551
|
Sata M, Nishimatsu H, Suzuki E, Sugiura S, Yoshizumi M, Ouchi Y, Hirata Y, Nagai R. Endothelial nitric oxide synthase is essential for the HMG-CoA reductase inhibitor cerivastatin to promote collateral growth in response to ischemia. FASEB J 2001; 15:2530-2. [PMID: 11641268 DOI: 10.1096/fj.01-0415fje] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase inhibitors, or statins, are prescribed widely to lower cholesterol. Accumulating evidence indicates that statins have various effects on vascular cells, which are independent of their lipid-lowering effect. Here, we tested the hypothesis that statins may augment collateral flow to ischemic tissues. We induced hind-limb ischemia in wild-type mice and treated them with either saline or cerivastatin. Cerivastatin enhanced the blood flow recovery dramatically as determined by Laser Doppler imaging. The mice treated with saline displayed frequent autoamputation of the ischemic toe, which was prevented completely by cerivastatin. Anti-CD31 immunostaining revealed that cerivastatin significantly increased the capillary density. Endothelial nitric oxide synthase (eNOS) activity was enhanced markedly in the mice treated with cerivastatin. The angiogenic effect of cerivastatin was abrogated in eNOS deficient (eNOS-/-) mice. These results indicate that eNOS is essential for cerivastatin to promote collateral growth in response to ischemia.
Collapse
Affiliation(s)
- M Sata
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
552
|
Moore DF, Scott LT, Gladwin MT, Altarescu G, Kaneski C, Suzuki K, Pease-Fye M, Ferri R, Brady RO, Herscovitch P, Schiffmann R. Regional cerebral hyperperfusion and nitric oxide pathway dysregulation in Fabry disease: reversal by enzyme replacement therapy. Circulation 2001; 104:1506-12. [PMID: 11571244 DOI: 10.1161/hc3801.096352] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Fabry disease is an X-linked lysosomal deficiency of alpha-galactosidase A that results in cellular accumulation of galacto-conjugates such as globotriosylceramide, particularly in blood vessels. It is associated with early-onset stroke and kidney and heart failure. METHODS AND RESULTS Using [(15)O] H(2)O and PET, we found increased resting regional cerebral blood flow in Fabry disease without evidence of occlusive vasculopathy or cerebral hypoperfusion. Because nitric oxide is known to play an important role in vascular tone and reactivity, we studied plasma nitrate, nitrite, and low-molecular-weight S-nitrosothiol levels by chemiluminescence. Skin biopsy specimens and archived brain tissue were also examined immunohistochemically for nitrotyrosine. Plasma nitrate, nitrite, and low-molecular-weight S-nitrosothiol were in the normal range; however, enhanced nitrotyrosine staining was observed in dermal and cerebral blood vessels. After a double-blind, placebo-controlled trial of alpha-galactosidase A therapy, the resting regional cerebral blood flow in the treated group was significantly reduced, with a notable decrease of nitrotyrosine staining in dermal blood vessels. CONCLUSIONS These findings suggest a chronic alteration of the nitric oxide pathway in Fabry disease, with critical protein nitration that is reversible with enzyme replacement therapy.
Collapse
Affiliation(s)
- D F Moore
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, Clinical Center, National Institutes of Health, Bethesda, MD 20892-1260, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
553
|
Medhora M, Narayanan J, Harder D, Maier KG. Identifying endothelium-derived hyperpolarizing factor: recent approaches to assay the role of epoxyeicosatrienoic acids. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 86:369-75. [PMID: 11569609 DOI: 10.1254/jjp.86.369] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Investigation of endothelial regulation of vascular reactivity and tone has led to the discovery of chemical mediators such as nitric oxide (NO) and prostacyclin (PGI2). Evidence has emerged indicating another as yet unidentified hyperpolarizing agent (endothelium-derived hyperpolarizing factor or EDHF) that is different from NO and PGI2 and exerts it effects through calcium-activated potassium channels (KCa). Previous studies to identify EDHF have been carried out using inhibitors that block NOS and COX before application of KCa channel and/or muscarinic receptor antagonists. Such pharmacological manipulation has complicated interpretation of results, clearly pointing to the need for altered approaches to verify previous studies. Evidence has emerged that potential EDHF candidates vary with vessel size, species and tissue beds, indicating that there may be more than one EDHF. To date, the most commonly described and best characterized of them all are a set of arachidonic acid metabolites, epoxyeicosatrienoic acids (EETs). These compounds are synthesized both intra- and extravascularly. Until recently, methodology to detect EETs in the microvasculature has been tedious and expensive, limiting the experimentation that is necessary to confirm EETs as an EDHF. This review describes state-of-the-art methods for assaying EETs in biological samples, after summarizing evidence for EETs as an EDHF and introducing emerging concepts of the role of extravascular EETs in linking neuronal activity to localized blood flow during functional hyperemia.
Collapse
Affiliation(s)
- M Medhora
- Cardiovascular Research Center, Department of Physiology, Medical College of Wisconsin, Milwaukee 53226, USA.
| | | | | | | |
Collapse
|
554
|
Nowicki PT, Flavahan S, Hassanain H, Mitra S, Holland S, Goldschmidt-Clermont PJ, Flavahan NA. Redox signaling of the arteriolar myogenic response. Circ Res 2001; 89:114-6. [PMID: 11463716 DOI: 10.1161/hh1401.094367] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arteriolar vascular smooth muscle cells (VSMCs) are mechanosensitive, constricting to elevations in transmural pressure (P(TM)). The goal of the present study was to determine using mouse isolated tail arterioles and arteries whether oxidant signaling regulates this myogenic response. In response to P(TM) elevation, VSMCs of arterioles but not arteries generated constriction and increased reactive oxygen species (ROS) activity (using the H(2)O(2)-sensitive probe dichlorodihydrofluorescein). Arterioles had increased expression of NADPH oxidase components compared with arteries. Inhibition of NADPH oxidase, using mice with targeted impairment of enzyme components (p47(phox) or rac1) or diphenyleneiodonium, prevented the pressure-induced generation of ROS. When ROS activity was inhibited, either by inhibiting NADPH oxidase or with N-acetylcysteine, the myogenic constriction was abolished. The myogenic constriction was also inhibited by catalase, which inactivates H(2)O(2), but was unaffected by a cell-permeant mimic of superoxide dismutase (MnTMPyP). alpha(1)-Adrenergic constriction was not associated with altered ROS activity and was not affected by inhibition of NADPH oxidase or ROS. Exogenous H(2)O(2) constricted VSMCs of arterioles but not arteries. Thus, NADPH oxidase and ROS, in particular H(2)O(2), contribute to the myogenic response of arteriolar VSMCs.
Collapse
Affiliation(s)
- P T Nowicki
- Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
555
|
McIntyre CA, Buckley CH, Jones GC, Sandeep TC, Andrews RC, Elliott AI, Gray GA, Williams BC, McKnight JA, Walker BR, Hadoke PWF. Endothelium-derived hyperpolarizing factor and potassium use different mechanisms to induce relaxation of human subcutaneous resistance arteries. Br J Pharmacol 2001; 133:902-8. [PMID: 11454664 PMCID: PMC1572851 DOI: 10.1038/sj.bjp.0704143] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This investigation examined the hypothesis that release of K(+) accounts for EDHF activity by comparing relaxant responses produced by ACh and KCl in human subcutaneous resistance arteries. Resistance arteries (internal diameter 244+/-12 microm, n=48) from human subcutaneous fat biopsies were suspended in a wire myograph. Cumulative concentration-response curves were obtained for ACh (10(-9) - 3x10(-5) M) and KCl (2.5 - 25 mM) following contraction with noradrenaline (NA; 0.1 - 3 microM). ACh (E(max) 99.07+/-9.61%; -LogIC(50) 7.03+/-0.22; n=9) and KCl (E(max) 74.14+/-5.61%; -LogIC(50) 2.12+/-0.07; n=10)-induced relaxations were attenuated (P<0.0001) by removal of the endothelium (E(max) 8.21+/-5.39% and 11.56+/-8.49%, respectively; n=6 - 7). Indomethacin (10 microM) did not alter ACh-induced relaxation whereas L-NOARG (100 microM) reduced this response (E(max) 61.7+/-3.4%, P<0.0001; n=6). The combination of ChTx (50 nM) and apamin (30 nM) attenuated the L-NOARG-insensitive component of ACh-induced relaxation (E(max): 15.2+/-10.5%, P<0.002, n=6) although these arteries retained the ability to relax in response to 100 microM SIN-1 (E(max) 127.6+/-13.0%, n=3). Exposure to BaCl(2) (30 microM) and Ouabain (1 mM) did not attenuate the L-NOARG resistant component of ACh-mediated relaxation (E(max), 76.09+/-8.92, P=0.16; n=5). KCl-mediated relaxation was unaffected by L-NOARG+indomethacin (E(max); 68.1+/-5.6%, P=0.33; n=5) or the combination of L-NOARG/indomethacin/ChTx/apamin (E(max); 86.61+/-14.02%, P=0.35; n=6). In contrast, the combination of L-NOARG, indomethacin, ouabain and BaCl(2) abolished this response (E(max), 5.67+/-2.59%, P<0.0001, n=6). The characteristics of KCl-mediated relaxation differed from those of the nitric oxide/prostaglandin-independent component of the response to ACh, and were endothelium-dependent, indicating that K(+) does not act as an EDHF in human subcutaneous resistance arteries.
Collapse
Affiliation(s)
- C-A McIntyre
- Department of Medical Sciences, Western General Hospital, University of Edinburgh, Edinburgh
| | - C H Buckley
- Department of Medical Sciences, Western General Hospital, University of Edinburgh, Edinburgh
| | - G C Jones
- Department of Medical Sciences, Western General Hospital, University of Edinburgh, Edinburgh
| | - T C Sandeep
- Department of Medical Sciences, Western General Hospital, University of Edinburgh, Edinburgh
| | - R C Andrews
- Department of Medical Sciences, Western General Hospital, University of Edinburgh, Edinburgh
| | - A I Elliott
- Metabolic Unit, Western General Hospital, University of Edinburgh, Edinburgh
| | - G A Gray
- Department of Biomedical Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh
| | - B C Williams
- Department of Medical Sciences, Western General Hospital, University of Edinburgh, Edinburgh
| | - J A McKnight
- Metabolic Unit, Western General Hospital, University of Edinburgh, Edinburgh
| | - B R Walker
- Department of Medical Sciences, Western General Hospital, University of Edinburgh, Edinburgh
| | - P W F Hadoke
- Department of Medical Sciences, Western General Hospital, University of Edinburgh, Edinburgh
- Author for correspondence:
| |
Collapse
|
556
|
Hamilton CA, McPhaden AR, Berg G, Pathi V, Dominiczak AF. Is hydrogen peroxide an EDHF in human radial arteries? Am J Physiol Heart Circ Physiol 2001; 280:H2451-5. [PMID: 11356597 DOI: 10.1152/ajpheart.2001.280.6.h2451] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In human radial arteries, a nitric oxide/prostanoid-independent mechanism that has the pharmacological characteristics of an EDHF contributes to endothelium-dependent relaxation. H2O2 can act as an EDHF in some vascular beds. We examined the hypothesis that endogenously produced H2O2 mediated the nitric oxide/prostanoid-independent relaxation to carbachol in radial arteries obtained from patients undergoing coronary artery bypass surgery. Superoxide levels, measured by chemiluminescence, were similar in radial and internal mammary arteries, but immunohistochemical staining for Cu/Zn superoxide dismutase (SOD) was lower in endothelium from radial arteries. In organ chamber studies, neither addition of catalase nor addition of SOD to the bathing fluid modified nitric oxide/prostanoid-independent relaxations to carbachol in radial arteries. However, nitric oxide-dependent vasorelaxation was enhanced in the presence of SOD. Thus the nitric oxide/prostanoid-independent relaxation to carbachol is not due to H2O2 and, unlike nitric oxide-mediated vasorelaxation, is not attenuated by superoxide. Blood vessels showing EDHF-mediated relaxations resistant to oxidative stress may provide favorable outcomes in revascularization surgery.
Collapse
Affiliation(s)
- C A Hamilton
- Department of Medicine and Therapeutics, Western Infirmary, Glasgow G11 6NT, United Kingdom.
| | | | | | | | | |
Collapse
|
557
|
McGuire JJ, Ding H, Triggle CR. Endothelium-derived relaxing factors: A focus on endothelium-derived hyperpolarizing factor(s). Can J Physiol Pharmacol 2001. [DOI: 10.1139/y01-025] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelium-derived hyperpolarizing factor (EDHF) is defined as the non-nitric oxide (NO) and non-prostacyclin (PGI2) substance that mediates endothelium-dependent hyperpolarization (EDH) of vascular smooth muscle cells (VSMC). Although both NO and PGI2 have been demonstrated to hyperpolarize VSMC by cGMP- and cAMP-dependent mechanisms, respectively, and in the case of NO by cGMP-independent mechanisms, a considerable body of evidence suggests that an additional cellular mechanism must exist that mediates EDH. Despite intensive investigation, there is no agreement as to the nature of the cellular processes that mediates the non-NO/PGI2 mediated hyperpolarization. Epoxyeicosatrienoic acids (EET), an endogenous anandamide, a small increase in the extracellular concentration of K+, and electronic coupling via myoendothelial cell gap junctions have all been hypothesized as contributors to EDH. An attractive hypothesis is that EDH is mediated via both chemical and electrical transmissions, however, the contribution from chemical mediators versus electrical transmission varies in a tissue- and species-dependent manner, suggesting vessel-specific specialization. If this hypothesis proves to be correct then the potential exists for the development of vessel and organ-selective vasodilators. Because endothelium-dependent vasodilatation is dysfunctional in disease states (i.e., atherosclerosis), selective vasodilators may prove to be important therapeutic agents.Key words: endothelium, nitric oxide, potassium channels, hyperpolarization, gap junctions.
Collapse
|
558
|
Affiliation(s)
- W B Campbell
- Department of Pharmacology and Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
559
|
van Hinsbergh VW. NO or H(2)O(2) for endothelium-dependent vasorelaxation: Tetrahydrobiopterin makes the difference. Arterioscler Thromb Vasc Biol 2001; 21:719-21. [PMID: 11348862 DOI: 10.1161/01.atv.21.5.719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
560
|
Affiliation(s)
- P M Vanhoutte
- Institut de Recherches Internationales Servier, 6 Place des Pléiades, 92415 Courbevoie Cedex, France.
| |
Collapse
|