601
|
Bartunek P, Koritschoner NP, Brett D, Zenke M. Molecular cloning, expression and evolutionary analysis of the avian tyrosine kinase JAK1. Gene 1999; 230:129-36. [PMID: 10216250 DOI: 10.1016/s0378-1119(99)00080-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Janus protein tyrosine kinases (JAK) constitute a protein family that plays a pivotal role in signalling of a large number of cytokine receptors. The cDNA of the chicken homologue of JAK1 was cloned and its nucleotide sequence determined. Chicken JAK1 protein comprises 1150 amino acids as deduced from its cDNA sequence with a calculated molecular mass of 133kDa. The overall structure of JAK proteins exemplified by the JAK homology domains JH1-JH7 is also preserved in chicken JAK1. Additionally, phylogenetic analysis demonstrates that chicken JAK1 is more closely related to mammalian JAK1 than to those of fish, exhibiting 80%, 79% and 63% identity in amino acid sequence to human, mouse and zebrafish JAK1, respectively. JAK1 proteins were found to be most conserved in the kinase (JH1) and pseudokinase (JH2) domains. This data is supported by Southern hybridization studies of ZOO blots. Chicken JAK1 shows a ubiquitous expression pattern and is transcribed as a 5.5kb mRNA in various tissues and cell types. JAK1 expression was particularly high in lymphoid cells.
Collapse
Affiliation(s)
- P Bartunek
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle Strasse 10, D-13092, Berlin, Germany
| | | | | | | |
Collapse
|
602
|
Liu CB, Itoh T, Arai K, Watanabe S. Constitutive activation of JAK2 confers murine interleukin-3-independent survival and proliferation of BA/F3 cells. J Biol Chem 1999; 274:6342-9. [PMID: 10037724 DOI: 10.1074/jbc.274.10.6342] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Janus tyrosine kinase 2 (JAK2) plays an essential role of cytokine receptor signaling, including that of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor. We reported earlier that the activation of JAK2 is essential for all the examined signals induced by human GM-CSF through the box1 region of betac, such as promotion of cell survival and proliferation. To elucidate the role of JAK2 in cell survival and proliferation, we generated an artificial activation system by constructing a chimeric molecule (beta/JAK2) consisting of betac extracellular and transmembrane regions fused with JAK2, and we analyzed various signaling events in interleukin-3-dependent mouse pro-B cell, BA/F3. The beta/JAK2 was constitutively phosphorylated in the absence of human GM-CSF and murine interleukin-3, and this led to proliferation and cell survival. Western blot analysis showed that STAT5, Shc, and SHP-2 were not phosphorylated in the cells, and the consistent activation of beta-casein and c-fos promoters was not enhanced. In contrast, c-myc transcription was constitutively activated. We propose that the activation of beta/JAK2 suffices for survival and proliferation and that the activation of STAT5 and mitogen-activated protein kinase cascade is not required for these activities in BA/F3 cells.
Collapse
Affiliation(s)
- C B Liu
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
603
|
Role of Cytokine Signaling Molecules in Erythroid Differentiation of Mouse Fetal Liver Hematopoietic Cells: Functional Analysis of Signaling Molecules by Retrovirus-Mediated Expression. Blood 1999. [DOI: 10.1182/blood.v93.5.1567] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractErythropoietin (EPO) and its cell surface receptor (EPOR) play a central role in proliferation, differentiation, and survival of erythroid progenitors. Signals induced by EPO have been studied extensively by using erythroid as well as nonerythroid cell lines, and various controversial results have been reported as to the role of signaling molecules in erythroid differentiation. Here we describe a novel approach to analyze the EPO signaling by using primary mouse fetal liver hematopoietic cells to avoid possible artifacts due to established cell lines. Our strategy is based on high-titer retrovirus vectors with a bicistronic expression system consisting of an internal ribosome entry site (IRES) and green fluorescent protein (GFP). By placing the cDNA for a signaling molecule in front of IRES-GFP, virus-infected cells can be viably sorted by fluorescence-activated cell sorter, and the effect of expression of the signaling molecule can be assessed. By using this system, expression of cell-survival genes such as Bcl-2 and Bcl-XL was found to enhance erythroid colony formation from colony-forming unit–erythroid (CFU-E) in response to EPO. However, their expression was not sufficient for erythroid colony formation from CFU-E alone, indicating that EPO induces signals for erythroid differentiation. To examine the role of EPOR tyrosine residues in erythroid differentiation, we introduced a chimeric EGFR-EPOR receptor, which has the extracellular domain of the EGF receptor and the intracellular domain of the EPOR, as well as a mutant EGFR-EPOR in which all the cytoplasmic tyrosine residues are replaced with phenylalanine, and found that tyrosine residues of EPOR are essential for erythroid colony formation from CFU-E. We further analyzed the function of the downstream signaling molecules by expressing modified signaling molecules and found that both JAK2/STAT5 and Ras, two major signaling pathways activated by EPOR, are involved in full erythroid differentiation.
Collapse
|
604
|
Matsumura I, Kitamura T, Wakao H, Tanaka H, Hashimoto K, Albanese C, Downward J, Pestell RG, Kanakura Y. Transcriptional regulation of the cyclin D1 promoter by STAT5: its involvement in cytokine-dependent growth of hematopoietic cells. EMBO J 1999; 18:1367-77. [PMID: 10064602 PMCID: PMC1171226 DOI: 10.1093/emboj/18.5.1367] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
STAT5 is a member of a family of transcription factors that participate in the signal transduction pathways of many hormones and cytokines. Although STAT5 is suggested to play a crucial role in the biological effects of cytokines, its downstream target(s) associated with cell growth control is largely unknown. In a human interleukin-3 (IL-3)-dependent cell line F-36P-mpl, the induced expression of dominant-negative (dn)-STAT5 and of dn-ras led to inhibition of IL-3-dependent cell growth, accompanying the reduced expression of cyclin D1 mRNA. Also, both constitutively active forms of STAT5A (1*6-STAT5A) and ras (H-rasG12V) enabled F-36P-mpl cells to proliferate without added growth factors. In NIH 3T3 cells, 1*6-STAT5A and H-rasG12V individually and cooperatively transactivated the cyclin D1 promoter in luciferase assays. Both dn-STAT5 and dn-ras suppressed IL-3-induced cyclin D1 promoter activities in F-36P-mpl cells. Using a series of mutant cyclin D1 promoters, 1*6-STAT5A was found to transactivate the cyclin D1 promoter through the potential STAT-binding sequence at -481 bp. In electrophoretic mobility shift assays, STAT5 bound to the element in response to IL-3. Furthermore, the inhibitory effect of dn-STAT5 on IL-3-dependent growth was restored by expression of cyclin D1. Thus STAT5, in addition to ras signaling, appears to mediate transcriptional regulation of cyclin D1, thereby contributing to cytokine-dependent growth of hematopoietic cells.
Collapse
Affiliation(s)
- I Matsumura
- Departments of Hematology/Oncology, Osaka University Medical School, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
605
|
Role of Cytokine Signaling Molecules in Erythroid Differentiation of Mouse Fetal Liver Hematopoietic Cells: Functional Analysis of Signaling Molecules by Retrovirus-Mediated Expression. Blood 1999. [DOI: 10.1182/blood.v93.5.1567.405k29_1567_1578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythropoietin (EPO) and its cell surface receptor (EPOR) play a central role in proliferation, differentiation, and survival of erythroid progenitors. Signals induced by EPO have been studied extensively by using erythroid as well as nonerythroid cell lines, and various controversial results have been reported as to the role of signaling molecules in erythroid differentiation. Here we describe a novel approach to analyze the EPO signaling by using primary mouse fetal liver hematopoietic cells to avoid possible artifacts due to established cell lines. Our strategy is based on high-titer retrovirus vectors with a bicistronic expression system consisting of an internal ribosome entry site (IRES) and green fluorescent protein (GFP). By placing the cDNA for a signaling molecule in front of IRES-GFP, virus-infected cells can be viably sorted by fluorescence-activated cell sorter, and the effect of expression of the signaling molecule can be assessed. By using this system, expression of cell-survival genes such as Bcl-2 and Bcl-XL was found to enhance erythroid colony formation from colony-forming unit–erythroid (CFU-E) in response to EPO. However, their expression was not sufficient for erythroid colony formation from CFU-E alone, indicating that EPO induces signals for erythroid differentiation. To examine the role of EPOR tyrosine residues in erythroid differentiation, we introduced a chimeric EGFR-EPOR receptor, which has the extracellular domain of the EGF receptor and the intracellular domain of the EPOR, as well as a mutant EGFR-EPOR in which all the cytoplasmic tyrosine residues are replaced with phenylalanine, and found that tyrosine residues of EPOR are essential for erythroid colony formation from CFU-E. We further analyzed the function of the downstream signaling molecules by expressing modified signaling molecules and found that both JAK2/STAT5 and Ras, two major signaling pathways activated by EPOR, are involved in full erythroid differentiation.
Collapse
|
606
|
Stoffel R, Ziegler S, Ghilardi N, Ledermann B, de Sauvage FJ, Skoda RC. Permissive role of thrombopoietin and granulocyte colony-stimulating factor receptors in hematopoietic cell fate decisions in vivo. Proc Natl Acad Sci U S A 1999; 96:698-702. [PMID: 9892696 PMCID: PMC15199 DOI: 10.1073/pnas.96.2.698] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The question of whether extracellular signals influence hematopoiesis by instructing stem cells to commit to a specific hematopoietic lineage (instructive model) or solely by permitting the survival and proliferation of predetermined progenitors (permissive model) has been controversial since the discovery of lineage-dominant hematopoietic cytokines. To study the potential role of cytokines and their receptors in hematopoietic cell fate decisions, we used homologous recombination to replace the thrombopoietin receptor gene (mpl) with a chimeric construct encoding the extracellular domain of mpl and the cytoplasmic domain of the granulocyte colony-stimulating factor receptor (G-CSFR). This chimeric receptor binds thrombopoietin but signals through the G-CSFR intracellular domain. We found that, despite the absence of a functional mpl signaling domain, homozygous knock-in mice had a normal platelet count, indicating that in vivo the cytoplasmic domain of G-CSFR can functionally replace mpl signaling to support normal megakaryopoiesis and platelet formation. This finding is compatible with the permissive model, according to which cytokine receptors provide a nonspecific survival or proliferation signal, and argues against an instructive role of mpl or G-CSFR in hematopoietic cell fate decisions.
Collapse
Affiliation(s)
- R Stoffel
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
607
|
Skoda RC. Specificity of signaling by hematopoietic cytokine receptors: instructive versus permissive effects. J Recept Signal Transduct Res 1999; 19:741-72. [PMID: 10071797 DOI: 10.3109/10799899909036684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The helical cytokines constitute a family of proteins with a common three-dimensional structure. They exert a wide variety of biological effects with a preference for the hematopoietic system. The effects of helical cytokines are mediated by cell surface receptors, which belong to the cytokine receptor superfamily and signal by activating cytoplasmic tyrosine kinases of the Janus kinase (Jak) family and other downstream signaling pathways. The relevance of each of these pathways for eliciting a specific cellular response remains to be determined. This review will focus on cytokine receptors which play a role in the regulation of hematopoiesis and summarize data the address the question how specificity of signaling is achieved.
Collapse
Affiliation(s)
- R C Skoda
- Biozentrum, University of Basel, Switzerland
| |
Collapse
|
608
|
|
609
|
Affiliation(s)
- P A Tilbrook
- Department of Biochemistry, University of Western Australia, Australia
| | | |
Collapse
|
610
|
|
611
|
Duprez V, Blank U, Chrétien S, Gisselbrecht S, Mayeux P. Physical and functional interaction between p72(syk) and erythropoietin receptor. J Biol Chem 1998; 273:33985-90. [PMID: 9852052 DOI: 10.1074/jbc.273.51.33985] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (Epo) regulates the proliferation and differentiation of erythroid cells through interaction with a cell surface receptor (EpoR) that belongs to the cytokine receptor family. The Jak2 tyrosine kinase was previously shown to bind to the EpoR, to be activated upon Epo stimulation, and to play a critical role in Epo-induced proliferation. However, little is known about the role of other tyrosine kinases in Epo signaling. In this paper, we examined whether Syk was involved in EpoR activation. Coimmunoprecipitation experiments showed that the phosphorylated EpoR was associated with the Syk kinase in activated UT7 cells. The interaction of Epo with its receptor led to an increased kinase activity. The use of recombinant Syk Src homology 2 (SH2) domains expressed in tandem or individually revealed that both N- and C-SH2 domains of Syk participated in EpoR binding with a major contribution of the C-terminal SH2 domain. Far Western blotting further indicated that Syk directly binds to the EpoR and that the interaction of Syk with EpoR only occurred after Epo activation. These data suggest that phosphorylation of EpoR on tyrosine residues may mediate Syk binding to the receptor through interaction between the two SH2 domains of Syk and tyrosines of the receptor. We propose that in addition to Jak2, Syk protein kinase may be a component of EpoR signaling.
Collapse
Affiliation(s)
- V Duprez
- Institut National de la Santé et de la Recherche Médicale, Unité 363, ICGM, Hopital Cochin, 27 rue du Faubourg Saint Jacques, Paris, France.
| | | | | | | | | |
Collapse
|
612
|
Whetton AD, Spooncer E. Role of cytokines and extracellular matrix in the regulation of haemopoietic stem cells. Curr Opin Cell Biol 1998; 10:721-6. [PMID: 9914176 DOI: 10.1016/s0955-0674(98)80113-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The understanding of molecular mechanisms regulating the formation, growth and differentiation of haemopoietic stem cells has advanced considerably recently. Particular progress has been made in defining the cytokines, chemokines and extracellular matrix components which retain and maintain primitive haemopoietic cell populations in bone marrow. Furthermore, signal transduction pathways that are critical for haemopoiesis, both in vivo and in vitro, and that are activated by cytokines have also been identified and further characterised. The importance of these processes has, this year, been exemplified by the phenotypes of mice deficient in key signal transduction proteins and the discovery that mutations in the component proteins of some signalling pathways are linked to human diseases. Significant advances in understanding the molecular mechanisms for mobilisation of stem cells from bone marrow have also been made this year; this has potential importance for bone marrow transplantation.
Collapse
Affiliation(s)
- A D Whetton
- Leukaemia Research Fund Unit Department of Biomolecular Sciences University of Manchester Institute of Science and Technology PO Box 88 Sackville Street Manchester M60 1QD UK.
| | | |
Collapse
|
613
|
Narazaki M, Fujimoto M, Matsumoto T, Morita Y, Saito H, Kajita T, Yoshizaki K, Naka T, Kishimoto T. Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling. Proc Natl Acad Sci U S A 1998; 95:13130-4. [PMID: 9789053 PMCID: PMC23734 DOI: 10.1073/pnas.95.22.13130] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytokine-inducible protein SSI-1 [signal transducers and activators of transcription (STAT)-induced STAT inhibitor 1, also referred to as SOCS-1 (suppressor of cytokine signaling 1) or JAB (Janus kinase-binding protein)] negatively regulates cytokine receptor signaling by inhibition of JAK kinases. The SSI family of proteins includes eight members that are structurally characterized by an SH2 domain and a C-terminal conserved region that we have called the SC-motif. In this study, we investigated the roles of these domains in the function of SSI-1. Results of reporter assays demonstrated that the pre-SH2 domain (24 aa in front of the SH2 domain) and the SH2 domain of SSI-1 were required for the suppression by SSI-1 of interleukin 6 signaling. Coexpression studies of COS7 cells revealed that these domains also were required for inhibition of three JAKs (JAK1, JAK2, and TYK2). Furthermore, deletion of the SH2 domain, but not the pre-SH2 domain, resulted in loss of association of SSI-1 with TYK2. Thus, SSI-1 associates with JAK family kinase via its SH2 domain, and the pre-SH2 domain is required for the function of SSI-1. Deletion of the SC-motif markedly reduced expression of SSI-1 protein in M1 cells, and this reduction was reversed by treatment with proteasome inhibitors, suggesting that this motif is required to protect the SSI-1 molecule from proteolytic degradation. Based on these findings, we concluded that three distinct domains of SSI-1 (the pre-SH2 domain, the SH2 domain, and the SC-motif) cooperate in the suppression of interleukin 6 signaling.
Collapse
Affiliation(s)
- M Narazaki
- Department of Medicine III, Osaka University Medical School, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
614
|
Harrison DA, McCoon PE, Binari R, Gilman M, Perrimon N. Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway. Genes Dev 1998; 12:3252-63. [PMID: 9784499 PMCID: PMC317220 DOI: 10.1101/gad.12.20.3252] [Citation(s) in RCA: 287] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In vertebrates, many cytokines and growth factors have been identified as activators of the JAK/STAT signaling pathway. In Drosophila, JAK and STAT molecules have been isolated, but no ligands or receptors capable of activating the pathway have been described. We have characterized the unpaired (upd) gene, which displays the same distinctive embryonic mutant defects as mutations in the Drosophila JAK (hopscotch) and STAT (stat92E) genes. Upd is a secreted protein, associated with the extracellular matrix, that activates the JAK pathway. We propose that Upd is a ligand that relies on JAK signaling to stimulate transcription of pair-rule genes in a segmentally restricted manner in the early Drosophila embryo.
Collapse
Affiliation(s)
- D A Harrison
- Department of Genetics, Boston, Massachusetts 02115 USA.
| | | | | | | | | |
Collapse
|
615
|
Heinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 1998; 334 ( Pt 2):297-314. [PMID: 9716487 PMCID: PMC1219691 DOI: 10.1042/bj3340297] [Citation(s) in RCA: 1642] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The family of cytokines signalling through the common receptor subunit gp130 comprises interleukin (IL)-6, IL-11, leukaemia inhibitory factor, oncostatin M, ciliary neurotrophic factor and cardiotrophin-1. These so-called IL-6-type cytokines play an important role in the regulation of complex cellular processes such as gene activation, proliferation and differentiation. The current knowledge on the signal-transduction mechanisms of these cytokines from the plasma membrane to the nucleus is reviewed. In particular, we focus on the assembly of receptor complexes after ligand binding, the activation of receptor-associated kinases of the Janus family, and the recruitment and phosphorylation of transcription factors of the STAT family, which dimerize, translocate to the nucleus, and bind to enhancer elements of respective target genes leading to transcriptional activation. The important players in the signalling pathway, namely the cytokines and the receptor components, the Janus kinases Jak1, Jak2 and Tyk2, the signal transducers and activators of transcription STAT1 and STAT3 and the tyrosine phosphatase SHP2 [SH2 (Src homology 2) domain-containing tyrosine phosphatase] are introduced and their structural/functional properties are discussed. Furthermore, we review various mechanisms involved in the termination of the IL-6-type cytokine signalling, namely the action of tyrosine phosphatases, proteasome, Jak kinase inhibitors SOCS (suppressor of cytokine signalling), protein inhibitors of activated STATs (PIAS), and internalization of the cytokine receptors via gp130. Although all IL-6-type cytokines signal through the gp130/Jak/STAT pathway, the comparison of their physiological properties shows that they elicit not only similar, but also distinct, biological responses. This is reflected in the different phenotypes of IL-6-type-cytokine knock-out animals.
Collapse
Affiliation(s)
- P C Heinrich
- Institut für Biochemie, RWTH Aachen, Universitätsklinikum, Pauwelsstrasse 30, D-52057 Aachen, Germany.
| | | | | | | | | |
Collapse
|
616
|
Abstract
Interleukin-12 activates natural killer cells and promotes the differentiation of Th1 CD4+ cells; it is a critical factor in viral immunity. IL-12 is secreted by antigen presenting cells including dendritic cells, macrophages and astrocytes, both in tissues and in secondary lymphoid organs. Experimental studies have shown that administration of the cytokine rapidly activates both innate and specific immune responses; this results in enhanced host cellular responses and generally, promotes clearance of virus and host recovery from infection. The observations of many laboratories, studying viral immunity to both RNA and DNA based pathogens, are summarized.
Collapse
Affiliation(s)
| | | | - Carol Shoshkes Reiss
- To whom correspondence should be addressed. Tel.: 1 212 998 8269; fax: 1 212 995 4015; e-mail:
| |
Collapse
|
617
|
Chen EH, Gadina M, Galon J, Chen M, O'Shea JJ. Not just another meeting: the coming of age of JAKs and STATs. IMMUNOLOGY TODAY 1998; 19:338-41. [PMID: 9709499 DOI: 10.1016/s0167-5699(98)01295-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- E H Chen
- Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
618
|
Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, Vanin EF, Bodner S, Colamonici OR, van Deursen JM, Grosveld G, Ihle JN. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998; 93:385-95. [PMID: 9590173 DOI: 10.1016/s0092-8674(00)81167-8] [Citation(s) in RCA: 806] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A variety of cytokines activate receptor-associated members of the Janus family of protein tyrosine kinases (Jaks). To assess the role of Jak2, we have derived Jak2-deficient mice. The mutation causes an embryonic lethality due to the absence of definitive erythropoiesis. Fetal liver myeloid progenitors, although present based on the expression of lineage specific markers, fail to respond to erythropoietin, thrombopoietin, interleukin-3 (IL-3), or granulocyte/macrophage colony-stimulating factor. In contrast, the response to granulocyte specific colony-stimulating factor is unaffected. Jak2-deficient fibroblasts failed to respond to interferon gamma (IFNgamma), although the responses to IFNalpha/beta and IL-6 were unaffected. Lastly, reconstitution experiments demonstrate that Jak2 is not required for the generation of lymphoid progenitors, their amplification, or functional differentiation. Therefore, Jak2 plays a critical, nonredundant role in the function of a specific group of cytokines receptors.
Collapse
Affiliation(s)
- E Parganas
- Howard Hughes Medical Institute, Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
619
|
Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, King KL, Sheehan KC, Yin L, Pennica D, Johnson EM, Schreiber RD. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 1998; 93:373-83. [PMID: 9590172 DOI: 10.1016/s0092-8674(00)81166-6] [Citation(s) in RCA: 634] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein we report the generation of mice lacking the ubiquitously expressed Janus kinase, Jak1. Jak1-/- mice are runted at birth, fail to nurse, and die perinatally. Although Jak1-/- cells are responsive to many cytokines, they fail to manifest biologic responses to cytokines that bind to three distinct families of cytokine receptors. These include all class II cytokine receptors, cytokine receptors that utilize the gamma(c) subunit for signaling, and the family of cytokine receptors that depend on the gp130 subunit for signaling. Our results thus demonstrate that Jak1 plays an essential and nonredundant role in promoting biologic responses induced by a select subset of cytokine receptors, including those in which Jak utilization was thought to be nonspecific.
Collapse
Affiliation(s)
- S J Rodig
- Center for Immunology and Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|