savanna ecosystems. Symbiosis 2011. [DOI: 10.1007/s13199-011-0119-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
567
|
VORBURGER C, GOUSKOV A. Only helpful when required: a longevity cost of harbouring defensive symbionts. J Evol Biol 2011; 24:1611-7. [DOI: 10.1111/j.1420-9101.2011.02292.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
568
|
|
569
|
O'Brien J, Wright GD. An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol 2011; 22:552-8. [PMID: 21498065 DOI: 10.1016/j.copbio.2011.03.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/23/2011] [Indexed: 11/26/2022]
Abstract
Bacteria and fungi produce a remarkable array of bioactive small molecules. Many of these have found use in medicine as chemotherapies to treat diseases ranging from infection and cancer to hyperlipidemia and autoimmune disorders. The applications may or may not reflect the actual targets for these compounds. Through careful studies of microbes, their associated molecules and their targets, a growing understanding of the ecology of microbial secondary metabolism is emerging that exposes the central role of secondary metabolites in many complex biological systems.
Collapse
Affiliation(s)
- Jonathan O'Brien
- M.G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | |
Collapse
|
570
|
Dion E, Polin SE, Simon JC, Outreman Y. Symbiont infection affects aphid defensive behaviours. Biol Lett 2011; 7:743-6. [PMID: 21490007 DOI: 10.1098/rsbl.2011.0249] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aphids harbour both an obligate bacterial symbiont, Buchnera aphidicola, and a wide range of facultative ones. Facultative symbionts can modify morphological, developmental and physiological host traits that favour their spread within aphid populations. We experimentally investigated the idea that symbionts may also modify aphid behavioural traits to enhance their transmission. Aphids exhibit many behavioural defences against enemies. Despite their benefits, these behaviours have some associated costs leading to reduction in aphid reproduction. Some aphid individuals harbour a facultative symbiont Hamiltonella defensa that provides protection against parasitoids. By analysing aphid behaviours in the presence of parasitoids, we showed that aphids infected with H. defensa exhibited reduced aggressiveness and escape reactions compared with uninfected aphids. The aphid and the symbiont have both benefited from these behavioural changes: both partners reduced the fitness decrements associated with the behavioural defences. Such symbiont-induced changes of behavioural defences may have consequences for coevolutionary processes between host organisms and their enemies.
Collapse
Affiliation(s)
- Emilie Dion
- UMR 1099 INRA-Agrocampus Ouest-Université Rennes 1 Biologie des Organismes et des Populations appliquée à la Protection des Plantes, 65 rue de Saint-Brieuc CS 84215, 35042, Rennes Cedex, France
| | | | | | | |
Collapse
|
571
|
THIERRY M, BECKER N, HAJRI A, REYNAUD B, LETT JM, DELATTE H. Symbiont diversity and non-random hybridization among indigenous (Ms) and invasive (B) biotypes of Bemisia tabaci. Mol Ecol 2011; 20:2172-87. [DOI: 10.1111/j.1365-294x.2011.05087.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
572
|
MacDonald SJ, Thomas GH, Douglas AE. Genetic and metabolic determinants of nutritional phenotype in an insect-bacterial symbiosis. Mol Ecol 2011; 20:2073-84. [PMID: 21392141 DOI: 10.1111/j.1365-294x.2011.05031.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pervasive influence of resident microorganisms on the phenotype of their hosts is exemplified by the intracellular bacterium Buchnera aphidicola, which provides its aphid partner with essential amino acids (EAAs). We investigated variation in the dietary requirement for EAAs among four pea aphid (Acyrthosiphon pisum) clones. Buchnera-derived nitrogen contributed to the synthesis of all EAAs for which aphid clones required a dietary supply, and to none of the EAAs for which all four clones had no dietary requirement, suggesting that low total dietary nitrogen may select for reduced synthesis of certain EAAs in some aphid clones. The sequenced Buchnera genomes showed that the EAA nutritional phenotype (i.e. the profile of dietary EAAs required by the aphid) cannot be attributed to sequence variation of Buchnera genes coding EAA biosynthetic enzymes. Metabolic modelling by flux balance analysis demonstrated that EAA output from Buchnera can be determined precisely by the flux of host metabolic precursors to Buchnera. Specifically, the four EAA nutritional phenotypes could be reproduced by metabolic models with unique profiles of host inputs, dominated by variation in supply of aspartate, homocysteine and glutamate. This suggests that the nutritional phenotype of the symbiosis is determined principally by host metabolism and transporter genes that regulate nutrient supply to Buchnera. Intraspecific variation in the nutritional phenotype of symbioses is expected to mediate partitioning of plant resources among aphid genotypes, potentially promoting the genetic subdivision of aphid populations. In this way, microbial symbioses may play an important role in the evolutionary diversification of phytophagous insects.
Collapse
Affiliation(s)
- S J MacDonald
- Department of Biology, University of York, York YO10 5DD, UK
| | | | | |
Collapse
|
573
|
Abstract
Insects deploy cellular and humoral defences to defend themselves against pathogens and parasites. The recent discovery that fly defences are commonly supplemented by inherited protective microbes suggests that symbiont-mediated protection is common. Resistance evolution may have a more complex dynamic than previously described.
Collapse
|
574
|
Burke GR, Moran NA. Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids. Genome Biol Evol 2011; 3:195-208. [PMID: 21266540 PMCID: PMC3056288 DOI: 10.1093/gbe/evr002] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
All vertically transmitted bacterial symbionts undergo a process of genome reduction over time, resulting in tiny, gene-dense genomes. Comparison of genomes of ancient bacterial symbionts gives only limited information about the early stages in the transition from a free-living to symbiotic lifestyle because many changes become obscured over time. Here, we present the genome sequence for the recently evolved aphid symbiont Serratia symbiotica. The S. symbiotica genome exhibits several of the hallmarks of genome evolution observed in more ancient symbionts, including elevated rates of evolution and reduction in genome size. The genome also shows evidence for massive genomic decay compared with free-living relatives in the same genus of bacteria, including large deletions, many pseudogenes, and a slew of rearrangements, perhaps promoted by mobile DNA. Annotation of pseudogenes allowed examination of the past and current metabolic capabilities of S. symbiotica and revealed a somewhat random process of gene inactivation with respect to function. Analysis of mutational patterns showed that deletions are more common in neutral DNA. The S. symbiotica genome provides a rare opportunity to study genome evolution in a recently derived heritable symbiont.
Collapse
Affiliation(s)
- Gaelen R Burke
- Department of Ecology and Evolutionary Biology, The University of Arizona, USA.
| | | |
Collapse
|
575
|
DION E, ZÉLÉ F, SIMON JC, OUTREMAN Y. Rapid evolution of parasitoids when faced with the symbiont-mediated resistance of their hosts. J Evol Biol 2011; 24:741-50. [DOI: 10.1111/j.1420-9101.2010.02207.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
576
|
MEDINA RF, NACHAPPA P, TAMBORINDEGUY C. Differences in bacterial diversity of host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory. J Evol Biol 2011; 24:761-71. [DOI: 10.1111/j.1420-9101.2010.02215.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
577
|
Dittmar T, Zänker KS. Horizontal gene transfers with or without cell fusions in all categories of the living matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:5-89. [PMID: 21506007 PMCID: PMC7120942 DOI: 10.1007/978-94-007-0782-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.
Collapse
Affiliation(s)
- Thomas Dittmar
- Inst. Immunologie, Universität Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| | - Kurt S. Zänker
- Institute of Immunologie, University of Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| |
Collapse
|
578
|
TOJU HIROKAZU, FUKATSU TAKEMA. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol Ecol 2010; 20:853-68. [DOI: 10.1111/j.1365-294x.2010.04980.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
579
|
Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LHR, Ravelonandro P, Mavingui P. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol 2010; 75:377-89. [PMID: 21175696 DOI: 10.1111/j.1574-6941.2010.01012.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Symbiotic bacteria are known to play important roles in the biology of insects, but the current knowledge of bacterial communities associated with mosquitoes is very limited and consequently their contribution to host behaviors is mostly unknown. In this study, we explored the composition and diversity of mosquito-associated bacteria in relation with mosquitoes' habitats. Wild Aedes albopictus and Aedes aegypti were collected in three different geographic regions of Madagascar. Culturing methods and denaturing gradient gel electrophoresis (DGGE) and sequencing of the rrs amplicons revealed that Proteobacteria and Firmicutes were the major phyla. Isolated bacterial genera were dominated by Bacillus, followed by Acinetobacter, Agrobacterium and Enterobacter. Common DGGE bands belonged to Acinetobacter, Asaia, Delftia, Pseudomonas, Enterobacteriaceae and an uncultured Gammaproteobacterium. Double infection by maternally inherited Wolbachia pipientis prevailed in 98% of males (n=272) and 99% of females (n=413); few individuals were found to be monoinfected with Wolbachia wAlbB strain. Bacterial diversity (Shannon-Weaver and Simpson indices) differed significantly per habitat whereas evenness (Pielou index) was similar. Overall, the bacterial composition and diversity were influenced both by the sex of individuals and by the environment inhabited by the mosquitoes; the latter might be related to both the vegetation and the animal host populations that Aedes used as food sources.
Collapse
|
580
|
ROE AMANDAD, RICE ADRIANNEV, COLTMAN DAVIDW, COOKE JANICEEK, SPERLING FELIXAH. Comparative phylogeography, genetic differentiation and contrasting reproductive modes in three fungal symbionts of a multipartite bark beetle symbiosis. Mol Ecol 2010; 20:584-600. [DOI: 10.1111/j.1365-294x.2010.04953.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
581
|
Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon JC, Fukatsu T. Symbiotic Bacterium Modifies Aphid Body Color. Science 2010; 330:1102-4. [DOI: 10.1126/science.1195463] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
582
|
Toby Kiers E, Palmer TM, Ives AR, Bruno JF, Bronstein JL. Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 2010; 13:1459-74. [DOI: 10.1111/j.1461-0248.2010.01538.x] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
583
|
Tsuchida T, Koga R, Matsumoto S, Fukatsu T. Interspecific symbiont transfection confers a novel ecological trait to the recipient insect. Biol Lett 2010; 7:245-8. [PMID: 20880856 DOI: 10.1098/rsbl.2010.0699] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Japan, pea aphids Acyrthosiphon pisum mainly feed on vetch and clover, and many aphid clones produce more progeny on vetch than on clover. In this context, particular genotypes of the facultative symbiont Regiella insecticola enhance reproduction of infected pea aphids specifically on clover, thereby broadening the suitable food plant range of the insect. A species that is sympatric to A. pisum, vetch aphids Megoura crassicauda, are commonly found on vetch but not on clover. Laboratory rearing of M. crassicauda strains revealed active reproduction on vetch but substantially no reproduction on clover. Experimental transfection of Regiella from A. pisum to M. crassicauda by haemolymph injection established stable and heritable infection in the recipients, although no Regiella infection has been detected in natural populations of M. crassicauda. Different strains of Regiella-transfected M. crassicauda grew and reproduced on vetch, but exhibited lower fitness in comparison with corresponding uninfected aphid strains. Strikingly, the Regiella-transfected M. crassicauda exhibited improved survival and some reproduction on clover. These results suggest that Regiella has the potential to confer an ecological trait, adaptation to clover, on novel insect hosts, and also account for why Regiella is able to infect M. crassicauda but is scarcely found in these aphid populations.
Collapse
Affiliation(s)
- Tsutomu Tsuchida
- Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
584
|
McLean AHC, van Asch M, Ferrari J, Godfray HCJ. Effects of bacterial secondary symbionts on host plant use in pea aphids. Proc Biol Sci 2010; 278:760-6. [PMID: 20843842 DOI: 10.1098/rspb.2010.1654] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aphids possess several facultative bacterial symbionts that have important effects on their hosts' biology. These have been most closely studied in the pea aphid (Acyrthosiphon pisum), a species that feeds on multiple host plants. Whether secondary symbionts influence host plant utilization is unclear. We report the fitness consequences of introducing different strains of the symbiont Hamiltonella defensa into three aphid clones collected on Lathyrus pratensis that naturally lack symbionts, and of removing symbionts from 20 natural aphid-bacterial associations. Infection decreased fitness on Lathyrus but not on Vicia faba, a plant on which most pea aphids readily feed. This may explain the unusually low prevalence of symbionts in aphids collected on Lathyrus. There was no effect of presence of symbiont on performance of the aphids on the host plants of the clones from which the H. defensa strains were isolated. Removing the symbiont from natural aphid-bacterial associations led to an average approximate 20 per cent reduction in fecundity, both on the natural host plant and on V. faba, suggesting general rather than plant-species-specific effects of the symbiont. Throughout, we find significant genetic variation among aphid clones. The results provide no evidence that secondary symbionts have a major direct role in facilitating aphid utilization of particular host plant species.
Collapse
Affiliation(s)
- A H C McLean
- Department of Zoology, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
585
|
Clark EL, Karley AJ, Hubbard SF. Insect endosymbionts: manipulators of insect herbivore trophic interactions? PROTOPLASMA 2010; 244:25-51. [PMID: 20495935 DOI: 10.1007/s00709-010-0156-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 04/22/2010] [Indexed: 05/29/2023]
Abstract
Throughout their evolutionary history, insects have formed multiple relationships with bacteria. Although many of these bacteria are pathogenic, with deleterious effects on the fitness of infected insects, there are also numerous examples of symbiotic bacteria that are harmless or even beneficial to their insect host. Symbiotic bacteria that form obligate or facultative associations with insects and that are located intracellularly in the host insect are known as endosymbionts. Endosymbiosis can be a strong driving force for evolution when the acquisition and maintenance of a microorganism by the insect host results in the formation of novel structures or changes in physiology and metabolism. The complex evolutionary dynamics of vertically transmitted symbiotic bacteria have led to distinctive symbiont genome characteristics that have profound effects on the phenotype of the host insect. Symbiotic bacteria are key players in insect-plant interactions influencing many aspects of insect ecology and playing a key role in shaping the diversification of many insect groups. In this review, we discuss the role of endosymbionts in manipulating insect herbivore trophic interactions focussing on their impact on plant utilisation patterns and parasitoid biology.
Collapse
Affiliation(s)
- Emily L Clark
- Environment Plant Interactions Programme, Scottish Crop Research Institute, Invergowrie, DD2 5DA, Scotland, UK.
| | | | | |
Collapse
|
586
|
Intergenomic arms races: detection of a nuclear rescue gene of male-killing in a ladybird. PLoS Pathog 2010; 6:e1000987. [PMID: 20628578 PMCID: PMC2900309 DOI: 10.1371/journal.ppat.1000987] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 06/04/2010] [Indexed: 11/19/2022] Open
Abstract
Many species of arthropod are infected by deleterious inherited micro-organisms. Typically these micro-organisms are inherited maternally. Consequently, some, particularly bacteria of the genus Wolbachia, employ a variety of strategies that favour female over male hosts. These strategies include feminisation, induction of parthenogenesis and male-killing. These strategies result in female biased sex ratios in host populations, which lead to selection for host factors that promote male production. In addition, the intra-genomic conflict produced by the difference in transmission of these cytoplasmic endosymbionts and nuclear factors will impose a pressure favouring nuclear factors that suppress the effects of the symbiont. During investigations of the diversity of male-killing bacteria in ladybirds (Coccinellidae), unexpected patterns of vertical transmission of a newly discovered male-killing taxon were observed in the ladybird Cheilomenes sexmaculata. Initial analysis suggested that the expression of the bacterial male-killing trait varies according to the male(s) a female has mated with. By swapping males between females, a male influence on the expression of the male-killing trait was confirmed. Experiments were then performed to determine the nature of the interaction. These studies showed that a single dominant allele, which rescues male progeny of infected females from the pathological effect of the male-killer, exists in this species. The gene shows typical Mendelian autosomal inheritance and is expressed irrespective of the parent from which it is inherited. Presence of the rescue gene in either parent does not significantly affect the inheritance of the symbiont. We conclude that C. sexmaculata is host to a male-killing γ-proteobacterium. Further, this beetle is polymorphic for a nuclear gene, the dominant allele of which rescues infected males from the pathogenic effects of the male-killing agent. These findings represent the first reported case of a nuclear suppressor of male-killing in a ladybird. They are considered in regard to sex ratio and intra-genomic conflict theories, and models of the evolutionary dynamics and distribution of inherited symbionts. Normally, in sexually reproducing organisms, the sex ratio (ratio of males to females) is 1∶1. However, examples are known where this is not the case and there are more females than males in a population. Extreme bias in sex ratio can lead to females failing to find a mate. We studied Cheilomenes sexmaculata, a ladybird species that has females that produce more female than male offspring. In aphid-eating ladybirds, this phenomenon has been widely reported and is known to be due to the presence of bacteria that live inside the mother and are passed via her eggs to her offspring. In eggs destined to become male, the bacteria kill the embryo by some unknown mechanism. This is known as male-killing. Female offspring develop normally. Evolutionary theory predicts that in such systems, the genome of the host can fight back if a variant arises that stops the bacteria killing male offspring. In C. sexmaculata we found females that carried the male-killer but the sex ratio of their offspring depended on the male that they mated with. We carried out breeding tests to show that some ladybirds had a version of a gene that rescued the male offspring from the pathological effects of the male-killer.
Collapse
|
587
|
Dynamics of a recurrent Buchnera mutation that affects thermal tolerance of pea aphid hosts. Genetics 2010; 186:367-72. [PMID: 20610410 DOI: 10.1534/genetics.110.117440] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in maternally transmitted symbionts can affect host fitness. In this study we investigate a mutation in an obligate bacterial symbiont (Buchnera), which has dramatic effects on the heat tolerance of pea aphid hosts (Acyrthosiphon pisum). The heat-sensitive allele arises through a single base deletion in a homopolymer within the promoter of ibpA, which encodes a universal small heat-shock protein. In laboratory cultures reared under cool conditions (20°), the rate of fixation (1.4 × 10(-3) substitutions per Buchnera replication) is much higher than the previously estimated mutation rate for single base deletions in homopolymers in the Buchnera genome, implying a strong selective benefit. This mutation recurs in natural populations, but seldom reaches high frequencies, implying that it is only rarely favored by selection. Another potential source of physiological stress in pea aphids is infection by other microorganisms, including facultative bacterial symbionts, which occur in a majority of pea aphids in field populations. Frequency of the heat-sensitive Buchnera allele is negatively correlated with presence of facultative symbionts in both laboratory colonies and field populations, suggesting that these infections impose stress that is ameliorated by ibpA expression. This single base polymorphism in Buchnera has the potential to allow aphid populations to adapt quickly to prevailing conditions.
Collapse
|
588
|
Bai X, Zhang W, Orantes L, Jun TH, Mittapalli O, Mian MAR, Michel AP. Combining next-generation sequencing strategies for rapid molecular resource development from an invasive aphid species, Aphis glycines. PLoS One 2010; 5:e11370. [PMID: 20614011 PMCID: PMC2894077 DOI: 10.1371/journal.pone.0011370] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/04/2010] [Indexed: 11/21/2022] Open
Abstract
Background Aphids are one of the most important insect taxa in terms of ecology, evolutionary biology, genetics and genomics, and interactions with endosymbionts. Additionally, many aphids are serious pest species of agricultural and horticultural plants. Recent genetic and genomic research has expanded molecular resources for many aphid species, including the whole genome sequencing of the pea aphid, Acrythosiphon pisum. However, the invasive soybean aphid, Aphis glycines, lacks in any significant molecular resources. Methodology/Principal Findings Two next-generation sequencing technologies (Roche-454 and Illumina GA-II) were used in a combined approach to develop both transcriptomic and genomic resources, including expressed genes and molecular markers. Over 278 million bp were sequenced among the two methods, resulting in 19,293 transcripts and 56,688 genomic sequences. From this data set, 635 SNPs and 1,382 microsatellite markers were identified. For each sequencing method, different soybean aphid biotypes were used which revealed potential biotype specific markers. In addition, we uncovered 39,822 bp of sequence that were related to the obligatory endosymbiont, Buchnera aphidicola, as well as sequences that suggest the presence of Hamiltonella defensa, a facultative endosymbiont. Conclusions and Significance Molecular resources for an invasive, non-model aphid species were generated. Additionally, the power of next-generation sequencing to uncover endosymbionts was demonstrated. The resources presented here will complement ongoing molecular studies within the Aphididae, including the pea aphid whole genome, lead to better understanding of aphid adaptation and evolution, and help provide novel targets for soybean aphid control.
Collapse
Affiliation(s)
- Xiaodong Bai
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Wei Zhang
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Lucia Orantes
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Tae-Hwan Jun
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
- United States Department of Agriculture - Agricultural Research Services and Department of Horticulture and Crop Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Omprakash Mittapalli
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
| | - M. A. Rouf Mian
- United States Department of Agriculture - Agricultural Research Services and Department of Horticulture and Crop Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Andrew P. Michel
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
589
|
Gosalbes MJ, Latorre A, Lamelas A, Moya A. Genomics of intracellular symbionts in insects. Int J Med Microbiol 2010; 300:271-8. [PMID: 20093081 DOI: 10.1016/j.ijmm.2009.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/03/2009] [Accepted: 12/20/2009] [Indexed: 02/07/2023] Open
Abstract
Endosymbiotic bacteria play a vital role in the evolution of many insect species. For instance, endosymbionts have evolved metabolically to complement their host's natural diet, thereby enabling them to explore new habitats. In this paper, we will review and give some examples of the nature of the metabolic coupling of different primary and secondary endosymbionts that have evolved in hosts with different nutritional diets (i.e., phloem, xylem, blood, omnivores, and grain). Particular emphasis is given to the evolutionary functional convergence of phylogenetically distant endosymbionts, which are evolving in hosts with similar diets.
Collapse
Affiliation(s)
- María José Gosalbes
- Unidad Mixta de Investigación en Genómica y Salud Centro Superior de Investigación en Salud Pública (CSISP), Institut Cavanilles de Biodiversitat i Biologia Evolutiva (Universitat de València), Apartado Postal 22085, 46071 Valencia, Spain
| | | | | | | |
Collapse
|
590
|
Chafee ME, Funk DJ, Harrison RG, Bordenstein SR. Lateral phage transfer in obligate intracellular bacteria (wolbachia): verification from natural populations. Mol Biol Evol 2009; 27:501-5. [PMID: 19906794 DOI: 10.1093/molbev/msp275] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lateral transfer of mobile DNA is a hallmark of bacteria with a free-living replicative stage; however, its significance in obligate intracellular bacteria and other heritable endosymbionts remains controversial. Comparative sequence analyses from laboratory stocks infected with Wolbachia pipientis provide some of the most compelling evidence that bacteriophage WO-B transfers laterally between infections of the same insect host. Lateral transfer between coinfections, however, has been evaluated neither in natural populations nor between closely related Wolbachia strains. Here, we analyze bacterial and phage genes from two pairs of natural sympatric field isolates, of Gryllus pennsylvanicus field crickets and of Neochlamisus bebbianae leaf beetles, to demonstrate WO-B transfers between supergroup B Wolbachia. N. bebbianae revealed the highest number of phage haplotypes yet recorded, hinting that lab lines could underestimate phage haplotype variation and lateral transfer. Finally, using the approximate age of insect host species as the maximum available time for phage transfer between host-associated bacteria, we very conservatively estimate phage WO-B transfer to occur at least once every 0-5.4 My within a host species. Increasing discoveries of mobile elements, intragenic recombination, and bacterial coinfections in host-switching obligate intracellular bacteria specify that mobile element transfer is common in these species.
Collapse
|