601
|
Distinct melanization pathways in the mosquito Aedes aegypti. Immunity 2010; 32:41-53. [PMID: 20152169 DOI: 10.1016/j.immuni.2009.11.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 10/01/2009] [Accepted: 11/17/2009] [Indexed: 11/23/2022]
Abstract
Serine protease cascades are involved in blood coagulation and immunity. In arthropods, they regulate melanization, which plays an important role in immune defense and wound healing. However, the mechanisms underlying melanization pathways are not completely characterized. We found that in the mosquito Aedes aegypti, there are two distinct melanization activation pathways carried out by different modules of serine proteases and their specific inhibitors serpins. Immune melanization proteases (IMP-1 and IMP-2) and Serpin-1 mediate hemolymph prophenoloxidase cleavage and immune response against the malaria parasite. Tissue melanization, exemplified by the formation of melanotic tumors, is controlled by tissue melanization protease (CLIPB8), IMP-1, and Serpin-2. In addition, serine proteases CLIPB5 and CLIPB29 are involved in activation of Toll pathway by fungal infection or by infection-independent manner, respectively. Serpin-2 is implicated in the latter activation of Toll pathway. This study revealed the complexity underlying melanization and Toll pathway in mosquitoes.
Collapse
|
602
|
Tian C, Gao B, Fang Q, Ye G, Zhu S. Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective. BMC Genomics 2010; 11:187. [PMID: 20302637 PMCID: PMC2853521 DOI: 10.1186/1471-2164-11-187] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 03/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are an essential component of innate immunity which can rapidly respond to diverse microbial pathogens. Insects, as a rich source of AMPs, attract great attention of scientists in both understanding of the basic biology of the immune system and searching molecular templates for anti-infective drug design. Despite a large number of AMPs have been identified from different insect species, little information in terms of these peptides is available from parasitic insects. RESULTS By using integrated computational approaches to systemically mining the Hymenopteran parasitic wasp Nasonia vitripennis genome, we establish the first AMP repertoire whose members exhibit extensive sequence and structural diversity and can be distinguished into multiple molecular types, including insect and fungal defensin-like peptides (DLPs) with the cysteine-stabilized alpha-helical and beta-sheet (CSalphabeta) fold; Pro- or Gly-rich abaecins and hymenoptaecins; horseshoe crab tachystatin-type AMPs with the inhibitor cystine knot (ICK) fold; and a linear alpha-helical peptide. Inducible expression pattern of seven N. vitripennis AMP genes were verified, and two representative peptides were synthesized and functionally identified to be antibacterial. In comparison with Apis mellifera (Hymenoptera) and several non-Hymenopteran model insects, N. vitripennis has evolved a complex antimicrobial immune system with more genes and larger protein precursors. Three classical strategies that are likely responsible for the complexity increase have been recognized: 1) Gene duplication; 2) Exon duplication; and 3) Exon-shuffling. CONCLUSION The present study established the N. vitripennis peptidome associated with antimicrobial immunity by using a combined computational and experimental strategy. As the first AMP repertoire of a parasitic wasp, our results offer a basic platform for further studying the immunological and evolutionary significances of these newly discovered AMP-like genes in this class of insects.
Collapse
Affiliation(s)
- Caihuan Tian
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
603
|
|
604
|
Tanaka H, Suzuki N, Nakajima Y, Sato M, Sagisaka A, Fujita K, Ishibashi J, Imanishi S, Mita K, Yamakawa M. Expression profiling of novel bacteria-induced genes from the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 73:148-162. [PMID: 20077574 DOI: 10.1002/arch.20347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this study, we have newly identified three bacteria-induced genes from the silkworm Bombyx mori by quantitative reverse transcriptase-polymerase chain reaction. One of these, eukaryotic initiation factor 4E-1 (eIF4E-1), is assumed to encode an eIF4E family, which plays a role in the initiation of translation as a mRNA cap-binding protein. The second gene is BmFOXG1, belonging to a family of forkhead transcription factors, FOXG1. The third gene is MBF2-related (MBF2-R) whose product has high homology to a co-activator protein MBF2 from B. mori. Although BmFOXG1 was up-regulated in the fat body in response to three kinds of bacteria, Escherichia coli, Staphylococcus aureus, and Bacillus subtilis, eIF4E-1 and MBF2-R were up-regulated by E. coli and B. subtilis, but not S. aureus, suggesting that bacteria possessing meso-diaminopimelic acid-containing peptidoglycan but not lysine-containing peptidoglycan activate eIF4E-1 and MBF2-R, probably through a conserved immune deficiency pathway. We further profiled the expression of three genes in different tissues and a silkworm cell line, NIAS-Bm-aff3, in response to bacteria, and at different times after bacterial challenge in the fat body.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Innate Immunity Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
605
|
Gerardo NM, Altincicek B, Anselme C, Atamian H, Barribeau SM, de Vos M, Duncan EJ, Evans JD, Gabaldón T, Ghanim M, Heddi A, Kaloshian I, Latorre A, Moya A, Nakabachi A, Parker BJ, Pérez-Brocal V, Pignatelli M, Rahbé Y, Ramsey JS, Spragg CJ, Tamames J, Tamarit D, Tamborindeguy C, Vincent-Monegat C, Vilcinskas A. Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol 2010; 11:R21. [PMID: 20178569 PMCID: PMC2872881 DOI: 10.1186/gb-2010-11-2-r21] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 10/07/2009] [Accepted: 02/23/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent genomic analyses of arthropod defense mechanisms suggest conservation of key elements underlying responses to pathogens, parasites and stresses. At the center of pathogen-induced immune responses are signaling pathways triggered by the recognition of fungal, bacterial and viral signatures. These pathways result in the production of response molecules, such as antimicrobial peptides and lysozymes, which degrade or destroy invaders. Using the recently sequenced genome of the pea aphid (Acyrthosiphon pisum), we conducted the first extensive annotation of the immune and stress gene repertoire of a hemipterous insect, which is phylogenetically distantly related to previously characterized insects models. RESULTS Strikingly, pea aphids appear to be missing genes present in insect genomes characterized to date and thought critical for recognition, signaling and killing of microbes. In line with results of gene annotation, experimental analyses designed to characterize immune response through the isolation of RNA transcripts and proteins from immune-challenged pea aphids uncovered few immune-related products. Gene expression studies, however, indicated some expression of immune and stress-related genes. CONCLUSIONS The absence of genes suspected to be essential for the insect immune response suggests that the traditional view of insect immunity may not be as broadly applicable as once thought. The limitations of the aphid immune system may be representative of a broad range of insects, or may be aphid specific. We suggest that several aspects of the aphid life style, such as their association with microbial symbionts, could facilitate survival without strong immune protection.
Collapse
Affiliation(s)
- Nicole M Gerardo
- Department of Biology, Emory University, O Wayne Rollins Research Center, 1510 E. Clifton Road NE, Atlanta, GA, 30322, USA
| | - Boran Altincicek
- Interdisciplinary Research Center, Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Caroline Anselme
- Université de Lyon, INRA, INSA-Lyon, IFR41 BioEnvironnement et Santé, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Bat. Louis-Pasteur 20 ave Albert-Einstein, F-69621 Villeurbanne, France
- UMR Interactions Biotiques et Santé Végétale, INRA 1301-CNRS 6243-Université de Nice-Sophia Antipolis, 400 routes des Chappe, F-06903 Sophia-Antipolis cedex, France
| | - Hagop Atamian
- Department of Nematology, Graduate Program in Genetics, Genomics and Bioinformatics, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Seth M Barribeau
- Department of Biology, Emory University, O Wayne Rollins Research Center, 1510 E. Clifton Road NE, Atlanta, GA, 30322, USA
| | - Martin de Vos
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Elizabeth J Duncan
- Genetics Otago and The Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, Box 56, Dunedin 9054, New Zealand
| | - Jay D Evans
- USDA-ARS Bee Research Lab, BARC-East Bldg 476, Beltsville, MD 20705, USA
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Murad Ghanim
- Department of Entomology, The Volcani Center, Bet Dagan 50250, Israel
| | - Adelaziz Heddi
- Université de Lyon, INRA, INSA-Lyon, IFR41 BioEnvironnement et Santé, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Bat. Louis-Pasteur 20 ave Albert-Einstein, F-69621 Villeurbanne, France
| | - Isgouhi Kaloshian
- Department of Nematology, Graduate Program in Genetics, Genomics and Bioinformatics, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Amparo Latorre
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Avenida Blasco Ibañez 13, 46071 València, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp) and Centro Superior de Investigación en Salud Pública (CSISP), Conselleria de Sanidad (Generalitat Valenciana), Avenida de Cataluña 21, 46020 València, Spain
| | - Andres Moya
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Avenida Blasco Ibañez 13, 46071 València, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp) and Centro Superior de Investigación en Salud Pública (CSISP), Conselleria de Sanidad (Generalitat Valenciana), Avenida de Cataluña 21, 46020 València, Spain
| | - Atsushi Nakabachi
- Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Benjamin J Parker
- Department of Biology, Emory University, O Wayne Rollins Research Center, 1510 E. Clifton Road NE, Atlanta, GA, 30322, USA
| | - Vincente Pérez-Brocal
- Université de Lyon, INRA, INSA-Lyon, IFR41 BioEnvironnement et Santé, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Bat. Louis-Pasteur 20 ave Albert-Einstein, F-69621 Villeurbanne, France
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Avenida Blasco Ibañez 13, 46071 València, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp) and Centro Superior de Investigación en Salud Pública (CSISP), Conselleria de Sanidad (Generalitat Valenciana), Avenida de Cataluña 21, 46020 València, Spain
| | - Miguel Pignatelli
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Avenida Blasco Ibañez 13, 46071 València, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp) and Centro Superior de Investigación en Salud Pública (CSISP), Conselleria de Sanidad (Generalitat Valenciana), Avenida de Cataluña 21, 46020 València, Spain
| | - Yvan Rahbé
- Université de Lyon, INRA, INSA-Lyon, IFR41 BioEnvironnement et Santé, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Bat. Louis-Pasteur 20 ave Albert-Einstein, F-69621 Villeurbanne, France
| | - John S Ramsey
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Chelsea J Spragg
- Department of Biology, Emory University, O Wayne Rollins Research Center, 1510 E. Clifton Road NE, Atlanta, GA, 30322, USA
| | - Javier Tamames
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Avenida Blasco Ibañez 13, 46071 València, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp) and Centro Superior de Investigación en Salud Pública (CSISP), Conselleria de Sanidad (Generalitat Valenciana), Avenida de Cataluña 21, 46020 València, Spain
| | - Daniel Tamarit
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Avenida Blasco Ibañez 13, 46071 València, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp) and Centro Superior de Investigación en Salud Pública (CSISP), Conselleria de Sanidad (Generalitat Valenciana), Avenida de Cataluña 21, 46020 València, Spain
| | - Cecilia Tamborindeguy
- Plant Pathology and Plant-Microbe Biology Department, Cornell University, Tower Road, Ithaca, NY 14853, USA
- Department of Entomology, Texas A&M, College Station, TX 77843-2475, USA
| | - Caroline Vincent-Monegat
- Université de Lyon, INRA, INSA-Lyon, IFR41 BioEnvironnement et Santé, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Bat. Louis-Pasteur 20 ave Albert-Einstein, F-69621 Villeurbanne, France
| | - Andreas Vilcinskas
- Interdisciplinary Research Center, Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
606
|
Sadd BM, Kube M, Klages S, Reinhardt R, Schmid-Hempel P. Analysis of a normalised expressed sequence tag (EST) library from a key pollinator, the bumblebee Bombus terrestris. BMC Genomics 2010; 11:110. [PMID: 20156341 PMCID: PMC2838840 DOI: 10.1186/1471-2164-11-110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bumblebee, Bombus terrestris (Order Hymenoptera), is of widespread importance. This species is extensively used for commercial pollination in Europe, and along with other Bombus spp. is a key member of natural pollinator assemblages. Furthermore, the species is studied in a wide variety of biological fields. The objective of this project was to create a B. terrestris EST resource that will prove to be valuable in obtaining a deeper understanding of this significant social insect. RESULTS A normalised cDNA library was constructed from the thorax and abdomen of B. terrestris workers in order to enhance the discovery of rare genes. A total of 29'428 ESTs were sequenced. Subsequent clustering resulted in 13'333 unique sequences. Of these, 58.8 percent had significant similarities to known proteins, with 54.5 percent having a "best-hit" to existing Hymenoptera sequences. Comparisons with the honeybee and other insects allowed the identification of potential candidates for gene loss, pseudogene evolution, and possible incomplete annotation in the honeybee genome. Further, given the focus of much basic research and the perceived threat of disease to natural and commercial populations, the immune system of bumblebees is a particularly relevant component. Although the library is derived from unchallenged bees, we still uncover transcription of a number of immune genes spanning the principally described insect immune pathways. Additionally, the EST library provides a resource for the discovery of genetic markers that can be used in population level studies. Indeed, initial screens identified 589 simple sequence repeats and 854 potential single nucleotide polymorphisms. CONCLUSION The resource that these B. terrestris ESTs represent is valuable for ongoing work. The ESTs provide direct evidence of transcriptionally active regions, but they will also facilitate further functional genomics, gene discovery and future genome annotation. These are important aspects in obtaining a greater understanding of this key pollinator species.
Collapse
Affiliation(s)
- Ben M Sadd
- Institute of Integrative Biology (IBZ), ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
607
|
Gao B, Zhu S. Characterization of a hymenoptaecin-like antimicrobial peptide in the parasitic wasp Nasonia vitripennis. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
608
|
Abstract
The maintenance of the immune system can be costly, and a lack of dietary protein can increase the susceptibility of organisms to disease. However, few studies have investigated the relationship between protein nutrition and immunity in insects. Here, we tested in honeybees (Apis mellifera) whether dietary protein quantity (monofloral pollen) and diet diversity (polyfloral pollen) can shape baseline immunocompetence (IC) by measuring parameters of individual immunity (haemocyte concentration, fat body content and phenoloxidase activity) and glucose oxidase (GOX) activity, which enables bees to sterilize colony and brood food, as a parameter of social immunity. Protein feeding modified both individual and social IC but increases in dietary protein quantity did not enhance IC. However, diet diversity increased IC levels. In particular, polyfloral diets induced higher GOX activity compared with monofloral diets, including protein-richer diets. These results suggest a link between protein nutrition and immunity in honeybees and underscore the critical role of resource availability on pollinator health.
Collapse
Affiliation(s)
- Cédric Alaux
- INRA, UMR 406 Abeilles et Environnement, Laboratoire Biologie et Protection de l'abeille, Domaine Saint-Paul, Avignon, France.
| | | | | | | |
Collapse
|
609
|
Zhang Y, Zhao J, Zhang H, Gai Y, Wang L, Li F, Yang J, Qiu L, Song L. The involvement of suppressors of cytokine signaling 2 (SOCS2) in immune defense responses of Chinese mitten crab Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:42-48. [PMID: 19686773 DOI: 10.1016/j.dci.2009.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 08/05/2009] [Accepted: 08/08/2009] [Indexed: 05/28/2023]
Abstract
The suppressors of cytokine signaling 2 (SOCS2) has been identified as negative feedback inhibitors for various cytokines signaling via the JAK/STAT pathway. In the present studies, the cDNA of Eriocheir sinensis SOCS2 (designated as EsSOCS2) was cloned by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of EsSOCS2 was of 2535bp, consisting of an open reading frame (a ORF) of 1071bp encoding a polypeptide of 357 amino acids. The deduced amino acid sequence of EsSOCS2 shared 55-62% similarity with other SOCS2 family members. There were three typical conserved SOCS family domains in EsSOCS2, including an N-terminal ESS formed from a single amphipathic helix, a central SH2 domain with a classic phosphotyrosine (pY) site and a C-terminal SOCS box. The sequence and structural similarity of EsSOCS2 with SOCS2 proteins from other organisms indicated that EsSOCS2 should be a new member of the SOCS2 family. Phylogenetic analysis revealed that EsSOCS2 was clustered with SOCS2 from the other invertebrates, and fell into the group of type II SOCS subfamily as a sister branch to CIS and SOCS2 from vertebrate, suggesting the great divergence of SOCS2 of vertebrate from invertebrate and complex evolution of SOCS2 family members. The mRNA transcript of EsSOCS2 could be detected by semi-quantitative RT-PCR in all examined tissues of healthy crabs, including haemocytes, hepatopancreas, gill, muscle, heart and gonad. The mRNA expression of EsSOCS2 in haemocytes was up-regulated to 3.5-fold at 8h after Listonella anguillarum challenge, 3-fold and 3.5-fold at 4 and 6h, respectively, after Micrococcus luteus challenge. These results collectively suggested that EsSOCS2 could be induced by bacteria challenge, and it was involved in the immune defense responses in E. sinensis.
Collapse
Affiliation(s)
- Ying Zhang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
610
|
Alaux C, Brunet JL, Dussaubat C, Mondet F, Tchamitchan S, Cousin M, Brillard J, Baldy A, Belzunces LP, Le Conte Y. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ Microbiol 2009; 12:774-82. [PMID: 20050872 PMCID: PMC2847190 DOI: 10.1111/j.1462-2920.2009.02123.x] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Global pollinators, like honeybees, are declining in abundance and diversity, which can adversely affect natural ecosystems and agriculture. Therefore, we tested the current hypotheses describing honeybee losses as a multifactorial syndrome, by investigating integrative effects of an infectious organism and an insecticide on honeybee health. We demonstrated that the interaction between the microsporidia Nosema and a neonicotinoid (imidacloprid) significantly weakened honeybees. In the short term, the combination of both agents caused the highest individual mortality rates and energetic stress. By quantifying the strength of immunity at both the individual and social levels, we showed that neither the haemocyte number nor the phenoloxidase activity of individuals was affected by the different treatments. However, the activity of glucose oxidase, enabling bees to sterilize colony and brood food, was significantly decreased only by the combination of both factors compared with control, Nosema or imidacloprid groups, suggesting a synergistic interaction and in the long term a higher susceptibility of the colony to pathogens. This provides the first evidences that interaction between an infectious organism and a chemical can also threaten pollinators, interactions that are widely used to eliminate insect pests in integrative pest management.
Collapse
Affiliation(s)
- Cédric Alaux
- INRA, UMR 406 Abeilles et Environnement, Laboratoire Biologie et Protection de l'abeille, Site Agroparc, 84914 Avignon, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
611
|
Singh ND, Larracuente AM, Sackton TB, Clark AG. Comparative Genomics on the Drosophila Phylogenetic Tree. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2009. [DOI: 10.1146/annurev.ecolsys.110308.120214] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the sequencing of 12 complete euchromatic Drosophila genomes, the genus Drosophila is a leading model for comparative genomics. In this review, we discuss the novel insights into evolutionary processes afforded by the newly available genomic sequences when placed in the context of the phylogeny. We focus on three levels: insights into whole-genome content, such as changes in genome size and content across the phylogeny; insights into large-scale patterns of divergence and conservation, such as selective constraints on genes and chromosome-level evolution of sex chromosomes; and insights into finer-scale processes in individual lineages and genes, such as lineage-specific evolution in response to ecological context. As the field of comparative genomics is still young, we also discuss current challenges, such as the development of more sophisticated evolutionary models to capture nonequilibrium processes and the improvement of assembly and alignment algorithms to better capture uncertainty in the data.
Collapse
Affiliation(s)
- Nadia D. Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Amanda M. Larracuente
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Timothy B. Sackton
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
612
|
An C, Jiang H, Kanost MR. Proteolytic activation and function of the cytokine Spätzle in the innate immune response of a lepidopteran insect, Manduca sexta. FEBS J 2009; 277:148-62. [PMID: 19968713 DOI: 10.1111/j.1742-4658.2009.07465.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The innate immune response of insects includes induced expression of genes encoding a variety of antimicrobial peptides. The signaling pathways that stimulate this gene expression have been well characterized by genetic analysis in Drosophila melanogaster, but are not well understood in most other insect species. One such pathway involves proteolytic activation of a cytokine called Spätzle, which functions in dorsal-ventral patterning in early embryonic development and in the antimicrobial immune response in larvae and adults. We have investigated the function of Spätzle in a lepidopteran insect, Manduca sexta, in which hemolymph proteinases activated during immune responses have been characterized biochemically. Two cDNA isoforms for M. sexta Spätzle-1 differ because of alternative splicing, resulting in a 10 amino acid residue insertion in the pro-region of proSpätzle-1B that is not present in proSpätzle-1A. The proSpätzle-1A cDNA encodes a 32.7 kDa polypeptide that is 23% and 44% identical to D. melanogaster and Bombyx mori Spätzle-1, respectively. Recombinant proSpätzle-1A was a disulfide-linked homodimer. M. sexta hemolymph proteinase 8 cleaved proSpätzle-1A to release Spätzle-C108, a dimer of the C-terminal 108 residue cystine-knot domain. Injection of Spätzle-C108, but not proSpätzle-1A, into larvae stimulated expression of several antimicrobial peptides and proteins, including attacin-1, cecropin-6, moricin, lysozyme, and the immunoglobulin domain protein hemolin, but did not significantly affect the expression of two bacteria-inducible pattern recognition proteins, immulectin-2 and beta-1,3-glucan recognition protein-2. The results of this and other recent studies support a model for a pathway in which the clip-domain proteinase pro-hemolymph proteinase 6 becomes activated in plasma upon exposure to Gram-negative or Gram-positive bacteria or to beta-1,3-glucan. Hemolymph proteinase 6 then activates pro-hemolymph proteinase 8, which in turn activates Spätzle-1. The resulting Spätzle-C108 dimer is likely to function as a ligand to activate a Toll pathway in M. sexta as a response to a wide variety of microbial challenges, stimulating a broad response to infection. Structured digital abstract * MINT-7295125: Spätzle 1A (uniprotkb:C8BMD1) and Spätzle 1A (uniprotkb:C8BMD1) bind (MI:0407) by comigration in gel electrophoresis (MI:0807).
Collapse
Affiliation(s)
- Chunju An
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
613
|
Aronstein KA, Murray KD. Chalkbrood disease in honey bees. J Invertebr Pathol 2009; 103 Suppl 1:S20-9. [PMID: 19909969 DOI: 10.1016/j.jip.2009.06.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 06/30/2009] [Indexed: 11/27/2022]
Abstract
Chalkbrood is a fungal disease of honey bee brood caused by Ascosphaera apis. This disease is now found throughout the world, and there are indications that chalkbrood incidence may be on the rise. In this review we consolidate both historic knowledge and recent scientific findings. We document the worldwide spread of the fungus, which is aided by increased global travel and the migratory nature of many beekeeping operations. We discuss the current taxonomic classification in light of the recent complete reworking of fungal systematics brought on by application of molecular methods. In addition, we discuss epidemiology and pathogenesis of the disease, as well as pathogen biology, morphology and reproduction. New attempts at disease control methods and management tactics are reviewed. We report on research tools developed for identification and monitoring, and also include recent findings on genomic and molecular studies not covered by previous reviews, including sequencing of the A. apis genome and identification of the mating type locus.
Collapse
Affiliation(s)
- K A Aronstein
- Honey Bee Research Unit, USDA-ARS, Weslaco, TX 78596, USA.
| | | |
Collapse
|
614
|
Evans JD, Spivak M. Socialized medicine: individual and communal disease barriers in honey bees. J Invertebr Pathol 2009; 103 Suppl 1:S62-72. [PMID: 19909975 DOI: 10.1016/j.jip.2009.06.019] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/30/2009] [Indexed: 11/16/2022]
Abstract
Honey bees are attacked by numerous parasites and pathogens toward which they present a variety of individual and group-level defenses. In this review, we briefly introduce the many pathogens and parasites afflicting honey bees, highlighting the biology of specific taxonomic groups mainly as they relate to virulence and possible defenses. Second, we describe physiological, immunological, and behavioral responses of individual bees toward pathogens and parasites. Third, bees also show behavioral mechanisms for reducing the disease risk of their nestmates. Accordingly, we discuss the dynamics of hygienic behavior and other group-level behaviors that can limit disease. Finally, we conclude with several avenues of research that seem especially promising for understanding host-parasite relationships in bees and for developing breeding or management strategies for enhancing honey bee health. We discuss how human efforts to maintain healthy colonies intersect with similar efforts by the bees, and how bee management and breeding protocols can affect disease traits in the short and long term.
Collapse
Affiliation(s)
- Jay D Evans
- USDA-ARS Bee Research Lab, BARC-East Bldg. 476, Beltsville, MD 20705, USA.
| | | |
Collapse
|
615
|
Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD. A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:792-800. [PMID: 19786100 DOI: 10.1016/j.ibmb.2009.09.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/07/2009] [Accepted: 09/21/2009] [Indexed: 05/28/2023]
Abstract
The complete antimicrobial peptide repertoire of Galleria mellonella was investigated for the first time by LC/MS. Combining data from separate trypsin, Glu-C and Asp-N digests of immune hemolymph allowed detection of 18 known or putative G. mellonella antimicrobial peptides or proteins, namely lysozyme, moricin-like peptides (5), cecropins (2), gloverin, Gm proline-rich peptide 1, Gm proline-rich peptide 2, Gm anionic peptide 1 (P1-like), Gm anionic peptide 2, galiomicin, gallerimycin, inducible serine protease inhibitor 2, 6tox and heliocin-like peptide. Six of these were previously known only as nucleotide sequences, so this study provides the first evidence for expression of these genes. LC/MS data also provided insight into the expression and processing of the antimicrobial Gm proline-rich peptide 1. The gene for this peptide was isolated and shown to be unique to moths and to have an unusually long precursor region (495 bp). The precursor region contained other proline-rich peptides and LC/MS data suggested that these were being specifically processed and were present in hemolymph at very high levels. This study shows that G. mellonella can concurrently release an impressive array of at least 18 known or putative antimicrobial peptides from 10 families to defend itself against invading microbes.
Collapse
|
616
|
Xu J, James R. Genes related to immunity, as expressed in the alfalfa leafcutting bee, Megachile rotundata, during pathogen challenge. INSECT MOLECULAR BIOLOGY 2009; 18:785-794. [PMID: 19863668 DOI: 10.1111/j.1365-2583.2009.00927.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Virtually nothing is known about disease resistance in solitary bees, so expressed sequence tag (EST) databases were developed to search for immune response genes in the alfalfa leafcutting bee. We identified 104 putative immunity-related genes from both healthy and pathogen-challenged bee larvae, and 12 more genes using PCR amplification. The genes identified coded for proteins with a wide variety of innate immune response functions, including pathogen recognition, phagocytosis, the prophenoloxidase cascade, melanization, coagulation and several signalling pathways. Some immune response genes were highly conserved with honey bee genes, and more distantly related to other insects. The data presented provides the first analysis of immune function in a solitary bee and provides a foundation for the further analysis of gene expression patterns in bees.
Collapse
Affiliation(s)
- J Xu
- Utah State University, Department of Biology, North Logan, UT 84322-5310, USA
| | | |
Collapse
|
617
|
Chapelle M, Girard PA, Cousserans F, Volkoff NA, Duvic B. Lysozymes and lysozyme-like proteins from the fall armyworm, Spodoptera frugiperda. Mol Immunol 2009; 47:261-9. [PMID: 19828200 DOI: 10.1016/j.molimm.2009.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 09/10/2009] [Indexed: 12/24/2022]
Abstract
Lysozyme is an important component of the insect non-specific immune response against bacteria that is characterized by its ability to break down bacterial cell-walls. By searching an EST database from the fall armyworm, Spodoptera frugiperda (Negre et al., 2006), we identified five sequences encoding proteins of the lysozyme family. The deduced protein sequences corresponded to three classical c-type lysozymes Sf-Lys1, Sf-Lys2 and Sf-Lys3, and two lysozyme-like proteins, Sf-LLP1 and Sf-LLP2. Sf-Lys1 was purified from the hemolymph of Escherichia coli-challenged S. frugiperda larvae. The mature protein had a molecular mass of 13.975 Da with an isoelectric point of 8.77 and showed 98.3% and 96.7% identity with lysozymes from Spodoptera litura and Spodoptera exigua, respectively. As the other insect lysozymes, Sf-Lys1 was active against gram positive bacteria such as Micrococcus luteus but also induced a slight permeabilization of the inner membrane of E. coli. Genes encoding these five Sf-Lys or Sf-LLPs were differentially up-regulated in three immune-competent tissues (hemocytes, fat body and gut) after challenges with non-pathogenic bacteria, E. coli and M. luteus, or entomopathogenic bacterium, Photorhabdus luminescens. Sf-Lys1 and Sf-Lys2 were mainly induced in fat body in the presence of E. coli or P. luminescens. Sf-Lys3, which had an acidic isoelectric point, was found to be the most up-regulated of all five Sf-Lys or Sf-LLPs in hemocytes and gut after challenge with P. luminescens. More molecular data are now available to investigate differences in physiological functions of these different members of the lysozyme superfamily.
Collapse
Affiliation(s)
- Michael Chapelle
- UMR INRA-UM2 1133, Laboratoire Ecologie Microbienne des insectes et Interactions hôtes-Pathogènes, Université de Montpellier 2, Montpellier cedex 05, France
| | | | | | | | | |
Collapse
|
618
|
Li X, Yu M, Zhu M. Innate immune signaling pathways in animals: beyond reductionism. Int Rev Immunol 2009; 28:207-38. [PMID: 19811322 DOI: 10.1080/08830180902839777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The immune system plays a crucial role in the maintenance of the stability and equilibrium of the internal environment in living organisms. The field of animal innate immunity has been the global focus of immunological research for decades. It is now known that the functions of innate immunity inevitably rely on the action of the molecular machines of the cascades or network of immune signaling pathways. Up to date, many researches on the immune signaling pathways in animals were focused on identifying the component functions or cascade molecules in details, which essentially followed a reductionist paradigm without paying high attention to the integrated features. The main purpose of this article was dedicated to accentuating the shift of this field from a reductionist to a systemic view. First, the former part of this article made efforts to summarize the main aspects of the signaling pathways of animal innate immunity including the web resources, the recapitulation of highlighted pathways, the cross-talks, and the evolutionary considerations, which heavily emphasized the integrated characteristics of the immune signaling pathways. Subsequently, the later part of this article was based on the holistic feature of the immune signaling pathways, mainly dedicated to propose a novel hypothesis. From a whole perspective, the oscillating balance hypothesis was deliberately formulated to characterize the holistic pattern of the signaling transduction network of animal innate immune system, which might help to understand some immunological phenomena through the integral principle of the immune network.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | | | | |
Collapse
|
619
|
Ursic-Bedoya R, Buchhop J, Lowenberger C. Cloning and characterization of Dorsal homologues in the hemipteran Rhodnius prolixus. INSECT MOLECULAR BIOLOGY 2009; 18:681-9. [PMID: 19754745 DOI: 10.1111/j.1365-2583.2009.00909.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rhodnius prolixus is an ancient haematophagous hemipteran insect capable of mounting a powerful immune response. This response is transcriptionally regulated in part by transcription factors of the Rel/Nuclear Factor kappa B (Rel/NF-kappaB) family. We have cloned and characterized three members of this transcription factor family in this insect. Dorsal 1A is primarily expressed in early developmental stages. In contrast, dorsal 1B and 1C, both differentially spliced products of dorsal 1A, are expressed primarily in the adult fat body in response to septic injury, suggesting their exclusive role in immunity. Additionally, we identified putative kappaB binding sites in the 5' upstream regions of target genes known to be involved in the innate immune response of insects.
Collapse
Affiliation(s)
- R Ursic-Bedoya
- Department of Biological Sciences, Simon Fraser University, Burnaby BC, Canada.
| | | | | |
Collapse
|
620
|
Destoumieux-Garzón D, Brehelin M, Bulet P, Boublik Y, Girard PA, Baghdiguian S, Zumbihl R, Escoubas JM. Spodoptera frugiperda X-tox protein, an immune related defensin rosary, has lost the function of ancestral defensins. PLoS One 2009; 4:e6795. [PMID: 19710910 PMCID: PMC2728511 DOI: 10.1371/journal.pone.0006795] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/20/2009] [Indexed: 11/21/2022] Open
Abstract
Background X-tox proteins are a family of immune-related proteins only found in Lepidoptera and characterized by imperfectly conserved tandem repeats of several defensin-like motifs. Previous phylogenetic analysis of X-tox genes supported the hypothesis that X-tox have evolved from defensins in a lineage-specific gene evolution restricted to Lepidoptera. In this paper, we performed a protein study in which we asked whether X-tox proteins have conserved the antimicrobial functions of their ancestral defensins and have evolved as defensin reservoirs. Methodology/Principal Findings We followed the outcome of Spod-11-tox, an X-tox protein characterized in Spodoptera frugiperda, in bacteria-challenged larvae using both immunochemistry and antimicrobial assays. Three hours post infection, the Spod-11-tox protein was expressed in 80% of the two main classes of circulating hemocytes (granulocytes and plasmatocytes). Located in secretory granules of hemocytes, Spod-11-tox was never observed in contact with microorganisms entrapped within phagolyzosomes showing that Spod-11-tox is not involved in intracellular pathogen killing. In fact, the Spod-11-tox protein was found to be secreted into the hemolymph of experimentally challenged larvae. In order to determine antimicrobial properties of the Spod-11-tox protein, it was consequently fractionated according to a protocol frequently used for antimicrobial peptide purification. Over the course of purification, the anti-Spod-11-tox immunoreactivity was found to be dissociated from the antimicrobial activity. This indicates that Spod-11-tox is not processed into bioactive defensins in response to a microbial challenge. Conclusions/Significance Altogether, our results show that X-tox proteins have not evolved as defensin reservoirs and have lost the antimicrobial properties of the ancestral insect defensins. The lepidopteran X-tox protein family will provide a valuable and tractable model to improve our knowledge on the molecular evolution of defensins, a class of innate immune effectors largely distributed over the three eukaryotic kingdoms.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- CNRS, UMR5119 Laboratoire Ecosystèmes Lagunaires, CC80, Montpellier, France
- IFREMER, UMR 5119 Laboratoire Ecosystèmes Lagunaires, CC80, Montpellier, France
- Université Montpellier 2, UMR5119 Laboratoire Ecosystèmes Lagunaires, CC80, Montpellier, France
| | - Michel Brehelin
- INRA, UMR 1133 Laboratoire Écologie Microbienne des Insectes et Interactions Hôte-Pathogène (EMIP), CC54, Montpellier, France
- Université Montpellier 2, UMR1133 Laboratoire EMIP, CC54, Montpellier, France
| | - Philippe Bulet
- Université Joseph Fourier, CNRS, UMR5525, TIMC-IMAG, Bat Le Forum Plateforme BioPark d'Archamps, Archamps, France
| | - Yvan Boublik
- CNRS, UMR5237 Plateforme Protéines recombinantes, Montpellier, France
| | - Pierre-Alain Girard
- INRA, UMR 1133 Laboratoire Écologie Microbienne des Insectes et Interactions Hôte-Pathogène (EMIP), CC54, Montpellier, France
- Université Montpellier 2, UMR1133 Laboratoire EMIP, CC54, Montpellier, France
| | - Stephen Baghdiguian
- Université Montpellier 2, CNRS, Institut des sciences de l'évolution UMR5554, CC63, Montpellier, France
| | - Robert Zumbihl
- INRA, UMR 1133 Laboratoire Écologie Microbienne des Insectes et Interactions Hôte-Pathogène (EMIP), CC54, Montpellier, France
- Université Montpellier 2, UMR1133 Laboratoire EMIP, CC54, Montpellier, France
| | - Jean-Michel Escoubas
- INRA, UMR 1133 Laboratoire Écologie Microbienne des Insectes et Interactions Hôte-Pathogène (EMIP), CC54, Montpellier, France
- Université Montpellier 2, UMR1133 Laboratoire EMIP, CC54, Montpellier, France
- * E-mail:
| |
Collapse
|
621
|
Chan QWT, Melathopoulos AP, Pernal SF, Foster LJ. The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae. BMC Genomics 2009; 10:387. [PMID: 19695106 PMCID: PMC2907699 DOI: 10.1186/1471-2164-10-387] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 08/21/2009] [Indexed: 11/22/2022] Open
Abstract
Background There is a major paradox in our understanding of honey bee immunity: the high population density in a bee colony implies a high rate of disease transmission among individuals, yet bees are predicted to express only two-thirds as many immunity genes as solitary insects, e.g., mosquito or fruit fly. This suggests that the immune response in bees is subdued in favor of social immunity, yet some specific immune factors are up-regulated in response to infection. To explore the response to infection more broadly, we employ mass spectrometry-based proteomics in a quantitative analysis of honey bee larvae infected with the bacterium Paenibacillus larvae. Newly-eclosed bee larvae, in the second stage of their life cycle, are susceptible to this infection, but become progressively more resistant with age. We used this host-pathogen system to probe not only the role of the immune system in responding to a highly evolved infection, but also what other mechanisms might be employed in response to infection. Results Using quantitative proteomics, we compared the hemolymph (insect blood) of five-day old healthy and infected honey bee larvae and found a strong up-regulation of some metabolic enzymes and chaperones, while royal jelly (food) and energy storage proteins were down-regulated. We also observed increased levels of the immune factors prophenoloxidase (proPO), lysozyme and the antimicrobial peptide hymenoptaecin. Furthermore, mass spectrometry evidence suggests that healthy larvae have significant levels of catalytically inactive proPO in the hemolymph that is proteolytically activated upon infection. Phenoloxidase (PO) enzyme activity was undetectable in one or two-day-old larvae and increased dramatically thereafter, paralleling very closely the age-related ability of larvae to resist infection. Conclusion We propose a model for the host response to infection where energy stores and metabolic enzymes are regulated in concert with direct defensive measures, such as the massive enhancement of PO activity.
Collapse
Affiliation(s)
- Queenie W T Chan
- Centre for High-Throughput Biology and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | | | | | | |
Collapse
|
622
|
Abstract
Diverse animals have evolved an ability to collect antimicrobial compounds from the environment as a means of reducing infection risk. Honey bees battle an extensive assemblage of pathogens with both individual and "social" defenses. We determined if the collection of resins, complex plant secretions with diverse antimicrobial properties, acts as a colony-level immune defense by honey bees. Exposure to extracts from two sources of honey bee propolis (a mixture of resins and wax) led to a significantly lowered expression of two honey bee immune-related genes (hymenoptaecin and AmEater in Brazilian and Minnesota propolis, respectively) and to lowered bacterial loads in the Minnesota (MN) propolis treated colonies. Differences in immune expression were also found across age groups (third-instar larvae, 1-day-old and 7-day-old adults) irrespective of resin treatment. The finding that resins within the nest decrease investment in immune function of 7-day-old bees may have implications for colony health and productivity. This is the first direct evidence that the honey bee nest environment affects immune-gene expression.
Collapse
Affiliation(s)
- Michael Simone
- Department of Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, St. Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
623
|
Sackton TB, Clark AG. Comparative profiling of the transcriptional response to infection in two species of Drosophila by short-read cDNA sequencing. BMC Genomics 2009; 10:259. [PMID: 19500410 PMCID: PMC2701966 DOI: 10.1186/1471-2164-10-259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 06/07/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homology-based comparisons of the genes involved in innate immunity across many insect taxa with fully sequenced genomes has revealed a striking pattern of gene gain and loss, particularly among genes that encode proteins involved in clearing pathogens (effectors). However, limited functional annotation in non-model systems has hindered understanding of evolutionary novelties in the insect innate immune system. RESULTS We use short read sequencing technology (Illumina/Solexa) to compare the transcriptional response to infection between the well studied model system Drosophila melanogaster and the distantly related drosophilid D. virilis. We first demonstrate that Illumina/Solexa sequencing of cDNA from infected and uninfected D. melanogaster recapitulates previously published microarray studies of the transcriptional response to infection in this species, validating our approach. We then show that patterns of transcription of homologous genes differ considerably between D. melanogaster and D. virilis, and identify potential candidates for novel components of the D. virilis immune system based on transcriptional data. Finally, we use a proteomic approach to characterize the protein constituents of the D. virilis hemolymph and validate our transcriptional data. CONCLUSION These results suggest that the acquisition of novel components of the immune system, and particularly novel effector proteins, may be a common evolutionary phenomenon.
Collapse
Affiliation(s)
- Timothy B Sackton
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
624
|
Cornman RS, Chen YP, Schatz MC, Street C, Zhao Y, Desany B, Egholm M, Hutchison S, Pettis JS, Lipkin WI, Evans JD. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathog 2009; 5:e1000466. [PMID: 19503607 PMCID: PMC2685015 DOI: 10.1371/journal.ppat.1000466] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/05/2009] [Indexed: 11/19/2022] Open
Abstract
Recent steep declines in honey bee health have severely impacted the beekeeping industry, presenting new risks for agricultural commodities that depend on insect pollination. Honey bee declines could reflect increased pressures from parasites and pathogens. The incidence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we present a draft assembly (7.86 MB) of the N. ceranae genome derived from pyrosequence data, including initial gene models and genomic comparisons with other members of this highly derived fungal lineage. N. ceranae has a strongly AT-biased genome (74% A+T) and a diversity of repetitive elements, complicating the assembly. Of 2,614 predicted protein-coding sequences, we conservatively estimate that 1,366 have homologs in the microsporidian Encephalitozoon cuniculi, the most closely related published genome sequence. We identify genes conserved among microsporidia that lack clear homology outside this group, which are of special interest as potential virulence factors in this group of obligate parasites. A substantial fraction of the diminutive N. ceranae proteome consists of novel and transposable-element proteins. For a majority of well-supported gene models, a conserved sense-strand motif can be found within 15 bases upstream of the start codon; a previously uncharacterized version of this motif is also present in E. cuniculi. These comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and will drive investigations into honey bee–Nosema interactions. Honey bee colonies are in decline in many parts of the world, in part due to pressures from a diverse assemblage of parasites and pathogens. The range and prevalence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we describe the N. ceranae genome, presenting genome traits, gene models and regulatory motifs. N. ceranae has an extremely reduced and AT-biased genome, yet one with substantial numbers of repetitive elements. We identify novel genes that appear to be conserved among microsporidia but undetected outside this phylum, which are of special interest as potential virulence factors for these obligate pathogens. A previously unrecognized motif is found upstream of many start codons and likely plays a role in gene regulation across the microsporidia. These and other comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and provide the first genetic tools for understanding how this pathogen interacts with honey bee hosts.
Collapse
Affiliation(s)
- R. Scott Cornman
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
| | - Yan Ping Chen
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
| | - Michael C. Schatz
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Craig Street
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Yan Zhao
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | - Brian Desany
- 454 Life Sciences/Roche Applied Sciences, Branford, Connecticut, United States of America
| | - Michael Egholm
- 454 Life Sciences/Roche Applied Sciences, Branford, Connecticut, United States of America
| | - Stephen Hutchison
- 454 Life Sciences/Roche Applied Sciences, Branford, Connecticut, United States of America
| | - Jeffery S. Pettis
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Jay D. Evans
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
625
|
Abstract
PURPOSE OF REVIEW Modern techniques in genomic and protein research are applied to the study of stinging and biting insect allergens. RECENT FINDINGS Three-dimensional structures of additional insect venom and salivary allergens have been determined. An approach to determining B-cell epitopes has been used for hyaluronidase. A number of new venom and salivary allergens have been characterized. The structures and significance of several insect allergens have been updated. Investigations continue into distinguishing venom crossreactivity from multiple sensitization. Further studies are clarifying the significance of carbohydrate epitopes. Genomic and proteomic techniques are being used in the investigation of proteins and peptides in insect venom and saliva. SUMMARY The nature of venom crossreactivity and the B-cell and T-cell epitope structures of insect venom and salivary allergens are beginning to be elucidated.
Collapse
|
626
|
Lourenço AP, Martins JR, Bitondi MMG, Simões ZLP. Trade-off between immune stimulation and expression of storage protein genes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 71:70-87. [PMID: 19309002 DOI: 10.1002/arch.20301] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proteins stored in insect hemolymph may serve as a source of amino acids and energy for metabolism and development. The expression of the main storage proteins was assessed in bacterial-challenged honey bees using real-time (RT)-PCR and Western blot. After ensuring that the immune system had been activated by measuring the ensuing expression of the innate immune response genes, defensin-1 (def-1) and prophenoloxidase (proPO), we verified the expression of four genes encoding storage proteins. The levels of vitellogenin (vg) mRNA and of the respective protein were significantly lowered in bees injected with bacteria or water only (injury). An equivalent response was observed in orally-infected bees. The levels of apolipophorin II/I (apoLp-II/I) and hexamerin (hex 70a) mRNAs did not significantly change, but levels of Hex 70a protein subunit showed a substantial decay after bacterial challenge or injury. Infection also caused a strong reduction in the levels of apoLp-III transcripts. Our findings are consistent with a down-regulation of the expression and accumulation of storage proteins as a consequence of activation of the immune system, suggesting that this phenomenon represents a strategy to redirect resources to combat injury or infection.
Collapse
Affiliation(s)
- Anete P Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | |
Collapse
|
627
|
Chauzat MP, Carpentier P, Martel AC, Bougeard S, Cougoule N, Porta P, Lachaize J, Madec F, Aubert M, Faucon JP. Influence of pesticide residues on honey bee (Hymenoptera: Apidae) colony health in France. ENVIRONMENTAL ENTOMOLOGY 2009; 38:514-23. [PMID: 19508759 DOI: 10.1603/022.038.0302] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A 3-yr field survey was carried out in France, from 2002 to 2005, to study honey bee (Apis mellifera L.) colony health in relation to pesticide residues found in the colonies. This study was motivated by recent massive losses of honey bee colonies, and our objective was to examine the possible relationship between low levels of pesticide residues in apicultural matrices (honey, pollen collected by honey bees, beeswax) and colony health as measured by colony mortality and adult and brood population abundance. When all apicultural matrices were pooled together, the number of pesticide residue detected per sampling period (four sampling periods per year) and per apiary ranged from 0 to 9, with the most frequent being two (29.6%). No pesticide residues were detected during 12.7% of the sampling periods. Residues of imidacloprid and 6- chloronicotinic acid were the most frequently detected in pollen loads, honey, and honey bee matrices. Several pairs of active ingredients were present concurrently within honey bees and in pollen loads but not in beeswax and honey samples. No statistical relationship was found between colony mortality and pesticide residues. When pesticide residues from all matrices were pooled together, a mixed model analysis did not show a significant relationship between the presence of pesticide residues and the abundance of brood and adults, and no statistical relationship was found between colony mortality and pesticide residues. Thus, although certain pesticide residues were detected in apicultural matrices and occasionally with another pesticide residual, more work is needed to determine the role these residues play in affecting colony health.
Collapse
Affiliation(s)
- Marie-Pierre Chauzat
- AFSSA LERPRA Les Templiers, 105 route des Chappes, B.P. 111, F-06 902 Sophia-Antipolis cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
628
|
Viljakainen L, Pamilo P. Selection on an antimicrobial peptide defensin in ants. J Mol Evol 2009; 67:643-52. [PMID: 18956133 DOI: 10.1007/s00239-008-9173-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 10/06/2008] [Indexed: 11/26/2022]
Abstract
Ants live in crowded nests with interacting individuals, which makes them particularly prone to infectious diseases. The question is, how do ants cope with the increased risk of pathogen transmission due to sociality? We have studied the molecular evolution of defensin, a gene encoding an antimicrobial protein, in ants. Defensin sequences from several ant species were analyzed with maximum likelihood models of codon substitution to infer selection. Positive selection was detected in the mature region of defensin, whereas the signal and pro regions seem to be evolving neutrally. We also found a significantly higher rate of nonsynonymous substitutions in some phylogenetic lineages, as well as dN/dS >1, suggesting varying selection pressures in different lineages. Earlier studies on the molecular evolution of insect antimicrobial peptide genes have focused on termites and dipteran species, and detected positive selection only in duplicated termicin genes in termites. These findings, together with our present results, provide an indication that the immune systems of social insects (ants and termites) and dipteran insects may have responded differently to the selection pressure caused by microbial pathogens.
Collapse
Affiliation(s)
- Lumi Viljakainen
- Department of Biology and Biocenter Oulu, University of Oulu, P.O. Box 3000, Oulu 90014, Finland.
| | | |
Collapse
|
629
|
Viljakainen L, Evans JD, Hasselmann M, Rueppell O, Tingek S, Pamilo P. Rapid Evolution of Immune Proteins in Social Insects. Mol Biol Evol 2009; 26:1791-801. [DOI: 10.1093/molbev/msp086] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
630
|
McTaggart SJ, Conlon C, Colbourne JK, Blaxter ML, Little TJ. The components of the Daphnia pulex immune system as revealed by complete genome sequencing. BMC Genomics 2009; 10:175. [PMID: 19386092 PMCID: PMC2685406 DOI: 10.1186/1471-2164-10-175] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 04/22/2009] [Indexed: 01/08/2023] Open
Abstract
Background Branchiopod crustaceans in the genus Daphnia are key model organisms for investigating interactions between genes and the environment. One major theme of research on Daphnia species has been the evolution of resistance to pathogens and parasites, but lack of knowledge of the Daphnia immune system has limited the study of immune responses. Here we provide a survey of the immune-related genome of D. pulex, derived from the newly completed genome sequence. Genes likely to be involved in innate immune responses were identified by comparison to homologues from other arthropods. For each candidate, the gene model was refined, and we conducted an analysis of sequence divergence from homologues from other taxa. Results and conclusion We found that some immune pathways, in particular the TOLL pathway, are fairly well conserved between insects and Daphnia, while other elements, in particular antimicrobial peptides, could not be recovered from the genome sequence. We also found considerable variation in gene family copy number when comparing Daphnia to insects and present phylogenetic analyses to shed light on the evolution of a range of conserved immune gene families.
Collapse
Affiliation(s)
- Seanna J McTaggart
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
631
|
Cremer S, Sixt M. Analogies in the evolution of individual and social immunity. Philos Trans R Soc Lond B Biol Sci 2009; 364:129-42. [PMID: 18926974 DOI: 10.1098/rstb.2008.0166] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We compare anti-parasite defences at the level of multicellular organisms and insect societies, and find that selection by parasites at these two organisational levels is often very similar and has created a number of parallel evolutionary solutions in the host's immune response. The defence mechanisms of both individuals and insect colonies start with border defences to prevent parasite intake and are followed by soma defences that prevent the establishment and spread of the parasite between the body's cells or the social insect workers. Lastly, germ line defences are employed to inhibit infection of the reproductive tissue of organisms or the reproductive individuals in colonies. We further find sophisticated self/non-self-recognition systems operating at both levels, which appear to be vital in maintaining the integrity of the body or colony as a reproductive entity. We then expand on the regulation of immune responses and end with a contemplation of how evolution may shape the different immune components, both within and between levels. The aim of this review is to highlight common evolutionary principles acting in disease defence at the level of both individual organisms and societies, thereby linking the fields of physiological and ecological immunology.
Collapse
Affiliation(s)
- Sylvia Cremer
- Evolution, Behaviour and Genetics, Biology I, University of Regensburg, 93040 Regensburg, Germany.
| | | |
Collapse
|
632
|
Wilson-Rich N, Spivak M, Fefferman NH, Starks PT. Genetic, individual, and group facilitation of disease resistance in insect societies. ANNUAL REVIEW OF ENTOMOLOGY 2009; 54:405-423. [PMID: 18793100 DOI: 10.1146/annurev.ento.53.103106.093301] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this review, we provide a current reference on disease resistance in insect societies. We start with the genetics of immunity in the context of behavioral and physiological processes and scale up levels of biological organization until we reach populations. A significant component of this review focuses on Apis mellifera and its role as a model system for studies on social immunity. We additionally review the models that have been applied to disease transmission in social insects and elucidate areas for future study in the field of social immunity.
Collapse
Affiliation(s)
- Noah Wilson-Rich
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
633
|
Rains GC, Kulasiri D, Zhou Z, Samarasinghe S, Tomberlin JK, Olson DM. Synthesizing Neurophysiology, Genetics, Behaviour and Learning to Produce Whole-Insect Programmable Sensors to Detect Volatile Chemicals. Biotechnol Genet Eng Rev 2009; 26:179-204. [DOI: 10.5661/bger-26-179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
634
|
Randolt K, Gimple O, Geissendörfer J, Reinders J, Prusko C, Mueller MJ, Albert S, Tautz J, Beier H. Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 69:155-167. [PMID: 18979500 DOI: 10.1002/arch.20269] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We have employed the proteomic approach in combination with mass spectrometry to study the immune response of honey bee workers at different developmental stages. Analysis of the hemolymph proteins of noninfected, mock-infected and immune-challenged individuals by polyacrylamide gel electrophoresis showed differences in the protein profiles. We present evidence that in vitro reared honey bee larvae respond with a prominent humoral reaction to aseptic and septic injury as documented by the transient synthesis of the three antimicrobial peptides (AMPs) hymenoptaecin, defensin1, and abaecin. In contrast, young adult worker bees react with a broader spectrum of immune reactions that include the activation of prophenoloxidase and humoral immune responses. At least seven proteins appeared consistently in the hemolymph of immune-challenged bees, three of which are identical to the AMPs induced also in larvae. The other four, i.e., phenoloxidase (PO), peptidoglycan recognition protein-S2, carboxylesterase (CE), and an Apis-specific protein not assigned to any function (HP30), are induced specifically in adult bees and, with the exception of PO, are not expressed after aseptic injury. Structural features of CE and HP30, such as classical leucine zipper motifs, together with their strong simultaneous induction upon challenge with bacteria suggest an important role of the two novel bee-specific immune proteins in response to microbial infections.
Collapse
Affiliation(s)
- Klara Randolt
- BEEgroup, Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
635
|
Richard FJ, Aubert A, Grozinger CM. Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers. BMC Biol 2008; 6:50. [PMID: 19014614 PMCID: PMC2596086 DOI: 10.1186/1741-7007-6-50] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 11/17/2008] [Indexed: 11/14/2022] Open
Abstract
Background Immune response pathways have been relatively well-conserved across animal species, with similar systems in both mammals and invertebrates. Interestingly, honey bees have substantially reduced numbers of genes associated with immune function compared with solitary insect species. However, social species such as honey bees provide an excellent environment for pathogen or parasite transmission with controlled environmental conditions in the hive, high population densities, and frequent interactions. This suggests that honey bees may have developed complementary mechanisms, such as behavioral modifications, to deal with disease. Results Here, we demonstrate that activation of the immune system in honey bees (using bacterial lipopolysaccharides as a non-replicative pathogen) alters the social responses of healthy nestmates toward the treated individuals. Furthermore, treated individuals expressed significant differences in overall cuticular hydrocarbon profiles compared with controls. Finally, coating healthy individuals with extracts containing cuticular hydrocarbons of immunostimulated individuals significantly increased the agonistic responses of nestmates. Conclusion Since cuticular hydrocarbons play a critical role in nestmate recognition and other social interactions in a wide variety of insect species, modulation of such chemical profiles by the activation of the immune system could play a crucial role in the social regulation of pathogen dissemination within the colony.
Collapse
Affiliation(s)
- F-J Richard
- Department of Entomology, WM Keck Center for Behavioral Biology, Gardner Hall, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
636
|
Dai H, Rayaprolu S, Gong Y, Huang R, Prakash O, Jiang H. Solution structure, antibacterial activity, and expression profile of Manduca sexta moricin. J Pept Sci 2008; 14:855-63. [PMID: 18265434 DOI: 10.1002/psc.1016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In response to wounding or infection, insects produce a battery of antimicrobial peptides (AMPs) and other defense molecules to kill the invading pathogens. To study their structures, functions, and transcriptional regulation, we synthesized Manduca sexta moricin, a 42-residue peptide (GKIPVKAIKQAGKVIGKGLRAINIAGTTHDVVSFFRPKKKKH, 4539 Da). The compound exhibited potent antimicrobial activities against a broad spectrum of Gram-positive and Gram-negative bacteria with a minimum inhibitory concentration of 1.4 microM. The mRNA levels of M. sexta moricin increased substantially in fat body and hemocytes after the larvae were challenged with bacterial cells. We determined the solution structure of this AMP by two-dimensional 1H-1H -nuclear magnetic resonance spectroscopy. The tertiary structure is composed of an eight-turn alpha-helix spanning almost the entire peptide. Insights of relationships between the structure and function are also presented.
Collapse
Affiliation(s)
- Huaien Dai
- Department of Biochemistry, Kansas State University, USA
| | | | | | | | | | | |
Collapse
|
637
|
Stow A, Beattie A. Chemical and genetic defenses against disease in insect societies. Brain Behav Immun 2008; 22:1009-1013. [PMID: 18472394 DOI: 10.1016/j.bbi.2008.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/20/2008] [Accepted: 03/28/2008] [Indexed: 11/28/2022] Open
Abstract
The colonies of ants, bees, wasps and termites, the social insects, consist of large numbers of closely related individuals; circumstances ideal for contagious diseases. Antimicrobial assays of these animals have demonstrated a wide variety of chemical defenses against both bacteria and fungi that can be broadly classified as either external antiseptic compounds or internal immune molecules. Reducing the disease risks inherent in colonies of social insects is also achieved by behaviors, such as multiple mating or dispersal, that lower genetic relatedness both within- and among colonies. The interactions between social insects and their pathogens are complex, as illustrated by some ants that require antimicrobial and behavioral defenses against highly specialized fungi, such as those in the genus Cordyceps that attack larvae and adults and species in the genus Escovopsis that attack their food supplies. Studies of these defenses, especially in ants, have revealed remarkably sophisticated immune systems, including peptides induced by, and specific to, individual bacterial strains. The latter may be the result of the recruitment by the ants of antibiotic-producing bacteria but the extent of such three-way interactions remains unknown. There is strong experimental evidence that the evolution of sociality required dramatic increases in antimicrobial defenses and that microbes have been powerful selective agents. The antimicrobial chemicals and the insect-killing fungi may be useful in medicine and agriculture, respectively.
Collapse
Affiliation(s)
- Adam Stow
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Andrew Beattie
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
638
|
Efficacy of natural propolis extract in the control of American Foulbrood. Vet Microbiol 2008; 131:324-31. [DOI: 10.1016/j.vetmic.2008.04.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 11/19/2022]
|
639
|
Wilson-Rich N, Dres ST, Starks PT. The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). JOURNAL OF INSECT PHYSIOLOGY 2008; 54:1392-1399. [PMID: 18761014 DOI: 10.1016/j.jinsphys.2008.07.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 05/26/2023]
Abstract
Honey bees (Apis mellifera) are of vital economic and ecological importance. These eusocial animals display temporal polyethism, which is an age-driven division of labor. Younger adult bees remain in the hive and tend to developing brood, while older adult bees forage for pollen and nectar to feed the colony. As honey bees mature, the types of pathogens they experience also change. As such, pathogen pressure may affect bees differently throughout their lifespan. We provide the first direct tests of honey bee innate immune strength across developmental stages. We investigated immune strength across four developmental stages: larvae, pupae, nurses (1-day-old adults), and foragers (22-30 days old adults). The immune strength of honey bees was quantified using standard immunocompetence assays: total hemocyte count, encapsulation response, fat body quantification, and phenoloxidase activity. Larvae and pupae had the highest total hemocyte counts, while there was no difference in encapsulation response between developmental stages. Nurses had more fat body mass than foragers, while phenoloxidase activity increased directly with honey bee development. Immune strength was most vigorous in older, foraging bees and weakest in young bees. Importantly, we found that adult honey bees do not abandon cellular immunocompetence as has recently been proposed. Induced shifts in behavioral roles may increase a colony's susceptibility to disease if nurses begin foraging activity prematurely.
Collapse
Affiliation(s)
- Noah Wilson-Rich
- Department of Biology, Dana Laboratories, Tufts University, Medford, MA 02155, USA.
| | | | | |
Collapse
|
640
|
Remolina SC, Hughes KA. Evolution and mechanisms of long life and high fertility in queen honey bees. AGE (DORDRECHT, NETHERLANDS) 2008; 30:177-85. [PMID: 19424867 PMCID: PMC2527632 DOI: 10.1007/s11357-008-9061-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 05/06/2008] [Indexed: 05/03/2023]
Abstract
Honey bees (Apis mellifera) are eusocial insects that exhibit striking caste-specific differences in longevity. Queen honey bees live on average 1-2 years whereas workers live on average 15-38 days in the summer and 150-200 days in the winter. Previous studies of senescence in the honey bee have focused on establishing the importance of extrinsic mortality factors (predation, weather) and behavior (nursing and foraging) in worker bee longevity. However, few studies have tried to elucidate the mechanisms that allow queen honey bees to achieve their long lifespan without sacrificing fecundity. Here, we review both types of studies and emphasize the importance of understanding both proximate and ultimate causes of the unusual life history of honey bee queens.
Collapse
Affiliation(s)
- Silvia C Remolina
- Department of Animal Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory, Urbana, IL 61801, USA.
| | | |
Collapse
|
641
|
Somogyi K, Sipos B, Pénzes Z, Kurucz E, Zsámboki J, Hultmark D, Andó I. Evolution of genes and repeats in the Nimrod superfamily. Mol Biol Evol 2008; 25:2337-47. [PMID: 18703524 DOI: 10.1093/molbev/msn180] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The recently identified Nimrod superfamily is characterized by the presence of a special type of EGF repeat, the NIM repeat, located right after a typical CCXGY/W amino acid motif. On the basis of structural features, nimrod genes can be divided into three types. The proteins encoded by Draper-type genes have an EMI domain at the N-terminal part and only one copy of the NIM motif, followed by a variable number of EGF-like repeats. The products of Nimrod B-type and Nimrod C-type genes (including the eater gene) have different kinds of N-terminal domains, and lack EGF-like repeats but contain a variable number of NIM repeats. Draper and Nimrod C-type (but not Nimrod B-type) proteins carry a transmembrane domain. Several members of the superfamily were claimed to function as receptors in phagocytosis and/or binding of bacteria, which indicates an important role in the cellular immunity and the elimination of apoptotic cells. In this paper, the evolution of the Nimrod superfamily is studied with various methods on the level of genes and repeats. A hypothesis is presented in which the NIM repeat, along with the EMI domain, emerged by structural reorganizations at the end of an EGF-like repeat chain, suggesting a mechanism for the formation of novel types of repeats. The analyses revealed diverse evolutionary patterns in the sequences containing multiple NIM repeats. Although in the Nimrod B and Nimrod C proteins show characteristics of independent evolution, many internal NIM repeats in Eater sequences seem to have undergone concerted evolution. An analysis of the nimrod genes has been performed using phylogenetic and other methods and an evolutionary scenario of the origin and diversification of the Nimrod superfamily is proposed. Our study presents an intriguing example how the evolution of multigene families may contribute to the complexity of the innate immune response.
Collapse
Affiliation(s)
- Kálmán Somogyi
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | | | | | | | | | |
Collapse
|
642
|
Identification of Quantitative Trait Loci and candidate genes influencing ethanol sensitivity in honey bees. Behav Genet 2008; 38:531-53. [PMID: 18661223 DOI: 10.1007/s10519-008-9218-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 07/14/2008] [Indexed: 01/08/2023]
Abstract
Invertebrate models have greatly furthered our understanding of ethanol sensitivity and alcohol addiction. The honey bee (Apis mellifera), a widely used behavioral model, is valuable for comparative studies. A quantitative trait locus (QTL) mapping experiment was designed to identify QTL and genes influencing ethanol vapor sensitivity. A backcross mating between ethanol-sensitive and resistant lines resulted in worker offspring that were tested for sensitivity to the sedative effects of alcohol. A linkage map was constructed with over 500 amplified fragment length polymorphism (AFLP) and sequence-tagged site (STS) markers. Four QTL were identified from three linkage groups with log of odds ratio (LOD) scores of 2.28, 2.26, 2.23, and 2.02. DNA from markers within and near QTL were cloned and sequenced, and this data was utilized to integrate our map with the physical honey bee genome. Many candidate genes were identified that influence synaptic transmission, neuronal growth, and detoxification. Others affect lipid synthesis, apoptosis, alcohol metabolism, cAMP signaling, and electron transport. These results are relevant because they present the first search for QTL that affect resistance to acute ethanol exposure in an invertebrate, could be useful for comparative genomic purposes, and lend credence to the use of honey bees as biomedical models of alcohol metabolism and sensitivity.
Collapse
|
643
|
Abstract
In the past few years the knowledge of insect defense mechanisms against pathogenic microorganisms and parasites has significantly increased on both the molecular and the organismic level. These investigations have led to new concepts of immune protection also relevant for mammals with the identification of the Toll receptor family as an eminent example. This review provides a brief overview of insect strategies to on the one hand defeat bacterial pathogens while on the other hand cooperating with symbiotic bacteria beneficial for the insects.
Collapse
Affiliation(s)
- Heike Feldhaar
- Lehrstuhl für Soziobiologie und Verhaltensphysiologie, Biozentrum der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | |
Collapse
|
644
|
Lazzaro BP. Natural selection on the Drosophila antimicrobial immune system. Curr Opin Microbiol 2008; 11:284-9. [PMID: 18555739 PMCID: PMC2527063 DOI: 10.1016/j.mib.2008.05.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 03/25/2008] [Accepted: 05/01/2008] [Indexed: 01/16/2023]
Abstract
The evolutionary dynamics of immune defenses have long attracted interest because of the special role the immune system plays in mediating the antagonistic interaction between hosts and pathogens. The antimicrobial immune system of the fruit fly Drosophila melanogaster is genetically well characterized and serves as a valuable model for studying insect and human innate immune defenses. I review here evolutionary and comparative genomic analyses of insect antimicrobial immune genes, with an emphasis on Drosophila. Core signal transduction pathways in the immune system are orthologously conserved across long evolutionary distances, but genes in these pathways evolve rapidly and adaptively at the amino acid sequence level. By contrast, families of genes encoding antimicrobial peptides are remarkably dynamic in genomic duplication and deletion, yet individual genes show little indication of adaptive sequence evolution. Pattern recognition receptors that trigger humoral immunity are evolutionarily rather static, but receptors required for phagocytosis show considerable genomic rearrangement and adaptive sequence divergence. The distinct evolutionary patterns exhibited by these various classes of immune system genes can be logically connected to the functions of the proteins they encode.
Collapse
Affiliation(s)
- Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
645
|
Abstract
The Toll receptor was initially identified in Drosophila melanogaster for its role in embryonic development. Subsequently, D. melanogaster Toll and mammalian Toll-like receptors (TLRs) have been recognized as key regulators of immune responses. After ten years of intense research on TLRs and the recent accumulation of genomic and functional data in diverse organisms, we review the distribution and functions of TLRs in the animal kingdom. We provide an evolutionary perspective on TLRs, which sheds light on their origin at the dawn of animal evolution and suggests that different TLRs might have been co-opted independently during animal evolution to mediate analogous immune functions.
Collapse
|
646
|
Abstract
Recent genetic and molecular analyses have revealed how several strategies enable bacteria to persist and overcome insect immune defences. Genetic and genomic tools that can be used with Drosophila melanogaster have enabled the characterization of the pathways that are used by insects to detect bacterial invaders and combat infection. Conservation of bacterial virulence factors and insect immune repertoires indicates that there are common strategies of host invasion and pathogen eradication. Long-term interactions of bacteria with insects might ensure efficient dissemination of pathogens to other hosts, including humans.
Collapse
|
647
|
Zou Z, Evans JD, Lu Z, Zhao P, Williams M, Sumathipala N, Hetru C, Hultmark D, Jiang H. Comparative genomic analysis of the Tribolium immune system. Genome Biol 2008; 8:R177. [PMID: 17727709 PMCID: PMC2375007 DOI: 10.1186/gb-2007-8-8-r177] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 08/08/2007] [Accepted: 08/29/2007] [Indexed: 01/31/2023] Open
Abstract
The annotation, and comparison with homologous genes in other species, of immunity-related genes in the Tribolium castaneum genome allowed the identification of around 300 candidate defense proteins, and revealed a framework of information on Tribolium immunity. Background Tribolium castaneum is a species of Coleoptera, the largest and most diverse order of all eukaryotes. Components of the innate immune system are hardly known in this insect, which is in a key phylogenetic position to inform us about genetic innovations accompanying the evolution of holometabolous insects. We have annotated immunity-related genes and compared them with homologous molecules from other species. Results Around 300 candidate defense proteins are identified based on sequence similarity to homologs known to participate in immune responses. In most cases, paralog counts are lower than those of Drosophila melanogaster or Anopheles gambiae but are substantially higher than those of Apis mellifera. The genome contains probable orthologs for nearly all members of the Toll, IMD, and JAK/STAT pathways. While total numbers of the clip-domain serine proteinases are approximately equal in the fly (29), mosquito (32) and beetle (30), lineage-specific expansion of the family is discovered in all three species. Sixteen of the thirty-one serpin genes form a large cluster in a 50 kb region that resulted from extensive gene duplications. Among the nine Toll-like proteins, four are orthologous to Drosophila Toll. The presence of scavenger receptors and other related proteins indicates a role of cellular responses in the entire system. The structures of some antimicrobial peptides drastically differ from those in other orders of insects. Conclusion A framework of information on Tribolium immunity is established, which may serve as a stepping stone for future genetic analyses of defense responses in a nondrosophiline genetic model insect.
Collapse
Affiliation(s)
- Zhen Zou
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jay D Evans
- USDA-ARS Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Zhiqiang Lu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Picheng Zhao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Michael Williams
- Umeå Centre for Molecular Pathogenesis, Umeå University, Umeå S-901 87, Sweden
| | - Niranji Sumathipala
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Charles Hetru
- Institut Biol Moléc Cell, CNRS, Strasbourg 67084, France
| | - Dan Hultmark
- Umeå Centre for Molecular Pathogenesis, Umeå University, Umeå S-901 87, Sweden
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
648
|
Scharlaken B, de Graaf DC, Goossens K, Peelman LJ, Jacobs FJ. Differential gene expression in the honeybee head after a bacterial challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:883-889. [PMID: 18329098 DOI: 10.1016/j.dci.2008.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/22/2008] [Accepted: 01/29/2008] [Indexed: 05/26/2023]
Abstract
Bidirectional interactions between the immune and nervous systems are well established in vertebrates. Insects show similar neuro-immune-behavioral interactions to those seen in vertebrates. Using quantitative real-time PCR, we present evidence that gene expression in the honeybee head is influenced by activation of the immune system 8h after a bacterial challenge with Escherichia coli. Seven genes were selected for quantitative analysis in order to cover both typical functions of the head such as exocrine secretion (mrjp3 and mrjp4) and olfactory processes (obp17) as well as more general processes such as structural functions (mlc2 and paramyosin), stress response (ERp60) and energy housekeeping (enolase). In this way, we show at the molecular level that the immune system functions as a sensory organ in insects -- as it does in vertebrates -- which signals to the head that a bacterial infection is present, and leads to regulation of expression of several genes in the head by a yet unidentified mechanism.
Collapse
Affiliation(s)
- Bieke Scharlaken
- Laboratory of Zoophysiology, Department of Biochemistry, Physiology and Microbiology, Faculty of Science, Ghent University, Ghent, Belgium
| | | | | | | | | |
Collapse
|
649
|
Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD. The discovery and analysis of a diverged family of novel antifungal moricin-like peptides in the wax moth Galleria mellonella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:201-212. [PMID: 18207081 DOI: 10.1016/j.ibmb.2007.10.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 10/18/2007] [Accepted: 10/30/2007] [Indexed: 05/25/2023]
Abstract
Screening for components with antifungal activity in the hemolymph of immune-stimulated Galleria mellonella larvae led to the identification of four novel moricin-like peptides (A, B, C3 and D). Subsequently, eight moricin-like peptide genes (A, B, C1-5 and D) were isolated and shown to code for seven unique peptides (mature C4 and C5 are identical). These genes contained single introns which varied from 180 to 1090bp. The moricin-like peptides were particularly active against filamentous fungi, preventing the growth of Fusarium graminearum at 3 microg/ml, and were also active against yeasts, gram positive bacteria and gram negative bacteria. Searches of the databases identified 30 moricin-like peptide genes which code for 23 unique mature peptides, all belonging to the Lepidoptera (moths and butterflies). The first comprehensive phylogenetic analysis of the moricin-like peptides suggested that they fall into two basic classes which diverged a long time ago. The peptides have since diversified extensively through a high level of gene duplication within species, as seen in G. mellonella and Bombyx mori. The restriction of moricin-like peptides to the Lepidoptera combined with their potent antifungal activity suggests that this diverse peptide family may play a role in the defence response of moths and butterflies.
Collapse
Affiliation(s)
- Susan E Brown
- CSIRO Entomology, GPO Box 1700, Acton, ACT 2601, Australia.
| | | | | | | | | |
Collapse
|
650
|
Waterhouse RM, Wyder S, Zdobnov EM. The Aedes aegypti genome: a comparative perspective. INSECT MOLECULAR BIOLOGY 2008; 17:1-8. [PMID: 18237279 DOI: 10.1111/j.1365-2583.2008.00772.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The sequencing of the second mosquito genome, Aedes aegypti, in addition to Anopheles gambiae, is a major milestone that will drive molecular-level and genome-wide high-throughput studies of not only these but also other mosquito vectors of human pathogens. Here we overview the ancestry of the mosquito genes, list the major expansions of gene families that may relate to species adaptation processes, as exemplified by CYP9 cytochrome P450 genes, and discuss the conservation of chromosomal gene arrangements among the two mosquitoes and fruit fly. Many more invertebrate genomes are expected to be sequenced in the near future, including additional vectors of human pathogens (see http://www.vectorbase.org), and further comparative analyses will become increasingly refined and informative, hopefully improving our understanding of the genetic basis of phenotypical differences among these species, their vectorial capacity, and ultimately leading to the development of novel disease control strategies.
Collapse
Affiliation(s)
- R M Waterhouse
- Imperial College London, South Kensington Campus, London, UK
| | | | | |
Collapse
|