601
|
Harding CM, Pulido MR, Di Venanzio G, Kinsella RL, Webb AI, Scott NE, Pachón J, Feldman MF. Pathogenic Acinetobacter species have a functional type I secretion system and contact-dependent inhibition systems. J Biol Chem 2017; 292:9075-9087. [PMID: 28373284 DOI: 10.1074/jbc.m117.781575] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/31/2017] [Indexed: 01/09/2023] Open
Abstract
Pathogenic Acinetobacter species, including Acinetobacter baumannii and Acinetobacter nosocomialis, are opportunistic human pathogens of increasing relevance worldwide. Although their mechanisms of drug resistance are well studied, the virulence factors that govern Acinetobacter pathogenesis are incompletely characterized. Here we define the complete secretome of A. nosocomialis strain M2 in minimal medium and demonstrate that pathogenic Acinetobacter species produce both a functional type I secretion system (T1SS) and a contact-dependent inhibition (CDI) system. Using bioinformatics, quantitative proteomics, and mutational analyses, we show that Acinetobacter uses its T1SS for exporting two putative T1SS effectors, an Repeats-in-Toxin (RTX)-serralysin-like toxin, and the biofilm-associated protein (Bap). Moreover, we found that mutation of any component of the T1SS system abrogated type VI secretion activity under nutrient-limited conditions, indicating a previously unrecognized cross-talk between these two systems. We also demonstrate that the Acinetobacter T1SS is required for biofilm formation. Last, we show that both A. nosocomialis and A. baumannii produce functioning CDI systems that mediate growth inhibition of sister cells lacking the cognate immunity protein. The Acinetobacter CDI systems are widely distributed across pathogenic Acinetobacter species, with many A. baumannii isolates harboring two distinct CDI systems. Collectively, these data demonstrate the power of differential, quantitative proteomics approaches to study secreted proteins, define the role of previously uncharacterized protein export systems, and observe cross-talk between secretion systems in the pathobiology of medically relevant Acinetobacter species.
Collapse
Affiliation(s)
- Christian M Harding
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Marina R Pulido
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110.,the Unit of Infectious Diseases, Microbiology, and Preventive Medicine and Biomedical Institute of Seville, University Hospital Virgen del Rocío/Consejo Superior de Investigaciones Científicas, University of Sevilla, 41004 Seville, Spain
| | - Gisela Di Venanzio
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Rachel L Kinsella
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110.,the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Andrew I Webb
- the Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia.,the Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia, and
| | - Nichollas E Scott
- the Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jerónimo Pachón
- the Unit of Infectious Diseases, Microbiology, and Preventive Medicine and Biomedical Institute of Seville, University Hospital Virgen del Rocío/Consejo Superior de Investigaciones Científicas, University of Sevilla, 41004 Seville, Spain
| | - Mario F Feldman
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110,
| |
Collapse
|
602
|
Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biol 2017; 15:e2001882. [PMID: 28323820 PMCID: PMC5360235 DOI: 10.1371/journal.pbio.2001882] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/22/2017] [Indexed: 01/12/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating the levels of plasma low-density lipoprotein cholesterol (LDL-C). Here, we demonstrate that the compound PF-06446846 inhibits translation of PCSK9 by inducing the ribosome to stall around codon 34, mediated by the sequence of the nascent chain within the exit tunnel. We further show that PF-06446846 reduces plasma PCSK9 and total cholesterol levels in rats following oral dosing. Using ribosome profiling, we demonstrate that PF-06446846 is highly selective for the inhibition of PCSK9 translation. The mechanism of action employed by PF-06446846 reveals a previously unexpected tunability of the human ribosome that allows small molecules to specifically block translation of individual transcripts. Many disease-mediating proteins have proven difficult to target with traditional small-molecule pharmaceuticals. In this paper, we report that a small molecule, PF-06446846, directly inhibits translation of one such protein, proprotein convertase subtilisin/kexin type 9 (PCSK9), by acting on the translating human ribosome. PF-06446846 causes the translating ribosome to stall soon after translating the PCSK9 signal sequence. We further show that PF-06446846 activity is dependent on the amino acid sequence of the nascent chain inside the ribosome exit tunnel. In a rat safety study, we observe decreases in plasma PCSK9, total cholesterol, and low-density lipoprotein (LDL) cholesterol. Using mass spectrometry in cell culture and ribosome profiling, we demonstrate that despite acting on the ribosome, which synthesizes every protein in the cell, PF-06446846 displays a high level of selectivity for PCSK9. This unexpected potential for small molecules to selectively inhibit the human ribosome opens the possibility for future development of small molecules targeting disease-mediating proteins that were previously thought to be undruggable.
Collapse
|
603
|
Garcia GR, Maruyama SR, Nelson KT, Ribeiro JMC, Gardinassi LG, Maia AAM, Ferreira BR, Kooyman FNJ, de Miranda Santos IKF. Immune recognition of salivary proteins from the cattle tick Rhipicephalus microplus differs according to the genotype of the bovine host. Parasit Vectors 2017; 10:144. [PMID: 28288696 PMCID: PMC5348738 DOI: 10.1186/s13071-017-2077-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/06/2017] [Indexed: 11/13/2022] Open
Abstract
Background Males of the cattle tick Rhipicephalus microplus produce salivary immunoglobulin-binding proteins and allotypic variations in IgG are associated with tick loads in bovines. These findings indicate that antibody responses may be essential to control tick infestations. Infestation loads with cattle ticks are heritable: some breeds carry high loads of reproductively successful ticks, in others, few ticks feed and they reproduce inefficiently. Different patterns of humoral immunity against tick salivary proteins may explain these phenotypes. Methods We describe the profiles of humoral responses against tick salivary proteins elicited during repeated artificial infestations of bovines of a tick-resistant (Nelore) and a tick-susceptible (Holstein) breed. We measured serum levels of total IgG1, IgG2 and IgE immunoglobulins and of IgG1 and IgG2 antibodies specific for tick salivary proteins. With liquid chromatography followed by mass spectrometry we identified tick salivary proteins that were differentially recognized by serum antibodies from tick-resistant and tick-susceptible bovines in immunoblots of tick salivary proteins separated by two-dimensional electrophoresis. Results Baseline levels of total IgG1 and IgG2 were significantly higher in tick-susceptible Holsteins compared with resistant Nelores. Significant increases in levels of total IgG1, but not of IgG2 accompanied successive infestations in both breeds. Resistant Nelores presented with significantly higher levels of salivary-specific antibodies before and at the first challenge with tick larvae; however, by the third challenge, tick-susceptible Holsteins presented with significantly higher levels of IgG1 and IgG2 tick salivary protein-specific antibodies. Importantly, sera from tick-resistant Nelores reacted with 39 tick salivary proteins in immunoblots of salivary proteins separated in two dimensions by electrophoresis versus only 21 spots reacting with sera from tick-susceptible Holsteins. Conclusions Levels of tick saliva-specific antibodies were not directly correlated with infestation phenotypes. However, in spite of receiving apparently lower amounts of tick saliva, tick-resistant bovines recognized more tick salivary proteins. These reactive salivary proteins are putatively involved in several functions of parasitism and blood-feeding. Our results indicate that neutralization by host antibodies of tick salivary proteins involved in parasitism is essential to control tick infestations. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2077-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gustavo Rocha Garcia
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sandra Regina Maruyama
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kristina T Nelson
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | - José Marcos Chaves Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Luiz Gustavo Gardinassi
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Augusto Mendes Maia
- Department of Basic Sciences, School of Animal Science and Food Technology, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Beatriz Rossetti Ferreira
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Maternal-Child Nursing and Public Health, Ribeirão Preto School of Nursing, USP, Ribeirão Preto, SP, Brazil
| | - Frans N J Kooyman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Isabel K F de Miranda Santos
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
604
|
Quanico J, Franck J, Wisztorski M, Salzet M, Fournier I. Integrated mass spectrometry imaging and omics workflows on the same tissue section using grid-aided, parafilm-assisted microdissection. Biochim Biophys Acta Gen Subj 2017; 1861:1702-1714. [PMID: 28300637 DOI: 10.1016/j.bbagen.2017.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND In spite of the number of applications describing the use of MALDI MSI, one of its major drawbacks is the limited capability of identifying multiple compound classes directly on the same tissue section. METHODS We demonstrate the use of grid-aided, parafilm-assisted microdissection to perform MALDI MS imaging and shotgun proteomics and metabolomics in a combined workflow and using only a single tissue section. The grid is generated by microspotting acid dye 25 using a piezoelectric microspotter, and this grid was used as a guide to locate regions of interest and as an aid during manual microdissection. Subjecting the dissected pieces to the modified Folch method allows to separate the metabolites from proteins. The proteins can then be subjected to digestion under controlled conditions to improve protein identification yields. RESULTS The proof of concept experiment on rat brain generated 162 and 140 metabolite assignments from three ROIs (cerebellum, hippocampus and midbrain/hypothalamus) in positive and negative modes, respectively, and 890, 1303 and 1059 unique proteins. Integrated metabolite and protein overrepresentation analysis identified pathways associated with the biological functions of each ROI, most of which were not identified when looking at the protein and metabolite lists individually. CONCLUSIONS This combined MALDI MS imaging and multi-omics approach further extends the amount of information that can be generated from single tissue sections. GENERAL SIGNIFICANCE To the best of our knowledge, this is the first report combining both imaging and multi-omics analyses in the same workflow and on the same tissue section.
Collapse
Affiliation(s)
- Jusal Quanico
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Julien Franck
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Maxence Wisztorski
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Michel Salzet
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Isabelle Fournier
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France.
| |
Collapse
|
605
|
Zhang C, Sun W, Tan M, Dong M, Liu W, Gao T, Li L, Xu Z, Zhou R. The Eukaryote-Like Serine/Threonine Kinase STK Regulates the Growth and Metabolism of Zoonotic Streptococcus suis. Front Cell Infect Microbiol 2017; 7:66. [PMID: 28326294 PMCID: PMC5339665 DOI: 10.3389/fcimb.2017.00066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Like eukaryotes, bacteria express one or more serine/threonine kinases (STKs) that initiate diverse signaling networks. The STK from Streptococcus suis is encoded by a single-copy stk gene, which is crucial in stress response and virulence. To further understand the regulatory mechanism of STK in S. suis, a stk deletion strain (Δstk) and its complementary strain (CΔstk) were constructed to systematically decode STK characteristics by applying whole transcriptome RNA sequencing (RNA-Seq) and phosphoproteomic analysis. Numerous genes were differentially expressed in Δstk compared with the wild-type parental strain SC-19, including 320 up-regulated and 219 down-regulated genes. Particularly, 32 virulence-associated genes (VAGs) were significantly down-regulated in Δstk. Seven metabolic pathways relevant to bacterial central metabolism and translation are significantly repressed in Δstk. Phosphoproteomic analysis further identified 12 phosphoproteins that exhibit differential phosphorylation in Δstk. These proteins are associated with cell growth and division, glycolysis, and translation. Consistently, phenotypic assays confirmed that the Δstk strain displayed deficient growth and attenuated pathogenicity. Thus, STK is a central regulator that plays an important role in cell growth and division, as well as S. suis metabolism.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Wen Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Meifang Tan
- Veterinary Medicine Laboratory, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences Nanchang, China
| | - Mengmeng Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Wanquan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Ting Gao
- Veterinary Medicine Laboratory, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| |
Collapse
|
606
|
A temporal proteome dynamics study reveals the molecular basis of induced phenotypic resistance in Mycobacterium smegmatis at sub-lethal rifampicin concentrations. Sci Rep 2017; 7:43858. [PMID: 28262820 PMCID: PMC5338346 DOI: 10.1038/srep43858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/31/2017] [Indexed: 12/24/2022] Open
Abstract
In the last 40 years only one new antitubercular drug has been approved, whilst resistance to current drugs, including rifampicin, is spreading. Here, we used the model organism Mycobacterium smegmatis to study mechanisms of phenotypic mycobacterial resistance, employing quantitative mass spectrometry-based proteomics to investigate the temporal effects of sub-lethal concentrations of rifampicin on the mycobacterial proteome at time-points corresponding to early response, onset of bacteriostasis and early recovery. Across 18 samples, a total of 3,218 proteins were identified from 31,846 distinct peptides averaging 16,250 identified peptides per sample. We found evidence that two component signal transduction systems (e.g. MprA/MprB) play a major role during initial mycobacterial adaptive responses to sub-lethal rifampicin and that, after dampening an initial SOS response, the bacteria supress the DevR (DosR) regulon and also upregulate their transcriptional and translational machineries. Furthermore, we found a co-ordinated dysregulation in haeme and mycobactin synthesis. Finally, gradual upregulation of the M. smegmatis-specific rifampin ADP-ribosyl transferase was observed which, together with upregulation of transcriptional and translational machinery, likely explains recovery of normal growth. Overall, our data indicates that in mycobacteria, sub-lethal rifampicin triggers a concerted phenotypic response that contrasts significantly with that observed at higher antimicrobial doses.
Collapse
|
607
|
Karbiener M, Darnhofer B, Frisch MT, Rinner B, Birner-Gruenberger R, Gugatschka M. Comparative proteomics of paired vocal fold and oral mucosa fibroblasts. J Proteomics 2017; 155:11-21. [PMID: 28099887 PMCID: PMC5389448 DOI: 10.1016/j.jprot.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
Injuries of the vocal folds frequently heal with scar formation, which can have lifelong detrimental impact on voice quality. Current treatments to prevent or resolve scars of the vocal fold mucosa are highly unsatisfactory. In contrast, the adjacent oral mucosa is mostly resistant to scarring. These differences in healing tendency might relate to distinct properties of the fibroblasts populating oral and vocal fold mucosae. We thus established the in vitro cultivation of paired, near-primary vocal fold fibroblasts (VFF) and oral mucosa fibroblasts (OMF) to perform a basic cellular characterization and comparative cellular proteomics. VFF were significantly larger than OMF, proliferated more slowly, and exhibited a sustained TGF-β1-induced elevation of pro-fibrotic interleukin 6. Cluster analysis of the proteomic data revealed distinct protein repertoires specific for VFF and OMF. Further, VFF displayed a broader protein spectrum, particularly a more sophisticated array of factors constituting and modifying the extracellular matrix. Conversely, subsets of OMF-enriched proteins were linked to cellular proliferation, nuclear events, and protection against oxidative stress. Altogether, this study supports the notion that fibroblasts sensitively adapt to the functional peculiarities of their respective anatomical location and presents several molecular targets for further investigation in the context of vocal fold wound healing. BIOLOGICAL SIGNIFICANCE Mammalian vocal folds are a unique but delicate tissue. A considerable fraction of people is affected by voice problems, yet many of the underlying vocal fold pathologies are sparsely understood at the molecular level. One such pathology is vocal fold scarring - the tendency of vocal fold injuries to heal with scar formation -, which represents a clinical problem with highly suboptimal treatment modalities. This study employed proteomics to obtain comprehensive insight into the protein repertoire of vocal fold fibroblasts, which are the cells that predominantly synthesize the extracellular matrix in both physiological and pathophysiological conditions. Protein profiles were compared to paired fibroblasts from the oral mucosa, a neighboring tissue that is remarkably resistant to scarring. Bioinformatic analyses of the data revealed a number of pathways as well as single proteins (e.g. ECM-remodeling factors, transcription factors, enzymes) that were significantly different between the two fibroblast types. Thereby, this study has revealed novel interesting molecular targets which can be analyzed in the future for their impact on vocal fold wound healing.
Collapse
Affiliation(s)
- Michael Karbiener
- Department of Phoniatrics, ENT University Hospital, Medical University of Graz, Austria.
| | - Barbara Darnhofer
- Research Unit, Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Austria; Omics Center Graz, BioTechMed-Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB), Austria
| | - Marie-Therese Frisch
- Core Facility Alternative Biomodels und Preclinical Imaging, Division of Biomedical Research, Medical University of Graz, Austria
| | - Beate Rinner
- Core Facility Alternative Biomodels und Preclinical Imaging, Division of Biomedical Research, Medical University of Graz, Austria
| | - Ruth Birner-Gruenberger
- Research Unit, Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Austria; Omics Center Graz, BioTechMed-Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB), Austria
| | - Markus Gugatschka
- Department of Phoniatrics, ENT University Hospital, Medical University of Graz, Austria
| |
Collapse
|
608
|
Hua X, Liu L, Fang Y, Shi Q, Li X, Chen Q, Shi K, Jiang Y, Zhou H, Yu Y. Colistin Resistance in Acinetobacter baumannii MDR-ZJ06 Revealed by a Multiomics Approach. Front Cell Infect Microbiol 2017; 7:45. [PMID: 28275586 PMCID: PMC5319971 DOI: 10.3389/fcimb.2017.00045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter baumannii has emerged as an important opportunistic pathogen due to its ability to acquire resistance to most currently available antibiotics. Colistin is often considered as the last line of therapy for infections caused by multidrug-resistant A. baumannii (MDRAB). However, colistin-resistant A. baumannii strain has recently been reported. To explore how multiple drug-resistant A. baumannii responded to colistin resistance, we compared the genomic, transcriptional and proteomic profile of A. baumannii MDR-ZJ06 to the induced colistin-resistant strain ZJ06-200P5-1. Genomic analysis showed that lpxC was inactivated by ISAba1 insertion, leading to LPS loss. Transcriptional analysis demonstrated that the colistin-resistant strain regulated its metabolism. Proteomic analysis suggested increased expression of the RND efflux pump system and down-regulation of FabZ and β-lactamase. These alterations were believed to be response to LPS loss. In summary, the lpxC mutation not only established colistin resistance but also altered global gene expression.
Collapse
Affiliation(s)
- Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| | - Lilin Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| | - Youhong Fang
- The Children's Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital Hangzhou, China
| | - Qiong Chen
- Hangzhou First People's Hospital Hangzhou, China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| | - Hua Zhou
- Department of Respiratory, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, China
| |
Collapse
|
609
|
Schwarzfischer P, Reinders J, Dettmer K, Kleo K, Dimitrova L, Hummel M, Feist M, Kube D, Szczepanowski M, Klapper W, Taruttis F, Engelmann JC, Spang R, Gronwald W, Oefner PJ. Comprehensive Metaboproteomics of Burkitt's and Diffuse Large B-Cell Lymphoma Cell Lines and Primary Tumor Tissues Reveals Distinct Differences in Pyruvate Content and Metabolism. J Proteome Res 2017; 16:1105-1120. [PMID: 28161958 DOI: 10.1021/acs.jproteome.6b00164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Burkitt's lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) are pathologically and clinically distinct subtypes of aggressive non-Hodgkin B-cell lymphoma. To learn more about their biology, we employed metabolomic and proteomic methods to study both established cell lines as well as cryopreserved and formalin-fixed paraffin-embedded (FFPE) tissue sections of BL and DLBCL. Strikingly, NMR analyses revealed DLBCL cell lines to produce and secrete significantly (padj = 1.72 × 10-22) more pyruvic acid than BL cell lines. This finding could be reproduced by targeted GC/MS analyses of cryopreserved tissue sections of BL and DLBCL cases. Enrichment analysis of an overlapping set of N = 2315 proteins, that had been quantified by nanoLC-SWATH-MS in BL and DLBCL cultured cells and cryosections, supported the observed difference in pyruvic acid content, as glycolysis and pyruvate metabolism were downregulated, while one-carbon metabolism was upregulated in BL compared to DLBCL. Furthermore, 92.1% of the overlapping significant proteins showed the same direction of regulation in cryopreserved and FFPE material. Proteome data are available via ProteomeXchange with identifier PXD004936.
Collapse
Affiliation(s)
| | | | | | - Karsten Kleo
- Institute of Pathology, Charité-University Medicine Berlin , Campus Benjamin Franklin, 10117 Berlin, Germany
| | - Lora Dimitrova
- Institute of Pathology, Charité-University Medicine Berlin , Campus Benjamin Franklin, 10117 Berlin, Germany
| | - Michael Hummel
- Institute of Pathology, Charité-University Medicine Berlin , Campus Benjamin Franklin, 10117 Berlin, Germany
| | - Maren Feist
- Department of Hematology and Oncology, University Medical Center Goettingen , 37073 Goettingen, Germany
| | - Dieter Kube
- Department of Hematology and Oncology, University Medical Center Goettingen , 37073 Goettingen, Germany
| | - Monika Szczepanowski
- Institute of Hematopathology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel , 24118 Kiel, Germany
| | - Wolfram Klapper
- Institute of Hematopathology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel , 24118 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
610
|
Zhang F, Xiao Y, Wang Y. SILAC-Based Quantitative Proteomic Analysis Unveils Arsenite-Induced Perturbation of Multiple Pathways in Human Skin Fibroblast Cells. Chem Res Toxicol 2017; 30:1006-1014. [PMID: 28140569 DOI: 10.1021/acs.chemrestox.6b00416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Humans are exposed to arsenic species through inhalation, ingestion, and dermal contact, which may lead to skin, liver, and bladder cancers as well as cardiovascular and neurological diseases. The mechanisms underlying the cytotoxic and carcinogenic effects of arsenic species, however, remain incompletely understood. To exploit the mechanisms of toxicity of As(III), we employed stable isotope labeling by amino acids in cell culture (SILAC) together with LC/MS/MS analysis to quantitatively assess the As(III)-induced perturbation of the entire proteome of cultured human skin fibroblast cells. Shotgun proteomic analysis on an LTQ-Orbitrap Velos mass spectrometer facilitated the quantification of 3880 proteins, 130 of which were quantified in both forward and reverse SILAC-labeling experiments and displayed significant alterations (>1.5 fold) upon arsenite treatment. Targeted analysis on a triple-quadrupole mass spectrometer in multiple-reaction monitoring (MRM) mode confirmed the quantification results of some select proteins. Ingenuity pathway analysis revealed the arsenite-induced alteration of more than 10 biological pathways, including the Nrf2-mediated oxidative stress response pathway, which is represented by the upregulation of nine proteins in this pathway. In addition, arsenite induced changes in expression levels of a number of selenoproteins and metallothioneins. Together, the results from the present study painted a more complete picture regarding the biological pathways that are altered in human skin fibroblast cells upon arsenite exposure.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Chemistry, University of California , Riverside, California 92521-0403, United States
| | - Yongsheng Xiao
- Department of Chemistry, University of California , Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California , Riverside, California 92521-0403, United States
| |
Collapse
|
611
|
Formin like 1 expression is increased on CD4+ T lymphocytes in spontaneous autoimmune uveitis. J Proteomics 2017; 154:102-108. [DOI: 10.1016/j.jprot.2016.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 12/27/2022]
|
612
|
Paiva ALS, Oliveira JTA, de Souza GA, Vasconcelos IM. Label-free Proteomic Reveals that Cowpea Severe Mosaic Virus Transiently Suppresses the Host Leaf Protein Accumulation During the Compatible Interaction with Cowpea (Vigna unguiculata [L.] Walp.). J Proteome Res 2016; 15:4208-4220. [PMID: 27934294 DOI: 10.1021/acs.jproteome.6b00211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Viruses are important plant pathogens that threaten diverse crops worldwide. Diseases caused by Cowpea severe mosaic virus (CPSMV) have drawn attention because of the serious damages they cause to economically important crops including cowpea. This work was undertaken to quantify and identify the responsive proteins of a susceptible cowpea genotype infected with CPSMV, in comparison with mock-inoculated controls, using label-free quantitative proteomics and databanks, aiming at providing insights on the molecular basis of this compatible interaction. Cowpea leaves were mock- or CPSMV-inoculated and 2 and 6 days later proteins were extracted and analyzed. More than 3000 proteins were identified (data available via ProteomeXchange, identifier PXD005025) and 75 and 55 of them differentially accumulated in response to CPSMV, at 2 and 6 DAI, respectively. At 2 DAI, 76% of the proteins decreased in amount and 24% increased. However, at 6 DAI, 100% of the identified proteins increased. Thus, CPSMV transiently suppresses the synthesis of proteins involved particularly in the redox homeostasis, protein synthesis, defense, stress, RNA/DNA metabolism, signaling, and other functions, allowing viral invasion and spread in cowpea tissues.
Collapse
Affiliation(s)
| | | | - Gustavo A de Souza
- Proteomics Core Facility, Institute of Immunology (IMM), Rikshospitalet , Oslo, Norway
| | | |
Collapse
|
613
|
Zhang Y, Zhang D, Li Q, Liang J, Sun L, Yi X, Chen Z, Yan R, Xie G, Li W, Liu S, Xu B, Li L, Yang J, He L, Shang Y. Nucleation of DNA repair factors by FOXA1 links DNA demethylation to transcriptional pioneering. Nat Genet 2016; 48:1003-1013. [PMID: 27500525 DOI: 10.1038/ng.3635] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/01/2016] [Indexed: 12/14/2022]
Abstract
FOXA1 functions in epigenetic reprogramming and is described as a 'pioneer factor'. However, exactly how FOXA1 achieves these remarkable biological functions is not fully understood. Here we report that FOXA1 associates with DNA repair complexes and is required for genomic targeting of DNA polymerase β (POLB) in human cells. Genome-wide DNA methylomes demonstrate that the FOXA1 DNA repair complex is functionally linked to DNA demethylation in a lineage-specific fashion. Depletion of FOXA1 results in localized reestablishment of methylation in a large portion of FOXA1-bound regions, and the regions with the most consistent hypermethylation exhibit the greatest loss of POLB and are represented by active promoters and enhancers. Consistently, overexpression of FOXA1 commits its binding sites to active DNA demethylation in a POLB-dependent manner. Finally, FOXA1-associated DNA demethylation is tightly coupled with estrogen receptor genomic targeting and estrogen responsiveness. Together, these results link FOXA1-associated DNA demethylation to transcriptional pioneering by FOXA1.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Di Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xia Yi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhe Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ruorong Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Guojia Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shumeng Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Bosen Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianguo Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lin He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|