601
|
Venclovas C, Siksnys V. Different enzymes with similar structures involved in Mg(2+)-mediated polynucleotidyl transfer. NATURE STRUCTURAL BIOLOGY 1995; 2:838-41. [PMID: 7552704 DOI: 10.1038/nsb1095-838] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Comparison of X-ray structures of restriction endonucleases and polynucleotidyl transferase superfamily enzymes reveals a structural resemblance.
Collapse
|
602
|
Abstract
Mu transposition is promoted by an extremely stable complex containing a tetramer of the transposase (MuA) bound to the recombining DNA. Here we purify the Escherichia coli ClpX protein, a member of a family of multimeric ATPases present in prokaryotes and eukaryotes (the Clp family), on the basis of its ability to remove the transposase from the DNA after recombination. Previously, ClpX has been shown to function with the ClpP peptidase in protein turnover. However, neither ClpP nor any other protease is required for disassembly of the transposase. The released MuA is not modified extensively, degraded, or irreversibly denatured, and is able to perform another round of recombination in vitro. We conclude that ClpX catalyzes the ATP-dependent release of MuA by promoting a transient conformational change in the protein and, therefore, can be considered a molecular chaperone. ClpX is important at the transition between the recombination and DNA replication steps of transposition in vitro; this function probably corresponds to the essential contribution of ClpX for Mu growth. Deletion analysis reveals that the sequence at the carboxyl terminus of MuA is important for disassembly by ClpX and can target MuA for degradation by ClpXP in vitro. These data contribute to the emerging picture that members of the Clp family are chaperones specifically suited for disaggregating proteins and are able to function with or without a collaborating protease.
Collapse
Affiliation(s)
- I Levchenko
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
603
|
Lee-Huang S, Huang PL, Huang PL, Bourinbaiar AS, Chen HC, Kung HF. Inhibition of the integrase of human immunodeficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31. Proc Natl Acad Sci U S A 1995; 92:8818-22. [PMID: 7568024 PMCID: PMC41058 DOI: 10.1073/pnas.92.19.8818] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
MAP30 (Momordica anti-HIV protein of 30 kDa) and GAP31 (Gelonium anti-HIV protein of 31 kDa) are anti-HIV plant proteins that we have identified, purified, and cloned from the medicinal plants Momordica charantia and Gelonium multiflorum. These antiviral agents are capable of inhibiting infection of HIV type 1 (HIV-1) in T lymphocytes and monocytes as well as replication of the virus in already-infected cells. They are not toxic to normal uninfected cells because they are unable to enter healthy cells. MAP30 and GAP31 also possess an N-glycosidase activity on 28S ribosomal RNA and a topological activity on plasmid and viral DNAs including HIV-1 long terminal repeats (LTRs). LTRs are essential sites for integration of viral DNA into the host genome by viral integrase. We therefore investigated the effect of MAP30 and GAP31 on HIV-1 integrase. We report that both of these antiviral agents exhibit dose-dependent inhibition of HIV-1 integrase. Inhibition was observed in all of the three specific reactions catalyzed by the integrase, namely, 3' processing (specific cleavage of the dinucleotide GT from the viral substrate), strand transfer (integration), and "disintegration" (the reversal of strand transfer). Inhibition was studied by using oligonucleotide substrates with sequences corresponding to the U3 and U5 regions of HIV LTR. In the presence of 20 ng of viral substrate, 50 ng of target substrate, and 4 microM integrase, total inhibition was achieved at equimolar concentrations of the integrase and the antiviral proteins, with EC50 values of about 1 microM. Integration of viral DNA into the host chromosome is a vital step in the replicative cycle of retroviruses, including the AIDS virus. The inhibition of HIV-1 integrase by MAP30 and GAP31 suggests that impediment of viral DNA integration may play a key role in the anti-HIV activity of these plant proteins.
Collapse
Affiliation(s)
- S Lee-Huang
- Department of Biochemistry, New York University School of Medicine, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
604
|
Eijkelenboom AP, Lutzke RA, Boelens R, Plasterk RH, Kaptein R, Hård K. The DNA-binding domain of HIV-1 integrase has an SH3-like fold. NATURE STRUCTURAL BIOLOGY 1995; 2:807-10. [PMID: 7552753 DOI: 10.1038/nsb0995-807] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have determined the solution structure of the DNA-binding domain of HIV-1 integrase by nuclear magnetic resonance spectroscopy. In solution, this carboxyterminal region of integrase forms a homodimer, consisting of two structures that closely resemble Src-homology 3 (SH3) domains. Lys 264, previously identified by mutagenesis studies to be important for DNA binding of the integrase, as well as several adjacent basic amino acids are solvent exposed. The identification of an SH3-like domain in integrase provides a new potential target for drug design.
Collapse
Affiliation(s)
- A P Eijkelenboom
- Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
605
|
Kanaya E, Kanaya S. Reconstitution of Escherichia coli RNase HI from the N-fragment with high helicity and the C-fragment with a disordered structure. J Biol Chem 1995; 270:19853-60. [PMID: 7649997 DOI: 10.1074/jbc.270.34.19853] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Escherichia coli RNase HI variant with the Lys86-->Ala mutation is purified in two forms, as nicked and intact proteins. The nicked K86A protein, in which the N-fragment (Met1-Lys87) and the C-fragment (Arg88-Val155) remain associated, is enzymatically active. These N- and C-fragments were isolated and examined for reassociation. These peptides did not associate to form the nicked K86A protein at pH 3.0 in the absence of salt, but were associated, with a yield of 30-80%, when the pH was raised to 5.5 or when salt was added. Measurements of the CD spectra show that the alpha-helices are partially formed in the N-fragment at pH 3.0 in the absence of salt and are almost fully formed either at pH 5.5 or at pH 3.0 in the presence of 0.15 M NaCl. In contrast, the C-fragment remains almost fully disordered under these conditions. The N-fragment with this high (native-like) helicity shows the characteristics of a molten globule with respect to the content of the secondary and tertiary structures, the ability to bind a fluorescent probe (1-anilinonaphthalene-8-sulfonic acid), and the behavior on the thermal transition. These results suggest that the N-fragment contains an initial folding site, probably the alpha I-helix, and the completion of the folding in this site provides a surface that facilitates the folding of the C-fragment. This folding process may represent that of the intact RNase HI molecule.
Collapse
Affiliation(s)
- E Kanaya
- Protein Engineering Research Institute, Osaka, Japan
| | | |
Collapse
|
606
|
Kim Y, Eom SH, Wang J, Lee DS, Suh SW, Steitz TA. Crystal structure of Thermus aquaticus DNA polymerase. Nature 1995; 376:612-6. [PMID: 7637814 DOI: 10.1038/376612a0] [Citation(s) in RCA: 284] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The DNA polymerase from Thermus aquaticus (Taq polymerase), famous for its use in the polymerase chain reaction, is homologous to Escherichia coli DNA polymerase I (pol I) Like pol I, Taq polymerase has a domain at its amino terminus (residues 1-290) that has 5' nuclease activity and a domain at its carboxy terminus that catalyses the polymerase reaction. Unlike pol I, the intervening domain in Taq polymerase has lost the editing 3'-5' exonuclease activity. Although the structure of the Klenow fragment of pol I has been known for ten years, that of the intact pol I has proved more elusive. The structure of Taq polymerase determined here at 2.4 A resolution shows that the structures of the polymerase domains of the thermostable enzyme and of the Klenow fragment are nearly identical, whereas the catalytically critical carboxylate residues that bind two metal ions are missing from the remnants of the 3'-5' exonuclease active site of Taq polymerase. The first view of the 5' nuclease domain, responsible for excising the Okazaki RNA in lagging-strand DNA replication, shows a cluster of conserved divalent metal-ion-binding carboxylates at the bottom of a cleft. The location of this 5'-nuclease active site some 70 A from the polymerase active site in this crystal form highlights the unanswered question of how this domain works in concert with the polymerase domain to produce a duplex DNA product that contains only a nick.
Collapse
Affiliation(s)
- Y Kim
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | | | |
Collapse
|
607
|
Affiliation(s)
- A McPherson
- Department of Biochemistry, University of California, Riverside 92521, USA
| | | | | |
Collapse
|
608
|
Lodi PJ, Ernst JA, Kuszewski J, Hickman AB, Engelman A, Craigie R, Clore GM, Gronenborn AM. Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry 1995; 34:9826-33. [PMID: 7632683 DOI: 10.1021/bi00031a002] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The solution structure of the DNA binding domain of HIV-1 integrase (residues 220-270) has been determined by multidimensional NMR spectroscopy. The protein is a dimer in solution, and each subunit is composed of a five-stranded beta-barrel with a topology very similar to that of the SH3 domain. The dimer is formed by a stacked beta-interface comprising strands 2, 3, and 4, with the two triple-stranded antiparallel beta-sheets, one from each subunit, oriented antiparallel to each other. One surface of the dimer, bounded by the loop between strands beta 1 and beta 2, forms a saddle-shaped groove with dimensions of approximately 24 x 23 x 12 A in cross section. Lys264, which has been shown from mutational data to be involved in DNA binding, protrudes from this surface, implicating the saddle-shaped groove as the potential DNA binding site.
Collapse
Affiliation(s)
- P J Lodi
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | | | | | | | | | | | |
Collapse
|
609
|
Saito A, Iwasaki H, Ariyoshi M, Morikawa K, Shinagawa H. Identification of four acidic amino acids that constitute the catalytic center of the RuvC Holliday junction resolvase. Proc Natl Acad Sci U S A 1995; 92:7470-4. [PMID: 7638215 PMCID: PMC41361 DOI: 10.1073/pnas.92.16.7470] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Escherichia coli RuvC protein is a specific endonuclease that resolves Holliday junctions during homologous recombination. Since the endonucleolytic activity of RuvC requires a divalent cation and since 3 or 4 acidic residues constitute the catalytic centers of several nucleases that require a divalent cation for the catalytic activity, we examined whether any of the acidic residues of RuvC were required for the nucleolytic activity. By site-directed mutagenesis, we constructed a series of ruvC mutant genes with similar amino acid replacements in 1 of the 13 acidic residues. Among them, the mutant genes with an alteration at Asp-7, Glu-66, Asp-138, or Asp-141 could not complement UV sensitivity of a ruvC deletion strain, and the multicopy mutant genes showed a dominant negative phenotype when introduced into a wild-type strain. The products of these mutant genes were purified and their biochemical properties were studied. All of them retained the ability to form a dimer and to bind specifically to a synthetic Holliday junction. However, they showed no, or extremely reduced, endonuclease activity specific for the junction. These 4 acidic residues, which are dispersed in the primary sequence, are located in close proximity at the bottom of the putative DNA binding cleft in the three-dimensional structure. From these results, we propose that these 4 acidic residues constitute the catalytic center for the Holliday junction resolvase and that some of them play a role in coordinating a divalent metal ion in the active center.
Collapse
Affiliation(s)
- A Saito
- Department of Molecular Microbiology, Osaka University, Japan
| | | | | | | | | |
Collapse
|
610
|
Abstract
The generation of large quantities of protein by overexpression technology has enabled structural studies of many important molecules that are found in only minute quantities in the cell. An increasing number of structures of proteins overexpressed in non-native systems have been solved. Crystallographers now have an extremely powerful tool, namely protein engineering, for the generation of native and derivative crystals that diffract to high resolution. The mutation of residues or generation of compact domains through truncation has resulted in crystals with enhanced diffraction properties. Heavy atom derivative crystals isomorphous to the native protein may also be engineered either by introducing cysteines or by removing cysteines whose reaction with heavy-atom compounds results in poor crystals.
Collapse
Affiliation(s)
- S R Price
- MRC Laboratory of Molecular Biology, Cambridge UK
| | | |
Collapse
|
611
|
Rice P, Mizuuchi K. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell 1995; 82:209-20. [PMID: 7628012 DOI: 10.1016/0092-8674(95)90308-9] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The crystal structure of the core domain of bacteriophage Mu transposase, MuA, has been determined at 2.4 A resolution. The first of two subdomains contains the active site and, despite very limited sequence homology, exhibits a striking similarity to the core domain of HIV-1 integrase, which carries out a similar set of biochemical reactions. It also exhibits more limited similarity to other nucleases, RNase H and RuvC. The second, a beta barrel, connects to the first subdomain through several contacts. Three independent determinations of the monomer structure from two crystal forms all show the active site held in a similar, apparently inactive configuration. The enzymatic activity of MuA is known to be activated by formation of a DNA-bound tetramer of the protein. We propose that the connections between the two subdomains may be involved in the cross-talk between the active site and the other domains of the transposase that controls the activity of the protein.
Collapse
Affiliation(s)
- P Rice
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0540, USA
| | | |
Collapse
|
612
|
Jenkins TM, Hickman AB, Dyda F, Ghirlando R, Davies DR, Craigie R. Catalytic domain of human immunodeficiency virus type 1 integrase: identification of a soluble mutant by systematic replacement of hydrophobic residues. Proc Natl Acad Sci U S A 1995; 92:6057-61. [PMID: 7597080 PMCID: PMC41641 DOI: 10.1073/pnas.92.13.6057] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The integrase protein of human immunodeficiency virus type 1 is necessary for the stable integration of the viral genome into host DNA. Integrase catalyzes the 3' processing of the linear viral DNA and the subsequent DNA strand transfer reaction that inserts the viral DNA ends into host DNA. Although full-length integrase is required for 3' processing and DNA strand transfer activities in vitro, the central core domain of integrase is sufficient to catalyze an apparent reversal of the DNA strand transfer reaction, termed disintegration. This catalytic core domain, as well as the full-length integrase, has been refractory to structural studies by x-ray crystallography or NMR because of its low solubility and propensity to aggregate. In an attempt to improve protein solubility, we used site-directed mutagenesis to replace hydrophobic residues within the core domain with either alanine or lysine. The single substitution of lysine for phenylalanine at position 185 resulted in a core domain that was highly soluble, monodisperse in solution, and retained catalytic activity. This amino acid change has enabled the catalytic domain of integrase to be crystallized and the structure has been solved to 2.5-A resolution [Dyda, F., Hickman, A. B., Jenkins, T. M., Engelman, A., Craigie, R. & Davies, D. R. (1994) Science 266, 1981-1986]. Systematic replacement of hydrophobic residues may be a useful strategy to improve the solubility of other proteins to facilitate structural and biochemical studies.
Collapse
Affiliation(s)
- T M Jenkins
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892-0560, USA
| | | | | | | | | | | |
Collapse
|
613
|
Bennett RJ, West SC. RuvC protein resolves Holliday junctions via cleavage of the continuous (noncrossover) strands. Proc Natl Acad Sci U S A 1995; 92:5635-9. [PMID: 7777562 PMCID: PMC41751 DOI: 10.1073/pnas.92.12.5635] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The RuvC protein of Escherichia coli resolves Holliday junctions during genetic recombination and the postreplicational repair of DNA damage. Using synthetic Holliday junctions that are constrained to adopt defined isomeric configurations, we show that resolution occurs by symmetric cleavage of the continuous (noncrossing) pair of DNA strands. This result contrasts with that observed with phage T4 endonuclease VII, which cleaves the pair of crossing strands. In the presence of RuvC, the pair of continuous strands (i.e., the target strands for cleavage) exhibit a hypersensitivity to hydroxyl radicals. These results indicate that the continuous strands are distorted within the RuvC/Holliday junction complex and that RuvC-mediated resolution events require protein-directed structural changes to the four-way junction.
Collapse
Affiliation(s)
- R J Bennett
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, United Kingdom
| | | |
Collapse
|
614
|
Oubridge C, Ito N, Teo CH, Fearnley I, Nagai K. Crystallisation of RNA-protein complexes. II. The application of protein engineering for crystallisation of the U1A protein-RNA complex. J Mol Biol 1995; 249:409-23. [PMID: 7783201 DOI: 10.1006/jmbi.1995.0306] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The hairpin is one of the most commonly found structural motifs of RNA and is often a binding site for proteins. Crystallisation of U1A spliceosomal protein bound to a RNA hairpin, its natural binding site on U1snRNA, is described. RNA oligonucleotides were synthesised either chemically or by in vitro transcription using T7 RNA polymerase and purified to homogeneity by gel electrophoresis. Crystallisation trials with the wild-type protein sequence and RNA hairpins containing various stem sequences and overhanging nucleotides only resulted in a cubic crystal form which diffracted to 7-8 A resolution. A new crystal form was grown by using a protein variant containing mutations of two surface residues. The N-terminal sequence of the protein was also varied to reduce heterogeneity which was detected by protein mass spectrometry. A further crystallisation search using the double mutant protein and varying the RNA hairpins resulted in crystals diffracting to beyond 1.7 A. The methods and strategy described in this paper may be applicable to crystallisation of other RNA-protein complexes.
Collapse
Affiliation(s)
- C Oubridge
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | |
Collapse
|
615
|
Abstract
The recently reported crystal structures of two recombination enzymes, the catalytic domain of HIV integrase and Escherichia coli RuvC, an endonuclease, are surprisingly similar to that of ribonuclease H suggesting the possibility that they have a common enzymatic mechanism.
Collapse
Affiliation(s)
- W Yang
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
616
|
Affiliation(s)
- W E Paul
- Office of AIDS Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
617
|
|
618
|
Fourme R, Shepard W, Kahn R. Application of the anomalous dispersion of X-rays to macromolecular crystallography. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1995; 64:167-99. [PMID: 8987383 DOI: 10.1016/s0079-6107(96)00002-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R Fourme
- LURE (CNRS, CEA, MENSER), Université Paris-Sud, Orsay, France
| | | | | |
Collapse
|
619
|
Chapter 15. Antiviral Agents. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1995. [DOI: 10.1016/s0065-7743(08)60928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
620
|
|