601
|
Multiple cytokines stimulate the binding of a common 145-kilodalton protein to Shc at the Grb2 recognition site of Shc. Mol Cell Biol 1994. [PMID: 7523859 DOI: 10.1128/mcb.14.10.6926] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently reported that interleukin-3, Steel factor, and erythropoietin all induce the tyrosine phosphorylation of Shc and its association with Grb2 in hemopoietic cell lines. We have now further characterized the proteins that become associated with Shc following stimulation with these cytokines and found that, in response to all three, the tyrosine-phosphorylated form of Shc binds to common 145- and 52-kDa proteins which also become tyrosine phosphorylated in response to these growth factors. The 145-kDa protein, which appears, from antiphosphotyrosine blots of two-dimensional O'Farrell gels, to exist in four different phosphorylation states following cytokine stimulation (with isoelectric points ranging from 7.2 to 7.8), does not appear to be immunologically related to the beta subunit of the interleukin-3 receptor, c-Kit, BCR, ABL, JAK1, JAK2, Sos1, eps15, or insulin receptor substrate 1 protein. Silver-stained sodium dodecyl sulfate gels indicate that the association of the 145-kDa protein with Shc occurs only after cytokine stimulation and that it can bind to the tyrosine-phosphorylated form of Shc in its non-tyrosine-phosphorylated state. The latter finding, in conjunction with the observations that p145 does not bind, in vitro, to the Src homology 2 (SH2) domain of Shc, that it is not present in anti-Grb2 immunoprecipitates, and that a phosphopeptide which blocks the binding of Shc to the SH2 domain of Grb2 also blocks the binding of Shc to p145, suggests that p145 contains an SH2 domain and competes with Grb2 for the same tyrosine-phosphorylated site on Shc. This implicates p145 as a potential regulator of Ras activity and, perhaps, of other as yet unidentified functions of Shc.
Collapse
|
602
|
Tyr-716 in the platelet-derived growth factor beta-receptor kinase insert is involved in GRB2 binding and Ras activation. Mol Cell Biol 1994. [PMID: 7935391 DOI: 10.1128/mcb.14.10.6715] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ligand stimulation of the platelet-derived growth factor (PDGF) beta-receptor leads to activation of its intrinsic tyrosine kinase and autophosphorylation of the intracellular part of the receptor. The autophosphorylated tyrosine residues mediate interactions with downstream signal transduction molecules and thereby initiate different signalling pathways. A pathway leading to activation of the GTP-binding protein Ras involves the adaptor molecule GRB2. Here we show that Tyr-716, a novel autophosphorylation site in the PDGF beta-receptor kinase insert, mediates direct binding of GRB2 in vitro and in vivo. In a panel of mutant PDGF beta-receptors, in which Tyr-716 and the previously known autophosphorylation sites were individually mutated, only PDGFR beta Y716F failed to bind GRB2. Furthermore, a synthetic phosphorylated peptide containing Tyr-716 bound GRB2, and this peptide specifically interrupted the interaction between GRB2 and the wild-type receptor. In addition, the Y716(P) peptide significantly decreased the amount of GTP bound to Ras in response to PDGF in permeabilized fibroblasts as well as in porcine aortic endothelial cells expressing transfected PDGF beta-receptors. The mutant PDGFR beta Y716F still mediated activation of mitogen-activated protein kinases and an increased DNA synthesis in response to PDGF, indicating that multiple signal transduction pathways transduce mitogenic signals from the activated PDGF beta-receptor.
Collapse
|
603
|
Arvidsson AK, Rupp E, Nånberg E, Downward J, Rönnstrand L, Wennström S, Schlessinger J, Heldin CH, Claesson-Welsh L. Tyr-716 in the platelet-derived growth factor beta-receptor kinase insert is involved in GRB2 binding and Ras activation. Mol Cell Biol 1994; 14:6715-26. [PMID: 7935391 PMCID: PMC359202 DOI: 10.1128/mcb.14.10.6715-6726.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ligand stimulation of the platelet-derived growth factor (PDGF) beta-receptor leads to activation of its intrinsic tyrosine kinase and autophosphorylation of the intracellular part of the receptor. The autophosphorylated tyrosine residues mediate interactions with downstream signal transduction molecules and thereby initiate different signalling pathways. A pathway leading to activation of the GTP-binding protein Ras involves the adaptor molecule GRB2. Here we show that Tyr-716, a novel autophosphorylation site in the PDGF beta-receptor kinase insert, mediates direct binding of GRB2 in vitro and in vivo. In a panel of mutant PDGF beta-receptors, in which Tyr-716 and the previously known autophosphorylation sites were individually mutated, only PDGFR beta Y716F failed to bind GRB2. Furthermore, a synthetic phosphorylated peptide containing Tyr-716 bound GRB2, and this peptide specifically interrupted the interaction between GRB2 and the wild-type receptor. In addition, the Y716(P) peptide significantly decreased the amount of GTP bound to Ras in response to PDGF in permeabilized fibroblasts as well as in porcine aortic endothelial cells expressing transfected PDGF beta-receptors. The mutant PDGFR beta Y716F still mediated activation of mitogen-activated protein kinases and an increased DNA synthesis in response to PDGF, indicating that multiple signal transduction pathways transduce mitogenic signals from the activated PDGF beta-receptor.
Collapse
Affiliation(s)
- A K Arvidsson
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
604
|
Payne G, Stolz LA, Pei D, Band H, Shoelson SE, Walsh CT. The phosphopeptide-binding specificity of Src family SH2 domains. CHEMISTRY & BIOLOGY 1994; 1:99-105. [PMID: 9383377 DOI: 10.1016/1074-5521(94)90047-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Src homology 2 (SH2) domains mediate protein/protein interactions by binding phosphotyrosyl proteins with high specificity. The protein Lck, a Src-like lymphocyte-specific tyrosine kinase which is important in signals involved in T-cell development, contains one such domain. The crystal structure of a complex of the Lck SH2 domain with a high-affinity ligand, pY324, is known. This ligand has the sequence EPQpYEEIPIYL. RESULTS We designed and synthesized a series of phosphopeptides with single amino-acid changes in the four residues C-terminal to the phosphotyrosine (pTyr) in pY324. Surprisingly, the Glu one residue C-terminal to the phosphotyrosine (at position pY + 1) is sensitive to substitution, whereas the Ile at position pY + 3 is much less sensitive, accommodating a Glu with only modest loss of binding affinity. Replacement of the Glu and Pro on either side of the Ile had little effect, as predicted. Truncated phosphopeptides that end at position pY + 5 and have only an acetyl group N-terminal to the pTyr bound with only slightly lower affinity than pY324. In addition, naturally occurring phosphopeptide sequences that span a 1,000-fold range in binding affinity for the Lck SH2 domain have been identified. CONCLUSIONS The Lck SH2 domain is highly selective for phosphotyrosyl-peptide binding; its specificity is dictated by the first and third residues C-terminal to the pTyr. The unexpected effects of some amino-acid substitutions indicate that the interactions seen between SH2 domains and ligand in the crystal structure may not be identical to those that occur in solution.
Collapse
Affiliation(s)
- G Payne
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
605
|
Liu L, Damen JE, Cutler RL, Krystal G. Multiple cytokines stimulate the binding of a common 145-kilodalton protein to Shc at the Grb2 recognition site of Shc. Mol Cell Biol 1994; 14:6926-35. [PMID: 7523859 PMCID: PMC359223 DOI: 10.1128/mcb.14.10.6926-6935.1994] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We recently reported that interleukin-3, Steel factor, and erythropoietin all induce the tyrosine phosphorylation of Shc and its association with Grb2 in hemopoietic cell lines. We have now further characterized the proteins that become associated with Shc following stimulation with these cytokines and found that, in response to all three, the tyrosine-phosphorylated form of Shc binds to common 145- and 52-kDa proteins which also become tyrosine phosphorylated in response to these growth factors. The 145-kDa protein, which appears, from antiphosphotyrosine blots of two-dimensional O'Farrell gels, to exist in four different phosphorylation states following cytokine stimulation (with isoelectric points ranging from 7.2 to 7.8), does not appear to be immunologically related to the beta subunit of the interleukin-3 receptor, c-Kit, BCR, ABL, JAK1, JAK2, Sos1, eps15, or insulin receptor substrate 1 protein. Silver-stained sodium dodecyl sulfate gels indicate that the association of the 145-kDa protein with Shc occurs only after cytokine stimulation and that it can bind to the tyrosine-phosphorylated form of Shc in its non-tyrosine-phosphorylated state. The latter finding, in conjunction with the observations that p145 does not bind, in vitro, to the Src homology 2 (SH2) domain of Shc, that it is not present in anti-Grb2 immunoprecipitates, and that a phosphopeptide which blocks the binding of Shc to the SH2 domain of Grb2 also blocks the binding of Shc to p145, suggests that p145 contains an SH2 domain and competes with Grb2 for the same tyrosine-phosphorylated site on Shc. This implicates p145 as a potential regulator of Ras activity and, perhaps, of other as yet unidentified functions of Shc.
Collapse
Affiliation(s)
- L Liu
- Terry Fox Laboratory, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
606
|
Tauchi T, Feng G, Marshall M, Shen R, Mantel C, Pawson T, Broxmeyer H. The ubiquitously expressed Syp phosphatase interacts with c-kit and Grb2 in hematopoietic cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31518-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
607
|
Burgess AW, Thumwood CM. The Sixth George Swanson Christie Memorial Lecture: growth factors and their receptors: new opportunities for cancer treatment. Pathology 1994; 26:453-63. [PMID: 7892049 DOI: 10.1080/00313029400169182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A W Burgess
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria
| | | |
Collapse
|
608
|
Aronheim A, Engelberg D, Li N, al-Alawi N, Schlessinger J, Karin M. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 1994; 78:949-61. [PMID: 7923364 DOI: 10.1016/0092-8674(94)90271-2] [Citation(s) in RCA: 367] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Activation of growth factor receptors results in tyrosine autophosphorylation and recruitment of SH2 domain-containing effectors, including Grb2. Grb2 recruitment mediates activation of the Ras nucleotide exchanger Sos by an unknown mechanism. To examine the role of membrane recruitment, we prepared Sos derivatives containing either myristoylation or farnesylation signals. This resulted in plasma membrane targeting of Sos and stimulation of the Ras signaling pathway, including ERK and AP-1 activities leading to oncogenic transformation. Sos derivatives with nonfunctional myristoylation or farnesylation sequences were inactive. Farnesylation of Sos also activated Ras signaling in yeast. In both mammalian cells and yeast, membrane-targeted Sos derivatives lacking the C-terminal region were considerably more active. Therefore, targeting of Sos to the plasma membrane in the vicinity of Ras appears to be the primary mechanism leading to activation of the Ras pathway. A secondary mechanism could involve relief of the inhibitory effect of the Sos C-terminal region.
Collapse
Affiliation(s)
- A Aronheim
- Department of Pharmacology, University of California, San Diego, La Jolla 92093-0636
| | | | | | | | | | | |
Collapse
|
609
|
Shc, Grb2, Sos1, and a 150-kilodalton tyrosine-phosphorylated protein form complexes with Fms in hematopoietic cells. Mol Cell Biol 1994. [PMID: 7520523 DOI: 10.1128/mcb.14.9.5682] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fms, the macrophage colony-stimulating factor (M-CSF) receptor, is normally expressed in myeloid cells and initiates signals for both growth and development along the monocyte/macrophage lineage. We have examined Fms signal transduction pathways in the murine myeloid progenitor cell line FDC-P1. M-CSF stimulation of FDC-P1 cells expressing exogenous Fms resulted in tyrosine phosphorylation of a variety of cellular proteins in addition to Fms. M-CSF stimulation also resulted in Fms association with two of these tyrosine-phosphorylated proteins, one of which was identified as the 55-kDa Shc, which is shown in other systems to be involved in growth stimulation, and the other was a previously uncharacterized 150-kDa protein (p150). Fms also formed complexes with Grb2 and Sos1, and neither contained phosphotyrosine. Whereas both Grb2 and Sos1 complexed with Fms only after M-CSF stimulation, the amount of Sos1 complexed with Grb2 was not M-CSF dependent. Shc coimmunoprecipitated Sos1, Grb2, and tyrosine-phosphorylated p150, while Grb2 immunoprecipitates contained mainly phosphorylated p150, Fms, Shc, and Sos1. Shc interacted with tyrosine-phosphorylated p150 via its SH2 domain, and the Grb2 SH2 domain likewise bound tyrosine-phosphorylated Fms and p150. Analysis of Fms mutated at each of four tyrosine autophosphorylation sites indicated that none of these sites dramatically affected p150 phosphorylation or its association with Shc and Grb2. M-CSF stimulation of fibroblast cell lines expressing exogenous murine Fms did not phosphorylate p150, and this protein was not detected either in cell lysates or in Grb2 or Shc immunoprecipitates. The p150 protein is not related to known signal transduction molecules and may be myeloid cell specific. These results suggest that M-CSF stimulation of myeloid cells could activate Ras through the nucleotide exchange factor Sos1 by Grb2 binding to either Fms, Shc, or p150 and that Fms signal transduction in myeloid cells differs from that in fibroblasts.
Collapse
|
610
|
Lioubin MN, Myles GM, Carlberg K, Bowtell D, Rohrschneider LR. Shc, Grb2, Sos1, and a 150-kilodalton tyrosine-phosphorylated protein form complexes with Fms in hematopoietic cells. Mol Cell Biol 1994; 14:5682-91. [PMID: 7520523 PMCID: PMC359093 DOI: 10.1128/mcb.14.9.5682-5691.1994] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Fms, the macrophage colony-stimulating factor (M-CSF) receptor, is normally expressed in myeloid cells and initiates signals for both growth and development along the monocyte/macrophage lineage. We have examined Fms signal transduction pathways in the murine myeloid progenitor cell line FDC-P1. M-CSF stimulation of FDC-P1 cells expressing exogenous Fms resulted in tyrosine phosphorylation of a variety of cellular proteins in addition to Fms. M-CSF stimulation also resulted in Fms association with two of these tyrosine-phosphorylated proteins, one of which was identified as the 55-kDa Shc, which is shown in other systems to be involved in growth stimulation, and the other was a previously uncharacterized 150-kDa protein (p150). Fms also formed complexes with Grb2 and Sos1, and neither contained phosphotyrosine. Whereas both Grb2 and Sos1 complexed with Fms only after M-CSF stimulation, the amount of Sos1 complexed with Grb2 was not M-CSF dependent. Shc coimmunoprecipitated Sos1, Grb2, and tyrosine-phosphorylated p150, while Grb2 immunoprecipitates contained mainly phosphorylated p150, Fms, Shc, and Sos1. Shc interacted with tyrosine-phosphorylated p150 via its SH2 domain, and the Grb2 SH2 domain likewise bound tyrosine-phosphorylated Fms and p150. Analysis of Fms mutated at each of four tyrosine autophosphorylation sites indicated that none of these sites dramatically affected p150 phosphorylation or its association with Shc and Grb2. M-CSF stimulation of fibroblast cell lines expressing exogenous murine Fms did not phosphorylate p150, and this protein was not detected either in cell lysates or in Grb2 or Shc immunoprecipitates. The p150 protein is not related to known signal transduction molecules and may be myeloid cell specific. These results suggest that M-CSF stimulation of myeloid cells could activate Ras through the nucleotide exchange factor Sos1 by Grb2 binding to either Fms, Shc, or p150 and that Fms signal transduction in myeloid cells differs from that in fibroblasts.
Collapse
Affiliation(s)
- M N Lioubin
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | | | | | |
Collapse
|
611
|
Porfiri E, Evans T, Chardin P, Hancock J. Prenylation of Ras proteins is required for efficient hSOS1-promoted guanine nucleotide exchange. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31698-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
612
|
Pickett CA, Gutierrez-Hartmann A. Ras mediates Src but not epidermal growth factor-receptor tyrosine kinase signaling pathways in GH4 neuroendocrine cells. Proc Natl Acad Sci U S A 1994; 91:8612-6. [PMID: 8078931 PMCID: PMC44656 DOI: 10.1073/pnas.91.18.8612] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
p21Ras has been implicated as a critical signaling component in mediating the effects of many growth factor receptor/tyrosine kinases on cell growth and differentiation. However, the precise functional role of Ras in establishing a cell-specific transcriptional response to a ubiquitous growth factor remains unclear. We have utilized a transient cotransfection model system in epidermal growth factor (EGF)-responsive cultured GH4 rat pituitary neuroendocrine cells to investigate the role of Ras in coupling EGF receptor (EGF-R) and v-Src tyrosine kinase signals to the activation of a cell-specific promoter for the rat (r) prolactin (PRL) gene. A significant dose- and time-dependent EGF stimulation of the transfected rPRL promoter was obtained. A similar degree of activation of the rPRL promoter was obtained by cotransfection of a plasmid encoding v-Src. Cotransfection of a construct encoding the dominant-negative Ras, N17Ras, produced almost complete inhibition of v-Src-induced rPRL promoter activity, while EGF-stimulated rPRL promoter activity was unaffected. Similarly, EGF activation of a c-Fos promoter was unaffected by N17Ras, while v-Src activation was blocked. Hence, using transcription regulation as a functional assay, we show that Ras is not required for the EGF-mediated control of the rPRL and c-Fos promoters, whereas Ras is critical in mediating the v-Src effects to these two promoters. These observations emphasize that, despite current biochemical data linking the EGF-R and Ras pathways, the functional significance of such an interaction should be analyzed in a biologically relevant manner and may differ as a function of cell type.
Collapse
Affiliation(s)
- C A Pickett
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262
| | | |
Collapse
|
613
|
Quilliam LA, Huff SY, Rabun KM, Wei W, Park W, Broek D, Der CJ. Membrane-targeting potentiates guanine nucleotide exchange factor CDC25 and SOS1 activation of Ras transforming activity. Proc Natl Acad Sci U S A 1994; 91:8512-6. [PMID: 8078913 PMCID: PMC44636 DOI: 10.1073/pnas.91.18.8512] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Growth factor-triggered activation of Ras proteins is believed to be mediated by guanine nucleotide exchange factors (CDC25/GRF and SOS1/2) that promote formation of the active Ras GTP-bound state. Although the mechanism(s) of guanine nucleotide exchange factor regulation is unclear, recent studies suggest that translocation of SOS1 to the plasma membrane, where Ras is located, might be responsible for Ras activation. To evaluate this model, we generated constructs that encode the catalytic domains of human CDC25 or mouse SOS1, either alone (designated cCDC25 and cSOS1, respectively) or terminating in the carboxyl-terminal CAAX membrane-targeting sequence from K-Ras4B (designated cCDC25-CAAX and cSOS1-CAAX, respectively; in CAAX, C is Cys, A is an aliphatic amino acid, and X is Ser or Met). We then compared the transforming potential of cCDC25 and cSOS1 with their membrane-targeted counterparts. We observed that addition of the Ras plasma membrane-targeting sequence to the catalytic domains of CDC25 and SOS1 greatly enhanced their focus-forming activity (10- to 50-fold) in NIH 3T3 transfection assays. Similarly, we observed that the membrane-targeted versions showed a 5- to 10-fold enhanced ability to induce transcriptional activation from the Ets/AP-1 Ras-responsive element. Furthermore, whereas cells that stably expressed cCDC25 or cSOS1 exhibited the same morphologies as untransformed NIH 3T3 cells, cells expressing cCDC25-CAAX or cSOS1-CAAX displayed transformed morphologies that were indistinguishable from the elongated and refractile morphology of oncogenic Ras-transformed cells. Thus, these results suggest that membrane translocation alone is sufficient to potentiate guanine nucleotide exchange factor activation of Ras.
Collapse
Affiliation(s)
- L A Quilliam
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill
| | | | | | | | | | | | | |
Collapse
|
614
|
CRK protein binds to two guanine nucleotide-releasing proteins for the Ras family and modulates nerve growth factor-induced activation of Ras in PC12 cells. Mol Cell Biol 1994. [PMID: 8035825 DOI: 10.1128/mcb.14.8.5495] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been reported that growth factors activate Ras through a complex of an adaptor type SH2-containing molecule, Grb2, and a Ras guanine nucleotide-releasing protein (GNRP), mSos. We report on the involvement of another adaptor molecule, CRK, in the activation of Ras. Overexpression of wild-type CRK proteins CRK-I and CRK-II enhanced the nerve growth factor (NGF)-induced activation of Ras in PC12 cells, although the basal level of GTP-bound active Ras was not altered. In contrast, mutants with a single amino acid substitution in either the SH2 or SH3 domain of the CRK-I protein inhibited the NGF-induced activation of Ras. Two GNRPs for the Ras family, mSos and C3G, were coimmunoprecipitated with the endogenous Crk proteins in PC12 cells. The association between C3G and the CRK mutants was dependent upon the presence of intact SH3. The SH2 domain of CRK bound to the SHC protein phosphorylated on tyrosine residues by NGF stimulation. The results demonstrate that, in addition to Grb2, CRK participates in signaling from the NGF receptor and that two GNRPs appear to transmit signals from these adaptor molecules to Ras.
Collapse
|
615
|
Abstract
We analyzed the binding site(s) for Grb2 on the epidermal growth factor (EGF) receptor (EGFR), using cell lines overexpressing EGFRs containing various point and deletion mutations in the carboxy-terminal tail. Results of co-immunoprecipitation experiments suggest that phosphotyrosines Y-1068 and Y-1173 mediate the binding of Grb2 to the EGFR. Competition experiments with synthetic phosphopeptides corresponding to known autophosphorylation sites on the EGFR demonstrated that phosphopeptides containing Y-1068, and to a lesser extent Y-1086, were able to inhibit the binding of Grb2 to the EGFR, while a Y-1173 peptide did not. These findings were confirmed by using a dephosphorylation protection assay and by measuring the dissociation constants of Grb2's SH2 domain to tyrosine-phosphorylated peptides, using real-time biospecific interaction analysis (BIAcore). From these studies, we concluded that Grb2 binds directly to the EGFR at Y-1068, to a lesser extent at Y-1086, and indirectly at Y-1173. Since Grb2 also binds Shc after EGF stimulation, we investigated whether Y-1173 is a binding site for the SH2 domain of Shc on the EGFR. Both competition experiments with synthetic phosphopeptides and dephosphorylation protection analysis demonstrated that Y-1173 and Y-992 are major and minor binding sites, respectively, for Shc on the EGFR. However, other phosphorylation sites in the carboxy-terminal tail of the EGFR are able to compensate for the loss of the main binding sites for Shc. These analyses reveal a hierarchy of interactions between Grb2 and Shc with the EGFR and indicate that Grb2 can bind the tyrosine-phosphorylated EGFR directly, as well as indirectly via Shc.
Collapse
|
616
|
Lim WA, Fox RO, Richards FM. Stability and peptide binding affinity of an SH3 domain from the Caenorhabditis elegans signaling protein Sem-5. Protein Sci 1994; 3:1261-6. [PMID: 7987221 PMCID: PMC2142924 DOI: 10.1002/pro.5560030812] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have determined the thermodynamic stability and peptide binding affinity of the carboxy-terminal Src homology 3 (SH3) domain from the Caenorhabditis elegans signal-transduction protein Sem-5. Despite its small size (62 residues) and lack of disulfide bonds, this domain is highly stable to thermal denaturation--at pH 7.3, the protein has a Tm of 73.1 degrees C. Interestingly, the protein is not maximally stable at neutral pH, but reaches a maximum at around pH 4.7 (Tm approximately equal to 80 degrees C). Increasing ionic strength also stabilizes the protein, suggesting that 1 or more carboxylate ions are involved in a destabilizing electrostatic interaction. By guanidine hydrochloride denaturation, the protein is calculated to have a free energy of unfolding of 4.1 kcal/mol at 25 degrees C. We have also characterized binding of the domain to 2 different length proline-rich peptides from the guanine nucleotide exchange factor, Sos, one of Sem-5's likely physiological ligands in cytoplasmic signal transduction. Upon binding, these peptides cause about a 2-fold increase in fluorescence intensity. Both bind with only modest affinities (Kd approximately equal to 30 microM), lower than some previous estimates for SH3 domains. By fluorescence, the domain also appears to associate with the homopolymer poly-L-proline in a similar fashion.
Collapse
Affiliation(s)
- W A Lim
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|
617
|
Batzer AG, Rotin D, Ureña JM, Skolnik EY, Schlessinger J. Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Mol Cell Biol 1994; 14:5192-201. [PMID: 7518560 PMCID: PMC359038 DOI: 10.1128/mcb.14.8.5192-5201.1994] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We analyzed the binding site(s) for Grb2 on the epidermal growth factor (EGF) receptor (EGFR), using cell lines overexpressing EGFRs containing various point and deletion mutations in the carboxy-terminal tail. Results of co-immunoprecipitation experiments suggest that phosphotyrosines Y-1068 and Y-1173 mediate the binding of Grb2 to the EGFR. Competition experiments with synthetic phosphopeptides corresponding to known autophosphorylation sites on the EGFR demonstrated that phosphopeptides containing Y-1068, and to a lesser extent Y-1086, were able to inhibit the binding of Grb2 to the EGFR, while a Y-1173 peptide did not. These findings were confirmed by using a dephosphorylation protection assay and by measuring the dissociation constants of Grb2's SH2 domain to tyrosine-phosphorylated peptides, using real-time biospecific interaction analysis (BIAcore). From these studies, we concluded that Grb2 binds directly to the EGFR at Y-1068, to a lesser extent at Y-1086, and indirectly at Y-1173. Since Grb2 also binds Shc after EGF stimulation, we investigated whether Y-1173 is a binding site for the SH2 domain of Shc on the EGFR. Both competition experiments with synthetic phosphopeptides and dephosphorylation protection analysis demonstrated that Y-1173 and Y-992 are major and minor binding sites, respectively, for Shc on the EGFR. However, other phosphorylation sites in the carboxy-terminal tail of the EGFR are able to compensate for the loss of the main binding sites for Shc. These analyses reveal a hierarchy of interactions between Grb2 and Shc with the EGFR and indicate that Grb2 can bind the tyrosine-phosphorylated EGFR directly, as well as indirectly via Shc.
Collapse
Affiliation(s)
- A G Batzer
- Department of Pharmacology, New York University Medical Center, New York 10016
| | | | | | | | | |
Collapse
|
618
|
Welham M, Duronio V, Leslie K, Bowtell D, Schrader J. Multiple hemopoietins, with the exception of interleukin-4, induce modification of Shc and mSos1, but not their translocation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31944-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
619
|
Matsuda M, Hashimoto Y, Muroya K, Hasegawa H, Kurata T, Tanaka S, Nakamura S, Hattori S. CRK protein binds to two guanine nucleotide-releasing proteins for the Ras family and modulates nerve growth factor-induced activation of Ras in PC12 cells. Mol Cell Biol 1994; 14:5495-500. [PMID: 8035825 PMCID: PMC359069 DOI: 10.1128/mcb.14.8.5495-5500.1994] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It has been reported that growth factors activate Ras through a complex of an adaptor type SH2-containing molecule, Grb2, and a Ras guanine nucleotide-releasing protein (GNRP), mSos. We report on the involvement of another adaptor molecule, CRK, in the activation of Ras. Overexpression of wild-type CRK proteins CRK-I and CRK-II enhanced the nerve growth factor (NGF)-induced activation of Ras in PC12 cells, although the basal level of GTP-bound active Ras was not altered. In contrast, mutants with a single amino acid substitution in either the SH2 or SH3 domain of the CRK-I protein inhibited the NGF-induced activation of Ras. Two GNRPs for the Ras family, mSos and C3G, were coimmunoprecipitated with the endogenous Crk proteins in PC12 cells. The association between C3G and the CRK mutants was dependent upon the presence of intact SH3. The SH2 domain of CRK bound to the SHC protein phosphorylated on tyrosine residues by NGF stimulation. The results demonstrate that, in addition to Grb2, CRK participates in signaling from the NGF receptor and that two GNRPs appear to transmit signals from these adaptor molecules to Ras.
Collapse
Affiliation(s)
- M Matsuda
- Department of Pathology, National Institute of Health, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
620
|
Smit L, de Vries-Smits A, Bos J, Borst J. B cell antigen receptor stimulation induces formation of a Shc-Grb2 complex containing multiple tyrosine-phosphorylated proteins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31975-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
621
|
Guan KL. The mitogen activated protein kinase signal transduction pathway: from the cell surface to the nucleus. Cell Signal 1994; 6:581-9. [PMID: 7857762 DOI: 10.1016/0898-6568(94)90041-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Activation of the mitogen activated protein kinase (MAPK) plays essential roles in many signal transduction pathways. MAPK has been demonstrated to phosphorylate and regulate numerous cellular proteins, including growth factor receptor, transcription factors, cytoskeletal proteins, phospholipase and other protein kinases. Activation of MAPK requires phosphorylation of both threonine and tyrosine residues, which are catalysed by a single protein kinase known as MAPK kinase or MEK. MEK itself is activated by phosphorylation on two conserved serine residues. Three distinct mammalian Ser/Thr kinases, including Raf, Mos and MEKK (for MEK kinase), have been demonstrated to phosphorylate and activate MEK. The MAP kinase cascade is highly conserved in all eukaryotes and involved in numerous cellular responses. Activation of MAPK is a transient event that is tightly regulated by both kinases and phosphatases. A growth factor induced dual specific phosphatase is likely to play an important role in MAPK regulation.
Collapse
Affiliation(s)
- K L Guan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109
| |
Collapse
|
622
|
Motto D, Ross S, Jackman J, Sun Q, Olson A, Findell P, Koretzky G. In vivo association of Grb2 with pp116, a substrate of the T cell antigen receptor-activated protein tyrosine kinase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31848-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
623
|
Dikic I, Schlessinger J, Lax I. PC12 cells overexpressing the insulin receptor undergo insulin-dependent neuronal differentiation. Curr Biol 1994; 4:702-8. [PMID: 7953556 DOI: 10.1016/s0960-9822(00)00155-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Stimulation of phaeochromocytoma PC12 cells by nerve growth factor leads to growth arrest and neuronal differentiation, whereas insulin induces various metabolic responses such as metabolism of glucose and lipids. Moreover, both insulin and epidermal growth factor stimulate the proliferation of PC12 cells. In spite of their different biological effects, nerve growth factor, insulin and epidermal growth factor induce very similar early responses in PC12 cells. Stimulation with nerve growth factor leads to the sustained activation and nuclear translocation of mitogen-activated protein (MAP) kinase. By contrast, both insulin and epidermal growth factor induce the transient activation of MAP kinase, without pronounced nuclear translocation of the enzyme. We have investigated whether the differential activation of signaling pathway components can account for the distinct cellular responses to these different growth factors. RESULTS By overexpressing insulin receptors in PC12 cells, we observed insulin-dependent neurite outgrowth, similar to that induced by nerve growth factor in both non-transfected and overexpressing cells. Overexpression of insulin receptors in PC12 cells leads to a more pronounced, but similar pattern of insulin-induced tyrosine-phosphorylated proteins in PC12 cells, including enhanced recruitment of Grb2/Sos into a complex with either Shc or IRS1. MAP kinase activation in response to insulin stimulation of cells overexpressing the insulin receptor is similar to MAP kinase activation in response to NGF stimulation of parental or overexpressing PC12 cells: the activation is prolonged and nuclear translocation of the enzyme occurs. CONCLUSION The differential subcellular localization and duration of MAP kinase activation induced by insulin and NGF may explain the difference in the biological actions of these two factors on PC12 cells. Our results show that the strength of the signal generated by a receptor with tyrosine kinase activity can influence the downstream signaling pathway, leading to cell differentiation instead of cell proliferation.
Collapse
Affiliation(s)
- I Dikic
- Department of Pharmacology, New York University Medical Center, New York 10016
| | | | | |
Collapse
|
624
|
Bennett AM, Tang TL, Sugimoto S, Walsh CT, Neel BG. Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proc Natl Acad Sci U S A 1994; 91:7335-9. [PMID: 8041791 PMCID: PMC44394 DOI: 10.1073/pnas.91.15.7335] [Citation(s) in RCA: 321] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Protein-tyrosine-phosphatase SHPTP2 (Syp/PTP-1D/PTP2C) is the homologue of the Drosophila corkscrew (csw) gene product, which transmits positive signals from receptor tyrosine kinases. Likewise, SHPTP2 has been implicated in positive signaling from platelet-derived growth factor receptor beta (PDGFR). Upon PDGF stimulation, SHPTP2 binds to the PDGFR and becomes tyrosine-phosphorylated. We have identified tyrosine-542 (pY542TNI) as the major in vivo site of SHPTP2 tyrosine phosphorylation. The pY542TNI sequence conforms to the consensus binding site for the SH2 domain of Grb2, which, by association with Sos1, couples some growth factor receptors to Ras. Following PDGF stimulation, Grb2 binds tyrosine-phosphorylated SHPTP2. Moreover, a mutant PDGFR lacking its SHPTP2 binding site displays markedly reduced Grb2 binding. These data indicate that phosphorylation of SHPTP2 couples Grb2 to PDGFR in vivo, providing a mechanism for Ras activation by PDGFR and for positive signaling via SHPTP2 and Csw.
Collapse
Affiliation(s)
- A M Bennett
- Molecular Medicine Unit, Beth Israel Hospital, Boston, MA 02215
| | | | | | | | | |
Collapse
|
625
|
Identification of Src, Fyn, and Lyn SH3-binding proteins: implications for a function of SH3 domains. Mol Cell Biol 1994. [PMID: 7516469 DOI: 10.1128/mcb.14.7.4509] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Src homology 3 (SH3) domains mediate protein-protein interactions necessary for the coupling of cellular proteins involved in intracellular signal transduction. We previously established solution-binding conditions that allow affinity isolation of Src SH3-binding proteins from cellular extracts (Z. Weng, J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel-Dugan, J. Biol. Chem. 268:14956-14963, 1993). In this report, we identified three of these proteins: Shc, a signaling protein that couples membrane tyrosine kinases with Ras; p62, a protein which can bind to p21rasGAP; and heterogeneous nuclear ribonucleoprotein K, a pre-mRNA-binding protein. All of these proteins contain proline-rich peptide motifs that could serve as SH3 domain ligands, and the binding of these proteins to the Src SH3 domain was inhibited with a proline-rich Src SH3 peptide ligand. These three proteins, as well as most of the other Src SH3 ligands, also bound to the SH3 domains of the closely related protein tyrosine kinases Fyn and Lyn. However, Src- and Lyn-specific SH3-binding proteins were also detected, suggesting subtle differences in the binding specificity of the SH3 domains from these related proteins. Several Src SH3-binding proteins were phosphorylated in Src-transformed cells. The phosphorylation of these proteins was not detected in cells transformed by a mutant variant of Src lacking the SH3 domain, while there was little change in tyrosine phosphorylation of other Src-induced phosphoproteins. In addition, the coprecipitation of v-Src with two tyrosyl-phosphorylated proteins with M(r)s of 62,000 and 130,000 was inhibited by incubation with a Src SH3 peptide ligand, suggesting that the binding of these substrate proteins is dependent on interactions with the SH3 domain. These results strongly suggest a role for the Src SH3 domain in the recruitment of substrates to this protein tyrosine kinase, either through direct interaction with the SH3 domain or indirectly through interactions with proteins that bind to the SH3 domain.
Collapse
|
626
|
GRB2 and phospholipase C-gamma 1 associate with a 36- to 38-kilodalton phosphotyrosine protein after T-cell receptor stimulation. Mol Cell Biol 1994. [PMID: 7516467 DOI: 10.1128/mcb.14.7.4435] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GRB2, a 25-kDa protein comprising a single SH2 domain flanked by two SH3 domains, has been implicated in linking receptor protein tyrosine kinases (PTKs) to the Ras pathway by interacting with the guanine nucleotide exchange protein SOS. Previous studies have demonstrated that GRB2 directly interacts with Shc, a proto-oncogene product that is tyrosine phosphorylated upon receptor and nonreceptor PTK activation. In this report, we detected low levels of tyrosine phosphorylation of Shc and induced association with GRB2 upon T-cell receptor (TCR) stimulation. Instead, a prominent 36- to 38-kDa tyrosine phosphoprotein (pp36-38) associated with the SH2 domain of GRB2 and formed a stable complex with GRB2/SOS upon TCR stimulation. Cellular fractionation studies showed that whereas both GRB2 and SOS partitioned to the soluble and particulate fractions, pp36-38 was present exclusively in the particulate fraction. This phosphoprotein had the same apparent mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as the phosphoprotein that associates with phospholipase C-gamma 1 (PLC-gamma 1). Furthermore, following partial immunodepletion of GRB2 and of the associated pp36-38, there was a significant reduction in the amount of the 36-kDa phosphoprotein associated with PLC-gamma 1, suggesting that a trimeric PLC-gamma 1/pp36-38/GRB2 complex could form. In support of this notion, we have also been able to detect low levels of PLC-gamma 1 in GRB2 immunoprecipitates. We suggest that pp36-38 may be a bridging protein, coupling different signalling molecules to cytoplasmic PTKs regulated by the TCR.
Collapse
|
627
|
A functional insulin-like growth factor I receptor is required for the mitogenic and transforming activities of the epidermal growth factor receptor. Mol Cell Biol 1994. [PMID: 8007963 DOI: 10.1128/mcb.14.7.4588] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When wild-type mouse embryo cells are stably transfected with a plasmid constitutively overexpressing the epidermal growth factor (EGF) receptor (EGFR), the resulting cells can grow in serum-free medium supplemented solely with EGF. Supplementation with EGF also induces in these cells the transformed phenotype (growth in soft agar). However, when the same EGFR expression plasmid is introduced and overexpressed in cells derived from littermate embryos in which the insulin-like growth factor I (IGF-I) receptor genes have been disrupted by homologous recombination, the resulting cells are unable to grow or to be transformed by the addition of EGF. Reintroduction into these cells (null for the IGF-I receptor) of a wild-type (but not of a mutant) IGF-I receptor restores EGF-mediated growth and transformation. Our results indicate that at least in mouse embryo fibroblasts, the EGFR requires the presence of a functional IGF-I receptor for its mitogenic and transforming activities.
Collapse
|
628
|
Enhancement or inhibition of insulin signaling by insulin receptor substrate 1 is cell context dependent. Mol Cell Biol 1994. [PMID: 8007950 DOI: 10.1128/mcb.14.7.4427] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insulin treatment of Chinese hamster ovary (CHO) cells expressing high levels of the insulin receptor (CHO/IR cells) activates both c-fos serum response element and activator protein 1 (AP-1) reporter genes approximately 10-fold. In contrast, parental CHO cells display only two- to threefold insulin stimulation of reporter gene activity. Transient transfection of parental CHO cells with an insulin receptor substrate 1 (IRS1) expression plasmid enhanced insulin downstream signaling in a biphasic manner, whereas IRS1 transfection of CHO/IR cells inhibited insulin signaling in a dose-dependent fashion. Further, expression of Grb2 in parental CHO cells had no effect on insulin signaling, whereas Grb2 increased insulin activation of reporter gene expression in CHO/IR cells. These data suggest that the expression levels of various effector molecules can either enhance or inhibit insulin downstream signaling events. To assess the relative effects of various insulin receptor, IRS1, and Grb2 levels on insulin signaling, parental CHO cells were transiently transfected with various combinations of expression plasmids encoding these proteins. Although expression of IRS1 resulted in a biphasic increase of insulin signaling in parental CHO cells, coexpression of IRS1 with the insulin receptor resulted in inhibition of signaling. This inhibition of insulin signaling directly correlated with an increased association of Grb2 with IRS1 and a concomitant sequestration of Grb2 away from Shc. Consistent with the Shc-Grb2 pathway as the major route for insulin-stimulated c-Fos and AP-1 transcriptional activation, the IRS1-mediated inhibition was reversed by transfection with an expression plasmid for Grb2. These data demonstrate that the extent of insulin-stimulated downstream signaling was dependent not only on the levels of individual signaling molecules but also on the formation of multiprotein complexes with specific stoichiometries.
Collapse
|
629
|
Inhibition of v-raf-dependent c-fos expression and transformation by a kinase-defective mutant of the mitogen-activated protein kinase Erk2. Mol Cell Biol 1994. [PMID: 8007980 DOI: 10.1128/mcb.14.7.4815] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Receptor-bound growth factors elicit intracellular signals that lead to the phosphorylation and activation of numerous intracellular kinases and transcription factors with consequent changes in patterns of gene expression. Several oncogene products are able to mimic these signals, resulting in cell transformation and proliferation. For example, the introduction of oncogenic forms of Raf-1 kinase into fibroblasts induces transformation and leads to the constitutive expression of, among others, the c-fos proto-oncogene. Here it is shown that the elevation of c-fos promoter activity brought about by v-raf is mediated by TCF/Elk-1, which forms a ternary complex with SRF at the serum response element and is a substrate for mitogen-activating protein kinases in vitro. In NIH 3T3 fibroblasts, v-raf activates Erk2, and overexpression of an interfering mutant of Erk2 both blocks the ability of v-raf to activate the c-fos promoter and suppresses transformation. Mutation of individual mitogen-activating protein kinase phosphoacceptor sites in TCF/Elk-1 also compromises v-raf-activated expression of a Gal-Elk/Gal-chloramphenicol acetyltransferase reporter system. However, in at least one instance the introduction of glutamate, but not aspartate, at a phosphoacceptor site is compatible with activation. These results provide compelling evidence that phosphorylation of TCF/Elk-1 by Erk2 is a major link in the Raf-1 kinase-dependent signal transduction pathway that activates c-fos expression.
Collapse
|
630
|
Direct stimulation of Vav guanine nucleotide exchange activity for Ras by phorbol esters and diglycerides. Mol Cell Biol 1994. [PMID: 7516472 DOI: 10.1128/mcb.14.7.4749] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently identified Vav as a Ras-activating guanine nucleotide exchange factor (GEF) stimulated by a T-cell antigen receptor-coupled protein tyrosine kinase (PTK). Here, we describe a novel, protein kinase-independent alternative pathway of Vav activation. Phorbol ester, 1,2-diacylglycerol, or ceramide treatment of intact T cells, Vav immunoprecipitates, or partially purified Vav generated by in vitro translation or COS-1 cell transfection stimulated the Ras exchange activity of Vav in the absence of detectable tyrosine phosphorylation. GEF activity of gel-purified Vav was similarly stimulated by phorbol myristate acetate (PMA). Stimulation was resistant to PTK and protein kinase C inhibitors but was blocked by calphostin, a PMA and diacylglycerol antagonist. In vitro-translated Vav lacking its cysteine-rich domain, or mutated at a single cysteine residue within this domain (C528A), was not stimulated by PMA but was fully activated by p56lck. This correlated with increased binding of radiolabeled phorbol ester to COS-1 cells expressing wild-type, but not C528A-mutated, Vav. Thus, Vav itself is a PMA-binding and -activated Ras GEF. Recombinant interleukin-1 alpha stimulated Vav via this pathway, suggesting that diglyceride-mediated Vav activation may couple PTK-independent receptors which stimulate production of lipid second messengers to Ras in hematopoietic cells.
Collapse
|
631
|
McPherson PS, Czernik AJ, Chilcote TJ, Onofri F, Benfenati F, Greengard P, Schlessinger J, De Camilli P. Interaction of Grb2 via its Src homology 3 domains with synaptic proteins including synapsin I. Proc Natl Acad Sci U S A 1994; 91:6486-90. [PMID: 8022809 PMCID: PMC44227 DOI: 10.1073/pnas.91.14.6486] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Grb2 is a 25-kDa adaptor protein composed of a Src homology 2 (SH2) domain and two flanking Src homology 3 (SH3) domains. One function of Grb2 is to couple tyrosine-phosphorylated proteins (through its SH2 domain) to downstream effectors (through its SH3 domains). Using an overlay assay, we have identified four major Grb2-binding proteins in synaptic fractions. These proteins interact with wild-type Grb2 but not with Grb2 containing point mutations in each of its two SH3 domains corresponding to the loss of function mutants in the Caenorhabditis elegans Grb2 homologue sem-5. Two of the proteins, mSos and dynamin, were previously shown to bind Grb2. The third protein of 145 kDa is brain specific and to our knowledge has not been previously described. The fourth protein is synapsin I. Dynamin is required for synaptic vesicle endocytosis and synapsin I is thought to mediate the interaction of synaptic vesicles with the presynaptic cytomatrix. These data suggest that Grb2, or other proteins containing SH3 domains, may play a role in the regulation of the exo/endocytotic cycle of synaptic vesicles and therefore of neurotransmitter release.
Collapse
Affiliation(s)
- P S McPherson
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536
| | | | | | | | | | | | | | | |
Collapse
|
632
|
Tyrosines 1148 and 1173 of activated human epidermal growth factor receptors are binding sites of Shc in intact cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32363-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
633
|
Yamauchi K, Pessin JE. Enhancement or inhibition of insulin signaling by insulin receptor substrate 1 is cell context dependent. Mol Cell Biol 1994; 14:4427-34. [PMID: 8007950 PMCID: PMC358814 DOI: 10.1128/mcb.14.7.4427-4434.1994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Insulin treatment of Chinese hamster ovary (CHO) cells expressing high levels of the insulin receptor (CHO/IR cells) activates both c-fos serum response element and activator protein 1 (AP-1) reporter genes approximately 10-fold. In contrast, parental CHO cells display only two- to threefold insulin stimulation of reporter gene activity. Transient transfection of parental CHO cells with an insulin receptor substrate 1 (IRS1) expression plasmid enhanced insulin downstream signaling in a biphasic manner, whereas IRS1 transfection of CHO/IR cells inhibited insulin signaling in a dose-dependent fashion. Further, expression of Grb2 in parental CHO cells had no effect on insulin signaling, whereas Grb2 increased insulin activation of reporter gene expression in CHO/IR cells. These data suggest that the expression levels of various effector molecules can either enhance or inhibit insulin downstream signaling events. To assess the relative effects of various insulin receptor, IRS1, and Grb2 levels on insulin signaling, parental CHO cells were transiently transfected with various combinations of expression plasmids encoding these proteins. Although expression of IRS1 resulted in a biphasic increase of insulin signaling in parental CHO cells, coexpression of IRS1 with the insulin receptor resulted in inhibition of signaling. This inhibition of insulin signaling directly correlated with an increased association of Grb2 with IRS1 and a concomitant sequestration of Grb2 away from Shc. Consistent with the Shc-Grb2 pathway as the major route for insulin-stimulated c-Fos and AP-1 transcriptional activation, the IRS1-mediated inhibition was reversed by transfection with an expression plasmid for Grb2. These data demonstrate that the extent of insulin-stimulated downstream signaling was dependent not only on the levels of individual signaling molecules but also on the formation of multiprotein complexes with specific stoichiometries.
Collapse
Affiliation(s)
- K Yamauchi
- Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City 52242-1109, USA
| | | |
Collapse
|
634
|
Schuh SM, Newberry EP, Dalton MA, Pike LJ. Mutation of proline-1003 to glycine in the epidermal growth factor (EGF) receptor enhances responsiveness to EGF. Mol Biol Cell 1994; 5:739-46. [PMID: 7812043 PMCID: PMC301092 DOI: 10.1091/mbc.5.7.739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have shown previously that the epidermal growth factor (EGF) receptor is phosphorylated at Ser-1002 and that this phosphorylation is associated with desensitization of the EGF receptor. Ser-1002 is followed immediately by Pro-1003, a residue that may promote the adoption of a specific conformation at this site or severe as a recognition element for the interaction of the EGF receptor with other proteins. To examine these possibilities, we have mutated Pro-1003 of the EGF receptor to a Gly residue and have analyzed the effect of this mutation on EGF-stimulated signaling. Cells expressing the P1003G EGF receptors exhibited higher EGF-stimulated autophosphorylation and synthetic peptide phosphorylation compared to cells expressing wild-type EGF receptors. In addition, the ability of EGF to stimulate PI 3-kinase activity and mitogen-activated protein kinase activity was enhanced in cells expressing the P1003G EGF receptor. Cells expressing P1003G receptors also demonstrated an increased ability to form colonies in soft agar in response to EGF. These results indicate that mutation of Pro-1003 leads to a potentiation of the biological effects of EGF. The findings are consistent with the hypothesis that Pro-1003 plays a role in a form of regulation that normally suppresses EGF receptor function.
Collapse
Affiliation(s)
- S M Schuh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|
635
|
Neurite outgrowth of PC12 cells is suppressed by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32260-3] [Citation(s) in RCA: 248] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
636
|
Weng Z, Thomas SM, Rickles RJ, Taylor JA, Brauer AW, Seidel-Dugan C, Michael WM, Dreyfuss G, Brugge JS. Identification of Src, Fyn, and Lyn SH3-binding proteins: implications for a function of SH3 domains. Mol Cell Biol 1994; 14:4509-21. [PMID: 7516469 PMCID: PMC358823 DOI: 10.1128/mcb.14.7.4509-4521.1994] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Src homology 3 (SH3) domains mediate protein-protein interactions necessary for the coupling of cellular proteins involved in intracellular signal transduction. We previously established solution-binding conditions that allow affinity isolation of Src SH3-binding proteins from cellular extracts (Z. Weng, J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel-Dugan, J. Biol. Chem. 268:14956-14963, 1993). In this report, we identified three of these proteins: Shc, a signaling protein that couples membrane tyrosine kinases with Ras; p62, a protein which can bind to p21rasGAP; and heterogeneous nuclear ribonucleoprotein K, a pre-mRNA-binding protein. All of these proteins contain proline-rich peptide motifs that could serve as SH3 domain ligands, and the binding of these proteins to the Src SH3 domain was inhibited with a proline-rich Src SH3 peptide ligand. These three proteins, as well as most of the other Src SH3 ligands, also bound to the SH3 domains of the closely related protein tyrosine kinases Fyn and Lyn. However, Src- and Lyn-specific SH3-binding proteins were also detected, suggesting subtle differences in the binding specificity of the SH3 domains from these related proteins. Several Src SH3-binding proteins were phosphorylated in Src-transformed cells. The phosphorylation of these proteins was not detected in cells transformed by a mutant variant of Src lacking the SH3 domain, while there was little change in tyrosine phosphorylation of other Src-induced phosphoproteins. In addition, the coprecipitation of v-Src with two tyrosyl-phosphorylated proteins with M(r)s of 62,000 and 130,000 was inhibited by incubation with a Src SH3 peptide ligand, suggesting that the binding of these substrate proteins is dependent on interactions with the SH3 domain. These results strongly suggest a role for the Src SH3 domain in the recruitment of substrates to this protein tyrosine kinase, either through direct interaction with the SH3 domain or indirectly through interactions with proteins that bind to the SH3 domain.
Collapse
Affiliation(s)
- Z Weng
- ARIAD Pharmaceuticals, Cambridge, Massachusetts 02139
| | | | | | | | | | | | | | | | | |
Collapse
|
637
|
SH3 domain-mediated dimerization of an n-terminal fragment of the phosphatidylinositol 3-kinase p85 subunit. Bioorg Med Chem Lett 1994. [DOI: 10.1016/s0960-894x(00)80375-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
638
|
Coppola D, Ferber A, Miura M, Sell C, D'Ambrosio C, Rubin R, Baserga R. A functional insulin-like growth factor I receptor is required for the mitogenic and transforming activities of the epidermal growth factor receptor. Mol Cell Biol 1994; 14:4588-95. [PMID: 8007963 PMCID: PMC358831 DOI: 10.1128/mcb.14.7.4588-4595.1994] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
When wild-type mouse embryo cells are stably transfected with a plasmid constitutively overexpressing the epidermal growth factor (EGF) receptor (EGFR), the resulting cells can grow in serum-free medium supplemented solely with EGF. Supplementation with EGF also induces in these cells the transformed phenotype (growth in soft agar). However, when the same EGFR expression plasmid is introduced and overexpressed in cells derived from littermate embryos in which the insulin-like growth factor I (IGF-I) receptor genes have been disrupted by homologous recombination, the resulting cells are unable to grow or to be transformed by the addition of EGF. Reintroduction into these cells (null for the IGF-I receptor) of a wild-type (but not of a mutant) IGF-I receptor restores EGF-mediated growth and transformation. Our results indicate that at least in mouse embryo fibroblasts, the EGFR requires the presence of a functional IGF-I receptor for its mitogenic and transforming activities.
Collapse
Affiliation(s)
- D Coppola
- Jefferson Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | | | |
Collapse
|
639
|
Sieh M, Batzer A, Schlessinger J, Weiss A. GRB2 and phospholipase C-gamma 1 associate with a 36- to 38-kilodalton phosphotyrosine protein after T-cell receptor stimulation. Mol Cell Biol 1994; 14:4435-42. [PMID: 7516467 PMCID: PMC358815 DOI: 10.1128/mcb.14.7.4435-4442.1994] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
GRB2, a 25-kDa protein comprising a single SH2 domain flanked by two SH3 domains, has been implicated in linking receptor protein tyrosine kinases (PTKs) to the Ras pathway by interacting with the guanine nucleotide exchange protein SOS. Previous studies have demonstrated that GRB2 directly interacts with Shc, a proto-oncogene product that is tyrosine phosphorylated upon receptor and nonreceptor PTK activation. In this report, we detected low levels of tyrosine phosphorylation of Shc and induced association with GRB2 upon T-cell receptor (TCR) stimulation. Instead, a prominent 36- to 38-kDa tyrosine phosphoprotein (pp36-38) associated with the SH2 domain of GRB2 and formed a stable complex with GRB2/SOS upon TCR stimulation. Cellular fractionation studies showed that whereas both GRB2 and SOS partitioned to the soluble and particulate fractions, pp36-38 was present exclusively in the particulate fraction. This phosphoprotein had the same apparent mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as the phosphoprotein that associates with phospholipase C-gamma 1 (PLC-gamma 1). Furthermore, following partial immunodepletion of GRB2 and of the associated pp36-38, there was a significant reduction in the amount of the 36-kDa phosphoprotein associated with PLC-gamma 1, suggesting that a trimeric PLC-gamma 1/pp36-38/GRB2 complex could form. In support of this notion, we have also been able to detect low levels of PLC-gamma 1 in GRB2 immunoprecipitates. We suggest that pp36-38 may be a bridging protein, coupling different signalling molecules to cytoplasmic PTKs regulated by the TCR.
Collapse
Affiliation(s)
- M Sieh
- Department of Medicine, Howard Hughes Medical Institute, University of California at San Francisco 94143
| | | | | | | |
Collapse
|
640
|
Gulbins E, Coggeshall KM, Baier G, Telford D, Langlet C, Baier-Bitterlich G, Bonnefoy-Berard N, Burn P, Wittinghofer A, Altman A. Direct stimulation of Vav guanine nucleotide exchange activity for Ras by phorbol esters and diglycerides. Mol Cell Biol 1994; 14:4749-58. [PMID: 7516472 PMCID: PMC358848 DOI: 10.1128/mcb.14.7.4749-4758.1994] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We recently identified Vav as a Ras-activating guanine nucleotide exchange factor (GEF) stimulated by a T-cell antigen receptor-coupled protein tyrosine kinase (PTK). Here, we describe a novel, protein kinase-independent alternative pathway of Vav activation. Phorbol ester, 1,2-diacylglycerol, or ceramide treatment of intact T cells, Vav immunoprecipitates, or partially purified Vav generated by in vitro translation or COS-1 cell transfection stimulated the Ras exchange activity of Vav in the absence of detectable tyrosine phosphorylation. GEF activity of gel-purified Vav was similarly stimulated by phorbol myristate acetate (PMA). Stimulation was resistant to PTK and protein kinase C inhibitors but was blocked by calphostin, a PMA and diacylglycerol antagonist. In vitro-translated Vav lacking its cysteine-rich domain, or mutated at a single cysteine residue within this domain (C528A), was not stimulated by PMA but was fully activated by p56lck. This correlated with increased binding of radiolabeled phorbol ester to COS-1 cells expressing wild-type, but not C528A-mutated, Vav. Thus, Vav itself is a PMA-binding and -activated Ras GEF. Recombinant interleukin-1 alpha stimulated Vav via this pathway, suggesting that diglyceride-mediated Vav activation may couple PTK-independent receptors which stimulate production of lipid second messengers to Ras in hematopoietic cells.
Collapse
Affiliation(s)
- E Gulbins
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, California 92037
| | | | | | | | | | | | | | | | | | | |
Collapse
|
641
|
Kortenjann M, Thomae O, Shaw PE. Inhibition of v-raf-dependent c-fos expression and transformation by a kinase-defective mutant of the mitogen-activated protein kinase Erk2. Mol Cell Biol 1994; 14:4815-24. [PMID: 8007980 PMCID: PMC358854 DOI: 10.1128/mcb.14.7.4815-4824.1994] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Receptor-bound growth factors elicit intracellular signals that lead to the phosphorylation and activation of numerous intracellular kinases and transcription factors with consequent changes in patterns of gene expression. Several oncogene products are able to mimic these signals, resulting in cell transformation and proliferation. For example, the introduction of oncogenic forms of Raf-1 kinase into fibroblasts induces transformation and leads to the constitutive expression of, among others, the c-fos proto-oncogene. Here it is shown that the elevation of c-fos promoter activity brought about by v-raf is mediated by TCF/Elk-1, which forms a ternary complex with SRF at the serum response element and is a substrate for mitogen-activating protein kinases in vitro. In NIH 3T3 fibroblasts, v-raf activates Erk2, and overexpression of an interfering mutant of Erk2 both blocks the ability of v-raf to activate the c-fos promoter and suppresses transformation. Mutation of individual mitogen-activating protein kinase phosphoacceptor sites in TCF/Elk-1 also compromises v-raf-activated expression of a Gal-Elk/Gal-chloramphenicol acetyltransferase reporter system. However, in at least one instance the introduction of glutamate, but not aspartate, at a phosphoacceptor site is compatible with activation. These results provide compelling evidence that phosphorylation of TCF/Elk-1 by Erk2 is a major link in the Raf-1 kinase-dependent signal transduction pathway that activates c-fos expression.
Collapse
Affiliation(s)
- M Kortenjann
- Max-Planck-Institut für Immunobiologie, Spemann Laboratories, Freiburg, Germany
| | | | | |
Collapse
|
642
|
Abstract
GRB-2 is a small SH2- and SH3 domain-containing adapter protein that associates with the mammalian SOS homolog to regulate p21ras during growth factor signaling. During insulin stimulation, GRB-2 binds to the phosphorylated Y895VNI motif of IRS-1. Substitution of Tyr-895 with phenylalanine (IRS-1F-895) prevented the IRS-1-GRB-2 association in vivo and in vitro. The myeloid progenitor cell line, 32-D, is insensitive to insulin because it contains few insulin receptors and no IRS-1. Coexpression of IRS-1 or IRS-1F-895 with the insulin receptor was required for insulin-stimulated mitogenesis in 32-D cells, while expression of the insulin receptor alone was sufficient to mediate insulin-stimulated tyrosine phosphorylation of Shc and activation of p21ras and mitogen-activated protein (MAP) kinase. The Shc-GRB-2 complex formed during insulin stimulation is a possible mediator of p21ras and MAP kinase activation in IRS-1-deficient 32-D cells. Interestingly, IRS-1, but not IRS-1F-895, enhanced the stimulation of MAP kinase by insulin in 32-D cells expressing insulin receptors. Thus, IRS-1 contributes to the stimulation of MAP kinase by insulin, probably through formation of the IRS-1-GRB-2 complex at Tyr-895. Our results suggest that the Shc-GRB-2 complex and the activation of p21ras-dependent signaling pathways, including MAP kinase, are insufficient for insulin-stimulated mitogenesis and that the essential function(s) of IRS-1 in proliferative signaling is largely unrelated to IRS-1-GRB-2 complex formation.
Collapse
|
643
|
Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol Cell Biol 1994. [PMID: 8196606 DOI: 10.1128/mcb.14.6.3604] [Citation(s) in RCA: 296] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibroblast cell lines, designated R- and W cells, were generated, respectively, from mouse embryos homozygous for a targeted disruption of the Igf1r gene, encoding the type 1 insulin-like growth factor receptor, and from their wild-type littermates. W cells grow normally in serum-free medium supplemented with various combinations of purified growth factors, while pre- and postcrisis R- cells cannot grow, as they are arrested before entering the S phase. R- cells are able to grow in 10% serum, albeit more slowly than W cells, and with all phases of the cell cycle being elongated. An activated Ha-ras expressed from a stably transfected plasmid is unable to overcome the inability of R- cells to grow in serum-free medium supplemented with purified clones. Nevertheless, even in the presence of serum, R- cells stably transfected with Ha-ras, alone or in combination with simian virus 40 large T antigen, fail to form colonies in soft agar. Reintroduction into R- cells (or their derivatives) of a plasmid expressing the human insulin-like growth factor I receptor RNA and protein restores their ability to grow with purified growth factors or in soft agar. The signaling pathways participating in cell growth and transformation are discussed on the basis of these results.
Collapse
|
644
|
Marengere LE, Songyang Z, Gish GD, Schaller MD, Parsons JT, Stern MJ, Cantley LC, Pawson T. SH2 domain specificity and activity modified by a single residue. Nature 1994; 369:502-5. [PMID: 7515480 DOI: 10.1038/369502a0] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Many intracellular targets of protein-tyrosine kinases possess Src homology 2 (SH2) domains that directly recognize phosphotyrosine-containing sites on autophosphorylated growth factor receptors and cytoplasmic proteins, and thereby mediate the activation of biochemical signalling pathways. SH2 domains possess relatively well conserved residues that form the phosphotyrosine-binding pocket, and more variable residues that are implicated in determining binding specificity by recognition of the three amino acids carboxy-terminal to phosphotyrosine (the +1 to +3 positions). One such residue, occupying the EF1 position of the +3-binding pocket, is a Thr in the SH2 domain of the Src tyrosine kinase, but is predicted to be a Trp in the SH2 domain of the Sem-5/drk/Grb2 adaptor protein. Here we report that changing this residue in the Src SH2 domain from Thr to Trp switches its selectivity to resemble that of the Sem-5/drk/Grb2 SH2 domain. Furthermore, this mutant Src SH2 domain effectively substitutes for the SH2 domain of the Sem-5 protein in activation of the Ras pathway in vivo. These results identify a residue that can modify SH2 selectivity, and indicate that the biological activity of an SH2 domain correlates with its binding specificity.
Collapse
Affiliation(s)
- L E Marengere
- Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
645
|
Mallet L, Bussereau F, Jacquet M. Nucleotide sequence analysis of an 11.7 kb fragment of yeast chromosome II including BEM1, a new gene of the WD-40 repeat family and a new member of the KRE2/MNT1 family. Yeast 1994; 10:819-31. [PMID: 7975899 DOI: 10.1002/yea.320100612] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This paper reports the DNA sequence and analysis of an 11.7 kb segment localized on the right arm of Saccharomyces cerevisiae chromosome II. This fragment contains one incomplete and five long and non-overlapping open reading frames (ORFs) designated from centromere to telomere-proximal side as: YBR1406, 1409, 1410, 1411, 1412 and 1413. YBR1406 corresponds to the 5' end to PG11 encoding phosphoglucoisomerase. YBR1410 encodes a polypeptide of 798 amino acids whose C terminus contains five repeats (WD-40 repeat) similar to those found in the beta-subunits of G proteins and different yeast proteins such as Tup1, Prp4 and Cdc4. The higher similarity score is obtained with dTAFII80, a component of the RNA polymerase II transcriptional complex TFIID. YBR1411 encodes a polypeptide of 464 amino acids which belongs to the family of alpha-mannosyltransferases: KRE2/MNT1, KTR1, KTR2, YUR1 and the product of previously sequenced ORF YBR1445. YBR1412 corresponds to BEM1. The two ORFs, YBR1409 and YBR1413, which do not exhibit significant similarity with any known coding sequences, define new genes.
Collapse
Affiliation(s)
- L Mallet
- Institut de Génétique et Microbiologie, URA1354 du CNRS, Orsay, France
| | | | | |
Collapse
|
646
|
Sell C, Dumenil G, Deveaud C, Miura M, Coppola D, DeAngelis T, Rubin R, Efstratiadis A, Baserga R. Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol Cell Biol 1994; 14:3604-12. [PMID: 8196606 PMCID: PMC358728 DOI: 10.1128/mcb.14.6.3604-3612.1994] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fibroblast cell lines, designated R- and W cells, were generated, respectively, from mouse embryos homozygous for a targeted disruption of the Igf1r gene, encoding the type 1 insulin-like growth factor receptor, and from their wild-type littermates. W cells grow normally in serum-free medium supplemented with various combinations of purified growth factors, while pre- and postcrisis R- cells cannot grow, as they are arrested before entering the S phase. R- cells are able to grow in 10% serum, albeit more slowly than W cells, and with all phases of the cell cycle being elongated. An activated Ha-ras expressed from a stably transfected plasmid is unable to overcome the inability of R- cells to grow in serum-free medium supplemented with purified clones. Nevertheless, even in the presence of serum, R- cells stably transfected with Ha-ras, alone or in combination with simian virus 40 large T antigen, fail to form colonies in soft agar. Reintroduction into R- cells (or their derivatives) of a plasmid expressing the human insulin-like growth factor I receptor RNA and protein restores their ability to grow with purified growth factors or in soft agar. The signaling pathways participating in cell growth and transformation are discussed on the basis of these results.
Collapse
Affiliation(s)
- C Sell
- Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | | | | | | | |
Collapse
|
647
|
de Mendez I, Garrett M, Adams A, Leto T. Role of p67-phox SH3 domains in assembly of the NADPH oxidase system. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34011-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
648
|
Abstract
The molecular cloning of new neuroactive growth factors and their receptors has greatly enhanced our understanding of important interactions among receptors and signaling molecules. These studies have begun to illuminate some of the mechanisms that allow for specificity in neuronal signaling. Model cell systems, such as the PC-12 pheochromocytoma cell line, express receptors for these different neurotrophic factors, leading to comparisons of signaling pathways for these factors. Upon binding their ligands, these receptors undergo phosphorylation on tyrosine residues, which directs their interaction with signaling proteins containing src homology (SH2) domains, sequences that mediate associations with tyrosine-phosphorylated proteins. These SH2 proteins translate the tyrosine kinase activity of receptors into downstream events that result in the specific cellular response. Investigations such as these have revealed that molecular specificity in signaling pathways may arise from combinatorial diversity in interactions between receptors and key regulatory proteins.
Collapse
Affiliation(s)
- A R Saltiel
- Department of Signal Transduction, Parke-Davis Pharmaceutical Research Division of Warner-Lambert Co., Ann Arbor, Michigan 48105
| | | |
Collapse
|
649
|
Myers MG, Wang LM, Sun XJ, Zhang Y, Yenush L, Schlessinger J, Pierce JH, White MF. Role of IRS-1-GRB-2 complexes in insulin signaling. Mol Cell Biol 1994; 14:3577-87. [PMID: 8196603 PMCID: PMC358725 DOI: 10.1128/mcb.14.6.3577-3587.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
GRB-2 is a small SH2- and SH3 domain-containing adapter protein that associates with the mammalian SOS homolog to regulate p21ras during growth factor signaling. During insulin stimulation, GRB-2 binds to the phosphorylated Y895VNI motif of IRS-1. Substitution of Tyr-895 with phenylalanine (IRS-1F-895) prevented the IRS-1-GRB-2 association in vivo and in vitro. The myeloid progenitor cell line, 32-D, is insensitive to insulin because it contains few insulin receptors and no IRS-1. Coexpression of IRS-1 or IRS-1F-895 with the insulin receptor was required for insulin-stimulated mitogenesis in 32-D cells, while expression of the insulin receptor alone was sufficient to mediate insulin-stimulated tyrosine phosphorylation of Shc and activation of p21ras and mitogen-activated protein (MAP) kinase. The Shc-GRB-2 complex formed during insulin stimulation is a possible mediator of p21ras and MAP kinase activation in IRS-1-deficient 32-D cells. Interestingly, IRS-1, but not IRS-1F-895, enhanced the stimulation of MAP kinase by insulin in 32-D cells expressing insulin receptors. Thus, IRS-1 contributes to the stimulation of MAP kinase by insulin, probably through formation of the IRS-1-GRB-2 complex at Tyr-895. Our results suggest that the Shc-GRB-2 complex and the activation of p21ras-dependent signaling pathways, including MAP kinase, are insufficient for insulin-stimulated mitogenesis and that the essential function(s) of IRS-1 in proliferative signaling is largely unrelated to IRS-1-GRB-2 complex formation.
Collapse
Affiliation(s)
- M G Myers
- Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215
| | | | | | | | | | | | | | | |
Collapse
|
650
|
|