551
|
Briot T, Roger E, Thépot S, Lagarce F. Advances in treatment formulations for acute myeloid leukemia. Drug Discov Today 2018; 23:1936-1949. [DOI: 10.1016/j.drudis.2018.05.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/25/2018] [Accepted: 05/29/2018] [Indexed: 10/24/2022]
|
552
|
El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS NANO 2018; 12:10636-10664. [PMID: 30335963 DOI: 10.1021/acsnano.8b06104] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The microenvironment characteristics of solid tumors, renowned as barriers that harshly impeded many drug-delivery approaches, were precisely studied, investigated, categorized, divided, and subdivided into a complex diverse of barriers. These categories were further studied with a particular perspective, which makes all barriers found in solid-tumor micromilieu turn into different types of stimuli, and were considered triggers that can increase and hasten drug-release targeting efficacy. This review gathers data concerning the nature of solid-tumor micromilieu. Past research focused on the treatment of such tumors, the recent efforts employed for engineering smart nanoarchitectures with the utilization of the specified stimuli categories, the possibility of combining more than one stimuli for much-greater targeting enhancement, examples of the approved nanoarchitectures that already translated clinically as well as the obstacles faced by the use of these nanostructures, and, finally, an overview of the possible future implementations of smart-chemical engineering for the design of more-efficient drug delivery and theranostic systems and for making nanosystems with a much-higher level of specificity and penetrability features.
Collapse
Affiliation(s)
- Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy , Egyptian Russian University , Badr City , Cairo 63514 , Egypt
| | - Ahmed M Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy , Gulf Medical University , Ajman , United Arab Emirates
- Pharmacology Department, Medical Division , National Research Centre , Giza 12622 , Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences Center for Pharmaceutical Biotechnology and Nanomedicine , Northeastern University , 140 The Fenway, Room 211/214, 360 Huntington Aveue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
553
|
Diebolder P, Vazquez-Pufleau M, Bandara N, Mpoy C, Raliya R, Thimsen E, Biswas P, Rogers BE. Aerosol-synthesized siliceous nanoparticles: impact of morphology and functionalization on biodistribution. Int J Nanomedicine 2018; 13:7375-7393. [PMID: 30519021 PMCID: PMC6237247 DOI: 10.2147/ijn.s177350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Introduction Siliceous nanoparticles (NPs) have been extensively studied in nanomedicine due to their high biocompatibility and immense biomedical potential. Although numerous technologies have been developed, the synthesis of siliceous NPs for biomedical applications mainly relies on a few core technologies predominantly intended to produce spherical-shaped NPs. Methods In this context, the impact of different morphologies of siliceous NPs on biodistribution in vivo is limited. In the present study, we developed a novel technique based on an aerosol silane reactor to produce sintered silicon NPs of similar size but different surface areas due to distinct spherical subunits. Silica-converted particles were functionalized for radiolabeling with copper-64 (64Cu) to systematically analyze their behavior in the passive targeting of A431 tumor xenografts in mice after intravenous injection. Results While low nonspecific uptake was observed in most organs, the majority of particles were accumulated in the liver, spleen, and lung. Depending on the morphologies and function-alization, significant differences in the uptake profiles of the particles were observed. In terms of tumor uptake, spherical shapes with lower surface areas showed the highest accumulation and tumor-to-blood ratios of all investigated particles. Conclusion This study highlights the importance of shape and fuctionalization of siliceous NPs on organ and tumor accumulation as significant factors for biomedical applications.
Collapse
Affiliation(s)
- Philipp Diebolder
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA,
| | - Miguel Vazquez-Pufleau
- Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Nilantha Bandara
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA,
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA,
| | - Ramesh Raliya
- Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Elijah Thimsen
- Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Pratim Biswas
- Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA,
| |
Collapse
|
554
|
Tamura T, Otulakowski G, Kavanagh BP. Could nanotechnology make vitamin E therapeutically effective? Am J Physiol Lung Cell Mol Physiol 2018; 316:L1-L5. [PMID: 30407864 DOI: 10.1152/ajplung.00430.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vitamin E (VitE) has important antioxidant and anti-inflammatory effects and is necessary for normal physiological function. α-Tocopherol (α-T), the predominant form of VitE in human tissues, has been extensively studied. Other VitE forms, particularly γ-tocopherol (γ-T), are also potent bioactive molecules. The effects are complex, involving both reactive oxygen and nitrogen species, but trials of VitE have been generally negative. We propose that a nanoparticle approach to delivery of VitE might provide effective delivery and therapeutic effect.
Collapse
Affiliation(s)
- Tetsuya Tamura
- Program in Translational Medicine, The Research Institute, and the Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, University of Toronto , Toronto , Canada
| | - Gail Otulakowski
- Program in Translational Medicine, The Research Institute, and the Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, University of Toronto , Toronto , Canada
| | - Brian P Kavanagh
- Program in Translational Medicine, The Research Institute, and the Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, University of Toronto , Toronto , Canada
| |
Collapse
|
555
|
Zheleznyak A, Shokeen M, Achilefu S. Nanotherapeutics for multiple myeloma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1526. [PMID: 29701006 PMCID: PMC6185771 DOI: 10.1002/wnan.1526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 01/11/2023]
Abstract
Multiple myeloma (MM) is an age-related hematological malignancy with an estimated 30,000 new cases and 13,000 deaths per year. A disease of antibody-secreting malignant plasma B-cells that grow primarily in the bone marrow (BM), MM causes debilitating fractures, anemia, renal failure, and hypercalcemia. In addition to the abnormal genetic profile of MM cells, the permissive BM microenvironment (BMM) supports MM pathogenesis. Although advances in treatment options have significantly enhanced survival in MM patients, transient perfusion of small-molecule drugs in the BM does not provide sufficient residence to enhance MM cell-drug interaction, thus allowing some myeloma cells to escape the first line of treatment. As such, there remains a crucial need to develop advanced drug delivery systems that can navigate the complex BMM and effectively reach the myeloma cells. The high vascular density and spongy nature of bone structure suggest that nanoparticles (NPs) can serve as smart drug-delivery systems capable of extravasation and retention in various BM compartments to exert a durable therapeutic effect. In this focus article, we first summarize the pathophysiology of MM, emphasizing how the BM niche presents serious challenges for effective treatment of MM with small-molecule drugs. We then pivot to current efforts to develop NP-based drug carriers and intrinsically therapeutic nanotherapeutics. The article concludes with a brief perspective on the opportunities and challenges in developing and translating nanotherapeutics to improve the treatment outcomes of MM patients. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | - Monica Shokeen
- Departments of Radiology, and Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Samuel Achilefu
- Departments of Radiology, Biomedical Engineering, and Biochemistry & Molecular Biophysics, Washington University, St. Louis, MO, USA
| |
Collapse
|
556
|
Noor A, Walser G, Wesseling M, Giron P, Laffra AM, Haddouchi F, De Grève J, Kronenberger P. Production of a mono-biotinylated EGFR nanobody in the E. coli periplasm using the pET22b vector. BMC Res Notes 2018; 11:751. [PMID: 30348204 PMCID: PMC6196415 DOI: 10.1186/s13104-018-3852-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/12/2018] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Our aim was to produce a mono-biotinylated single domain antibody ('nanobody') specific for the epidermal growth factor receptor (EGFR), which is overexpressed in many cancer cells. The binding of the nanobody and its function are tested in cancer cells. The construct could be used to carry variable therapeutic or diagnostic load using biotin-streptavidin bridging. RESULTS The EGFR-specific 7D12 nanobody was genetically fused to an IgA hinge linker and to a C-terminal biotin ligase acceptor sequence, allowing mono-biotinylation in E. coli. Expression was in strain BL21-DE3 from a T7 RNA polymerase driven pET22b vector. The biotinylated nanobody, isolated from the periplasm, was purified using streptavidin-mutein affinity chromatography. Final yields were up to 5 mg/l of cell culture. We showed that the construct could bind to EGFR expressing A431 epidermoid carcinoma cells, and to transiently transformed EGFR overexpressing HEK293T cells and not to EGFR negative control cells. The specificity for the EGFR was further demonstrated by immunoprecipitation. To test the functionality, PC9 non-small cell lung cancer cells were treated with mono-biotinylated nanobody or with streptavidin-coupled tetravalent nanobodies. Both were able to block mutant EGFR phosphorylation and slow down growth of PC9 cells. Tetravalent nanobodies were able to downregulate AKT phosphorylation.
Collapse
Affiliation(s)
- Alfiah Noor
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Laarbeeklaan 109, 1090, Brussels, Belgium.
| | - Gudrun Walser
- Laboratory of Biotechnology, Erasmushogeschool Brussel, Laarbeeklaan 121, 1090, Brussels, Belgium
| | - Matthijs Wesseling
- Laboratory of Biotechnology, Erasmushogeschool Brussel, Laarbeeklaan 121, 1090, Brussels, Belgium
| | - Philippe Giron
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Laarbeeklaan 109, 1090, Brussels, Belgium
| | - Albert-Menno Laffra
- Laboratory of Biotechnology, Erasmushogeschool Brussel, Laarbeeklaan 121, 1090, Brussels, Belgium
| | - Fatima Haddouchi
- Laboratory of Biotechnology, Erasmushogeschool Brussel, Laarbeeklaan 121, 1090, Brussels, Belgium
| | - Jacques De Grève
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Laarbeeklaan 109, 1090, Brussels, Belgium
| | - Peter Kronenberger
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Laarbeeklaan 109, 1090, Brussels, Belgium. .,Laboratory of Biotechnology, Erasmushogeschool Brussel, Laarbeeklaan 121, 1090, Brussels, Belgium.
| |
Collapse
|
557
|
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16:71. [PMID: 30231877 PMCID: PMC6145203 DOI: 10.1186/s12951-018-0392-8] [Citation(s) in RCA: 3021] [Impact Index Per Article: 431.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/25/2018] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner. Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines. Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc.) in the treatment of various diseases. The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (e.g., natural products) and selective diagnosis through disease marker molecules. The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed. In addition, we have included information regarding the trends and perspectives in nanomedicine area.
Collapse
Affiliation(s)
- Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si, 10326 Republic of Korea
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si, 10326 Republic of Korea
| | - Leonardo Fernandes Fraceto
- Sao Paulo State University (UNESP), Institute of Science and Technology, Sorocaba, São Paulo Zip Code 18087-180 Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo Zip code 13083-862 Brazil
| | - Estefania Vangelie Ramos Campos
- Sao Paulo State University (UNESP), Institute of Science and Technology, Sorocaba, São Paulo Zip Code 18087-180 Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo Zip code 13083-862 Brazil
| | - Maria del Pilar Rodriguez-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores, Unidad Leon, Universidad Nacional Autonóma de México (UNAM), Boulevard UNAM No 2011. Predio El Saucillo y El Potrero, 37684 León, Guanajuato Mexico
| | - Laura Susana Acosta-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores, Unidad Leon, Universidad Nacional Autonóma de México (UNAM), Boulevard UNAM No 2011. Predio El Saucillo y El Potrero, 37684 León, Guanajuato Mexico
| | | | - Renato Grillo
- Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, SP 15385-000 Brazil
| | - Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, Uttar Pradesh 211004 India
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Medway Campus-Science, Grenville Building (G102/G107), Central Avenue, Chatham-Maritime, Kent, ME4 4TB UK
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University, Ilsandong-gu, Goyang, Gyeonggi-do 10326 Republic of Korea
| |
Collapse
|
558
|
Exploring the role of polymeric conjugates toward anti-cancer drug delivery: Current trends and future projections. Int J Pharm 2018; 548:500-514. [DOI: 10.1016/j.ijpharm.2018.06.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
|
559
|
Elgohary MM, Helmy MW, Mortada SM, Elzoghby AO. Dual-targeted nano-in-nano albumin carriers enhance the efficacy of combined chemo/herbal therapy of lung cancer. Nanomedicine (Lond) 2018; 13:2221-2224. [DOI: 10.2217/nnm-2018-0097] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: A Nano-in-Nano approach was exploited to facilitate incorporation of the chemotherapeutic drug etoposide (ETP) as nanosuspension, synergistically with berberine (BER) into hydrophilic albumin nanoparticles (HSA NPs).Methods: For maximal tumor targeting, HSA was modified with mannose and phenyl-boronic acid. Furthermore, different crosslinkers were investigated for sustained release of water soluble BER from HSA NPs. Results: The elaborated dual-targeted HSA NPs (216.2 nm) were spherical with high BER and ETP entrapment efficiency (69.5 and 87.6%, respectively) and loading (10.52 and 14.04%, respectively). The NPs exhibited sequential release pattern for both ETP and BER (51.55 and 34.33% over 72 h, respectively). Phenyl-boronic acid/mannose-HSA NPs demonstrated powerful cytotoxicity against A549 lung cancer cells (IC50: 12.4 μg/ml) correlated to enhanced cellular internalization. Dual-targeted NPs displayed 9.77-fold higher caspase-3 level and 3.5-fold lower VEGF level than positive control mice. Conclusion: Dual-targeted Nano-in-Nano albumin carriers could be beneficial for parenteral ETP/BER delivery to lung cancer.
Collapse
Affiliation(s)
- Mayada M Elgohary
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Maged W Helmy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Sana M Mortada
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
560
|
Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. Recent advances in "smart" delivery systems for extended drug release in cancer therapy. Int J Nanomedicine 2018; 13:4727-4745. [PMID: 30154657 PMCID: PMC6108334 DOI: 10.2147/ijn.s168053] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in nanomedicine have become indispensable for targeted drug delivery, early detection, and increasingly personalized approaches to cancer treatment. Nanoparticle-based drug-delivery systems have overcome some of the limitations associated with traditional cancer-therapy administration, such as reduced drug solubility, chemoresistance, systemic toxicity, narrow therapeutic indices, and poor oral bioavailability. Advances in the field of nanomedicine include “smart” drug delivery, or multiple levels of targeting, and extended-release drug-delivery systems that provide additional methods of overcoming these limitations. More recently, the idea of combining smart drug delivery with extended-release has emerged in hopes of developing highly efficient nanoparticles with improved delivery, bioavailability, and safety profiles. Although functionalized and extended-release drug-delivery systems have been studied extensively, there remain gaps in the literature concerning their application in cancer treatment. We aim to provide an overview of smart and extended-release drug-delivery systems for the delivery of cancer therapies, as well as to introduce innovative advancements in nanoparticle design incorporating these principles. With the growing need for increasingly personalized medicine in cancer treatment, smart extended-release nanoparticles have the potential to enhance chemotherapy delivery, patient adherence, and treatment outcomes in cancer patients.
Collapse
Affiliation(s)
| | - Komal Bajwa
- Postgraduate Medical Education, Graduate Diploma and Professional Master in Medical Sciences, School of Medicine, Queen's University
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University,
| | | | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University,
| |
Collapse
|
561
|
Liposomal therapies in oncology: does one size fit all? Cancer Chemother Pharmacol 2018; 82:741-755. [DOI: 10.1007/s00280-018-3668-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022]
|
562
|
Manzanares A, Restrepo-Perdomo CA, Botteri G, Castillo-Ecija H, Pascual-Pasto G, Cano F, Garcia-Alvarez L, Monterrubio C, Ruiz B, Vazquez-Carrera M, Suñol M, Mora J, Tornero JA, Sosnik A, Carcaboso AM. Tissue Compatibility of SN-38-Loaded Anticancer Nanofiber Matrices. Adv Healthc Mater 2018; 7:e1800255. [PMID: 29892999 DOI: 10.1002/adhm.201800255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/10/2018] [Indexed: 11/08/2022]
Abstract
Delivery of chemotherapy in the surgical bed has shown preclinical activity to control cancer progression upon subtotal resection of pediatric solid tumors, but whether this new treatment is safe for tumor-adjacent healthy tissues remains unknown. Here, Wistar rats are used to study the anatomic and functional impact of electrospun nanofiber matrices eluting SN-38-a potent chemotherapeutic agent-on several body sites where pediatric tumors such as neuroblastoma, Ewing sarcoma, and rhabdomyosarcoma arise. Blank and SN-38-loaded matrices embracing the femoral neurovascular bundle or in direct contact with abdominal viscera (liver, kidney, urinary bladder, intestine, and uterus) are placed. Foreign body tissue reaction to the implants is observed though no histologic damage in any tissue/organ. Skin healing is normal. Tissue reaction is similar for SN-38-loaded and blank matrices, with the exception of the hepatic capsule that is thicker for the former although within the limits consistent with mild foreign body reaction. Tissue and organ function is completely conserved after local treatments, as assessed by the rotarod test (forelimb function), hematologic tests (liver and renal function), and control of clinical signs. Overall, these findings support the clinical translation of SN-38-loaded nanofiber matrices to improve local control strategies of surgically resected tumors.
Collapse
Affiliation(s)
- Alejandro Manzanares
- Institut de Recerca Sant Joan de Déu; Barcelona 08950 Spain
- Department of Pediatric Hematology and Oncology; Hospital Sant Joan de Deu; Barcelona 08950 Spain
- Department of Pediatric Surgery; Hospital Universitari Germans Trias i Pujol; Barcelona 08916 Spain
| | - Camilo A. Restrepo-Perdomo
- Institut de Recerca Sant Joan de Déu; Barcelona 08950 Spain
- Department of Pathology; Hospital Sant Joan de Deu; Barcelona 08950 Spain
| | - Gaia Botteri
- Institut de Recerca Sant Joan de Déu; Barcelona 08950 Spain
- Department of Pediatric Hematology and Oncology; Hospital Sant Joan de Deu; Barcelona 08950 Spain
| | - Helena Castillo-Ecija
- Institut de Recerca Sant Joan de Déu; Barcelona 08950 Spain
- Department of Pediatric Hematology and Oncology; Hospital Sant Joan de Deu; Barcelona 08950 Spain
| | - Guillem Pascual-Pasto
- Institut de Recerca Sant Joan de Déu; Barcelona 08950 Spain
- Department of Pediatric Hematology and Oncology; Hospital Sant Joan de Deu; Barcelona 08950 Spain
| | - Francesc Cano
- Institut de Investigació Textil i Cooperació Industrial de Terrassa (INTEXTER); Universitat Politecnica de Catalunya; Barcelona 08222 Spain
| | - Laura Garcia-Alvarez
- Department of Laboratory Medicine; Hospital Sant Joan de Deu; Barcelona 08950 Spain
| | - Carles Monterrubio
- Institut de Recerca Sant Joan de Déu; Barcelona 08950 Spain
- Department of Pediatric Hematology and Oncology; Hospital Sant Joan de Deu; Barcelona 08950 Spain
- Human Oncology & Pathogenesis Program; Memorial Sloan Kettering Cancer Center; NY 10065 USA
| | - Bonaventura Ruiz
- Department of Laboratory Medicine; Hospital Sant Joan de Deu; Barcelona 08950 Spain
| | - Manuel Vazquez-Carrera
- Institut de Recerca Sant Joan de Déu; Barcelona 08950 Spain
- Pharmacology Unit; Department of Pharmacology; Toxicology and Therapeutic Chemistry; Faculty of Pharmacy and Food Sciences; Institut de Biomedicina de la Universitat de Barcelona (IBUB); University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM); Instituto de Salud Carlos III; Barcelona 08028 Spain
| | - Mariona Suñol
- Institut de Recerca Sant Joan de Déu; Barcelona 08950 Spain
- Department of Pathology; Hospital Sant Joan de Deu; Barcelona 08950 Spain
| | - Jaume Mora
- Institut de Recerca Sant Joan de Déu; Barcelona 08950 Spain
- Department of Pediatric Hematology and Oncology; Hospital Sant Joan de Deu; Barcelona 08950 Spain
| | - Jose A. Tornero
- Institut de Investigació Textil i Cooperació Industrial de Terrassa (INTEXTER); Universitat Politecnica de Catalunya; Barcelona 08222 Spain
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science; Department of Materials Science and Engineering; Technion-Israel Institute of Technology; Technion City Haifa 3200003 Israel
| | - Angel M. Carcaboso
- Institut de Recerca Sant Joan de Déu; Barcelona 08950 Spain
- Department of Pediatric Hematology and Oncology; Hospital Sant Joan de Deu; Barcelona 08950 Spain
| |
Collapse
|
563
|
Visual validation of the measurement of entrapment efficiency of drug nanocarriers. Int J Pharm 2018; 547:395-403. [PMID: 29894757 DOI: 10.1016/j.ijpharm.2018.06.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/27/2018] [Accepted: 06/08/2018] [Indexed: 01/09/2023]
Abstract
Entrapment efficiency (EE) is a crucial parameter for the evaluation of nanocarriers. The accurate measurement of EE demands clear separation of nanocarriers from free drugs, which so far has not been clearly validated due to a lack of functional tools to identify nanocarriers. Herein, an environment-responsive water-quenching fluorophore was employed to label and identify model nanocarriers, polycaprolactone nanoparticles (PN), methoxy polyethylene glycol-poly(d,l-lactic acid) polymeric micelles (PM) and solid lipid nanoparticles (SLN). The separation process of three commonly used methods (centrifugation, ultrafiltration and gel permeation chromatography) was visualized by live imaging. The separation efficiency of the centrifugation method is very poor, especially for PM (40 nm), SLN (100 nm) and PN (100 nm); only PN (200 nm) can be efficiently separated but at a consumption of enormous energy. The ultrafiltration method shows the best separation efficiency with only 0.32-0.93% of leakage of the nanocarriers. Gel permeation chromatography exhibits good separation as well but suffers from low recovery, a potential factor that might compromise the accuracy of EE measurement. In conclusion, the ultrafiltration method is the method of choice for efficient separation and accurate measurement of EE.
Collapse
|
564
|
Inostroza-Riquelme M, Vivanco A, Lara P, Guerrero S, Salas-Huenuleo E, Chamorro A, Leyton L, Bolaños K, Araya E, Quest AFG, Kogan MJ, Oyarzun-Ampuero F. Encapsulation of Gold Nanostructures and Oil-in-Water Nanocarriers in Microgels with Biomedical Potential. Molecules 2018; 23:E1208. [PMID: 29783629 PMCID: PMC6099665 DOI: 10.3390/molecules23051208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Here we report the incorporation of gold nanostructures (nanospheres or nanorods, functionalized with carboxylate-end PEG) and curcumin oil-in-water (O/W) nanoemulsions (CurNem) into alginate microgels using the dripping technique. While gold nanostructures are promising nanomaterials for photothermal therapy applications, CurNem possess important pharmacological activities as reported here. In this sense, we evaluated the effect of CurNem on cell viability of both cancerous and non-cancerous cell lines (AGS and HEK293T, respectively), demonstrating preferential toxicity in cancer cells and safety for the non-cancerous cells. After incorporating gold nanostructures and CurNem together into the microgels, microstructures with diameters of 220 and 540 µm were obtained. When stimulating microgels with a laser, the plasmon effect promoted a significant rise in the temperature of the medium; the temperature increase was higher for those containing gold nanorods (11⁻12 °C) than nanospheres (1⁻2 °C). Interestingly, the incorporation of both nanosystems in the microgels maintains the photothermal properties of the gold nanostructures unmodified and retains with high efficiency the curcumin nanocarriers. We conclude that these results will be of interest to design hydrogel formulations with therapeutic applications.
Collapse
Affiliation(s)
- Mariela Inostroza-Riquelme
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Andrea Vivanco
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Pablo Lara
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Simón Guerrero
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
| | - Edison Salas-Huenuleo
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Alejandro Chamorro
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
| | - Lisette Leyton
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
| | - Karen Bolaños
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago 8370251, Chile.
| | - Eyleen Araya
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago 8370251, Chile.
| | - Andrew F G Quest
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
| | - Marcelo J Kogan
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Felipe Oyarzun-Ampuero
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| |
Collapse
|
565
|
Youn YS, Bae YH. Perspectives on the past, present, and future of cancer nanomedicine. Adv Drug Deliv Rev 2018; 130:3-11. [PMID: 29778902 DOI: 10.1016/j.addr.2018.05.008] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/27/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022]
Abstract
The justification of cancer nanomedicine relies on enhanced permeation (EP) and retention (R) effect and the capability of intracellular targeting due primarily to size after internalization (endocytosis) into the individual target cells. The EPR effect implies improved efficacy. Affinity targeting for solid tumors only occur after delivery to individual cells, which help internalization and/or retention. The design principles have been supported by animal results in numerous publications, but hardly translated. The natures of EP and R, such as frequency of large openings in tumor vasculature and their dynamics, are not understood, in particular, in clinical settings. Although various attempts to address the issues related to EP and delivery, by modifying design factors and manipulating tumor microenvironment, are being reported, they are still verified in artificial rodent tumors which do not mimic the nature of human tumor physiology/pathology in terms of transport and delivery. The clinical trials of experimental nanomedicine have experienced unexpected adverse effects with modest improvement in efficacy when compared to current frontline therapy. Future nanomedicine may require new design principles without consideration of EP and affinity targeting. A possible direction is to set new approaches to intentionally minimize adverse effects, rather than aiming at better efficacy, which can widen the therapeutic window of an anticancer drug of interest. Broadening indications and administration routes of developed therapeutic nanotechnology would benefit patients.
Collapse
|
566
|
Abstract
The treatment of malignancies has undergone dramatic changes in the past few decades. Advances in drug delivery techniques and nanotechnology have allowed for new formulations of old drugs, so as to improve the pharmacokinetics, to enhance accumulation in solid tumors, and to reduce the significant toxic effects of these important therapeutic agents. Here, we review the published clinical data in cancer therapy of several major drug delivery systems, including targeted radionuclide therapy, antibody-drug conjugates, liposomes, polymer-drug conjugates, polymer implants, micelles, and nanoparticles. The clinical outcomes of these delivery systems from various phases of clinical trials are summarized. The success and limitations of the drug delivery strategies are discussed based on the clinical observations. In addition, the challenges in applying drug delivery for efficacious cancer therapy, including physical barriers, tumor heterogeneity, drug resistance, and metastasis, are discussed along with future perspectives of drug delivery in cancer therapy. In doing so, we intend to underscore that efficient delivery of cancer therapeutics to solid malignancies remains a major challenge in cancer therapy, and requires a multidisciplinary approach that integrates knowledge from the diverse fields of chemistry, biology, engineering, and medicine. The overall objective of this review is to improve our understanding of the clinical fate of commonly investigated drug delivery strategies, and to identify the limitations that must be addressed in future drug delivery strategies, toward the pursuit of curative therapies for cancer.
Collapse
Affiliation(s)
- Zheng-Rong Lu
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Peter Qiao
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|
567
|
Wu D, Li Y, Shen J, Tong Z, Hu Q, Li L, Yu G. Supramolecular chemotherapeutic drug constructed from pillararene-based supramolecular amphiphile. Chem Commun (Camb) 2018; 54:8198-8201. [DOI: 10.1039/c8cc04334e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A therapeutic supramolecular amphiphile, P5⊃CPT-ss-Py, with GSH-responsiveness was constructed using pillar[5]arene-based host–guest molecular recognition. Cellular internalization and anticancer efficacy were greatly increased through this supramolecular strategy.
Collapse
Affiliation(s)
- Dan Wu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Yang Li
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Jie Shen
- School of Medicine
- Zhejiang University City College
- Hangzhou 310015
- P. R. China
| | - Zaizai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT)
- Ministry of Education
- Department of Materials Science and Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
| | - Qinglian Hu
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Liping Li
- Section on Medical Neuroendocrinology
- Eunice Kennedy Shriver National Institute of Child Health and Human Development
- National Institutes of Health
- Bethesda
- USA
| | - Guocan Yu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|