601
|
De Sordi L, Mühlschlegel FA. Quorum sensing and fungal-bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res 2009; 9:990-9. [PMID: 19845041 DOI: 10.1111/j.1567-1364.2009.00573.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microorganisms have evolved a complex signature of communication termed quorum sensing (QS), which is based on the exchange and sensing of low molecular- weight signal compounds. The ability to communicate within the microbial population gives the advantage to coordinate a groups behaviour leading to a higher fitness in the environment. The polymorphic fungus Candida albicans is an opportunistic human pathogen able to regulate virulence traits through the production of at least two QS signal molecules: farnesol and tyrosol. The ability to adopt multiple morphotypes and form biofilms on infected surfaces are the most important pathogenic characteristics regulated by QS and are of clinical relevance. In fact, traditional antimicrobial approaches are often ineffective towards these characteristics. Moreover, the intimate association between C. albicans and other pathogens, such as Pseudomonas aeruginosa, increases the complexity of the infection system. This review outlines the current knowledge on fungal QS and fungal-bacterial interactions emphasizing on C. albicans. Further investigations need to concentrate on the molecular mechanisms and the genetic regulation of these phenomena in order to identify putative novel therapeutic options.
Collapse
Affiliation(s)
- Luisa De Sordi
- Department of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
602
|
Al-Dhaheri RS, Douglas LJ. Apoptosis in Candida biofilms exposed to amphotericin B. J Med Microbiol 2009; 59:149-157. [PMID: 19892857 DOI: 10.1099/jmm.0.015784-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida biofilms are resistant to a range of antifungal agents in current clinical use. The basis of this drug resistance is not clear, but in some cases it could be due to the presence of a small number of drug-tolerant or persister cells. In this study, specific staining methods were used to investigate the existence of persisters and apoptosis in Candida biofilms subjected to different concentrations of amphotericin B. Fluorescein diacetate staining revealed the presence of persisters in biofilms of one of two strains of Candida albicans tested, and in biofilms of Candida krusei and Candida parapsilosis. Caspase activity, indicative of apoptosis, was detected with SR-FLICA and (aspartyl)(2)-rhodamine 110 fluorochrome-based staining reagents in all of these biofilms. The general inhibitor of mammalian caspases, Z-VAD-FMK, when used at a low concentration (2.5 microM), increased the viability of drug-treated biofilms up to 11.5-fold (P <0.001 %). Seven specific caspase inhibitors had different effects on C. albicans biofilm viability, but inhibitors of caspases-1, -9, -5, -3 and -2 all significantly increased cell survival (40-fold, 8-fold, 3.5-fold, 1.9-fold and 1.7-fold, respectively). However, histone deacetylase (HDA) inhibitors enhanced the activity of amphotericin B for biofilms of all three Candida species. Sodium butyrate and sodium valproate, for example, when added concurrently with amphotericin B, completely eliminated biofilm populations of C. albicans. Overall, our results demonstrate an apoptotic process in amphotericin-treated biofilms of three Candida species. They also indicate that HDA inhibitors can enhance the action of the drug and in some cases even eradicate persister subpopulations, suggesting that histone acetylation might activate apoptosis in these cells.
Collapse
Affiliation(s)
- Rawya S Al-Dhaheri
- Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - L Julia Douglas
- Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
603
|
Examination of potential virulence factors of Candida tropicalis clinical isolates from hospitalized patients. Mycopathologia 2009; 169:175-82. [PMID: 19851885 DOI: 10.1007/s11046-009-9246-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 10/03/2009] [Indexed: 10/20/2022]
Abstract
Candida tropicalis has been reported to be one of the Candida species which is most likely to cause bloodstream and urinary tract infections in hospitalized patients. Accordingly, the aim of this study was to characterize the virulence of C. tropicalis by assessing antifungal susceptibility and comparing the expression of several virulence factors. This study was conducted with seven isolates of C. tropicalis from urine and blood cultures and from central venous catheter. C. tropicalis ATCC 750 was used as reference strain. Yeasts adhered (2 h) to epithelial cells and silicone and 24 h biofilm biomass were determined by crystal violet staining. Pseudohyphae formation ability was determined after growth in fetal bovine serum. Enzymes production (hemolysins, proteases, phospholipases) was assessed by halo formation on agar plates. Susceptibility to antifungal agents was determined by E-test. Regarding adhesion, it can be highlighted that C. tropicalis strains adhered significantly more to epithelium than to silicone. Furthermore, all C. tropicalis strains were able to form biofilms and to express total hemolytic activity. However, protease was only produced by two isolates from urine and by the isolates from catheter and blood. Moreover, only one C. tropicalis (from catheter) was phospholipase positive. All isolates were susceptible to voriconazole, fluconazole and amphotericin B. Four strains were susceptible-dose dependent to itraconazole and one clinical isolate was found to be resistant.
Collapse
|
604
|
Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 2009; 54:39-44. [PMID: 19841146 DOI: 10.1128/aac.00860-09] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungal biofilms produce a small number of persister cells which can tolerate high concentrations of fungicidal agents. Persisters form upon attachment to a surface, an important step in the pathogenesis of Candida strains. The periodic application of antimicrobial agents may select for strains with increased levels of persister cells. In order to test this possibility, 150 isolates of Candida albicans and C. glabrata were obtained from cancer patients who were at high risk for the development of oral candidiasis and who had been treated with topical chlorhexidine once a day. Persister levels were measured by exposing biofilms growing in the wells of microtiter plates to high concentrations of amphotericin B and plating for survivors. The persister levels of the isolates varied from 0.2 to 9%, and strains isolated from patients with long-term carriage had high levels of persisters. High-persister strains were isolated from every patient with Candida carriage of more than 8 consecutive weeks but from no patients with transient carriage. All of the high-persister isolates had an amphotericin B MIC that was the same as that for the wild type, indicating that these strains were drug-tolerant rather than drug-resistant mutants. Biofilms of the majority of high-persister strains also showed an increased tolerance to chlorhexidine and had the same MIC for this antimicrobial as the wild type. This study suggests that persister cells are clinically relevant, and antimicrobial therapy selects for high-persister strains in vivo. The drug tolerance of persisters may be a critical but overlooked component responsible for antimicrobial drug failure and relapsing infections.
Collapse
|
605
|
Harding MW, Marques LLR, Howard RJ, Olson ME. Can filamentous fungi form biofilms? Trends Microbiol 2009; 17:475-80. [PMID: 19833519 DOI: 10.1016/j.tim.2009.08.007] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 06/30/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
Abstract
The discovery of biofilm formation in bacteria and yeasts has led to a better understanding of microbial ecology and to new insights into the mechanisms of virulence and persistence of pathogenic microorganisms. However, it is generally assumed that filamentous fungi, some of which have a significant impact on our health or our economy, do not form biofilms. In contrast to this assumption, here we discuss recent findings supporting the hypothesis that surface-associated filamentous fungi can form biofilms. Based on these findings and on previous models for bacterial and yeast systems, we propose preliminary criteria and a model for biofilm formation by filamentous fungi.
Collapse
|
606
|
Sahni N, Yi S, Daniels KJ, Srikantha T, Pujol C, Soll DR. Genes selectively up-regulated by pheromone in white cells are involved in biofilm formation in Candida albicans. PLoS Pathog 2009; 5:e1000601. [PMID: 19798425 PMCID: PMC2745568 DOI: 10.1371/journal.ppat.1000601] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 08/31/2009] [Indexed: 11/27/2022] Open
Abstract
To mate, MTL-homozygous strains of the yeast pathogen Candida albicans must switch from the white to opaque phase. Mating-competent opaque cells then release pheromone that induces polarization, a G1 block and conjugation tube formation in opaque cells of opposite mating type. Pheromone also induces mating-incompetent white cells to become adhesive and cohesive, and form thicker biofilms that facilitate mating. The pheromone response pathway of white cells shares the upstream components of that of opaque cells, but targets a different transcription factor. Here we demonstrate that the genes up-regulated by the pheromone in white cells are activated through a common cis-acting sequence, WPRE, which is distinct from the cis-acting sequence, OPRE, responsible for up-regulation in opaque cells. Furthermore, we find that these white-specific genes play roles in white cell biofilm formation, and are essential for biofilm formation in the absence of an added source of pheromone, suggesting either an autocrine or pheromone-independent mechanism. These results suggest an intimate, complex and unique relationship between switching, mating and MTL-homozygous white cell biofilm formation, the latter a presumed virulence factor in C. albicans. Candida albicans, like other microbial pathogens, form protective biofilms on host tissue, prosthetics and catheters. But C. albicans forms two types of biofilm, one by cells of majority strains that are heterozygous at the mating type locus, and another by white cells of minority strains that are homozygous at the mating type locus. These latter biofilms are enhanced by mating-competent minority opaque cells, a source of pheromone. The white cell biofilm response to pheromone is regulated by a pheromone response pathway that shares all of the upper components of the opaque cell mating response pathway, but targets a different transcription factor and activates different phase-specific downstream genes. Here we demonstrate that genes are up-regulated by pheromone in white cells through a common white cis-acting specific pheromone response element (WPRE), distinct from the element (OPRE) responsible for pheromone up-regulation of genes in opaque cells. In addition, the pheromone-induced white-specific genes play essential roles in biofilm formation. We further demonstrate that in the absence of minority opaque cells, the source of pheromone, majority white cells form biofilms through a process that is still dependent upon the same pheromone response pathway and targeted white-specific genes, suggesting either an autocrine system that involves the auto release of pheromone of the opposite mating type, or pheromone-independent activation. These observations indicate a unique interdependency of white cell biofilm formation, a presumed pathogenic trait, switching and mating in C. albicans.
Collapse
Affiliation(s)
- Nidhi Sahni
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Song Yi
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Karla J. Daniels
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Thyagarajan Srikantha
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Claude Pujol
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - David R. Soll
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
607
|
Tsang CSP, Tang DYK. Effect of surface treatments of titanium on amphotericin B-treated Candida albicans persister cells. Mycoses 2009; 54:189-94. [PMID: 19793205 DOI: 10.1111/j.1439-0507.2009.01790.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although persister cells in Candida albicans biofilm may contribute to its increased resistance to antifungal drugs, little information is available on the formation of Candida persister cells on titanium surfaces. The effect of different surface treatments of Ti on persister cells was determined in the present study. Titanium discs were surface-treated by three different methods (Group A - polishing, Group B - sandblasting followed by acid-etching, and Group C - sandblasting alone). Persister cells of two C. albicans strains, namely ATCC 90028 and HK30Aa, in biofilm and planktonic states, were measured as the percentage of colony forming units remaining after 24 h incubation with various concentrations of amphotericin B. No persister cells were detected in the planktonic cultures. However, 1.5%, 0.1% and 2.4%C. albicans ATCC 90028 persister cells were detected at an AmB concentration of 64 μg ml(-1) in groups A, B and C, respectively; and 0.3%, 0.2% and 0.6% for groups A, B and C, respectively, for HK30Aa. Group C of C. albicans ATCC 90028 appeared to provide a surface relatively unfavourable for the development of persister cells (P < 0.01). Whether these results may have implications on the clinical performance of titanium implants warrants further investigation.
Collapse
Affiliation(s)
- C S P Tsang
- Oral Rehabilitation, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, China.
| | | |
Collapse
|
608
|
Kabir MA, Hussain MA. Human fungal pathogen Candida albicans in the postgenomic era: an overview. Expert Rev Anti Infect Ther 2009; 7:121-34. [PMID: 19622061 DOI: 10.1586/14787210.7.1.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Candida albicans is an opportunistic human fungal pathogen and is responsible for candidiasis. Owing to the improvement in healthcare, the number of immunocompromised patients in hospitals has increased worldwide and these individuals are susceptible to infections caused by many pathogenic microbes, among which C. albicans is one of the major players. Currently, the complete genome sequence of this pathogen is available and the size of this was estimated to be of 16 Mb. Annotation of C. albicans genome revealed that there are 6114 open reading frames (ORFs), of which 774 are specific to C. albicans. This poses a challenge as well as an opportunity to the Candida community to understand the functions of the unknown genes, especially those specific to C. albicans. Efforts have been made by the Candida community to systematically delete the ORFs and assign the functions. This will, in turn, help in understanding the biology of C. albicans and its interactions with animals as well as humans, and better drugs can be developed to treat Candida infections. In this article, we review updates on the Candida biology in the context of the availability of the genome sequence, its functional analysis and anti-Candida therapy. Finally, in the light of present trends in Candida research and current challenges, various opportunities are identified and suggestions are made.
Collapse
Affiliation(s)
- M Anaul Kabir
- Department of Biotechnology, PA College of Engineering, Kairangala, Mangalore-574153, Karnataka, India.
| | | |
Collapse
|
609
|
Inhibition of Candida albicans growth by brominated furanones. Appl Microbiol Biotechnol 2009; 85:1551-63. [PMID: 19756586 DOI: 10.1007/s00253-009-2174-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/22/2009] [Accepted: 07/29/2009] [Indexed: 12/11/2022]
Abstract
Candida albicans is the most virulent Candida species of medical importance, which presents a great threat to immunocompromised individuals such as HIV patients. Currently, there are only four classes of antifungal agents available for treating fungal infections: azoles, polyenes, pyrimidines, and echinocandins. The fast spread of multidrug resistant C. albicans strains has increased the demand for new antifungal drugs. In this study, we demonstrate the antifungal activity of brominated furanones on C. albicans. Studying the structure and activity of this class of furanones reveals that the exocyclic vinyl bromide conjugated with the carbonyl group is the most important structural element for fungal inhibition. Furthermore, gene expression analysis using DNA microarrays showed that 3 microg/mL of 4-bromo-5Z-(bromomethylene)-3-butylfuran-2-one (BF1) upregulated 32 C. albicans genes with functions of stress response, NADPH dehydrogenation, and small-molecule transport, and repressed 21 genes involved mainly in cell-wall maintenance. Interestingly, only a small overlap is observed between the gene expression changes caused by the representative brominated furanone (BF1) in this study and other antifungal drugs reported in literature. This result suggests that brominated furanones and other antifungal drugs may target different fungal proteins or genes. The existence of such new targets provides an opportunity for developing new agents to control fungal pathogens which are resistant to currently available drugs.
Collapse
|
610
|
Gottschamel J, Richter L, Mak A, Jungreuthmayer C, Birnbaumer G, Milnera M, Brückl H, Ertl P. Development of a Disposable Microfluidic Biochip for Multiparameter Cell Population Measurements. Anal Chem 2009; 81:8503-12. [DOI: 10.1021/ac901420u] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johanna Gottschamel
- Department of Health & Environment, Nano Systems, Austrian Institute of Technology (AIT), Donau-City Street 1, 1220 Vienna, Austria, and Department of Mobility, Electric Drive Technologies, Austrian Institute of Technology (AIT), Giefinggasse 2, 1210 Vienna, Austria
| | - Lukas Richter
- Department of Health & Environment, Nano Systems, Austrian Institute of Technology (AIT), Donau-City Street 1, 1220 Vienna, Austria, and Department of Mobility, Electric Drive Technologies, Austrian Institute of Technology (AIT), Giefinggasse 2, 1210 Vienna, Austria
| | - Andy Mak
- Department of Health & Environment, Nano Systems, Austrian Institute of Technology (AIT), Donau-City Street 1, 1220 Vienna, Austria, and Department of Mobility, Electric Drive Technologies, Austrian Institute of Technology (AIT), Giefinggasse 2, 1210 Vienna, Austria
| | - Christian Jungreuthmayer
- Department of Health & Environment, Nano Systems, Austrian Institute of Technology (AIT), Donau-City Street 1, 1220 Vienna, Austria, and Department of Mobility, Electric Drive Technologies, Austrian Institute of Technology (AIT), Giefinggasse 2, 1210 Vienna, Austria
| | - Gerald Birnbaumer
- Department of Health & Environment, Nano Systems, Austrian Institute of Technology (AIT), Donau-City Street 1, 1220 Vienna, Austria, and Department of Mobility, Electric Drive Technologies, Austrian Institute of Technology (AIT), Giefinggasse 2, 1210 Vienna, Austria
| | - Marcus Milnera
- Department of Health & Environment, Nano Systems, Austrian Institute of Technology (AIT), Donau-City Street 1, 1220 Vienna, Austria, and Department of Mobility, Electric Drive Technologies, Austrian Institute of Technology (AIT), Giefinggasse 2, 1210 Vienna, Austria
| | - Hubert Brückl
- Department of Health & Environment, Nano Systems, Austrian Institute of Technology (AIT), Donau-City Street 1, 1220 Vienna, Austria, and Department of Mobility, Electric Drive Technologies, Austrian Institute of Technology (AIT), Giefinggasse 2, 1210 Vienna, Austria
| | - Peter Ertl
- Department of Health & Environment, Nano Systems, Austrian Institute of Technology (AIT), Donau-City Street 1, 1220 Vienna, Austria, and Department of Mobility, Electric Drive Technologies, Austrian Institute of Technology (AIT), Giefinggasse 2, 1210 Vienna, Austria
| |
Collapse
|
611
|
|
612
|
Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. EUKARYOTIC CELL 2009; 8:1658-64. [PMID: 19717744 DOI: 10.1128/ec.00070-09] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The oral cavity is colonized by microorganisms growing in biofilms in which interspecies interactions take place. Streptococcus mutans grows in biofilms on enamel surfaces and is considered one of the main etiological agents of human dental caries. Candida albicans is also commonly found in the human oral cavity, where it interacts with S. mutans. C. albicans is a polymorphic fungus, and the yeast-to-hypha transition is involved in virulence and biofilm formation. The aim of this study was to investigate interkingdom communication between C. albicans and S. mutans based on the production of secreted molecules. S. mutans UA159 inhibited C. albicans germ tube (GT) formation in cocultures even when physically separated from C. albicans. Only S. mutans spent medium collected in the early exponential phase (4-h-old cultures) inhibited the GT formation of C. albicans. During this phase, S. mutans UA159 produces a quorum-sensing molecule, competence-stimulating peptide (CSP). The role of CSP in inhibiting GT formation was confirmed by using synthetic CSP and a comC deletion strain of S. mutans UA159, which lacks the ability to produce CSP. Other S. mutans strains and other Streptococcus spp. also inhibited GT formation but to different extents, possibly reflecting differences in CSP amino acid sequences among Streptococcus spp. or differences in CSP accumulation in the media. In conclusion, CSP, an S. mutans quorum-sensing molecule secreted during the early stages of growth, inhibits the C. albicans morphological switch.
Collapse
|
613
|
Biology and genetics of the pathogenic yeast Candida parapsilosis. Curr Genet 2009; 55:497-509. [DOI: 10.1007/s00294-009-0268-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
|
614
|
Bandara HMHN, Yau JYY, Watt RM, Jin LJ, Samaranayake LP. Escherichia coli and its lipopolysaccharide modulate in vitro Candida biofilm formation. J Med Microbiol 2009; 58:1623-1631. [PMID: 19661208 DOI: 10.1099/jmm.0.012989-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Demystification of microbial behaviour in mixed biofilms could have a major impact on our understanding of infectious diseases. The objectives of this study were to evaluate in vitro the interactions of six different Candida species and a Gram-negative coliform, Escherichia coli, in dual-species biofilms, and to assess the effect of E. coli LPS on Candida biofilm formation. A single isolate of E. coli ATCC 25922 and six different species of Candida, Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, Candida tropicalis ATCC 13803, Candida parapsilosis ATCC 22019 and Candida dubliniensis MYA-646, were studied using a standard biofilm assay. Each Candida species was co-cultured with E. coli on a polystyrene surface and biofilm formation was quantified by a c.f.u. assay. The biofilm was then analysed by Live/Dead staining and fluorescence microscopy (confocal laser-scanning microscopy, CLSM), whilst scanning electron microscopy (SEM) was employed to visualize the biofilm architecture. The effect of E. coli LPS on Candida biofilm cell activity at defined time intervals was assessed with an XTT reduction assay. A significant quantitative reduction in c.f.u. counts of C. tropicalis (after 90 min), C. parapsilosis (after 90 min and 24 h), C. krusei (after 24 h) and C. dubliniensis (after 24 and 48 h) was noted on incubation with E. coli in comparison with their monospecies biofilm counterparts (P <0.05). On the other hand, a simultaneous and significant reduction in E. coli cell numbers occurred on co-culture with C. albicans (after 90 min), and an elevation of E. coli cell numbers followed co-culture with C. tropicalis (after 24 h) and C. dubliniensis (after 24 h and 48 h) (P <0.05). All quantitative findings were confirmed by SEM and CLSM analyses. By SEM observation, dual-species biofilms demonstrated scanty architecture with reduced visible cell counts at all stages of biofilm development, despite profuse growth and dense colonization in their single-species counterparts. Significantly elevated metabolic activity, as assessed by XTT readings, was observed in E. coli LPS-treated C. tropicalis and C. parapsilosis biofilms (after 48 h), whilst this had the opposite effect for C. dubliniensis (after 24 h) (P <0.05). These data indicate that E. coli and Candida species in a mixed-species environment mutually modulate biofilm development, both quantitatively and qualitatively, and that E. coli LPS appears to be a key component in mediating these outcomes.
Collapse
Affiliation(s)
- H M H N Bandara
- Faculty of Dentistry, University of Hong Kong, Oral Biosciences, 5/F Prince Phillip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR
| | - J Y Y Yau
- Faculty of Dentistry, University of Hong Kong, Oral Biosciences, 5/F Prince Phillip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR
| | - R M Watt
- Faculty of Dentistry, University of Hong Kong, Oral Biosciences, 5/F Prince Phillip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR
| | - L J Jin
- Faculty of Dentistry, University of Hong Kong, Oral Biosciences, 5/F Prince Phillip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR
| | - L P Samaranayake
- Faculty of Dentistry, University of Hong Kong, Oral Biosciences, 5/F Prince Phillip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR
| |
Collapse
|
615
|
Geweely NS. Anticandidal cytotoxicity, antitumor activities, and purified cell wall modulation by novel Schiff base ligand and its metal (II) complexes against some pathogenic yeasts. Arch Microbiol 2009; 191:687-95. [PMID: 19655126 DOI: 10.1007/s00203-009-0497-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 07/06/2009] [Indexed: 11/28/2022]
Abstract
The preparation of metal (II) complexes [CoCl(2).6H(2)O, Ni(CH(3)COO)(2).4H(2)O, Cu(CH(3)COO)(2).2H(2)O, and Zn (CH3COO)(2) .2H(2)O] with 2[N-(cinnamlidene) amino]-5-nitro phenol as a novel ligands and their biological evaluation against candida species was studied. The inhibitory effects of the tested metal complexes were tested against six pathogenic yeasts (Candida albicans, C. fructus, C. glabrata, C. oleophila, C. parapsilosis, and C. tropicalis). The effect of the most efficient metal complex (Zn(II) complex) was more pronounced at 1.25 microg/ml, while Ni(II) complex was exhibited the least suppressive effect. Co(II) and Zn(II) complexes act as potential antitumor agents, while Zn(II) complex has shown promising cytotoxic activity with slow candidal respiration rate. Addition of Zn(II) complex leading to suppression of cell wall components in all candidal cells accompanied with leaking out of amino acids. Purification of the cell wall mannoprotein of C. glabrata treated with Zn(II) complex was established, resulting one pure fissured protein peak. Cell wall protein modulation was showed by appearance of two new protein bands with molecular weights of 72 and 39 KDa in C. glabrata cells treated with Zn(II) complex compared with one pure protein band 55.6 KDa in the non treated yeast cell.
Collapse
Affiliation(s)
- Neveen S Geweely
- Department of Botany, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
616
|
Krasowska A, Murzyn A, Dyjankiewicz A, Łukaszewicz M, Dziadkowiec D. The antagonistic effect of Saccharomyces boulardii on Candida albicans filamentation, adhesion and biofilm formation. FEMS Yeast Res 2009; 9:1312-21. [PMID: 19732158 DOI: 10.1111/j.1567-1364.2009.00559.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The dimorphic fungus Candida albicans is a member of the normal flora residing in the intestinal tract of humans. In spite of this, under certain conditions it can induce both superficial and serious systemic diseases, as well as be the cause of gastrointestinal infections. Saccharomyces boulardii is a yeast strain that has been shown to have applications in the prevention and treatment of intestinal infections caused by bacterial pathogens. The purpose of this study was to determine whether S. boulardii affects the virulence factors of C. albicans. We demonstrate the inhibitory effect of live S. boulardii cells on the filamentation (hyphae and pseudohyphae formation) of C. albicans SC5314 strain proportional to the amount of S. boulardii added. An extract from S. boulardii culture has a similar effect. Live S. boulardii and the extract from S. boulardii culture filtrate diminish C. albicans adhesion to and subsequent biofilm formation on polystyrene surfaces under both aerobic and microaerophilic conditions. This effect is very strong and requires lower doses of S. boulardii cells or concentrations of the extract than serum-induced filamentation tests. Saccharomyces boulardii has a strong negative effect on very important virulence factors of C. albicans, i.e. the ability to form filaments and to adhere and form biofilms on plastic surfaces.
Collapse
Affiliation(s)
- Anna Krasowska
- Faculty of Biotechnology, Wrocław University, Wrocław, Poland
| | | | | | | | | |
Collapse
|
617
|
d’Enfert C. Hidden killers: persistence of opportunistic fungal pathogens in the human host. Curr Opin Microbiol 2009; 12:358-64. [DOI: 10.1016/j.mib.2009.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 12/22/2022]
|
618
|
Yang C, Gong W, Lu J, Zhu X, Qi Q. Antifungal drug susceptibility of oral Candida albicans isolates may be associated with apoptotic responses to Amphotericin B. J Oral Pathol Med 2009; 39:182-7. [PMID: 19656268 DOI: 10.1111/j.1600-0714.2009.00811.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Candida albicans is the important opportunistic fungal pathogens which can cause oral Candidiasis and even more seriously systemic infection. Apoptosis of C. albicans induced by environmental factor such as weak acid and antifungal drugs were studied recently. Illustrating the phenomenon of apoptosis in C. albicans may help us to discover new antifungal therapy by activating the fungal cells to suicide. METHODS Two oral C. albians clinical isolates which isolated respectively from healthy host [Strain 23C: minimal inhibition concentration (MIC) is 0.125 microg/ml for Amphotericin B (AmB)] and advanced cancer patient (Strain 28A: MIC is 2 microg/ml for AmB), were induced by 1 microg/ml AmB in vitro for 200 min, and then studied the apoptosis markers using terminal deoxynucletidyltransferase-mediated dUTP nick end labeling (TUNEL) (shown by diaminobenzidine and fluorescent isothiocyanate), and the ultrastructure of cell nuclear using transmission electron microscope (TEM), quantitative analysis using flow cytometry for the rapid exposure of phosphatidylserine at the outer membrane and propodium iodide (PI) double staining. C. albicans conference strain YEM30 was used as the control strain. RESULTS With TUNEL assay and TEM, we detected the typical characteristics of apoptosis. Strain 23C (with low MIC) showed significantly higher percentage of apoptosis (19.92%) compared with Strain 28A (with high MIC) which was isolated from the cancer patient (7.29%) (P < 0.01). In addition, 7.3% of early apoptosis cells of Strain 23C can form colonies on the plates, while 15% for Strain 28A. None of the PI+ cells can form colony. CONCLUSIONS Apoptosis of oral C. albicans isolates can be induced by AmB. The feature of antifungal drug susceptibility of the oral C. albicans clinical isolates may associate with the response of apoptosis inducing.
Collapse
Affiliation(s)
- Chengzhe Yang
- Department of Oral Medicine School of Stomatology, Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
619
|
Nett JE, Lepak AJ, Marchillo K, Andes DR. Time course global gene expression analysis of an in vivo Candida biofilm. J Infect Dis 2009; 200:307-13. [PMID: 19527170 PMCID: PMC3159582 DOI: 10.1086/599838] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Candida infection of devices is common and invariably associated with biofilm growth. Exploratory microarray studies were undertaken to identify target genes associated with biofilm formation from an in vivo catheter model over time. We compared messenger RNA levels from Candida albicans grown in an in vivo central venous catheter biofilm model at 12 h (intermediate growth) and 24 h (mature) to in vitro planktonic cells without a biofilm substrate, using C. albicans oligo arrays. A total of 124 transcripts were similarly up-regulated at the 12- and 24-h time points. Ontology categories most highly represented included energy/metabolism (12%), carbohydrate (10%), and protein (13%) synthesis and modification, and transport (6%). Numerous genes were previously identified from in vitro biofilm studies. These genes included those associated with hyphal growth, amino acid metabolism, adherence, drug resistance, ergosterol biosynthesis, and beta-glucan synthesis. In the current data set, adherence genes were unique to those from the earlier time point. Differences between the current in vivo biofilm expression data and that previously reported from in vitro models, including alterations in metabolism and carbohydrate processing, may be due to the continuous availability of nutrients from host serum and the incorporation of the host-pathogen interaction.
Collapse
Affiliation(s)
- Jeniel E. Nett
- Dept of Medicine, University of Wisconsin
- Dept of Cellular and Molecular Biology, University of Wisconsin
| | | | | | - David R. Andes
- Dept of Medicine, University of Wisconsin
- Dept of Medical Microbiology and Immunology, University of Wisconsin
| |
Collapse
|
620
|
Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother 2009; 53:3914-22. [PMID: 19564370 DOI: 10.1128/aac.00657-09] [Citation(s) in RCA: 373] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Candida albicans readily forms biofilms on the surface on indwelling medical devices, and these biofilms serve as a source of local and systemic infections. It is estimated that 27% of nosocomial C. albicans bloodstream infections are polymicrobial, with Staphylococcus aureus as the third most common organism isolated in conjunction with C. albicans. We tested whether S. aureus and C. albicans are able to form a polymicrobial biofilm. Although S. aureus formed poor monoculture biofilms in serum, it formed a substantial polymicrobial biofilm in the presence of C. albicans. In terms of architecture, S. aureus formed microcolonies on the surface of the biofilm, with C. albicans serving as the underlying scaffolding. In addition, S. aureus matrix staining revealed a different phenotype in polymicrobial versus monomicrobial biofilms, suggesting that S. aureus may become coated in the matrix secreted by C. albicans. S. aureus resistance to vancomycin was enhanced within the polymicrobial biofilm, required viable C. albicans, and was in part mediated by C. albicans matrix. However, the growth or sensitivity to amphotericin B of C. albicans is not altered in the polymicrobial biofilm.
Collapse
|
621
|
Klis FM, Sosinska GJ, de Groot PWJ, Brul S. Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res 2009; 9:1013-28. [PMID: 19624749 DOI: 10.1111/j.1567-1364.2009.00541.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The cell wall of Candida albicans consists of an internal skeletal layer and an external protein coat. This coat has a mosaic-like nature, containing c. 20 different protein species covalently linked to the skeletal layer. Most of them are GPI proteins. Coat proteins vary widely in function. Many of them are involved in the primary interactions between C. albicans and the host and mediate adhesive steps or invasion of host cells. Others are involved in biofilm formation and cell-cell aggregation. They further include iron acquisition proteins, superoxide dismutases, and yapsin-like aspartic proteases. In addition, several covalently linked carbohydrate-active enzymes are present, whose precise functions remain hitherto largely elusive. The expression levels of the genes that encode covalently linked cell wall proteins (CWPs) can vary enormously. They depend on the mode of growth and the combined inputs of several signaling pathways that sense environmental conditions. This is reflected in the unusually long intergenic regions of most of these genes. Finally, the precise location of several covalently linked CWPs is temporally and spatially regulated. We conclude that covalently linked CWPs of C. albicans play a crucial role in fitness and virulence and that their expression is tightly controlled.
Collapse
Affiliation(s)
- Frans M Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1018 WV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
622
|
Shirtliff ME, Peters BM, Jabra-Rizk MA. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett 2009; 299:1-8. [PMID: 19552706 DOI: 10.1111/j.1574-6968.2009.01668.x] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bacteria and fungi are found together in a myriad of environments and particularly in a biofilm, where adherent species interact through diverse signaling mechanisms. Yet, despite billions of years of coexistence, the area of research exploring fungal-bacterial interactions, particularly within the context of polymicrobial infections, is still in its infancy. However, reports describing a multitude of wide-ranging interactions between the fungal pathogen Candida albicans and various bacterial pathogens are on the rise. An example of a mutually beneficial interaction is coaggregation, a phenomenon that takes place in oral biofilms where the adhesion of C. albicans to oral bacteria is considered crucial for its colonization of the oral cavity. In contrast, the interaction between C. albicans and Pseudomonas aeruginosa is described as being competitive and antagonistic in nature. Another intriguing interaction is that occurring between Staphylococcus aureus and C. albicans, which although not yet fully characterized, appears to be initially synergistic. These complex interactions between such diverse and important pathogens would have significant clinical implications if they occurred in an immunocompromised host. Therefore, understanding the mechanisms of adhesion and signaling involved in fungal-bacterial interactions may lead to the development of novel therapeutic strategies for impeding microbial colonization and development of polymicrobial disease.
Collapse
Affiliation(s)
- Mark E Shirtliff
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
623
|
Hyphal content determines the compression strength of Candida albicans biofilms. Microbiology (Reading) 2009; 155:1997-2003. [DOI: 10.1099/mic.0.021568-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is the most frequently isolated human fungal pathogen among species causing biofilm-related clinical infections. Mechanical properties of Candida biofilms have hitherto been given no attention, despite the fact that mechanical properties are important for selection of treatment or dispersal of biofilm organisms due to a bodily fluid flow. The aim of this study was to identify the factors that determine the compression strength of Candida biofilms. Biofilms of C. albicans wild-type parental strain Caf2-1, mutant strain Chk24 lacking Chk1p [known to be involved in regulation of morphogenesis (yeast-to-hyphae transition)] and gene-reconstructed strain Chk23 were evaluated for their resistance to compression, along with biofilms of Candida tropicalis GB 9/9 and Candida parapsilosis GB 2/8, derived from used voice prosthetic biofilms. Additionally, cell morphologies within the biofilm, cell-surface hydrophobicities and extracellular polymeric substance composition were determined. Our results suggest that the hyphae-to-yeast ratio influences the compression strength of C. albicans biofilms. Biofilms with a hyphal content >50 % possessed significantly higher compressive strength and were more difficult to destroy by vortexing and sonication than biofilms with a lower hyphal content. However, when the amount of extracellular DNA (eDNA) in biofilms of C. albicans Caf2-1 and Chk24 increased, biofilm strength declined, suggesting that eDNA may influence biofilm integrity adversely.
Collapse
|
624
|
Horká M, Růžička F, Holá V, Šlais K. Separation of similar yeast strains by IEF techniques. Electrophoresis 2009; 30:2134-41. [DOI: 10.1002/elps.200800779] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
625
|
Moreno-Ruiz E, Ortu G, de Groot PWJ, Cottier F, Loussert C, Prévost MC, de Koster C, Klis FM, Goyard S, d'Enfert C. The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity. Microbiology (Reading) 2009; 155:2004-2020. [DOI: 10.1099/mic.0.028902-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The fungal cell wall is essential in maintaining cellular integrity and plays key roles in the interplay between fungal pathogens and their hosts. The PGA59 and PGA62 genes encode two short and related glycosylphosphatidylinositol-anchored cell wall proteins and their expression has been previously shown to be strongly upregulated when the human pathogen Candida albicans grows as biofilms. Using GFP fusion proteins, we have shown that Pga59 and Pga62 are cell-wall-located, N- and O-glycosylated proteins. The characterization of C. albicans pga59Δ/pga59Δ, pga62Δ/pga62Δ and pga59Δ/pga59Δ pga62Δ/pga62Δ mutants suggested a minor role of these two proteins in hyphal morphogenesis and that they are not critical to biofilm formation. Importantly, the sensitivity to different cell-wall-perturbing agents was altered in these mutants. In particular, simultaneous inactivation of PGA59 and PGA62 resulted in high sensitivity to Calcofluor white, Congo red and nikkomicin Z and in resistance to caspofungin. Furthermore, cell wall composition and observation by transmission electron microscopy indicated an altered cell wall structure in the mutant strains. Collectively, these data suggest that the cell wall proteins Pga59 and Pga62 contribute to cell wall stability and structure.
Collapse
Affiliation(s)
- Emilia Moreno-Ruiz
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Paris, France
| | - Giuseppe Ortu
- Sezione di Microbiologia generale ed Applicat, DISAABA, Sassari, Italy
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Paris, France
| | - Piet W. J. de Groot
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Fabien Cottier
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Paris, France
| | - Céline Loussert
- Plate-forme de Microscopie Ultrastructurale, Institut Pasteur, Paris, France
| | | | - Chris de Koster
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Frans M. Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Sophie Goyard
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Paris, France
| |
Collapse
|
626
|
Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault JS, Nantel A, Andes DR, Johnson AD, Mitchell AP. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol 2009; 7:e1000133. [PMID: 19529758 PMCID: PMC2688839 DOI: 10.1371/journal.pbio.1000133] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/12/2009] [Indexed: 01/06/2023] Open
Abstract
A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble beta-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble beta-1,3 glucan chains. We also show that a group of alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection.
Collapse
Affiliation(s)
- Clarissa J. Nobile
- Department of Microbiology, Columbia University, New York, New York, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Jeniel E. Nett
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Aaron D. Hernday
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Oliver R. Homann
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Jean-Sebastien Deneault
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada
| | - Andre Nantel
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada
| | - David R. Andes
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, Columbia University, New York, New York, United States of America
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
627
|
Beauvais A, Loussert CÃ, Prevost MC, Verstrepen K, Latgé JP. Characterization of a biofilm-like extracellular matrix inFLO1-expressingSaccharomyces cerevisiaecells. FEMS Yeast Res 2009; 9:411-9. [DOI: 10.1111/j.1567-1364.2009.00482.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
628
|
Martins C, de Resende M, da Silva D, Magalhães T, Modolo L, Pilli R, de Fátima Â. In vitro studies of anticandidal activity of goniothalamin enantiomers. J Appl Microbiol 2009; 107:1279-86. [DOI: 10.1111/j.1365-2672.2009.04307.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
629
|
Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans. Appl Environ Microbiol 2009; 75:3663-72. [PMID: 19346360 DOI: 10.1128/aem.00098-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hypoxia is encountered frequently by Candida albicans during systemic infection of the human host. We tested if hypoxia allows biofilm formation by C. albicans, which is a major cause of perseverance and antifungal resistance in C. albicans infections. Using an in vitro biofilm system, we unexpectedly discovered that several positive regulators of biofilm formation during normoxia, including Tec1, Ace2, Czf1, Och1, and Als3, had little or no influence on biofilm development during hypoxia, irrespective of the carbon dioxide level, indicating that C. albicans biofilm pathways differ depending on the oxygen level. In contrast, the Efg1 and Flo8 regulators were required for both normoxic and hypoxic biofilm formation. To explore the role of Efg1 during hypoxic and/or biofilm growth, we determined transcriptome kinetics following release of EFG1 expression by a system under transcriptional control of a doxycycline-inducible promoter. During hypoxia, Efg1 rapidly induced expression of all major classes of genes known to be associated with normoxic biofilm formation, including genes involved in glycolysis, sulfur metabolism, and antioxidative and peroxisome activities, as well as genes for iron uptake. The results suggest that hypoxic adaptation mediated by the Efg1 and Flo8 regulators is required even during normoxic biofilm development, while hypoxic biofilm formation in deep tissues or in organs may generate foci of C. albicans infections.
Collapse
|
630
|
Tampakakis E, Okoli I, Mylonakis E. A C. elegans-based, whole animal, in vivo screen for the identification of antifungal compounds. Nat Protoc 2009; 3:1925-31. [PMID: 19180076 DOI: 10.1038/nprot.2008.193] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traditional antimicrobial screens focus on compounds that block the growth of microbial organisms. A new Caenorhabditis elegans-based bioassay can be used for the identification of antifungal compounds that are effective against Candida albicans. According to the protocol, adult nematodes are infected with C. albicans and moved to 96-well plates containing the tested compounds. In the presence of compounds with no antifungal activity, the fungus kills the worms and develops filaments that penetrate through the cuticle. In contrast to traditional screening methods and mammalian models, this facile, time-efficient and less costly assay allows the study of Candida cells in nonplanktonic form and may allow the concurrent evaluation of toxicity and antifungal activity and identify compounds that target virulence factors or modify host immune response. The screening assay takes about 5-6 d depending on the experimental design.
Collapse
Affiliation(s)
- Emmanouil Tampakakis
- Division of Infectious Diseases, Massachusetts General Hospital, Gray-Jackson 504, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
631
|
Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nat Rev Microbiol 2009; 6:667-73. [PMID: 18679170 DOI: 10.1038/nrmicro1960] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous fungal species respond to contact with a surface by undergoing differentiation. Contact between plant pathogenic fungi and a surface results in the elaboration of the complex structures that enable invasion of the host plant, and for the opportunistic human pathogen Candida albicans, contact with a semi-solid surface results in invasive growth into the subjacent material. The ability to sense contact with an appropriate surface therefore contributes to the ability of these fungi to cause disease in their respective hosts. This Review discusses molecular mechanisms of mechanosensitivity, the proteins involved, such as mechanosensitive ion channels, G-protein-coupled receptors and integrins, and their putative roles in fungal contact sensing.
Collapse
|
632
|
Conserved WCPL and CX4C domains mediate several mating adhesin interactions in Saccharomyces cerevisiae. Genetics 2009; 182:173-89. [PMID: 19299340 DOI: 10.1534/genetics.108.100073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several adhesins are induced by pheromones during mating in Saccharomyces cerevisiae, including Aga1p, Aga2p, Sag1p (Agalpha1p), and Fig2p. These four proteins all participate in or influence a well-studied agglutinin interaction mediated by Aga1p-Aga2p complexes and Sag1p; however, they also play redundant and essential roles in mating via an unknown mechanism. Aga1p and Fig2p both contain repeated, conserved WCPL and CX(4)C domains. This study was directed toward understanding the mechanism underlying the collective requirement of agglutinins and Fig2p for mating. Apart from the well-known agglutinin interaction between Aga2p and Sag1p, three more pairs of interactions in cells of opposite mating type were revealed by this study, including bilateral heterotypic interactions between Aga1p and Fig2p and a homotypic interaction between Fig2p and Fig2p. These four pairs of adhesin interactions are collectively required for maximum mating efficiency and normal zygote morphogenesis. GPI-less, epitope-tagged forms of Aga1p and Fig2p can be co-immunoprecipitated from the culture medium of mating cells in a manner dependent on the WCPL and CX(4)C domains in the R1 repeat of Aga1p. Using site-directed mutagenesis, the conserved residues in Aga1p that interact with Fig2p were identified. Aga1p is involved in two distinct adhesive functions that are independent of each other, which raises the possibility for combinatorial interactions of this protein with its different adhesion receptors, Sag1 and Fig2p, a property of many higher eukaryotic adhesins.
Collapse
|
633
|
Abstract
A filter disk assay is described, which measures the penetration of antifungal agents through Candida biofilms. The technique involves forming a colony biofilm on a polycarbonate membrane filter, and capping it with a second, smaller membrane filter followed by a wetted paper disk of the type used in zone-of-inhibition assays. The entire assembly is transferred to agar medium containing the antifungal agent of interest. During subsequent incubation, the drug diffuses out of the agar and through the biofilm 'sandwich' to the moistened paper disk. The drug concentration in the disk can be determined by measuring the zone of growth inhibition that it produces on medium seeded with an indicator strain of Candida albicans in standard bioassays. Additional procedures are outlined for determining the viabilities of drug-treated biofilms and for examining biofilm morphology by scanning electron microscopy.
Collapse
|
634
|
Van Mulders SE, Christianen E, Saerens SM, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR. Phenotypic diversity of Flo protein family-mediated adhesion inSaccharomyces cerevisiae. FEMS Yeast Res 2009; 9:178-90. [DOI: 10.1111/j.1567-1364.2008.00462.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
635
|
Amphotericin B lipid complex is efficacious in the treatment of Candida albicans biofilms using a model of catheter-associated Candida biofilms. Int J Antimicrob Agents 2009; 33:149-53. [DOI: 10.1016/j.ijantimicag.2008.07.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 11/19/2022]
|
636
|
Villa F, Cappitelli F, Principi P, Polo A, Sorlini C. Permeabilization method forin-situinvestigation of fungal conidia on surfaces. Lett Appl Microbiol 2009; 48:234-40. [DOI: 10.1111/j.1472-765x.2008.02520.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
637
|
Sudheesh MS, Jain V, Shilakari G, Kohli DV. Development and characterization of lectin-functionalized vesicular constructs bearing amphotericin B for bio-film targeting. J Drug Target 2009; 17:148-58. [DOI: 10.1080/10611860802546629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
638
|
Krom BP, Buijssen K, Busscher HJ, van der Mei HC. Candida biofilm analysis in the artificial throat using FISH. Methods Mol Biol 2009; 499:45-54. [PMID: 19152038 DOI: 10.1007/978-1-60327-151-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biofilm formation is a common complication of the use of prosthetic devices. In clinical settings, biofilms can be comprised of one or more microbial species. In order to investigate the interaction between different species within a biofilm, a reproducible, reliable model system has to be utilized and an appropriate system for species identification applied. The present chapter describes the artificial throat model, a model system for growing mixed species biofilms on shunt prostheses. The model is used in conjugation with fluorescent in situ hybridization (FISH), which facilitates identification and localization of the resident microorganisms within biofilms.
Collapse
Affiliation(s)
- Bastiaan P Krom
- Department of Biomedical Engineering, University Medical Center Groningen and the University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
639
|
Chai LYA, Netea MG, Vonk AG, Kullberg BJ. Fungal strategies for overcoming host innate immune response. Med Mycol 2009; 47:227-36. [DOI: 10.1080/13693780802209082] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
640
|
Campos MS, Marchini L, Bernardes LAS, Paulino LC, Nobrega FG. Biofilm microbial communities of denture stomatitis. ACTA ACUST UNITED AC 2008; 23:419-24. [PMID: 18793366 DOI: 10.1111/j.1399-302x.2008.00445.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Denture stomatitis is a common lesion that affects denture wearers. Its multifactorial etiology seems to depend on a complex and poorly characterized biofilm. The purpose of this study was to assess the composition of the microbial biofilm obtained from complete denture wearers with and without denture stomatitis using culture-independent methods. METHODS Samples were collected from healthy denture wearers and from patients with denture stomatitis. Libraries comprising about 600 cloned 16S ribosomal DNA (rDNA) bacterial sequences and 192 cloned eukaryotic internal transcribed spacer (ITS) region sequences, obtained by polymerase chain reactions, were analyzed. RESULTS The partial 16S rDNA sequences revealed a total of 82 bacterial species identified in healthy subjects and patients with denture stomatitis. Twenty-seven bacterial species were detected in both biofilms, 29 species were exclusively present in patients with denture stomatitis, and 26 were found only in healthy subjects. Analysis of the ITS region revealed the presence of Candida sp. in both biofilms. CONCLUSION The results revealed the extent of the microbial flora, suggesting the existence of distinct biofilms in healthy subjects and in patients with denture stomatitis.
Collapse
Affiliation(s)
- M S Campos
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
641
|
Cagnacci S, Grasso R, Marchese A, Corvò R, Debbia E, Rossi L. The Susceptibility of Candida albicans to Gamma-Radiations and Ketoco-nazole Depends on Transitional Filamentation. Open Microbiol J 2008; 2:66-73. [PMID: 19088913 PMCID: PMC2593040 DOI: 10.2174/1874285800802010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 04/25/2008] [Accepted: 04/30/2008] [Indexed: 12/01/2022] Open
Abstract
The virulence of C. albicans is associated with the transitional evolution from yeast to filamentous forms. We were interested in the effects amphotericin B (AMB), ketoconazole (KTC) and γ-radiations might have on these broadly defined phenotypes as determined by the CFU procedure. By using collagen gel as the 3-dimensional support of cell culture, diverse experimental conditions were contemplated in order to modulate the differentiation of Candida during sessile and planktonic growth. These conditions included the co-culture with human epithelial and endothelial cells and treatment with farnesol, tyrosol and conditioned medium from P. aeruginosa. The overall results were as follows: 1) The survival of Candida was inhibited by the exposure to γ-radiations, but only after the organism was induced to progress into excess filamentation, while in normal growth conditions it proved to be radioresistant; 2) AMB inhibited the growth of yeast forms, while KTC was specifically toxic to filamentous forms and 3) the combined treatment of filamentous Candida with KTC and γ-radiations resulted in the synergistic inhibition of the organism. These findings indicate that both the radiosensitivity of C. albicans and its response to the synergistic effects of γ-radiations and KTC are filamentation-dependent pharmacological processes.
Collapse
Affiliation(s)
- Simone Cagnacci
- Institute of Microbiology "C.A Romanzi", Department DISCAT, University of Genoa, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
642
|
Tylicki A, Ziolkowska G, Bolkun A, Siemieniuk M, Czerniecki J, Nowakiewicz A. Comparative study of the activity and kinetic properties of malate dehydrogenase and pyruvate decarboxylase from Candida albicans, Malassezia pachydermatis, and Saccharomyces cerevisiae. Can J Microbiol 2008; 54:734-41. [PMID: 18772936 DOI: 10.1139/w08-062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Candida albicans and Malassezia pachydermatis cause human and animal infections of the skin and internal organs. We compare the properties of two enzymes, pyruvate decarboxylase (PDC) and malate dehydrogenase (MDH), from these species and from Saccharomyces cerevisiae cultivated under aerobic and anaerobic conditions to find differences between the enzymes that adapt pathogens for virulence and help us in searching for new antifungal agents. Malassezia pachydermatis did not show any growth under anaerobic conditions, as opposed to C. albicans and S. cerevisiae. Under aerobic conditions, C. albicans showed the highest growth rate. Malassezia pachydermatis, contrary to the others, did not show any PDC activity, simultaneously showing the highest MDH activity under aerobic conditions and a Km value for oxaloacetate lower than S. cerevisiae. Candida albicans and S. cerevisiae showed a strong decrease in MDH activity under anaerobic conditions. Candida albicans shows four different isoforms of MDH, while M. pachydermatis and S. cerevisiae are characterized by two and three isoforms. Candida albicans shows about a twofold lower activity of PDC but, simultaneously, almost a threefold lower Km value for pyruvate in comparison with S. cerevisiae. The PDC apoform share under aerobic conditions in C. albicans was 47%, while in S. cerevisiae was only 26%; under anaerobic conditions, the PDC apoform decreased to 12% and 8%, respectively. The properties of enzymes from C. albicans show its high metabolic flexibility (contrary to M. pachydermatis) and cause easy switching between fermentative and oxidative metabolism. This feature allows C. albicans to cause both surface and deep infections. We take into consideration the use of thiamin antimetabolites as antifungal factors that can affect both oxidative and fermentative metabolism.
Collapse
Affiliation(s)
- Adam Tylicki
- Institute of Biology, University of Białystok, Swierkowa 20B, 15-950 Białystok, Poland.
| | | | | | | | | | | |
Collapse
|
643
|
Diez-Orejas R, Fernández-Arenas E. Candida albicans–macrophage interactions: genomic and proteomic insights. Future Microbiol 2008; 3:661-81. [DOI: 10.2217/17460913.3.6.661] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Candida albicans infection is a significant cause of morbidity and mortality in immunocompromised patients. In vivo and in vitro models have been developed to study both the fungal and the mammalian immune responses. Phagocytic cells (i.e., macrophages) play a key role in innate immunity against C. albicans by capturing, killing and processing the pathogen for presentation to T cells. The use of microarray technology to study global fungal transcriptional changes after interaction with different host cells has revealed how C. albicans adapts to its environment. Proteomic tools complement molecular approaches and computational methods enable the formulation of relevant biological hypotheses. Therefore, the combination of genomics, proteomics and bioinformatics tools (i.e., network analyses) is a powerful strategy to better understand the biological situation of the fungus inside macrophages; part of the fungal population is killed while a significantly high percentage survives.
Collapse
Affiliation(s)
- Rosalía Diez-Orejas
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Elena Fernández-Arenas
- Centro de Biología Molecular Severo Ochoa (CBM-SO), Consejo Superior de Investigaciones Científicas (CSIC), Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
644
|
Chandra J, Mukherjee PK, Ghannoum MA. In vitro growth and analysis of Candida biofilms. Nat Protoc 2008; 3:1909-24. [DOI: 10.1038/nprot.2008.192] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
645
|
Schillaci D, Arizza V, Dayton T, Camarda L, Stefano V. In vitroanti-biofilm activity ofBoswelliaspp. oleogum resin essential oils. Lett Appl Microbiol 2008; 47:433-8. [DOI: 10.1111/j.1472-765x.2008.02469.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
646
|
Evaluation and Treatment of Candida Species in Prosthetic Joint Infections. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2008. [DOI: 10.1097/ipc.0b013e31817cfdb7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
647
|
Falleiros de Pádua RA, Norman Negri MF, Estivalet Svidzinski A, Vataru Nakamura C, Estivalet Svidzinski TI. Adhesión de Pseudomonas aeruginosa y Candida albicans a catéteres urinarios. Rev Iberoam Micol 2008; 25:173-5. [DOI: 10.1016/s1130-1406(08)70040-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
648
|
Monitoring ALS1 and ALS3 Gene Expression During In Vitro Candida albicans Biofilm Formation Under Continuous Flow Conditions. Mycopathologia 2008; 167:9-17. [DOI: 10.1007/s11046-008-9148-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
|
649
|
Limsuwan S, Voravuthikunchai SP. Boesenbergia pandurata (Roxb.) Schltr., Eleutherine americana Merr. and Rhodomyrtus tomentosa (Aiton) Hassk. as antibiofilm producing and antiquorum sensing in Streptococcus pyogenes. ACTA ACUST UNITED AC 2008; 53:429-36. [PMID: 18631184 DOI: 10.1111/j.1574-695x.2008.00445.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Biofilm formation has been demonstrated as a potentially important mechanism contributing to antibiotic treatment failure on Streptococcus pyogenes. It could play a significant role in recurrent and chronic infections. Boesenbergia pandurata (Roxb.) Schltr., Eleutherine americana Merr. and Rhodomyrtus tomentosa (Aiton) Hassk. have been previously reported from our laboratory as effective agents against S. pyogenes. Therefore, in the present study, we observed the effect of these plants on biofilm formation. The bacterial biofilms were quantified by safranin staining and absorbance at 492 nm. The results clearly demonstrated that all subinhibitory concentrations [1/32-1/2 minimal inhibitory concentration (MIC)] of E. americana (7.81-125 microg mL(-1)) and R. tomentosa (0.24-7.81 microg mL(-1)) extracts significantly prevented biofilm formation while 1/2MIC (7.81 microg mL(-1)) of B. pandurata extract produced this effect. The issue of antiquorum sensing of this pathogenic bacterium has been further explored. A correlation between antiquorum-sensing and antibiofilm-producing activities was demonstrated. Strong inhibition on quorum sensing was displayed with the extract of R. tomentosa. Eleutherine americana extract showed partial inhibition, while B. pandurata did not show this activity. By contrast, an assay of microbial adhesion to hydrocarbon revealed no changes in the cell-surface hydrophobicity of the treated organisms. Active organisms with the ability to inhibit quorum sensing and biofilm formation are worth studying as they may provide complimentary medicine for biofilm-associated infections.
Collapse
Affiliation(s)
- Surasak Limsuwan
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkla, Thailand
| | | |
Collapse
|
650
|
|