601
|
Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Deubiquitylases from genes to organism. Physiol Rev 2013; 93:1289-315. [PMID: 23899565 DOI: 10.1152/physrev.00002.2013] [Citation(s) in RCA: 344] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ubiquitylation is a major posttranslational modification that controls most complex aspects of cell physiology. It is reversed through the action of a large family of deubiquitylating enzymes (DUBs) that are emerging as attractive therapeutic targets for a number of disease conditions. Here, we provide a comprehensive analysis of the complement of human DUBs, indicating structural motifs, typical cellular copy numbers, and tissue expression profiles. We discuss the means by which specificity is achieved and how DUB activity may be regulated. Generically DUB catalytic activity may be used to 1) maintain free ubiquitin levels, 2) rescue proteins from ubiquitin-mediated degradation, and 3) control the dynamics of ubiquitin-mediated signaling events. Functional roles of individual DUBs from each of five subfamilies in specific cellular processes are highlighted with an emphasis on those linked to pathological conditions where the association is supported by whole organism models. We then specifically consider the role of DUBs associated with protein degradative machineries and the influence of specific DUBs upon expression of receptors and channels at the plasma membrane.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, and Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | | | |
Collapse
|
602
|
Sherman MY, Qian SB. Less is more: improving proteostasis by translation slow down. Trends Biochem Sci 2013; 38:585-91. [PMID: 24126073 DOI: 10.1016/j.tibs.2013.09.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/04/2013] [Accepted: 09/10/2013] [Indexed: 11/29/2022]
Abstract
Protein homeostasis, or proteostasis, refers to a proper balance between synthesis, maturation, and degradation of cellular proteins. A growing body of evidence suggests that the ribosome serves as a hub for co-translational folding, chaperone interaction, degradation, and stress response. Accordingly, in addition to the chaperone network and proteasome system, the ribosome has emerged as a major factor in protein homeostasis. Recent work revealed that high rates of elongation of translation negatively affect both the fidelity of translation and the co-translational folding of nascent polypeptides. Accordingly, by slowing down translation one can significantly improve protein folding. In this review, we discuss how to target translational processes to improve proteostasis and implications in treating protein misfolding diseases.
Collapse
Affiliation(s)
- Michael Y Sherman
- Department of Biochemistry, Boston University Medical School, Boston, MA 02118, USA.
| | | |
Collapse
|
603
|
Zemoura K, Schenkel M, Acuña MA, Yévenes GE, Zeilhofer HU, Benke D. Endoplasmic reticulum-associated degradation controls cell surface expression of γ-aminobutyric acid, type B receptors. J Biol Chem 2013; 288:34897-905. [PMID: 24114844 DOI: 10.1074/jbc.m113.514745] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metabotropic GABAB receptors are crucial for controlling the excitability of neurons by mediating slow inhibition in the CNS. The strength of receptor signaling depends on the number of cell surface receptors, which is thought to be regulated by trafficking and degradation mechanisms. Although the mechanisms of GABAB receptor trafficking are studied to some extent, it is currently unclear whether receptor degradation actively controls the number of GABAB receptors available for signaling. Here we tested the hypothesis that proteasomal degradation contributes to the regulation of GABAB receptor expression levels. Blocking proteasomal activity in cultured cortical neurons considerably enhanced total and cell surface expression of GABAB receptors, indicating the constitutive degradation of the receptors by proteasomes. Proteasomal degradation required Lys(48)-linked polyubiquitination of lysines 767/771 in the C-terminal domain of the GABAB2 subunit. Inactivation of these ubiquitination sites increased receptor levels and GABAB receptor signaling in neurons. Proteasomal degradation was mediated by endoplasmic reticulum-associated degradation (ERAD) as shown by the accumulation of receptors in the endoplasmic reticulum upon inhibition of proteasomes, by the increase of receptor levels, as well as receptor signaling upon blocking ERAD function, and by the interaction of GABAB receptors with the essential ERAD components Hrd1 and p97. In conclusion, the data support a model in which the fraction of GABAB receptors available for plasma membrane trafficking is regulated by degradation via the ERAD machinery. Thus, modulation of ERAD activity by changes in physiological conditions may represent a mechanism to adjust receptor numbers and thereby signaling strength.
Collapse
Affiliation(s)
- Khaled Zemoura
- From the Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
604
|
Tsou WL, Burr AA, Ouyang M, Blount JR, Scaglione KM, Todi SV. Ubiquitination regulates the neuroprotective function of the deubiquitinase ataxin-3 in vivo. J Biol Chem 2013; 288:34460-9. [PMID: 24106274 DOI: 10.1074/jbc.m113.513903] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Deubiquitinases (DUBs) are proteases that regulate various cellular processes by controlling protein ubiquitination. Cell-based studies indicate that the regulation of the activity of DUBs is important for homeostasis and is achieved by multiple mechanisms, including through their own ubiquitination. However, the physiological significance of the ubiquitination of DUBs to their functions in vivo is unclear. Here, we report that ubiquitination of the DUB ataxin-3 at lysine residue 117, which markedly enhances its protease activity in vitro, is critical for its ability to suppress toxic protein-dependent degeneration in Drosophila melanogaster. Compared with ataxin-3 with only Lys-117 present, ataxin-3 that does not become ubiquitinated performs significantly less efficiently in suppressing or delaying the onset of toxic protein-dependent degeneration in flies. According to further studies, the C terminus of Hsc70-interacting protein (CHIP), an E3 ubiquitin ligase that ubiquitinates ataxin-3 in vitro, is dispensable for its ubiquitination in vivo and is not required for the neuroprotective function of this DUB in Drosophila. Our work also suggests that ataxin-3 suppresses degeneration by regulating toxic protein aggregation rather than stability.
Collapse
Affiliation(s)
- Wei-Ling Tsou
- From the Departments of Pharmacology and Neurology and
| | | | | | | | | | | |
Collapse
|
605
|
Bernardi KM, Williams JM, Inoue T, Schultz A, Tsai B. A deubiquitinase negatively regulates retro-translocation of nonubiquitinated substrates. Mol Biol Cell 2013; 24:3545-56. [PMID: 24068323 PMCID: PMC3826992 DOI: 10.1091/mbc.e13-06-0332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Although cholera toxin is a nonubiquitinated substrate that undergoes retro-translocation to the cytosol, this study identifies a deubiquitinase that controls toxin retro-translocation. Endoplasmic reticulum (ER) membrane–bound E3 ubiquitin ligases promote ER-associated degradation (ERAD) by ubiquitinating a retro-translocated substrate that reaches the cytosol from the ER, targeting it to the proteasome for destruction. Recent findings implicate ERAD-associated deubiquitinases (DUBs) as positive and negative regulators during ERAD, reflecting the different consequences of deubiquitinating a substrate prior to proteasomal degradation. These observations raise the question of whether a DUB can control the fate of a nonubiquitinated ERAD substrate. In this study, we probed the role of the ERAD-associated DUB, YOD1, during retro-translocation of the nonubiquitinated cholera toxin A1 (CTA1) peptide, a critical intoxication step. Through combining knockdown, overexpression, and binding studies, we demonstrated that YOD1 negatively controls CTA1 retro-translocation, likely by deubiquitinating and inactivating ubiquitinated ERAD components that normally promote toxin retro-translocation. YOD1 also antagonizes the proteasomal degradation of nonglycosylated pro-α factor, a postulated nonubiquitinated yeast ERAD substrate, in mammalian cells. Our findings reveal that a cytosolic DUB exerts a negative function during retro-translocation of nonubiquitinated substrates, potentially by acting on elements of the ERAD machinery.
Collapse
Affiliation(s)
- Kaleena M Bernardi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48103 Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | | | | | | | | |
Collapse
|
606
|
Calamini B, Morimoto RI. Protein homeostasis as a therapeutic target for diseases of protein conformation. Curr Top Med Chem 2013; 12:2623-40. [PMID: 23339312 DOI: 10.2174/1568026611212220014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation are widely implicated in an increasing number of human diseases providing for new therapeutic opportunities targeting protein homeostasis (proteostasis). The cellular response to proteotoxicity is highly regulated by stress signaling pathways, molecular chaperones, transport and clearance machineries that function as a proteostasis network (PN) to protect the stability and functional properties of the proteome. Consequently, the PN is essential at the cellular and organismal level for development and lifespan. However, when challenged during aging, stress, and disease, the folding and clearance machineries can become compromised leading to both gain-of-function and loss-of-function proteinopathies. Here, we assess the role of small molecules that activate the heat shock response, the unfolded protein response, and clearance mechanisms to increase PN capacity and protect cellular proteostasis against proteotoxicity. We propose that this strategy to enhance cell stress pathways and chaperone activity establishes a cytoprotective state against misfolding and/or aggregation and represents a promising therapeutic avenue to prevent the cellular damage associated with the variety of protein conformational diseases.
Collapse
Affiliation(s)
- Barbara Calamini
- Department of Neurobiology and Center for Drug Discovery, Duke University, Durham, NC, USA
| | | |
Collapse
|
607
|
Dasuri K, Zhang L, Keller JN. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med 2013; 62:170-185. [PMID: 23000246 DOI: 10.1016/j.freeradbiomed.2012.09.016] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/05/2012] [Accepted: 09/11/2012] [Indexed: 12/12/2022]
Abstract
Oxidative stress occurs in a variety of disease settings and is strongly linked to the development of neuron death and neuronal dysfunction. Cells are equipped with numerous pathways to prevent the genesis, as well as the consequences, of oxidative stress in the brain. In this review we discuss the various forms and sources of oxidative stress in the brain and briefly discuss some of the complexities in detecting the presence of oxidative stress. We then focus the review on the interplay between the diverse cellular proteolytic pathways and their roles in regulating oxidative stress in the brain. Additionally, we discuss the involvement of protein synthesis in regulating the downstream effects of oxidative stress. Together, these components of the review demonstrate that the removal of damaged proteins by effective proteolysis and the synthesis of new and protective proteins are vital in the preservation of brain homeostasis during periods of increased levels of reactive oxygen species. Last, studies from our laboratory and others have demonstrated that protein synthesis is intricately linked to the rates of protein degradation, with impairment of protein degradation sufficient to decrease the rates of protein synthesis, which has important implications for successfully responding to periods of oxidative stress. Specific neurodegenerative diseases, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and stroke, are discussed in this context. Taken together, these findings add to our understanding of how oxidative stress is effectively managed in the healthy brain and help elucidate how impairments in proteolysis and/or protein synthesis contribute to the development of neurodegeneration and neuronal dysfunction in a variety of clinical settings.
Collapse
Affiliation(s)
- Kalavathi Dasuri
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Le Zhang
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Jeffrey N Keller
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| |
Collapse
|
608
|
De La Mota-Peynado A, Lee SYC, Pierce BM, Wani P, Singh CR, Roelofs J. The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J Biol Chem 2013; 288:29467-81. [PMID: 23995839 DOI: 10.1074/jbc.m113.491662] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several proteasome-associated proteins regulate degradation by the 26 S proteasome using the ubiquitin chains that mark most substrates for degradation. The proteasome-associated protein Ecm29, however, has no ubiquitin-binding or modifying activity, and its direct effect on substrate degradation is unclear. Here, we show that Ecm29 acts as a proteasome inhibitor. Besides inhibiting the proteolytic cleavage of peptide substrates in vitro, it inhibits the degradation of ubiquitin-dependent and -independent substrates in vivo. Binding of Ecm29 to the proteasome induces a closed conformation of the substrate entry channel of the core particle. Furthermore, Ecm29 inhibits proteasomal ATPase activity, suggesting that the mechanism of inhibition and gate regulation by Ecm29 is through regulation of the proteasomal ATPases. Consistent with this, we identified through chemical cross-linking that Ecm29 binds to, or in close proximity to, the proteasomal ATPase subunit Rpt5. Additionally, we show that Ecm29 preferentially associates with both mutant and nucleotide depleted proteasomes. We propose that the inhibitory ability of Ecm29 is important for its function as a proteasome quality control factor by ensuring that aberrant proteasomes recognized by Ecm29 are inactive.
Collapse
|
609
|
Schmidt M, Finley D. Regulation of proteasome activity in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:13-25. [PMID: 23994620 DOI: 10.1016/j.bbamcr.2013.08.012] [Citation(s) in RCA: 332] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the primary selective degradation system in the nuclei and cytoplasm of eukaryotic cells, required for the turnover of myriad soluble proteins. The hundreds of factors that comprise the UPS include an enzymatic cascade that tags proteins for degradation via the covalent attachment of a poly-ubiquitin chain, and a large multimeric enzyme that degrades ubiquitinated proteins, the proteasome. Protein degradation by the UPS regulates many pathways and is a crucial component of the cellular proteostasis network. Dysfunction of the ubiquitination machinery or the proteolytic activity of the proteasome is associated with numerous human diseases. In this review we discuss the contributions of the proteasome to human pathology, describe mechanisms that regulate the proteolytic capacity of the proteasome, and discuss strategies to modulate proteasome function as a therapeutic approach to ameliorate diseases associated with altered UPS function. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Marion Schmidt
- Albert Einstein College of Medicine, Department of Biochemistry, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
610
|
Peth A, Nathan JA, Goldberg AL. The ATP costs and time required to degrade ubiquitinated proteins by the 26 S proteasome. J Biol Chem 2013; 288:29215-22. [PMID: 23965995 DOI: 10.1074/jbc.m113.482570] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The degradation of ubiquitinated proteins by 26 S proteasomes requires ATP hydrolysis. To investigate if the six proteasomal ATPases function independently or in a cyclic manner, as proposed recently, we used yeast mutants that prevent ATP binding to Rpt3, Rpt5, or Rpt6. Although proteasomes contain six ATPase subunits, each of these single mutations caused a 66% reduction in basal ATP hydrolysis, and each blocked completely the 2-3-fold stimulation of ATPase activity induced by ubiquitinated substrates. Therefore, the ATPase subunits must function in a ordered manner, in which each is required for the stimulation of ATPase activity by substrates. Although ATP is essential for multiple steps in proteasome function, when the rate of ATP hydrolysis was reduced incrementally, the degradation of Ub5-DHFR (where Ub is ubiquitin and DHFR is dihydrofolate reductase) decreased exactly in parallel. This direct proportionality implies that a specific number of ATPs is consumed in degrading a ubiquitinated protein. When the ubiquitinated DHFR was more tightly folded (upon addition of the ligand folate), the rate of ATP hydrolysis was unchanged, but the time to degrade a Ub5-DHFR molecule (∼13 s) and the energy expenditure (50-80 ATPs/Ub5-DHFR) both increased by 2-fold. With a mutation in the ATPase C terminus that reduced gate opening into the 20 S proteasome, the energy costs and time required for conjugate degradation also increased. Thus, different ubiquitin conjugates activate similarly the ATPase subunit cycle that drives proteolysis, but polypeptide structure determines the time required for degradation and thus the energy cost.
Collapse
Affiliation(s)
- Andreas Peth
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and
| | | | | |
Collapse
|
611
|
Jung H, Kim BG, Han WH, Lee JH, Cho JY, Park WS, Maurice MM, Han JK, Lee MJ, Finley D, Jho EH. Deubiquitination of Dishevelled by Usp14 is required for Wnt signaling. Oncogenesis 2013; 2:e64. [PMID: 23958854 PMCID: PMC3759127 DOI: 10.1038/oncsis.2013.28] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 07/13/2013] [Indexed: 12/14/2022] Open
Abstract
Dishevelled (Dvl) is a key regulator of Wnt signaling both in the canonical and non-canonical pathways. Here we report the identification of a regulatory domain of ubiquitination (RDU) in the C-terminus of Dvl. Mutations in the RDU resulted in accumulation of polyubiquitinated forms of Dvl, which were mainly K63 linked. Small interfering RNA-based screening identified Usp14 as a mediator of Dvl deubiquitination. Genetic and chemical suppression of Usp14 activity caused an increase in Dvl polyubiquitination and significantly impaired downstream Wnt signaling. These data suggest that Usp14 functions as a positive regulator of the Wnt signaling pathway. Consistently, tissue microarray analysis of colon cancer revealed a strong correlation between the levels of Usp14 and β-catenin, which suggests an oncogenic role for Usp14 via enhancement of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- H Jung
- Department of Life Science, The University of Seoul, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
612
|
Okada K, Ye YQ, Taniguchi K, Yoshida A, Akiyama T, Yoshioka Y, Onose JI, Koshino H, Takahashi S, Yajima A, Abe N, Yajima S. Vialinin A is a ubiquitin-specific peptidase inhibitor. Bioorg Med Chem Lett 2013; 23:4328-31. [DOI: 10.1016/j.bmcl.2013.05.093] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/25/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|
613
|
Doeppner TR, Doehring M, Bretschneider E, Zechariah A, Kaltwasser B, Müller B, Koch JC, Bähr M, Hermann DM, Michel U. MicroRNA-124 protects against focal cerebral ischemia via mechanisms involving Usp14-dependent REST degradation. Acta Neuropathol 2013; 126:251-65. [PMID: 23754622 DOI: 10.1007/s00401-013-1142-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/28/2013] [Accepted: 06/06/2013] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are highly conserved non-coding RNAs modulating gene expression via mRNA binding. Recent work suggests an involvement of miRNAs in cardiovascular diseases including stroke. As such, the brain-abundant miR-124 and its transcriptional repressor RE1-silencing transcription factor (REST) do not only have elementary roles in the developing and the adult brain, but also alter expression upon cerebral ischemia. However, the therapeutic potential of miR-124 against stroke and the mechanisms involved remain elusive. Here, we analyzed the therapeutic potential of ectopic miR-124 against stroke and its underlying mechanisms with regard to the interaction between miR-124 and REST. Our results show that viral vector-mediated miR-124 delivery increased the resistance of cultured oxygen-glucose-deprived cortical neurons in vitro and reduced brain injury as well as functional impairment in mice submitted to middle cerebral artery occlusion. Likewise, miR-124 induced enhanced neurovascular remodeling leading to increased angioneurogenesis 8 weeks post-stroke. While REST abundance increased upon stroke, the increase was prevented by miR-124 despite a so far unknown negative feedback loop between miR-124 and REST. Rather, miR-124 decreased the expression of the deubiquitinating enzyme Usp14, which has two conserved miR-124-binding sites in the 3'UTR of its mRNA, and thereby mediated reduced REST levels. The down-regulation of REST by miR-124 was also mimicked by the Usp14 inhibitor IU-1, suggesting that miR-124 promotes neuronal survival under ischemic conditions via Usp14-dependent REST degradation. Ectopic miR-124 expression, therefore, appears as an attractive and novel tool in stroke treatment, mediating neuroprotection via a hitherto unknown mechanism that involves Usp14-dependent REST degradation.
Collapse
|
614
|
Abstract
The pathway leading from soluble and monomeric to hyperphosphorylated, insoluble and filamentous tau protein is at the centre of many human neurodegenerative diseases, collectively referred to as tauopathies. Dominantly inherited mutations in MAPT, the gene that encodes tau, cause forms of frontotemporal dementia and parkinsonism, proving that dysfunction of tau is sufficient to cause neurodegeneration and dementia. However, most cases of tauopathy are not inherited in a dominant manner. The first tau aggregates form in a few nerve cells in discrete brain areas. These become self propagating and spread to distant brain regions in a prion-like manner. The prevention of tau aggregation and propagation is the focus of attempts to develop mechanism-based treatments for tauopathies.
Collapse
Affiliation(s)
- Maria Grazia Spillantini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
615
|
Eletr ZM, Wilkinson KD. Regulation of proteolysis by human deubiquitinating enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:114-28. [PMID: 23845989 DOI: 10.1016/j.bbamcr.2013.06.027] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/07/2013] [Accepted: 06/25/2013] [Indexed: 01/26/2023]
Abstract
The post-translational attachment of one or several ubiquitin molecules to a protein generates a variety of targeting signals that are used in many different ways in the cell. Ubiquitination can alter the activity, localization, protein-protein interactions or stability of the targeted protein. Further, a very large number of proteins are subject to regulation by ubiquitin-dependent processes, meaning that virtually all cellular functions are impacted by these pathways. Nearly a hundred enzymes from five different gene families (the deubiquitinating enzymes or DUBs), reverse this modification by hydrolyzing the (iso)peptide bond tethering ubiquitin to itself or the target protein. Four of these families are thiol proteases and one is a metalloprotease. DUBs of the Ubiquitin C-terminal Hydrolase (UCH) family act on small molecule adducts of ubiquitin, process the ubiquitin proprotein, and trim ubiquitin from the distal end of a polyubiquitin chain. Ubiquitin Specific Proteases (USPs) tend to recognize and encounter their substrates by interaction of the variable regions of their sequence with the substrate protein directly, or with scaffolds or substrate adapters in multiprotein complexes. Ovarian Tumor (OTU) domain DUBs show remarkable specificity for different Ub chain linkages and may have evolved to recognize substrates on the basis of those linkages. The Josephin family of DUBs may specialize in distinguishing between polyubiquitin chains of different lengths. Finally, the JAB1/MPN+/MOV34 (JAMM) domain metalloproteases cleave the isopeptide bond near the attachment point of polyubiquitin and substrate, as well as being highly specific for the K63 poly-Ub linkage. These DUBs regulate proteolysis by: directly interacting with and co-regulating E3 ligases; altering the level of substrate ubiquitination; hydrolyzing or remodeling ubiquitinated and poly-ubiquitinated substrates; acting in specific locations in the cell and altering the localization of the target protein; and acting on proteasome bound substrates to facilitate or inhibit proteolysis. Thus, the scope and regulation of the ubiquitin pathway is very similar to that of phosphorylation, with the DUBs serving the same functions as the phosphatase. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Ziad M Eletr
- Department of Biochemistry, Emory University, Atlanta GA 30322, USA
| | | |
Collapse
|
616
|
The casein kinase 2-nrf1 axis controls the clearance of ubiquitinated proteins by regulating proteasome gene expression. Mol Cell Biol 2013; 33:3461-72. [PMID: 23816881 DOI: 10.1128/mcb.01271-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Impairment of the ubiquitin-proteasome system (UPS) has been implicated in the pathogenesis of human diseases, including neurodegenerative disorders. Thus, stimulating proteasome activity is a promising strategy to ameliorate these age-related diseases. Here we show that the protein kinase casein kinase 2 (CK2) regulates the transcriptional activity of Nrf1 to control the expression of the proteasome genes and thus the clearance of ubiquitinated proteins. We identify CK2 as an Nrf1-binding protein and find that the knockdown of CK2 enhances the Nrf1-dependent expression of the proteasome subunit genes. Real-time monitoring of proteasome activity reveals that CK2 knockdown alleviates the accumulation of ubiquitinated proteins upon proteasome inhibition. Furthermore, we identify Ser 497 of Nrf1 as the CK2 phosphorylation site and demonstrate that its alanine substitution (S497A) augments the transcriptional activity of Nrf1 and mitigates proteasome dysfunction and the formation of p62-positive juxtanuclear inclusion bodies upon proteasome inhibition. These results indicate that the CK2-mediated phosphorylation of Nrf1 suppresses the proteasome gene expression and activity and thus suggest that the CK2-Nrf1 axis is a potential therapeutic target for diseases associated with UPS impairment.
Collapse
|
617
|
Weihl CC. Monitoring autophagy in the treatment of protein aggregate diseases: steps toward identifying autophagic biomarkers. Neurotherapeutics 2013; 10:383-90. [PMID: 23408309 PMCID: PMC3701771 DOI: 10.1007/s13311-013-0180-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases such as Huntington disease, Parkinson's disease, and Alzheimer's disease are caused by the accumulation of aggregate prone proteins. Pathogenic proteins misfold, aggregate, and escape the cell's normal degradative pathways. Protein aggregates subsequently lead to the toxic disruption of normal cellular processes leading, ultimately, to disease. Several lines of evidence suggest that reducing the burden of these toxic aggregates is therapeutic. One mechanism proposed to facilitate the degradation or clearance of these protein inclusions is macroautophagy. While autophagic treatment paradigms for neurodegeneration are still in the early stages of preclinical development, it is essential to identify and validate methods to measure the activation of autophagy in human patients. These methods will serve as important biomarkers necessary to test compound efficacy and monitor clinical improvement.
Collapse
Affiliation(s)
- Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, PO Box 8111, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
618
|
Conformational dynamics control ubiquitin-deubiquitinase interactions and influence in vivo signaling. Proc Natl Acad Sci U S A 2013; 110:11379-84. [PMID: 23801757 DOI: 10.1073/pnas.1302407110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ubiquitin is a highly conserved eukaryotic protein that interacts with a diverse set of partners to act as a cellular signaling hub. Ubiquitin's conformational flexibility has been postulated to underlie its multifaceted recognition. Here we use computational and library-based means to interrogate core mutations that modulate the conformational dynamics of human ubiquitin. These ubiquitin variants exhibit increased affinity for the USP14 deubiquitinase, with concomitantly reduced affinity for other deubiquitinases. Strikingly, the kinetics of conformational motion are dramatically slowed in these variants without a detectable change in either the ground state fold or excited state population. These variants can be ligated into substrate-linked chains in vitro and in vivo but cannot solely support growth in eukaryotic cells. Proteomic analyses reveal nearly identical interaction profiles between WT ubiquitin and the variants but identify a small subset of altered interactions. Taken together, these results show that conformational dynamics are critical for ubiquitin-deubiquitinase interactions and imply that the fine tuning of motion has played a key role in the evolution of ubiquitin as a signaling hub.
Collapse
|
619
|
Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat Commun 2013; 4:1568. [PMID: 23463011 PMCID: PMC3615374 DOI: 10.1038/ncomms2532] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/21/2013] [Indexed: 12/12/2022] Open
Abstract
In eukaryotes, deubiquitinases (DUBs) remove ubiquitin conjugates from diverse substrates, altering their stabilities, localizations or activities. Here we show that many DUBs of the USP and UCH subfamilies can be reversibly inactivated upon oxidation by reactive oxygen species in vitro and in cells. Oxidation occurs preferentially on the catalytic cysteine, abrogating the isopeptide-cleaving activity without affecting these enzymes’ affinity to ubiquitin. Sensitivity to oxidative inhibition is associated with DUB activation wherein the active site cysteine is converted to a deprotonated state prone to oxidation. We demonstrate that this redox regulation is essential for mono-ubiquitination of proliferating-cell nuclear antigen in response to oxidative DNA damage, which initiates a DNA damage-tolerance programme. These findings establish a novel mechanism of DUB regulation that may be integrated with other redox-dependent signalling circuits to govern cellular adaptation to oxidative stress, a process intimately linked to aging and cancer. Deubiquitinases regulate protein stability, localization and activity, and yet the mechanisms controlling their activity remain poorly understood. Lee et al. show that these enzymes are reversibly inhibited by reactive oxygen species through oxidation of catalytic cysteine residues.
Collapse
|
620
|
Abstract
Systemic response to DNA damage and other stresses is a complex process that includes changes in the regulation and activity of nearly all stages of gene expression. One gene regulatory mechanism used by eukaryotes is selection among alternative transcript isoforms that differ in polyadenylation [poly(A)] sites, resulting in changes either to the coding sequence or to portions of the 3' UTR that govern translation, stability, and localization. To determine the extent to which this means of regulation is used in response to DNA damage, we conducted a global analysis of poly(A) site usage in Saccharomyces cerevisiae after exposure to the UV mimetic, 4-nitroquinoline 1-oxide (4NQO). Two thousand thirty-one genes were found to have significant variation in poly(A) site distributions following 4NQO treatment, with a strong bias toward loss of short transcripts, including many with poly(A) sites located within the protein coding sequence (CDS). We further explored one possible mechanism that could contribute to the widespread differences in mRNA isoforms. The change in poly(A) site profile was associated with an inhibition of cleavage and polyadenylation in cell extract and a decrease in the levels of several key subunits in the mRNA 3'-end processing complex. Sequence analysis identified differences in the cis-acting elements that flank putatively suppressed and enhanced poly(A) sites, suggesting a mechanism that could discriminate between variable and constitutive poly(A) sites. Our analysis indicates that variation in mRNA length is an important part of the regulatory response to DNA damage.
Collapse
|
621
|
Matilainen O, Arpalahti L, Rantanen V, Hautaniemi S, Holmberg CI. Insulin/IGF-1 signaling regulates proteasome activity through the deubiquitinating enzyme UBH-4. Cell Rep 2013; 3:1980-95. [PMID: 23770237 DOI: 10.1016/j.celrep.2013.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 04/15/2013] [Accepted: 05/08/2013] [Indexed: 12/21/2022] Open
Abstract
The proteasome plays an important role in proteostasis by carrying out controlled protein degradation in the cell. Impairments in proteasome function are associated with severe and often age-related diseases. Here, we have characterized a molecular mechanism linking insulin/IGF-1 signaling (IIS) to proteasome activity. We show that decreased IIS, which promotes proteostasis and longevity, increases proteasome activity through the FOXO transcription factor DAF-16 in C. elegans. Furthermore, we reveal that DAF-16 represses expression of the proteasome-associated deubiquitinating enzyme ubh-4, which we suggest functions as a tissue-specific proteasome inhibitor. Finally, we demonstrate that proteasome activation through downregulation of the ubh-4 human ortholog uchl5 increases degradation of proteotoxic proteins in mammalian cells. In conclusion, we have established a mechanism by which the evolutionarily conserved IIS contributes to the regulation of proteasome activity in a multicellular organism.
Collapse
Affiliation(s)
- Olli Matilainen
- Research Programs Unit, Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, FI-00290 Helsinki, Finland
| | | | | | | | | |
Collapse
|
622
|
Abstract
The ubiquitin+proteasome system (UPS) is a highly complex network that maintains protein homeostasis and cell viability through the selective turnover of targeted substrates. The proteasome serves as the catalytic core of the UPS to recognize and execute the coordinated and efficient removal of ubiquitinated proteins. Pharmacologic inhibitors that exploit the pivotal role of the proteasome in cellular metabolism promote tumor cytotoxicity and have yielded durable clinical responses that dramatically improve patient survival. Success of the proteasome inhibitor (PI) bortezomib in the treatment of the hematologic malignancy multiple myeloma (MM) has emerged as the standard-of-care and catapulted the UPS into a position of prominence as a model system in cancer biology and drug development. However, expansion of PIs in the treatment of the more complex solid tumors has been less successful. While clinical evaluation of second-generation PIs progresses, other potential sites of therapeutic intervention within the UPS continue to emerge, such as the non-proteolytic activities associated with the proteasome and the rapidly expanding number of Ub-binding proteins. Molecular-genetic approaches to further unravel the complexity of the UPS will advance its utilization as a platform for the development of novel, mechanism-based anticancer strategies.
Collapse
Affiliation(s)
- James J Driscoll
- Division of Hematology-Oncology, Department of Internal Medicine, The Vontz Center for Molecular Studies, University of Cincinnati, Cincinnati, OH 45267, USA
| | | |
Collapse
|
623
|
Abstract
Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Manuel Serrano
- Tumor Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guido Kroemer
- INSERM, U848, Villejuif, France
- Metabolomics Platform, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
624
|
Rajagopalan V, Zhao M, Reddy S, Fajardo G, Wang X, Dewey S, Gomes AV, Bernstein D. Altered ubiquitin-proteasome signaling in right ventricular hypertrophy and failure. Am J Physiol Heart Circ Physiol 2013; 305:H551-62. [PMID: 23729213 DOI: 10.1152/ajpheart.00771.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alterations in the ubiquitin-proteasome system (UPS) have been described in left ventricular hypertrophy and failure, although results have been inconsistent. The role of the UPS in right ventricular (RV) hypertrophy (RVH) and RV failure (RVF) is unknown. Given the greater percent increase in RV mass associated with RV afterload stress, as present in many congenital heart lesions, we hypothesized that alterations in the UPS could play an important role in RVH/RVF. UPS expression and activity were measured in the RV from mice with RVH/RVF secondary to pulmonary artery constriction (PAC). Epoxomicin and MG132 were used to inhibit the proteasome, and overexpression of the 11S PA28α subunit was used to activate the proteasome. PAC mice developed RVH (109.3% increase in RV weight to body weight), RV dilation with septal shift, RV dysfunction, and clinical RVF. Proteasomal function (26S β₅ chymotrypsin-like activity) was decreased 26% (P < 0.05). Protein expression of 19S subunit Rpt5 (P < 0.05), UCHL1 deubiquitinase (P < 0.0001), and Smurf1 E3 ubiquitin ligase (P < 0.01) were increased, as were polyubiquitinated proteins (P < 0.05) and free-ubiquitins (P = 0.05). Pro-apoptotic Bax was increased (P < 0.0001), whereas anti-apoptotic Bcl-2 decreased (P < 0.05), resulting in a sixfold increase in the Bax/Bcl-2 ratio. Proteasomal inhibition did not accelerate RVF. However, proteasome enhancement by cardiac-specific proteasome overexpression partially improved survival. Proteasome activity is decreased in RVH/RVF, associated with upregulation of key UPS regulators and pro-apoptotic signaling. Enhancement of proteasome function partially attenuates RVF, suggesting that UPS dysfunction contributes to RVF.
Collapse
Affiliation(s)
- Viswanathan Rajagopalan
- Department of Pediatrics (Cardiology Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | | | | | |
Collapse
|
625
|
Over-expression of deubiquitinating enzyme USP14 in lung adenocarcinoma promotes proliferation through the accumulation of β-catenin. Int J Mol Sci 2013; 14:10749-60. [PMID: 23702845 PMCID: PMC3709700 DOI: 10.3390/ijms140610749] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/11/2013] [Accepted: 05/03/2013] [Indexed: 02/08/2023] Open
Abstract
The deubiquitinating enzyme USP14 has been identified and biochemically studied, but its role in lung cancer remains to be elucidated. The aim of this study was to evaluate the prognostic significance of USP14 in patients with lung adenocarcinoma and to define its role in lung cancer cell proliferation. USP14 mRNA levels in different non-small cell lung cancer (NSCLC) cell lines were detected by real-time qPCR. USP14 protein levels in surgically resected samples from NSCLC patients, and in NSCLC cell lines, were detected by immunohistochemistry or Western blot. The correlation of USP14 expression with clinical characteristics and prognosis was determined by survival analysis. After silencing USP14, cell proliferation was assessed by MTT assay and the cell cycle was measured by FACS assay. It was found that USP14 expression was upregulated in NSCLC cells, especially in adenocarcinoma cells. Over-expression of USP14 was associated with shorter overall survival of patients. Downregulation of USP14 expression arrested the cell cycle, which may be related to β-catenin degradation. Over-expression of USP14 was associated with poor prognosis in NSCLC patients and promoted tumor cell proliferation, which suggests that USP14 is a tumor-promoting factor and a promising therapeutic target for NSCLC.
Collapse
|
626
|
Morrow ME, Kim MI, Ronau JA, Sheedlo MJ, White RR, Chaney J, Paul LN, Lill MA, Artavanis-Tsakonas K, Das C. Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity. Biochemistry 2013; 52:3564-78. [PMID: 23617878 PMCID: PMC3898853 DOI: 10.1021/bi4003106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ubiquitination is countered by a group of enzymes collectively called deubiquitinases (DUBs); ∼100 of them can be found in the human genome. One of the most interesting aspects of these enzymes is the ability of some members to selectively recognize specific linkage types between ubiquitin in polyubiquitin chains and their endo and exo specificity. The structural basis of exo-specific deubiquitination catalyzed by a DUB is poorly understood. UCH37, a cysteine DUB conserved from fungi to humans, is a proteasome-associated factor that regulates the proteasome by sequentially cleaving polyubiquitin chains from their distal ends, i.e., by exo-specific deubiquitination. In addition to the catalytic domain, the DUB features a functionally uncharacterized UCH37-like domain (ULD), presumed to keep the enzyme in an inhibited state in its proteasome-free form. Herein we report the crystal structure of two constructs of UCH37 from Trichinella spiralis in complex with a ubiquitin-based suicide inhibitor, ubiquitin vinyl methyl ester (UbVME). These structures show that the ULD makes direct contact with ubiquitin stabilizing a highly unusual intramolecular salt bridge between Lys48 and Glu51 of ubiquitin, an interaction that would be favored only with the distal ubiquitin but not with the internal ones in a Lys48-linked polyubiquitin chain. An inspection of 39 DUB-ubiquitin structures in the Protein Data Bank reveals the uniqueness of the salt bridge in ubiquitin bound to UCH37, an interaction that disappears when the ULD is deleted, as revealed in the structure of the catalytic domain alone bound to UbVME. The structural data are consistent with previously reported mutational data on the mammalian enzyme, which, together with the fact that the ULD residues that bind to ubiquitin are conserved, points to a similar mechanism behind the exo specificity of the human enzyme. To the best of our knowledge, these data provide the only structural example so far of how the exo specificity of a DUB can be determined by its noncatalytic domain. Thus, our data show that, contrary to its proposed inhibitory role, the ULD actually contributes to substrate recognition and could be a major determinant of the proteasome-associated function of UCH37. Moreover, our structures show that the unproductively oriented catalytic cysteine in the free enzyme is aligned correctly when ubiquitin binds, suggesting a mechanism for ubiquitin selectivity.
Collapse
Affiliation(s)
- Marie E. Morrow
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Myung-Il Kim
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Judith A. Ronau
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Michael J. Sheedlo
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Rhiannon R. White
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Bldg, Imperial College Road, London, SW7 2AZ, UK
| | - Joseph Chaney
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Lake N. Paul
- Bindley Biosciences Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Markus A. Lill
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Katerina Artavanis-Tsakonas
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Bldg, Imperial College Road, London, SW7 2AZ, UK
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA,To whom correspondence should be addressed: Chittaranjan Das, Brown Laboratory of Chemistry, 560 Oval Drive, West Lafayette, IN, 47907, (765)-494-5478, Fax: (765)-494-0239,
| |
Collapse
|
627
|
Sharma M, Burré J, Südhof TC. Proteasome inhibition alleviates SNARE-dependent neurodegeneration. Sci Transl Med 2013; 4:147ra113. [PMID: 22896677 DOI: 10.1126/scitranslmed.3004028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of the proteasomal degradation of misfolded proteins has been proposed as a therapeutic strategy for treating neurodegenerative diseases, but it is unclear whether proteasome dysfunction contributes to neurodegeneration. We tested the role of proteasome activity in neurodegeneration developed by mice lacking cysteine string protein-α (CSPα). Unexpectedly, we found that proteasome inhibitors alleviated neurodegeneration in CSPα-deficient mice, reversing impairment of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-complex assembly and extending life span. We tested whether dysfunctional SNARE-complex assembly could contribute to neurodegeneration in Alzheimer's and Parkinson's disease by analyzing postmortem brain tissue from these patients; we found reduced SNARE-complex assembly in the brain tissue samples. Our results suggest that proteasomal activation may not always be beneficial for alleviating neurodegeneration and that blocking the proteasome may represent a potential therapeutic avenue for treating some forms of neurodegenerative disease.
Collapse
Affiliation(s)
- Manu Sharma
- Department of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5453, USA.
| | | | | |
Collapse
|
628
|
Clavaguera F, Lavenir I, Falcon B, Frank S, Goedert M, Tolnay M. "Prion-like" templated misfolding in tauopathies. Brain Pathol 2013; 23:342-9. [PMID: 23587140 PMCID: PMC8028860 DOI: 10.1111/bpa.12044] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/11/2013] [Indexed: 12/20/2022] Open
Abstract
The soluble microtubule-associated protein tau forms hyperphosphorylated, insoluble and filamentous inclusions in a number of neurodegenerative diseases referred to as "tauopathies." In Alzheimer's disease, tau pathology develops in a stereotypical manner, with the first lesions appearing in the locus coeruleus and entorhinal cortex, from where they appear to spread to the hippocampus and neocortex. Propagation of tau pathology is also a characteristic of argyrophilic grain disease, where the tau lesions spread throughout the limbic system. Significantly, isoform composition and morphology of tau filaments can differ between tauopathies, suggesting the existence of distinct tau strains. Extensive experimental findings indicate that prion-like mechanisms underly the pathogenesis of tauopathies.
Collapse
Affiliation(s)
- Florence Clavaguera
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| | | | - Ben Falcon
- MRC Laboratory of Molecular BiologyCambridgeUK
| | - Stephan Frank
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| | | | - Markus Tolnay
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| |
Collapse
|
629
|
Golde TE, Borchelt DR, Giasson BI, Lewis J. Thinking laterally about neurodegenerative proteinopathies. J Clin Invest 2013; 123:1847-55. [PMID: 23635781 DOI: 10.1172/jci66029] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and frontotemporal dementia, are proteinopathies that are associated with the aggregation and accumulation of misfolded proteins. While remarkable progress has been made in understanding the triggers of these conditions, several challenges have hampered the translation of preclinical therapies targeting pathways downstream of the initiating proteinopathies. Clinical trials in symptomatic patients using therapies directed toward initiating trigger events have met with little success, prompting concerns that such therapeutics may be of limited efficacy when used in advanced stages of the disease rather than as prophylactics. Herein, we discuss gaps in our understanding of the pathological processes downstream of the trigger and potential strategies to identify common features of the downstream degenerative cascade in multiple CNS proteinopathies, which could potentially lead to the development of common therapeutic targets for multiple disorders.
Collapse
Affiliation(s)
- Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | |
Collapse
|
630
|
Chen YJ, Ma YS, Fang Y, Wang Y, Fu D, Shen XZ. Power and Promise of Ubiquitin Carboxyl-terminal Hydrolase 37 as a Target of Cancer Therapy. Asian Pac J Cancer Prev 2013; 14:2173-9. [DOI: 10.7314/apjcp.2013.14.4.2173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
631
|
Mialki RK, Zhao J, Wei J, Mallampalli DF, Zhao Y. Overexpression of USP14 protease reduces I-κB protein levels and increases cytokine release in lung epithelial cells. J Biol Chem 2013; 288:15437-41. [PMID: 23615914 DOI: 10.1074/jbc.c112.446682] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome system is the major pathway of non-lysosomal intracellular protein degradation, playing an important role in a variety of cellular responses including cell division, proliferation, and apoptosis. Ubiquitin-specific protease 14 (USP14) is a component of proteasome regulatory subunit 19 S that regulates deubiquitinated proteins entering inside the proteasome core 20 S. The role of USP14 in protein degradation is still controversial. Several studies suggest that USP14 plays an inhibitory role in protein degradation. Here, in contrast, overexpression of USP14 induced I-κB degradation, which increased cytokine release in lung epithelial cells. Overexpression of HA-tagged USP14 (HA-USP14) reduced I-κB protein levels by increasing the I-κB degradation rate in mouse lung epithelial cells (MLE12). I-κB polyubiquitination was reduced in HA-USP14-overexpressed MLE12 cells, suggesting that USP14 regulates I-κB degradation by removing its ubiquitin chain, thus promoting the deubiquitinated I-κB degradation within the proteasome. Interestingly, we found that USP14 was associated with RelA, a binding partner of I-κB, suggesting that RelA is the linker between USP14 and I-κB. Lipopolysaccharide (LPS) treatment induced serine phosphorylation of USP14 as well as further reducing I-κB levels in HA-USP14-overexpressed MLE12 cells as compared with empty vector transfected cells. Further, overexpression of HA-USP14 increased the LPS-, TNFα-, or Escherichia coli-induced IL-8 release in human lung epithelial cells. This study suggests that USP14 removes the ubiquitin chain of I-κB, therefore inducing I-κB degradation and increasing cytokine release in lung epithelial cells.
Collapse
Affiliation(s)
- Rachel K Mialki
- Department of Medicine and the Acute Lung Injury Center of Excellence, the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
632
|
Abstract
Ubiquitylation is a reversible post-translational modification that has emerged as a key regulator of most complex cellular processes. It may rival phosphorylation in scope and exceed it in complexity. The dynamic nature of ubiquitylation events is important for governing protein stability, maintaining ubiquitin homeostasis and controlling ubiquitin-dependent signalling pathways. The human genome encodes ~80 active deubiquitylating enzymes (DUBs, also referred to as deubiquitinases), which exhibit distinct specificity profiles towards the various ubiquitin chain topologies. As a result of their ability to reverse ubiquitylation, these enzymes control a broad range of key cellular processes. In this Commentary we discuss the cellular functions of DUBs, such as their role in governing membrane traffic and protein quality control. We highlight two key signalling pathways--the Wnt and transforming growth factor β (TGF-β) pathways, for which dynamic ubiquitylation has emerged as a key regulator. We also discuss the roles of DUBs in the nucleus, where they govern transcriptional activity and DNA repair pathways.
Collapse
Affiliation(s)
- Michael J Clague
- Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, L69 3BX Liverpool, UK.
| | | | | |
Collapse
|
633
|
Lilienbaum A. Relationship between the proteasomal system and autophagy. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 4:1-26. [PMID: 23638318 PMCID: PMC3627065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/27/2013] [Indexed: 06/02/2023]
Abstract
TWO MAJOR PATHWAYS DEGRADE MOST CELLULAR PROTEINS IN EUKARYOTIC CELLS: the ubiquitin-proteasome system (UPS), which usually degrades the majority of proteins, and autophagy, primarily responsible for the degradation of most long-lived or aggregated proteins and cellular organelles. Disruption of these processes can contribute to pathology of a variety of diseases. Further, both pathways are critical for the maintenance of several aspects of cellular homeostasis, but, until recently, were thought to be largely distinct. Recent advances in this field, however, now strongly suggest that their activities are carefully orchestrated through several interfacing elements that are presented and discussed in this review.
Collapse
Affiliation(s)
- Alain Lilienbaum
- Laboratory of Stress and Pathologies of the Cytoskeleton, Unit of Functional and Adaptive Biology (BFA) affiliated with CNRS (EAC4413), University Paris Diderot-Paris 7 75250 Paris Cedex 13, France
| |
Collapse
|
634
|
Lee MJ, Lee JH, Rubinsztein DC. Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog Neurobiol 2013; 105:49-59. [PMID: 23528736 DOI: 10.1016/j.pneurobio.2013.03.001] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 03/03/2013] [Accepted: 03/13/2013] [Indexed: 01/01/2023]
Abstract
The ubiquitin-proteasome system (UPS) and the autophagy-lysosome system are two major protein quality control mechanisms in eukaryotic cells. While the UPS has been considered for decades as the critical regulator in the degradation of various aggregate-prone proteins, autophagy has more recently been shown to be an important pathway implicated in neuronal health and disease. The two hallmark lesions of Alzheimer's disease (AD) are extracellular β-amyloid plaques and intracellular tau tangles. It has been suggested that tau accumulation is pathologically more relevant to the development of neurodegeneration and cognitive decline in AD patients than β-amyloid plaques. Here, we review the UPS and autophagy-mediated tau clearance mechanisms and outline the biochemical connections between these two processes. In addition, we discuss pharmacological methods that target these degradation systems for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Min Jae Lee
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| | | | | |
Collapse
|
635
|
Tanaka K, Matsuda N. Proteostasis and neurodegeneration: the roles of proteasomal degradation and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:197-204. [PMID: 23523933 DOI: 10.1016/j.bbamcr.2013.03.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/01/2013] [Accepted: 03/10/2013] [Indexed: 11/30/2022]
Abstract
All proteins in a cell continuously turn over, each at its own rate, contributing to a cell's development, differentiation, or aging. Of course, unnecessary protein(s), or those synthesized in excess, that hamper cellular homeostasis should be discarded rapidly. Furthermore, cells that have been subjected to various environmental stresses, e.g., reactive oxygen species (ROS) and UV irradiation, may incur various types of protein damage, which vitiate normal and homeostatic functions in the cell. Thereby, the prompt elimination of impaired proteins is essential for cell viability. This housekeeping is accomplished by two major catabolic routes-proteasomal digestion and autophagy. Strict maintenance of proteostasis is particularly important in non-proliferative cells, especially neurons, and it is plausible that its failure leads to a number of the neurodegenerative diseases becoming prominent in the growing elderly population. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan.
| | | |
Collapse
|
636
|
Ubiquitinations in the notch signaling pathway. Int J Mol Sci 2013; 14:6359-81. [PMID: 23519106 PMCID: PMC3634445 DOI: 10.3390/ijms14036359] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 12/22/2022] Open
Abstract
The very conserved Notch pathway is used iteratively during development and adulthood to regulate cell fates. Notch activation relies on interactions between neighboring cells, through the binding of Notch receptors to their ligands, both transmembrane molecules. This inter-cellular contact initiates a cascade of events eventually transforming the cell surface receptor into a nuclear factor acting on the transcription of specific target genes. This review highlights how the various processes undergone by Notch receptors and ligands that regulate the pathway are linked to ubiquitination events.
Collapse
|
637
|
Trougakos IP, Sesti F, Tsakiri E, Gorgoulis VG. Non-enzymatic post-translational protein modifications and proteostasis network deregulation in carcinogenesis. J Proteomics 2013; 92:274-98. [PMID: 23500136 DOI: 10.1016/j.jprot.2013.02.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/19/2013] [Accepted: 02/27/2013] [Indexed: 12/25/2022]
Abstract
Organisms are constantly challenged by stressors and thus the maintenance of biomolecules functionality is essential for the assurance of cellular homeostasis. Proteins carry out the vast majority of cellular functions by mostly participating in multimeric protein assemblies that operate as protein machines. Cells have evolved a complex proteome quality control network for the rescue, when possible, or the degradation of damaged polypeptides. Nevertheless, despite these proteostasis ensuring mechanisms, new protein synthesis, and the replication-mediated dilution of proteome damage in mitotic cells, the gradual accumulation of stressors during aging (or due to lifestyle) results in increasingly damaged proteome. Non-enzymatic post-translational protein modifications mostly arise by unbalanced redox homeostasis and/or high glucose levels and may cause disruption of proteostasis as they can alter protein function. This outcome may then increase genomic instability due to reduced fidelity in processes like DNA replication or repair. Herein, we present a synopsis of the major non-enzymatic post-translation protein modifications and of the proteostasis network deregulation in carcinogenesis. We propose that activation of the proteostasis ensuring mechanisms in premalignant cells has tumor-preventive effects, whereas considering that over-activation of these mechanisms represents a hallmark of advanced tumors, their inhibition provides a strategy for the development of anti-tumor therapies. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece.
| | | | | | | |
Collapse
|
638
|
Abstract
The eukaryotic ubiquitin-proteasome system is responsible for most aspects of regulatory and quality-control protein degradation in cells. Its substrates, which are usually modified by polymers of ubiquitin, are ultimately degraded by the 26S proteasome. This 2.6-MDa protein complex is separated into a barrel-shaped proteolytic 20S core particle (CP) of 28 subunits capped on one or both ends by a 19S regulatory particle (RP) comprising at least 19 subunits. The RP coordinates substrate recognition, removal of substrate polyubiquitin chains, and substrate unfolding and translocation into the CP for degradation. Although many atomic structures of the CP have been determined, the RP has resisted high-resolution analysis. Recently, however, a combination of cryo-electron microscopy, biochemical analysis, and crystal structure determination of several RP subunits has yielded a near-atomic-resolution view of much of the complex. Major new insights into chaperone-assisted proteasome assembly have also recently emerged. Here we review these novel findings.
Collapse
Affiliation(s)
- Robert J Tomko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
639
|
Abstract
Protein quality control functions to minimize the level and toxicity of misfolded proteins in the cell. Protein quality control is performed by intricate collaboration among chaperones and target protein degradation. The latter is performed primarily by the ubiquitin-proteasome system and perhaps autophagy. Terminally misfolded proteins that are not timely removed tend to form aggregates. Their clearance requires macroautophagy. Macroautophagy serves in intracellular quality control also by selectively segregating defective organelles (eg, mitochondria) and targeting them for degradation by the lysosome. Inadequate protein quality control is observed in a large subset of failing human hearts with a variety of causes, and its pathogenic role has been experimentally demonstrated. Multiple posttranslational modifications can occur to substrate proteins and protein quality control machineries, promoting or hindering the removal of the misfolded proteins. This article highlights recent advances in posttranslational modification-mediated regulation of intracellular quality control mechanisms and its known involvement in cardiac pathology.
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark St, Vermillion, SD 57069, USA.
| | | | | |
Collapse
|
640
|
Chuang WY, Kung PH, Kuo CY, Wu CC. Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/Akt pathway. Thromb Haemost 2013; 109:1120-30. [PMID: 23426129 DOI: 10.1160/th12-09-0636] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Sulforaphane, a dietary isothiocyanate found in cruciferous vegetables, has been shown to exert beneficial effects in animal models of cardiovascular diseases. However, its effect on platelet aggregation, which is a critical factor in arterial thrombosis, is still unclear. In the present study, we show that sulforaphane inhibited human platelet aggregation caused by different receptor agonists, including collagen, U46619 (a thromboxane A2 mimic), protease-activated receptor 1 agonist peptide (PAR1-AP), and an ADP P2Y12 receptor agonist. Moreover, sulforaphane significantly reduced thrombus formation on a collagen-coated surface under whole blood flow conditions. In exploring the underlying mechanism, we found that sulforaphane specifically prevented phosphatidylinositol 3-kinase (PI3K)/Akt signalling, without markedly affecting other signlaling pathways involved in platelet aggregation, such as protein kinase C activation, calcium mobilisation, and protein tyrosine phosphorylation. Although sulforaphane did not directly inhibit the catalytic activity of PI3K, it caused ubiquitination of the regulatory p85 subunit of PI3K, and prevented PI3K translocation to membranes. In addition, sulforaphane caused ubiquitination and degradation of phosphoinositide-dependent kinase 1 (PDK1), which is required for Akt activation. Therefore, sulforaphane is able to inhibit the PI3K/Akt pathway at two distinct sites. In conclusion, we have demonstrated that sulforaphane prevented platelet aggregation and reduced thrombus formation in flow conditions; our data also support that the inhibition of the PI3K/Akt pathway by sulforaphane contributes it antiplatelet effects.
Collapse
Affiliation(s)
- Wen-Ying Chuang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
641
|
Abstract
The proteasome is the primary site for protein degradation in mammalian cells, and proteasome inhibitors have been invaluable tools in clarifying its cellular functions. The anticancer agent bortezomib inhibits the major peptidase sites in the proteasome's 20S core particle. It is a "blockbuster drug" that has led to dramatic improvements in the treatment of multiple myeloma, a cancer of plasma cells. The development of proteasome inhibitors illustrates the unpredictability, frustrations, and potential rewards of drug development but also emphasizes the dependence of medical advances on basic biological research.
Collapse
Affiliation(s)
- Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
642
|
Abstract
The proteasome refers to a collection of complexes centered on the 20S proteasome core particle (20S CP), a complex of 28 subunits that houses proteolytic sites in its hollow interior. Proteasomes are found in eukaryotes, archaea, and some eubacteria, and their activity is critical for many cellular pathways. Important recent advances include inhibitor binding studies and the structure of the immunoproteasome, whose specificity is altered by the incorporation of inducible catalytic subunits. The inherent repression of the 20S CP is relieved by the ATP-independent activators 11S and Blm10/PA200, whose structures reveal principles of proteasome mechanism. The structure of the ATP-dependent 19S regulatory particle, which mediates degradation of polyubiquitylated proteins, is being revealed by a combination of crystal or NMR structures of individual subunits and electron microscopy reconstruction of the intact complex. Other recent structural advances inform us about mechanisms of assembly and the role of conformational changes in the functional cycle.
Collapse
Affiliation(s)
- Erik Kish-Trier
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | |
Collapse
|
643
|
Betulinic acid selectively increases protein degradation and enhances prostate cancer-specific apoptosis: possible role for inhibition of deubiquitinase activity. PLoS One 2013; 8:e56234. [PMID: 23424652 PMCID: PMC3570422 DOI: 10.1371/journal.pone.0056234] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 01/11/2013] [Indexed: 02/03/2023] Open
Abstract
Inhibition of the ubiquitin-proteasome system (UPS) of protein degradation is a valid anti-cancer strategy and has led to the approval of bortezomib for the treatment of multiple myeloma. However, the alternative approach of enhancing the degradation of oncoproteins that are frequently overexpressed in cancers is less developed. Betulinic acid (BA) is a plant-derived small molecule that can increase apoptosis specifically in cancer but not in normal cells, making it an attractive anti-cancer agent. Our results in prostate cancer suggested that BA inhibited multiple deubiquitinases (DUBs), which resulted in the accumulation of poly-ubiquitinated proteins, decreased levels of oncoproteins, and increased apoptotic cell death. In normal fibroblasts, however, BA did not inhibit DUB activity nor increased total poly-ubiquitinated proteins, which was associated with a lack of effect on cell death. In the TRAMP transgenic mouse model of prostate cancer, treatment with BA (10 mg/kg) inhibited primary tumors, increased apoptosis, decreased angiogenesis and proliferation, and lowered androgen receptor and cyclin D1 protein. BA treatment also inhibited DUB activity and increased ubiquitinated proteins in TRAMP prostate cancer but had no effect on apoptosis or ubiquitination in normal mouse tissues. Overall, our data suggests that BA-mediated inhibition of DUBs and induction of apoptotic cell death specifically in prostate cancer but not in normal cells and tissues may provide an effective non-toxic and clinically selective agent for chemotherapy.
Collapse
|
644
|
Ernst A, Avvakumov G, Tong J, Fan Y, Zhao Y, Alberts P, Persaud A, Walker JR, Neculai AM, Neculai D, Vorobyov A, Garg P, Beatty L, Chan PK, Juang YC, Landry MC, Yeh C, Zeqiraj E, Karamboulas K, Allali-Hassani A, Vedadi M, Tyers M, Moffat J, Sicheri F, Pelletier L, Durocher D, Raught B, Rotin D, Yang J, Moran MF, Dhe-Paganon S, Sidhu SS. A strategy for modulation of enzymes in the ubiquitin system. Science 2013; 339:590-5. [PMID: 23287719 PMCID: PMC3815447 DOI: 10.1126/science.1230161] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ubiquitin system regulates virtually all aspects of cellular function. We report a method to target the myriad enzymes that govern ubiquitination of protein substrates. We used massively diverse combinatorial libraries of ubiquitin variants to develop inhibitors of four deubiquitinases (DUBs) and analyzed the DUB-inhibitor complexes with crystallography. We extended the selection strategy to the ubiquitin conjugating (E2) and ubiquitin ligase (E3) enzymes and found that ubiquitin variants can also enhance enzyme activity. Last, we showed that ubiquitin variants can bind selectively to ubiquitin-binding domains. Ubiquitin variants exhibit selective function in cells and thus enable orthogonal modulation of specific enzymatic steps in the ubiquitin system.
Collapse
Affiliation(s)
- Andreas Ernst
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - George Avvakumov
- Structural Genomics Consortium, MaRS Centre, 101 College Street, Suite 700, Toronto, Ontario M5G 1L7, Canada
| | - Jiefei Tong
- Hospital for Sick Children, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yihui Fan
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanling Zhao
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Philipp Alberts
- Hospital for Sick Children, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Avinash Persaud
- Hospital for Sick Children, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Biochemistry Department, University of Toronto, Toronto, OntarioM5S 3E1, Canada
| | - John R Walker
- Structural Genomics Consortium, MaRS Centre, 101 College Street, Suite 700, Toronto, Ontario M5G 1L7, Canada
| | - Ana-Mirela Neculai
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Dante Neculai
- Structural Genomics Consortium, MaRS Centre, 101 College Street, Suite 700, Toronto, Ontario M5G 1L7, Canada
| | - Andrew Vorobyov
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Pankaj Garg
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Linda Beatty
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Pak-Kei Chan
- Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Yu-Chi Juang
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Marie-Claude Landry
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Christina Yeh
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Elton Zeqiraj
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Konstantina Karamboulas
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Abdellah Allali-Hassani
- Structural Genomics Consortium, MaRS Centre, 101 College Street, Suite 700, Toronto, Ontario M5G 1L7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, MaRS Centre, 101 College Street, Suite 700, Toronto, Ontario M5G 1L7, Canada
| | - Mike Tyers
- Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Jason Moffat
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Ontario Cancer Institute and McLaughlin Centre for Molecular Medicine, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Frank Sicheri
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Laurence Pelletier
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Daniel Durocher
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Brian Raught
- Ontario Cancer Institute and McLaughlin Centre for Molecular Medicine, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Daniela Rotin
- Hospital for Sick Children, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Biochemistry Department, University of Toronto, Toronto, OntarioM5S 3E1, Canada
| | - Jianhua Yang
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Moran
- Hospital for Sick Children, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Sirano Dhe-Paganon
- Structural Genomics Consortium, MaRS Centre, 101 College Street, Suite 700, Toronto, Ontario M5G 1L7, Canada
- Department of Physiology, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Sachdev S Sidhu
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Ontario Cancer Institute and McLaughlin Centre for Molecular Medicine, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
645
|
Tang YC, Amon A. Gene copy-number alterations: a cost-benefit analysis. Cell 2013; 152:394-405. [PMID: 23374337 PMCID: PMC3641674 DOI: 10.1016/j.cell.2012.11.043] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/22/2012] [Accepted: 11/01/2012] [Indexed: 11/25/2022]
Abstract
Changes in DNA copy number, whether confined to specific genes or affecting whole chromosomes, have been identified as causes of diseases and developmental abnormalities and as sources of adaptive potential. Here, we discuss the costs and benefits of DNA copy-number alterations. Changes in DNA copy number are largely detrimental. Amplifications or deletions of specific genes can elicit discrete defects. Large-scale changes in DNA copy number can also cause detrimental phenotypes that are due to the cumulative effects of copy-number alterations of many genes simultaneously. On the other hand, studies in microorganisms show that DNA copy-number alterations can be beneficial, increasing survival under selective pressure. As DNA copy-number alterations underlie many human diseases, we will end with a discussion of gene copy-number changes as therapeutic targets.
Collapse
Affiliation(s)
- Yun-Chi Tang
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-561, 500 Main Street, Cambridge, MA 02139, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-561, 500 Main Street, Cambridge, MA 02139, USA
| |
Collapse
|
646
|
Lopez-Castejon G, Luheshi NM, Compan V, High S, Whitehead RC, Flitsch S, Kirov A, Prudovsky I, Swanton E, Brough D. Deubiquitinases regulate the activity of caspase-1 and interleukin-1β secretion via assembly of the inflammasome. J Biol Chem 2013; 288:2721-33. [PMID: 23209292 PMCID: PMC3554938 DOI: 10.1074/jbc.m112.422238] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/09/2012] [Indexed: 01/01/2023] Open
Abstract
IL-1β is a potent pro-inflammatory cytokine produced in response to infection or injury. It is synthesized as an inactive precursor that is activated by the protease caspase-1 within a cytosolic molecular complex called the inflammasome. Assembly of this complex is triggered by a range of structurally diverse damage or pathogen associated stimuli, and the signaling pathways through which these act are poorly understood. Ubiquitination is a post-translational modification essential for maintaining cellular homeostasis. It can be reversed by deubiquitinase enzymes (DUBs) that remove ubiquitin moieties from the protein thus modifying its fate. DUBs present specificity toward different ubiquitin chain topologies and are crucial for recycling ubiquitin molecules before protein degradation as well as regulating key cellular processes such as protein trafficking, gene transcription, and signaling. We report here that small molecule inhibitors of DUB activity inhibit inflammasome activation. Inhibition of DUBs blocked the processing and release of IL-1β in both mouse and human macrophages. DUB activity was necessary for inflammasome association as DUB inhibition also impaired ASC oligomerization and caspase-1 activation without directly blocking caspase-1 activity. These data reveal the requirement for DUB activity in a key reaction of the innate immune response and highlight the therapeutic potential of DUB inhibitors for chronic auto-inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Stephen High
- Michael Smith Building, Faculty of Life Sciences, and
| | - Roger C. Whitehead
- School of Chemistry, University of Manchester Manchester, M13 9PT, United Kingdom and
| | - Sabine Flitsch
- School of Chemistry, University of Manchester Manchester, M13 9PT, United Kingdom and
| | - Aleksandr Kirov
- Center for Molecular Medicine, Maine Medical Centre Research Institute, Scarborough, Maine 04074
| | - Igor Prudovsky
- Center for Molecular Medicine, Maine Medical Centre Research Institute, Scarborough, Maine 04074
| | | | - David Brough
- From the AV Hill Building, Faculty of Life Sciences
| |
Collapse
|
647
|
Peth A, Kukushkin N, Bossé M, Goldberg AL. Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs. J Biol Chem 2013; 288:7781-7790. [PMID: 23341450 DOI: 10.1074/jbc.m112.441907] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Degradation of ubiquitinated proteins by 26 S proteasomes requires ATP hydrolysis, but it is unclear how the proteasomal ATPases are regulated and how proteolysis, substrate deubiquitination, degradation, and ATP hydrolysis are coordinated. Polyubiquitinated proteins were shown to stimulate ATP hydrolysis by purified proteasomes, but only if the proteins contain a loosely folded domain. If they were not ubiquitinated, such proteins did not increase ATPase activity. However, they did so upon addition of ubiquitin aldehyde, which mimics the ubiquitin chain and binds to 26 S-associated deubiquitinating enzymes (DUBs): in yeast to Ubp6, which is essential for the ATPase activation, and in mammalian 26 S to the Ubp6 homolog, Usp14, and Uch37. Occupancy of either DUB by a ubiquitin conjugate leads to ATPase stimulation, thereby coupling deubiquitination and ATP hydrolysis. Thus, ubiquitinated loosely folded proteins, after becoming bound to the 26 S, interact with Ubp6/Usp14 or Uch37 to activate ATP hydrolysis and enhance their own destruction.
Collapse
Affiliation(s)
- Andreas Peth
- Harvard Medical School, Boston, Massachusetts 02115
| | | | - Marc Bossé
- Inbiomed, Paeso Mikeltegi, 81 San Sebastián, Gipuzkoa 20009, Spain
| | | |
Collapse
|
648
|
Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes? EMBO J 2013; 32:552-65. [PMID: 23314748 DOI: 10.1038/emboj.2012.354] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/18/2012] [Indexed: 02/08/2023] Open
Abstract
Although cellular proteins conjugated to K48-linked Ub chains are targeted to proteasomes, proteins conjugated to K63-ubiquitin chains are directed to lysosomes. However, pure 26S proteasomes bind and degrade K48- and K63-ubiquitinated substrates similarly. Therefore, we investigated why K63-ubiquitinated proteins are not degraded by proteasomes. We show that mammalian cells contain soluble factors that selectively bind to K63 chains and inhibit or prevent their association with proteasomes. Using ubiquitinated proteins as affinity ligands, we found that the main cellular proteins that associate selectively with K63 chains and block their binding to proteasomes are ESCRT0 (Endosomal Sorting Complex Required for Transport) and its components, STAM and Hrs. In vivo, knockdown of ESCRT0 confirmed that it is required to block binding of K63-ubiquitinated molecules to the proteasome. In addition, the Rad23 proteins, especially hHR23B, were found to bind specifically to K48-ubiquitinated proteins and to stimulate proteasome binding. The specificities of these proteins for K48- or K63-ubiquitin chains determine whether a ubiquitinated protein is targeted for proteasomal degradation or delivered instead to the endosomal-lysosomal pathway.
Collapse
|
649
|
Su H, Wang X. p62 Stages an interplay between the ubiquitin-proteasome system and autophagy in the heart of defense against proteotoxic stress. Trends Cardiovasc Med 2013; 21:224-8. [PMID: 22902070 DOI: 10.1016/j.tcm.2012.05.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As exemplified by desmin-related cardiomyopathy and myocardial ischemia/reperfusion injury, proteasome functional insufficiency plays an essential pathogenic role in the progression of cardiac diseases with elevated proteotoxic stress. Upregulation of p62/SQSTM1 and increased selective autophagy in cardiomyocytes may protect against proteotoxic stress in the heart. p62 may serve as a proteotoxic stress sensor, promote segregation and degradation of misfolded proteins by autophagy, and mediate the cross talk between the ubiquitin-proteasome system and autophagy.
Collapse
Affiliation(s)
- Huabo Su
- Protein Quality Control and Degradation Research Center and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
650
|
Ponnappan S, Palmieri M, Sullivan DH, Ponnappan U. Compensatory increase in USP14 activity accompanies impaired proteasomal proteolysis during aging. Mech Ageing Dev 2013; 134:53-9. [PMID: 23291607 DOI: 10.1016/j.mad.2012.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/17/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
The deubiquitinating enzyme, USP14, found in association with the proteasome is essential in mediating ubiquitin trimming and in ensuring ubiquitin-homeostasis. As aging is accompanied by a significant decline in proteasomal proteolysis in primary human T lymphocytes, we evaluated the contributory role of USP14 in this decline. Our studies for the first time demonstrate that enzymatic activity of proteasome-associated USP14 is significantly higher in T cells obtained from elderly donors. Additionally, such an increase in USP14 activity could be mimicked by chemically inhibiting the proteasome, using lactacystin. Thus, USP14 activity appears to be reciprocally regulated by the catalytic function of the 26S proteasome. To determine whether the inhibition of USP14 activity counter regulates proteasomal proteolysis, T cells pretreated with a small molecule inhibitor of USP14, IU1, were activated and assessed for IκBα degradation as a measure of proteasomal proteolysis. While T cells obtained from young donors demonstrated increased degradation of IκBα, those from the elderly remained unaffected by IU1 pretreatment. Taken together, these results demonstrate that the decrease in proteolysis of proteasomal substrates during aging is independent of the increased USP14 activity and that the reciprocal regulation of USP14 and proteasomal catalytic activity may be necessary to maintain cellular ubiquitin homeostasis.
Collapse
Affiliation(s)
- Subramaniam Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|