551
|
Hu X, Feng Y, Sun L, Qu L, Sun C. Roles of microRNA-330 and Its Target Gene ING4 in the Development of Aggressive Phenotype in Hepatocellular Carcinoma Cells. Dig Dis Sci 2017; 62:715-722. [PMID: 28050784 DOI: 10.1007/s10620-016-4429-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/20/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Aberrant expression of microRNAs contributes to tumor growth and progression. AIMS This study was designed to explore the prognostic and biological significance of miR-330 in hepatocellular carcinoma (HCC). METHODS The expression of miR-330 and its associations with tumor parameters and overall survival were analyzed in HCC patients. The biological functions of miR-330 in HCC cell growth, invasion, and tumorigenesis were investigated. Bioinformatic analysis and luciferase reporter assays were performed to search for potential targets of miR-330. RESULTS The miR-330 level was significantly higher in HCCs than in adjacent normal tissues (P = 0.0085). High expression of miR-330 was significantly associated with more aggressive phenotypes and shorter overall survival in HCC. Loss- and gain-of-function studies indicated the favorable effect of miR-330 on tumor cell growth, invasion, and tumorigenesis. Inhibitor of growth 4 (ING4) was identified to be a direct target of miR-330. Overexpression of miR-330 reduced the expression of ING4 in HCC cells. Importantly, restoration of ING4 almost completely reversed the promotion of HCC cell proliferation and invasion by miR-330. CONCLUSIONS Altogether, this study demonstrates that upregulation of miR-330 is associated with poor prognosis and contributes to more aggressive phenotypes of HCC. The oncogenic role of miR-330 in HCC is linked to downregulation of ING4.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China
| | - Yujie Feng
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China
| | - Lin Sun
- Department of ICU, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Linlin Qu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China
| | - Chuandong Sun
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
552
|
Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem 2017; 8:45-56. [PMID: 28289518 PMCID: PMC5329714 DOI: 10.4331/wjbc.v8.i1.45] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/20/2016] [Accepted: 01/18/2017] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are pervasively expressed and regulate most biological functions. They function by modulating transcriptional and translational programs and therefore they orchestrate both physiological and pathological processes, such as development, cell differentiation, proliferation, apoptosis and tumor growth. miRNAs work as small guide molecules in RNA silencing, by negatively regulating the expression of several genes both at mRNA and protein level, by degrading their mRNA target and/or by silencing translation. One of the most recent advances in the field is the comprehension of their role in oncogenesis. The number of miRNA genes is increasing and an alteration in the level of miRNAs is involved in the initiation, progression and metastases formation of several tumors. Some tumor types show a distinct miRNA signature that distinguishes them from normal tissues and from other cancer types. Genetic and biochemical evidence supports the essential role of miRNAs in tumor development. Although the abnormal expression of miRNAs in cancer cells is a widely accepted phenomenon, the cause of this dysregulation is still unknown. Here, we discuss the biogenesis of miRNAs, focusing on the mechanisms by which they regulate protein synthesis. In addition we debate on their role in cancer, highlighting their potential to become therapeutic targets.
Collapse
|
553
|
Role of Nerve Growth Factor (NGF) and miRNAs in Epithelial Ovarian Cancer. Int J Mol Sci 2017; 18:ijms18030507. [PMID: 28245631 PMCID: PMC5372523 DOI: 10.3390/ijms18030507] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/12/2017] [Accepted: 02/20/2017] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is the eighth most common cancer in women worldwide, and epithelial ovarian cancer (EOC) represents 90% of cases. Nerve growth factor (NGF) and its high affinity receptor tyrosine kinase A receptor (TRKA) have been associated with the development of several types of cancer, including EOC; both NGF and TRKA levels are elevated in this pathology. EOC presents high angiogenesis and several molecules have been reported to induce this process. NGF increases angiogenesis through its TRKA receptor on endothelial cells, and by indirectly inducing vascular endothelial growth factor expression. Other molecules controlled by NGF include ciclooxigenase-2, disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) and calreticulin (CRT), proteins involved in crucial processes needed for EOC progression. These molecules could be modified through microRNA regulation, which could be regulated by NGF. MicroRNAs are the widest family of non-coding RNAs; they bind to 3'-UTR of mRNAs to inhibit their translation, to deadenilate or to degraded them. In EOC, a deregulation in microRNA expression has been described, including alterations of miR-200 family, cluster-17-92, and miR-23b, among others. Since the NGF-microRNA relationship in pathologies has not been studied, this review proposes that some microRNAs could be associated with NGF/TRKA activation, modifying protein levels needed for EOC progression.
Collapse
|
554
|
Devhare PB, Steele R, Di Bisceglie AM, Kaplan DE, Ray RB. Differential Expression of MicroRNAs in Hepatitis C Virus-Mediated Liver Disease Between African Americans and Caucasians: Implications for Racial Health Disparities. Gene Expr 2017; 17:89-98. [PMID: 27765085 PMCID: PMC8751126 DOI: 10.3727/105221616x693594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
African Americans (AAs) have higher hepatocellular carcinoma (HCC) mortality rates than Caucasian Americans (CAs). Chronic hepatitis C virus (HCV) infection leads to cirrhosis and HCC. HCV infection is highly prevalent in the AA population compared to other racial groups. AAs are also less likely to naturally clear HCV, potentially contributing to higher prevalence of HCV. However, the explanation for this disparity is currently unknown. Circulating microRNAs (miRNAs) in the blood are emerging as biomarkers for pathological conditions. Expression analysis of miRNAs in major racial groups would be important for optimizing personalized treatment strategies. Here we assessed the differential expression of circulatory miRNAs from HCV-infected AA and CA patients. We identified increased expression of miR-146a, miR-150, and miR-155 in HCV-infected AA patient sera compared to that of CA. Further analysis demonstrated that these miRNAs were significantly elevated in AA patients diagnosed with HCV-mediated HCC. Higher expression of miR-150 was also noted in cirrhosis and HCC in AA patients, which may serve as a predictor of liver disease progression in this population. The differential expression of miRNAs suggests that these miRNAs and their target genes could be useful to gain further mechanistic insight of racial disparity associated with HCV-mediated pathogenesis.
Collapse
Affiliation(s)
- Pradip B. Devhare
- *Department of Pathology, Saint Louis University, St. Louis, MO, USA
| | - Robert Steele
- *Department of Pathology, Saint Louis University, St. Louis, MO, USA
| | - Adrian M. Di Bisceglie
- †Department of Internal Medicine, Saint Louis University, St. Louis, MO, USA
- ‡Saint Louis University Liver Center, Saint Louis University, St. Louis, MO, USA
| | - David E. Kaplan
- §Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ratna B. Ray
- *Department of Pathology, Saint Louis University, St. Louis, MO, USA
- †Department of Internal Medicine, Saint Louis University, St. Louis, MO, USA
- ‡Saint Louis University Liver Center, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
555
|
Yu X, Shi W, Zhang Y, Wang X, Sun S, Song Z, Liu M, Zeng Q, Cui S, Qu X. CXCL12/CXCR4 axis induced miR-125b promotes invasion and confers 5-fluorouracil resistance through enhancing autophagy in colorectal cancer. Sci Rep 2017; 7:42226. [PMID: 28176874 PMCID: PMC5296742 DOI: 10.1038/srep42226] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
The activation of CXCL12/CXCR4 axis is associated with potential progression of cancer, such as invasion, metastasis and chemoresistance. However, the underlying mechanisms of CXCL12/CXCR4 axis and cancer progression have been poorly explored. We hypothesized that miRNAs might be critical downstream mediators of CXCL12/CXCR4 axis involved in cancer invasion and chemoresistance in CRC. In human CRC cells, we found that the activation of CXCL12/CXCR4 axis promoted epithelial-mesenchymal transition (EMT) and concurrent upregulation of miR-125b. Overexpression of miR-125b robustly triggered EMT and cancer invasion, which in turn enhanced the expression of CXCR4. Importantly, the reciprocal positive feedback loop between CXCR4 and miR-125b further activated the Wnt/β-catenin signaling by targeting Adenomatous polyposis coli (APC) gene. There was a negative correlation of the expression of miR-125b with APC mRNA in paired human colorectal tissue specimens. Further experiments indicated a role of miR-125b in conferring 5-fluorouracil (5-FU) resistance in CRC probably through increasing autophagy both in vitro and in vivo. MiR-125b functions as an important downstream mediator upon the activation of CXCL12/CXCR4 axis that involved in EMT, invasion and 5-FU resistance of CRC. These findings shed a new insight into the role of miR-125b and provide a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Xinfeng Yu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wenna Shi
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuhang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Wang
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Shiyue Sun
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhiyu Song
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Man Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qiao Zeng
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuxiang Cui
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Xianjun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
556
|
Afsharzadeh SM, Mohaddes Ardebili SM, Seyedi SM, Karimian Fathi N, Mojarrad M. Association between rs11614913, rs3746444, rs2910164 and occurrence of breast cancer in Iranian population. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
557
|
Abstract
![]()
An HPMA-based polymeric prodrug of
a CXCR4 antagonist, AMD3465
(P-SS-AMD), was developed as a dual-function carrier of therapeutic
miRNA. P-SS-AMD was synthesized by a copolymerization of HPMA with
a methacrylamide monomer in which the AMD3465 was attached via a self-immolative
disulfide linker. P-SS-AMD showed effective release of the parent
AMD3465 drug following treatment with intracellular levels of glutathione
(GSH). The AMD3465 was released in the cells and exhibited functional
CXCR4 antagonism, demonstrated by inhibition of the CXCR4-mediated
cancer cell invasion. Due to its cationic character, P-SS-AMD could
form polyplexes with miRNA and mediate efficient transfection of miR-200c
mimics to downregulate expression of a downstream target ZEB-1 in
cancer cells. The combined P-SS-AMD/miR-200c polyplexes showed improved
ability to inhibit cancer cell migration when compared with individual
treatments. The reported findings validate P-SS-AMD as a dual-function
delivery vector that can simultaneously deliver a therapeutic miRNA
and function as a polymeric prodrug of CXCR4 antagonist.
Collapse
Affiliation(s)
- Zheng-Hong Peng
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Yan Wang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| |
Collapse
|
558
|
Xie R, Wu SN, Gao CC, Yang XZ, Wang HG, Zhang JL, Yan W, Ma TH. MicroRNA-30d inhibits the migration and invasion of human esophageal squamous cell carcinoma cells via the post‑transcriptional regulation of enhancer of zeste homolog 2. Oncol Rep 2017; 37:1682-1690. [PMID: 28184915 DOI: 10.3892/or.2017.5405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/06/2016] [Indexed: 11/09/2022] Open
Abstract
The present study was carried out to investigate the expression pattern, clinical significance and biological functions of microRNA-30d (miR-30d) in esophageal carcinogenesis. Quantitative real-time PCR was performed to detect the expression levels of miR-30d in esophageal squamous cell carcinoma (ESCC) tissues and cell lines. Then, associations between miR-30d expression and various clinicopathological features of patients with ESCC were statistically evaluated. In addition, the effects of miR-30d on the migration and invasion of two human ESCC cell lines transfected with miRNA or co-transfected with miRNA mimics and the expression vector of its target gene were determined. The results revealed that the expression levels of miR-30d were markedly decreased in ESCC tissues and cell lines, comparing with the corresponding normal controls. Notably, reduced expression of miR-30d occurred more frequently in ESCC patients with positive lymph node metastasis, moderate-poor differentiation and advanced tumor-node-metastasis stage than those with negative features. Functionally, enforced expression of miR-30d was found to inhibit cell invasion and migration of the ESCC cell lines. Luciferase reporter assay identified enhancer of zeste homolog 2 (EZH2) as a direct target gene of miR-30d. The expression level of EZH2 mRNA was negatively correlated with the expression of miR-30d in the ESCC tissues. Moreover, the inhibitory effect of miR-30d on ESCC cell motility was reversed by EZH2 overexpression. Collectively, these findings provide convincing evidence that decreased expression of miR-30d may be implicated in esophageal carcinogenesis and progression. We also confirmed miR-30d as a tumor-suppressor which may inhibit cancer cell motility by targeting EZH2, a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Rui Xie
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Shang-Nong Wu
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Cheng-Cheng Gao
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiao-Zhong Yang
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hong-Gang Wang
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jia-Ling Zhang
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Wei Yan
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Tian-Heng Ma
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
559
|
Ren C, Chen H, Han C, Fu D, Wang D, Shen M. High expression of miR-16 and miR-451 predicating better prognosis in patients with gastric cancer. J Cancer Res Clin Oncol 2016; 142:2489-2496. [PMID: 27605261 DOI: 10.1007/s00432-016-2243-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the expression pattern of miR-16 and miR-451 and evaluate their prognostic value in 180 GC patients undergoing surgery. METHODS In our previous study, a panel of five circulating miRNAs (miR-16, miR-25, miR-92a, miR-451 and miR-486-5p) can be used as a potential biomarker for detecting of early-stage gastric carcinoma (GC). Tissue microarrays were constructed from 180 patients with GC after surgery. MiR-16 and miR-451 expression was detected by miRNA-locked nucleic acid in situ hybridization, and their relationship with clinicopathological parameters and overall survival was analyzed. RESULTS MiR-16 expression was decreased in 30.6 % (55/180) of GC, increased in 54.4 % (98/180) and unchanged in 15.0 % (27/180), compared with paracancerous normal tissue (P < 0.001). MiR-451 expression was decreased in 17.8 % (32/180), increased in 62.8 % (113/180) and unchanged in 19.4 % (35/180) of GC, compared with paracancerous normal tissue (P < 0.001).Univariate analysis indicated that low miR-16 and miR-451 expression, tumor stage, tumor status, node status and tumor size were significant negative prognostic predictors for overall survival in patients with GC (P < 0.001, P < 0.001, P = 0.002, P < 0.001 and P = 0.001, respectively). Multivariate regression analysis demonstrated that stage [hazard ratio (HR) 1.80; 95 % confidence interval (CI) 1.0-3.26; P = 0.05], low expression of miR-16 (HR 2.26; 95 % CI 1.51-3.40; P < 0.001) and miR-451 (HR 2.01; 95 % CI 1.36-2.96; P < 0.001) predicted shorter OS, while tumor status (HR 1.59; 95 % CI 0.73-3.48 P = 0.242), lymph node metastasis (HR 1.41; 95 % CI 0.71-2.82; P = 0.326) and tumor size (HR 1.53; 95 % CI 0.92-2.55; P = 0.099) were not. Moreover, patients with both miR-16 and miR-451 high expression have better OS than those with two miRNAs unchanged or low expression in GC tissues. Patients with both miR-16 and miR-451 high have better OS than patients with single miR-451 high expression. CONCLUSIONS High expression of miR-16 and miR-451 was associated with longer OS in GC patients. Especially patients with miR-16 and miR-451 double high expression will predict better OS. MiR-16 and miR-451 may be used as novel makers to evaluate prognosis and provide a new treatment target in GC.
Collapse
Affiliation(s)
- Chuanli Ren
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China.
- Department of Epidemiology and Biostatistics, Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Hui Chen
- Geriatric Medicine, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Chongxu Han
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China
| | - Deyuan Fu
- Breast Oncology Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Daxin Wang
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China
| | - Ming Shen
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
560
|
Xue J, Yang J, Luo M, Cho WC, Liu X. MicroRNA-targeted therapeutics for lung cancer treatment. Expert Opin Drug Discov 2016; 12:141-157. [PMID: 27866431 DOI: 10.1080/17460441.2017.1263298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Lung cancer is one of the leading causes of cancer-related mortality worldwide. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that repress the expression of a broad array of target genes. Many efforts have been made to therapeutically target miRNAs in cancer treatments using miRNA mimics and miRNA antagonists. Areas covered: This article summarizes the recent findings with the role of miRNAs in lung cancer, and discusses the potential and challenges of developing miRNA-targeted therapeutics in this dreadful disease. Expert opinion: The development of miRNA-targeted therapeutics has become an important anti-cancer strategy. Results from both preclinical and clinical trials of microRNA replacement therapy have shown some promise in cancer treatment. However, some obstacles, including drug delivery, specificity, off-target effect, toxicity mediation, immunological activation and dosage determination should be addressed. Several delivery strategies have been employed, including naked oligonucleotides, liposomes, aptamer-conjugates, nanoparticles and viral vectors. However, delivery remains a main challenge in miRNA-targeting therapeutics. Furthermore, immune-related serious adverse events are also a concern, which indicates the complexity of miRNA-based therapy in clinical settings.
Collapse
Affiliation(s)
- Jing Xue
- a Center of Laboratory Medicine , General Hospital of Ningxia Medical University , Yinchuan , China.,b College of Life Science , Ningxia University , Yinchuan , China
| | - Jiali Yang
- a Center of Laboratory Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Meihui Luo
- a Center of Laboratory Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - William C Cho
- c Department of Clinical Oncology , Queen Elizabeth Hospital , Kowloon , Hong Kong
| | - Xiaoming Liu
- a Center of Laboratory Medicine , General Hospital of Ningxia Medical University , Yinchuan , China.,b College of Life Science , Ningxia University , Yinchuan , China.,d Human Stem Cell Institute , General Hospital of Ningxia Medical University , Yinchuan , Ningxia , China
| |
Collapse
|
561
|
Yang Z, Wu L, Wang A, Tang W, Zhao Y, Zhao H, Teschendorff AE. dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Res 2016; 45:D812-D818. [PMID: 27899556 PMCID: PMC5210560 DOI: 10.1093/nar/gkw1079] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/01/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are often deregulated in cancer and are thought to play an important role in cancer development. Large amount of differentially expressed miRNAs have been identified in various cancers by using high-throughput methods. It is therefore quite important to make a comprehensive collection of these miRNAs and to decipher their roles in oncogenesis and tumor progression. In 2010, we presented the first release of dbDEMC, representing a database for collection of differentially expressed miRNAs in human cancers obtained from microarray data. Here we describe an update of the database. dbDEMC 2.0 documents 209 expression profiling data sets across 36 cancer types and 73 subtypes, and a total of 2224 differentially expressed miRNAs were identified. An easy-to-use web interface was constructed that allows users to make a quick search of the differentially expressed miRNAs in certain cancer types. In addition, a new function of ‘meta-profiling’ was added to view differential expression events according to user-defined miRNAs and cancer types. We expect this database to continue to serve as a valuable source for cancer investigation and potential clinical application related to miRNAs. dbDEMC 2.0 is freely available at http://www.picb.ac.cn/dbDEMC.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai 200031, China
| | - Liangcai Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), 1 Shuaifuyuan, Wangfujing, Beijing 100730, China
| | - Anqiang Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), 1 Shuaifuyuan, Wangfujing, Beijing 100730, China
| | - Wei Tang
- School of Biotechnology Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), 1 Shuaifuyuan, Wangfujing, Beijing 100730, China
| | - Andrew E Teschendorff
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai 200031, China .,Statistical Cancer Genomics, Paul O'Gorman Building, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| |
Collapse
|
562
|
Zhang H, Wang Y, Liu Z, Yao B, Dou C, Xu M, Li Q, Jia Y, Wu S, Tu K, Liu Q. Lymphocyte-specific protein 1 inhibits the growth of hepatocellular carcinoma by suppressing ERK1/2 phosphorylation. FEBS Open Bio 2016; 6:1227-1237. [PMID: 28255535 PMCID: PMC5324767 DOI: 10.1002/2211-5463.12139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/29/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022] Open
Abstract
Lymphocyte‐specific protein 1 (LSP1) has been reported to regulate cell biology in several human cancers including lymphoma and breast cancer. However, the functions of LSP1 in human hepatocellular carcinoma (HCC) are still unknown. In this study, we found that LSP1 expression was downregulated in HCC tissues and cell lines, and lower LSP1 expression was correlated with poor clinicopathological features including large tumor size, high Edmondson–Steiner grading and advanced tumor–node–metastasis (TNM) stage. Additionally, we demonstrated that patients with high LSP1 expression had significantly better overall survival and disease‐free survival. Moreover, LSP1 was found to be an independent factor for predicting the prognosis of HCC patients. In vitro and in vivo assays showed that overexpressing LSP1 inhibited HCC growth by inducing both apoptosis and growth arrest. Mechanistically, we found that expression of phosphorylated extracellular regulated protein kinases 1 and 2 (ERK1/2) was downregulated after LSP1 overexpression, indicating LSP1 could suppress HCC growth by inhibiting the ERK pathway in HCC cells. Taken together, these results indicate that LSP1 may serve as a prognostic marker and a potential therapeutic target in human HCC.
Collapse
Affiliation(s)
- Hongyong Zhang
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Bowen Yao
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Changwei Dou
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Meng Xu
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Qing Li
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Yuli Jia
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Shengli Wu
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| |
Collapse
|
563
|
microRNA-146a inhibits proliferation, migration and invasion of human cervical and colorectal cancer cells. Biochem Biophys Res Commun 2016; 480:528-533. [DOI: 10.1016/j.bbrc.2016.10.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022]
|
564
|
Marks DL, Olson RL, Fernandez-Zapico ME. Epigenetic control of the tumor microenvironment. Epigenomics 2016; 8:1671-1687. [PMID: 27700179 DOI: 10.2217/epi-2016-0110] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stromal cells of the tumor microenvironment have been shown to play important roles in both supporting and limiting cancer growth. The altered phenotype of tumor-associated stromal cells (fibroblasts, immune cells, endothelial cells etc.) is proposed to be mainly due to epigenetic dysregulation of gene expression; however, only limited studies have probed the roles of epigenetic mechanisms in the regulation of stromal cell function. We review recent studies demonstrating how specific epigenetic mechanisms (DNA methylation and histone post-translational modification-based gene expression regulation, and miRNA-mediated translational regulation) drive aspects of stromal cell phenotype, and discuss the implications of these findings for treatment of malignancies. We also summarize the effects of epigenetic mechanism-targeted drugs on stromal cells and discuss the consideration of the microenvironment response in attempts to use these drugs for cancer treatment.
Collapse
Affiliation(s)
- David L Marks
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel Lo Olson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,University of Minnesota Rochester, Rochester, MN 55904, USA
| | | |
Collapse
|