601
|
Abolarinwa BA, Ibrahim RB, Huang YH. Conceptual Development of Immunotherapeutic Approaches to Gastrointestinal Cancer. Int J Mol Sci 2019; 20:E4624. [PMID: 31540435 PMCID: PMC6769557 DOI: 10.3390/ijms20184624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is one of the common causes of cancer-related death worldwide. Chemotherapy and/or immunotherapy are the current treatments, but some patients do not derive clinical benefits. Recently, studies from cancer molecular subtyping have revealed that tumor molecular biomarkers may predict the immunotherapeutic response of GI cancer patients. However, the therapeutic response of patients selected by the predictive biomarkers is suboptimal. The tumor immune-microenvironment apparently plays a key role in modulating these molecular-determinant predictive biomarkers. Therefore, an understanding of the development and recent advances in immunotherapeutic pharmacological intervention targeting tumor immune-microenvironments and their potential predictive biomarkers will be helpful to strengthen patient immunotherapeutic efficacy. The current review focuses on an understanding of how the host-microenvironment interactions and the predictive biomarkers can determine the efficacy of immune checkpoint inhibitors. The contribution of environmental pathogens and host immunity to GI cancer is summarized. A discussion regarding the clinical evidence of predictive biomarkers for clinical trial therapy design, current immunotherapeutic strategies, and the outcomes to GI cancer patients are highlighted. An understanding of the underlying mechanism can predict the immunotherapeutic efficacy and facilitate the future development of personalized therapeutic strategies targeting GI cancers.
Collapse
Affiliation(s)
- Bilikis Aderonke Abolarinwa
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ridwan Babatunde Ibrahim
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Taiwan International Graduate Program (TIGP) in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
602
|
Terlouw D, Suerink M, Singh SS, Gille HJJP, Hes FJ, Langers AMJ, Morreau H, Vasen HFA, Vos YJ, van Wezel T, Tops CM, Ten Broeke SW, Nielsen M. Declining detection rates for APC and biallelic MUTYH variants in polyposis patients, implications for DNA testing policy. Eur J Hum Genet 2019; 28:222-230. [PMID: 31527860 DOI: 10.1038/s41431-019-0509-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
This study aimed to determine the prevalence of APC-associated familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP) in a large cohort, taking into account factors as adenoma count and year of diagnosis. All application forms used to send patients in for APC and MUTYH variant analysis between 1992 and 2017 were collected (n = 2082). Using the data provided on the application form, the APC and biallelic MUTYH prevalence was determined and possible predictive factors were examined using multivariate multinomial logistic regression analysis in SPSS. The prevalence of disease causing variants in the APC gene significantly increases with adenoma count while MAP shows a peak prevalence in individuals with 50-99 adenomas. Logistic regression analysis shows significant odds ratios for adenoma count, age at diagnosis, and, interestingly, a decline in the chance of finding a variant in either gene over time. Moreover, in 22% (43/200) of patients with FAP-related extracolonic manifestations a variant was identified. The overall detection rates are above 10% for patients with >10 adenomas aged <60 and >20 adenomas aged <70. Patients with variants outside these criteria had FAP-related extracolonic manifestations, colorectal cancer aged <40, somatic KRAS c.34G > T variant in the tumor or a first-degree relative with >10 adenomas. Therefore, APC and MUTYH testing in patients with >10 adenomas aged <60 and with >20 adenomas aged <70 is advised. Almost all FAP and MAP patients not meeting these criteria showed other characteristics that can be used as an indication to prompt genetic testing.
Collapse
Affiliation(s)
- Diantha Terlouw
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sunny S Singh
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Hans J J P Gille
- Department of Clinical Genetics, VUMC, Amsterdam, the Netherlands
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Alexandra M J Langers
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans F A Vasen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands.,The Netherlands Foundation for the Detection of Hereditary Tumours, Leiden, the Netherlands
| | - Yvonne J Vos
- Department of Clinical Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Carli M Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sanne W Ten Broeke
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Department of Clinical Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
603
|
McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 Family of Cytokines in Health and Disease. Immunity 2019; 50:892-906. [PMID: 30995505 DOI: 10.1016/j.immuni.2019.03.021] [Citation(s) in RCA: 809] [Impact Index Per Article: 161.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
The interleukin 17 (IL-17) family of cytokines contains 6 structurally related cytokines, IL-17A through IL-17F. IL-17A, the prototypical member of this family, just passed the 25th anniversary of its discovery. Although less is known about IL-17B-F, IL-17A (commonly known as IL-17) has received much attention for its pro-inflammatory role in autoimmune disease. Over the past decade, however, it has become clear that the functions of IL-17 are far more nuanced than simply turning on inflammation. Accumulating evidence indicates that IL-17 has important context- and tissue-dependent roles in maintaining health during response to injury, physiological stress, and infection. Here, we discuss the functions of the IL-17 family, with a focus on the balance between the pathogenic and protective roles of IL-17 in cancer and autoimmune disease, including results of therapeutic blockade and novel aspects of IL-17 signal transduction regulation.
Collapse
Affiliation(s)
- Mandy J McGeachy
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Sarah L Gaffen
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
604
|
Hwang S, Jo M, Hong JE, Park CO, Lee CG, Yun M, Rhee KJ. Zerumbone Suppresses Enterotoxigenic Bacteroides fragilis Infection-Induced Colonic Inflammation through Inhibition of NF-κΒ. Int J Mol Sci 2019; 20:ijms20184560. [PMID: 31540059 PMCID: PMC6770904 DOI: 10.3390/ijms20184560] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) is human intestinal commensal bacterium and a potent initiator of colitis through secretion of the metalloprotease Bacteroides fragilis toxin (BFT). BFT induces cleavage of E-cadherin in colon cells, which subsequently leads to NF-κB activation. Zerumbone is a key component of the Zingiber zerumbet (L.) Smith plant and can exhibit anti-bacterial and anti-inflammatory effects. However, whether zerumbone has anti-inflammatory effects in ETBF-induced colitis remains unknown. The aim of this study was to determine the anti-inflammatory effect of orally administered zerumbone in a murine model of ETBF infection. Wild-type C57BL/6 mice were infected with ETBF and orally administered zerumbone (30 or 60 mg/kg) once a day for 7 days. Treatment of ETBF-infected mice with zerumbone prevented weight loss and splenomegaly and reduced colonic inflammation with decreased macrophage infiltration. Zerumbone treatment significantly decreased expression of IL-17A, TNF-α, KC, and inducible nitric oxide synthase (iNOS) in colonic tissues of ETBF-infected mice. In addition, serum levels of KC and nitrite was also diminished. Zerumbone-treated ETBF-infected mice also showed decreased NF-κB signaling in the colon. HT29/C1 colonic epithelial cells treated with zerumbone suppressed BFT-induced NF-κB signaling and IL-8 secretion. However, BFT-mediated E-cadherin cleavage was unaffected. Furthermore, zerumbone did not affect ETBF colonization in mice. In conclusion, zerumbone decreased ETBF-induced colitis through inhibition of NF-κB signaling.
Collapse
Affiliation(s)
- Soonjae Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do 26493, Korea.
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do 26426, Korea.
| | - Minjeong Jo
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do 26493, Korea.
| | - Ju Eun Hong
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do 26493, Korea.
| | - Chan Oh Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do 26493, Korea.
| | - Chang Gun Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do 26493, Korea.
| | - Miyong Yun
- Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul 05006, Korea.
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do 26493, Korea.
| |
Collapse
|
605
|
Abstract
Aging is a natural process of organismal decay that underpins the development of myriad diseases and disorders. Extensive efforts have been made to understand the biology of aging and its regulation, but most studies focus solely on the host organism. Considering the pivotal role of the microbiota in host health and metabolism, we propose viewing the host and its microbiota as a single biological entity whose aging phenotype is influenced by the complex interplay between host and bacterial genetics. In this review we present how the microbiota changes as the host ages, but also how the intricate relationship between host and indigenous bacteria impacts organismal aging and life span. In addition, we highlight other microbiota-dependent mechanisms that potentially regulate aging, and present experimental animal models for addressing these questions. Importantly, we propose microbiome dysbiosis as an additional hallmark and biomarker of aging.
Collapse
Affiliation(s)
- Bianca Bana
- Institute of Structural and Molecular Biology, University College London and Birkbeck, University of London, London WC1E 6BT, United Kingdom
| | - Filipe Cabreiro
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom; .,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| |
Collapse
|
606
|
Massip C, Branchu P, Bossuet-Greif N, Chagneau CV, Gaillard D, Martin P, Boury M, Sécher T, Dubois D, Nougayrède JP, Oswald E. Deciphering the interplay between the genotoxic and probiotic activities of Escherichia coli Nissle 1917. PLoS Pathog 2019; 15:e1008029. [PMID: 31545853 PMCID: PMC6776366 DOI: 10.1371/journal.ppat.1008029] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/03/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022] Open
Abstract
Although Escherichia coli Nissle 1917 (EcN) has been used therapeutically for over a century, the determinants of its probiotic properties remain elusive. EcN produces two siderophore-microcins (Mcc) responsible for an antagonistic activity against other Enterobacteriaceae. EcN also synthesizes the genotoxin colibactin encoded by the pks island. Colibactin is a virulence factor and a putative pro-carcinogenic compound. Therefore, we aimed to decouple the antagonistic activity of EcN from its genotoxic activity. We demonstrated that the pks-encoded ClbP, the peptidase that activates colibactin, is required for the antagonistic activity of EcN. The analysis of a series of ClbP mutants revealed that this activity is linked to the transmembrane helices of ClbP and not the periplasmic peptidase domain, indicating the transmembrane domain is involved in some aspect of Mcc biosynthesis or secretion. A single amino acid substitution in ClbP inactivates the genotoxic activity but maintains the antagonistic activity. In an in vivo salmonellosis model, this point mutant reduced the clinical signs and the fecal shedding of Salmonella similarly to the wild type strain, whereas the clbP deletion mutant could neither protect nor outcompete the pathogen. The ClbP-dependent antibacterial effect was also observed in vitro with other E. coli strains that carry both a truncated form of the Mcc gene cluster and the pks island. In such strains, siderophore-Mcc synthesis also required the glucosyltransferase IroB involved in salmochelin production. This interplay between colibactin, salmochelin, and siderophore-Mcc biosynthetic pathways suggests that these genomic islands were co-selected and played a role in the evolution of E. coli from phylogroup B2. This co-evolution observed in EcN illustrates the fine margin between pathogenicity and probiotic activity, and the need to address both the effectiveness and safety of probiotics. Decoupling the antagonistic from the genotoxic activity by specifically inactivating ClbP peptidase domain opens the way to the safe use of EcN.
Collapse
Affiliation(s)
- Clémence Massip
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | - Priscilla Branchu
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | | | - Déborah Gaillard
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Patricia Martin
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Michèle Boury
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Thomas Sécher
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Damien Dubois
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | | | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| |
Collapse
|
607
|
Nelson H, Chia N. Gut Microbiome and Colon Cancer: A Plausible Explanation for Dietary Contributions to Cancer. J Am Coll Surg 2019; 229:231-235. [PMID: 31082472 DOI: 10.1016/j.jamcollsurg.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Heidi Nelson
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN; Colon and Rectal Surgery, Mayo Clinic, Rochester, MN.
| | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN; Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN
| |
Collapse
|
608
|
Snider EJ, Compres G, Freedberg DE, Khiabanian H, Nobel YR, Stump S, Uhlemann AC, Lightdale CJ, Abrams JA. Alterations to the Esophageal Microbiome Associated with Progression from Barrett's Esophagus to Esophageal Adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2019; 28:1687-1693. [PMID: 31466948 DOI: 10.1158/1055-9965.epi-19-0008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/17/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The incidence of esophageal adenocarcinoma has risen dramatically over the past half century, and the underlying reasons are incompletely understood. Broad shifts to the upper gastrointestinal microbiome may be partly responsible. The goal of this study was to describe alterations in the esophageal microbiome that occur with progression from Barrett's esophagus to esophageal adenocarcinoma. METHODS A case-control study was performed of patients with and without Barrett's esophagus who were scheduled to undergo upper endoscopy. Demographic, clinical, and dietary intake data were collected, and esophageal brushings were collected during the endoscopy. 16S rRNA gene sequencing was performed to characterize the microbiome. RESULTS A total of 45 patients were enrolled and included in the analyses [16 controls; 14 Barrett's esophagus without dysplasia (NDBE); 6 low-grade dysplasia (LGD); 5 high-grade dysplasia (HGD); and 4 esophageal adenocarcinoma]. There was no difference in alpha diversity between non-Barrett's esophagus and Barrett's esophagus, but there was evidence of decreased diversity in patients with esophageal adenocarcinoma as assessed by Simpson index. There was an apparent shift in composition at the transition from LGD to HGD, and patients with HGD and esophageal adenocarcinoma had decreased Firmicutes and increased Proteobacteria. In addition, patients with HGD or esophageal adenocarcinoma had increased Enterobacteriaceae and Akkermansia muciniphila and reduced Veillonella. In the study population, patients taking proton pump inhibitors had increased Streptococcus and decreased Gram-negative bacteria overall. CONCLUSIONS Shifts in the Barrett's esophagus-associated microbiome were observed in patients with HGD and esophageal adenocarcinoma, with increases in certain potentially pathogenic bacteria. IMPACT The microbiome may play a role in esophageal carcinogenesis.
Collapse
Affiliation(s)
- Erik J Snider
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Griselda Compres
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Daniel E Freedberg
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Yael R Nobel
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Stephania Stump
- Department of Medicine, Columbia University Irving Medical Center, New York, New York.,Microbiome Core Facility, Columbia University Irving Medical Center, New York, New York
| | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University Irving Medical Center, New York, New York.,Microbiome Core Facility, Columbia University Irving Medical Center, New York, New York
| | - Charles J Lightdale
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Julian A Abrams
- Department of Medicine, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
609
|
Creekmore BC, Gray JH, Walton WG, Biernat KA, Little MS, Xu Y, Liu J, Gharaibeh RZ, Redinbo MR. Mouse Gut Microbiome-Encoded β-Glucuronidases Identified Using Metagenome Analysis Guided by Protein Structure. mSystems 2019; 4:e00452-19. [PMID: 31455640 PMCID: PMC6712278 DOI: 10.1128/msystems.00452-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/09/2019] [Indexed: 11/25/2022] Open
Abstract
Gut microbial β-glucuronidase (GUS) enzymes play important roles in drug efficacy and toxicity, intestinal carcinogenesis, and mammalian-microbial symbiosis. Recently, the first catalog of human gut GUS proteins was provided for the Human Microbiome Project stool sample database and revealed 279 unique GUS enzymes organized into six categories based on active-site structural features. Because mice represent a model biomedical research organism, here we provide an analogous catalog of mouse intestinal microbial GUS proteins-a mouse gut GUSome. Using metagenome analysis guided by protein structure, we examined 2.5 million unique proteins from a comprehensive mouse gut metagenome created from several mouse strains, providers, housing conditions, and diets. We identified 444 unique GUS proteins and organized them into six categories based on active-site features, similarly to the human GUSome analysis. GUS enzymes were encoded by the major gut microbial phyla, including Firmicutes (60%) and Bacteroidetes (21%), and there were nearly 20% for which taxonomy could not be assigned. No differences in gut microbial gus gene composition were observed for mice based on sex. However, mice exhibited gus differences based on active-site features associated with provider, location, strain, and diet. Furthermore, diet yielded the largest differences in gus composition. Biochemical analysis of two low-fat-associated GUS enzymes revealed that they are variable with respect to their efficacy of processing both sulfated and nonsulfated heparan nonasaccharides containing terminal glucuronides.IMPORTANCE Mice are commonly employed as model organisms of mammalian disease; as such, our understanding of the compositions of their gut microbiomes is critical to appreciating how the mouse and human gastrointestinal tracts mirror one another. GUS enzymes, with importance in normal physiology and disease, are an attractive set of proteins to use for such analyses. Here we show that while the specific GUS enzymes differ at the sequence level, a core GUSome functionality appears conserved between mouse and human gastrointestinal bacteria. Mouse strain, provider, housing location, and diet exhibit distinct GUSomes and gus gene compositions, but sex seems not to affect the GUSome. These data provide a basis for understanding the gut microbial GUS enzymes present in commonly used laboratory mice. Further, they demonstrate the utility of metagenome analysis guided by protein structure to provide specific sets of functionally related proteins from whole-genome metagenome sequencing data.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Josh H Gray
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kristen A Biernat
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael S Little
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yongmei Xu
- Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jian Liu
- Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raad Z Gharaibeh
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Integrated Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
610
|
Martin OCB, Bergonzini A, D'Amico F, Chen P, Shay JW, Dupuy J, Svensson M, Masucci MG, Frisan T. Infection with genotoxin-producing Salmonella enterica synergises with loss of the tumour suppressor APC in promoting genomic instability via the PI3K pathway in colonic epithelial cells. Cell Microbiol 2019; 21:e13099. [PMID: 31414579 PMCID: PMC6899655 DOI: 10.1111/cmi.13099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
Several commensal and pathogenic Gram‐negative bacteria produce DNA‐damaging toxins that are considered bona fide carcinogenic agents. The microbiota of colorectal cancer (CRC) patients is enriched in genotoxin‐producing bacteria, but their role in the pathogenesis of CRC is poorly understood. The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis and in the majority of sporadic CRCs. We investigated whether the loss of APC alters the response of colonic epithelial cells to infection by Salmonella enterica, the only genotoxin‐producing bacterium associated with cancer in humans. Using 2D and organotypic 3D cultures, we found that APC deficiency was associated with sustained activation of the DNA damage response, reduced capacity to repair different types of damage, including DNA breaks and oxidative damage, and failure to induce cell cycle arrest. The reduced DNA repair capacity and inability to activate adequate checkpoint responses was associated with increased genomic instability in APC‐deficient cells exposed to the genotoxic bacterium. Inhibition of the checkpoint response was dependent on activation of the phosphatidylinositol 3‐kinase pathway. These findings highlight the synergistic effect of the loss of APC and infection with genotoxin‐producing bacteria in promoting a microenvironment conducive to malignant transformation.
Collapse
Affiliation(s)
- Océane C B Martin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Bergonzini
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Federica D'Amico
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Puran Chen
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jacques Dupuy
- INRA, ToxAlim (Research Centre in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Mattias Svensson
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
611
|
Aguilera-Correa JJ, Madrazo-Clemente P, Martínez-Cuesta MDC, Peláez C, Ortiz A, Sánchez-Niño MD, Esteban J, Requena T. Lyso-Gb3 modulates the gut microbiota and decreases butyrate production. Sci Rep 2019; 9:12010. [PMID: 31427622 PMCID: PMC6700068 DOI: 10.1038/s41598-019-48426-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder resulting from deficient activity of α-galactosidase A, leading to the accumulation of glycosphingolipids such as globotriaosylsphingosine (lyso-Gb3). The gastrointestinal symptoms of this disease may be disabling, and the life expectancy of affected patients is shortened by kidney and heart disease. Our hypothesis was that lyso-Gb3 may modify the gut microbiota. The impact of a clinically relevant concentration of lyso-Gb3 on mono- or multispecies bacterial biofilms were evaluated. A complex bacterial community from the simulated transverse colon microbiota was studied using quantitative PCR to estimate different bacterial group concentrations and a HPLC was used to estimate short-chain fatty acids concentrations. We found that lyso-Gb3 increased the biofilm-forming capacity of several individual bacteria, including Bacteroides fragilis and significantly increased the growth of B. fragilis in a multispecies biofilm. Lyso-Gb3 also modified the bacterial composition of the human colon microbiota suspension, increasing bacterial counts of B. fragilis, among others. Finally, lyso-Gb3 modified the formation of short-chain fatty acids, leading to a striking decrease in butyrate concentration. Lyso-Gb3 modifies the biology of gut bacteria, favoring the production of biofilms and altering the composition and short-chain fatty-acid profile of the gut microbiota.
Collapse
Affiliation(s)
- John-Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos, 2, 28040, Madrid, Spain.
| | - Patricia Madrazo-Clemente
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos, 2, 28040, Madrid, Spain
| | - María Del Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - Carmen Peláez
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - Alberto Ortiz
- Nephrology Department. IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos, 2, 28040, Madrid, Spain
| | | | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Teresa Requena
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera, 9, 28049, Madrid, Spain
| |
Collapse
|
612
|
Tanaka S, Hammond B, Rosin DL, Okusa MD. Neuroimmunomodulation of tissue injury and disease: an expanding view of the inflammatory reflex pathway. Bioelectron Med 2019; 5:13. [PMID: 32232102 PMCID: PMC7098254 DOI: 10.1186/s42234-019-0029-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Neuroimmunomodulation through peripheral nerve activation is an important therapeutic approach to various disorders. Central to this approach is the inflammatory reflex pathway in which the cholinergic anti-inflammatory pathway represents the efferent limb. Recent studies provide a framework for understanding this control pathway, however our understanding remains incomplete. Genetically modified mice, using optogenetics and pharmacogenomics, have been invaluable resources that will allow investigators to disentangle neural pathways that provide a unifying mechanism by which vagal nerve stimulation (and other means of stimulating the pathway) leads to an anti-inflammatory and tissue protective effect. In this review we describe disease models that contribute to our understanding of how vagal nerve stimulation attenuates inflammation and organ injury: acute kidney injury, rheumatoid arthritis, and inflammatory gastrointestinal disease. The gut microbiota contributes to health and disease and the potential role of the vagus nerve in affecting the relationship between gut microbiota and the immune system and modifying diseases remains an intriguing opportunity to attenuate local and systemic inflammation that undergird disease processes.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia USA
| | | | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia USA
| | - Mark D. Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia USA
| |
Collapse
|
613
|
Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD, Carrá A, Brennan CA, Chun E, Ngo L, Samson LD, Engelward BP, Garrett WS, Balbo S, Balskus EP. The human gut bacterial genotoxin colibactin alkylates DNA. Science 2019; 363:363/6428/eaar7785. [PMID: 30765538 DOI: 10.1126/science.aar7785] [Citation(s) in RCA: 369] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/16/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Certain Escherichia coli strains residing in the human gut produce colibactin, a small-molecule genotoxin implicated in colorectal cancer pathogenesis. However, colibactin's chemical structure and the molecular mechanism underlying its genotoxic effects have remained unknown for more than a decade. Here we combine an untargeted DNA adductomics approach with chemical synthesis to identify and characterize a covalent DNA modification from human cell lines treated with colibactin-producing E. coli Our data establish that colibactin alkylates DNA with an unusual electrophilic cyclopropane. We show that this metabolite is formed in mice colonized by colibactin-producing E. coli and is likely derived from an initially formed, unstable colibactin-DNA adduct. Our findings reveal a potential biomarker for colibactin exposure and provide mechanistic insights into how a gut microbe may contribute to colorectal carcinogenesis.
Collapse
Affiliation(s)
- Matthew R Wilson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Yindi Jiang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA
| | - Paul D Boudreau
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Andrea Carrá
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA
| | - Caitlin A Brennan
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Eunyoung Chun
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lizzie Ngo
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | | | - Wendy S Garrett
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Medical Oncology, Dana-Farber Institute, Boston, MA 02115, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA.
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
614
|
Li S, Peppelenbosch MP, Smits R. Bacterial biofilms as a potential contributor to mucinous colorectal cancer formation. Biochim Biophys Acta Rev Cancer 2019; 1872:74-79. [DOI: 10.1016/j.bbcan.2019.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
|
615
|
Mori G, Orena BS, Cultrera I, Barbieri G, Albertini AM, Ranzani GN, Carnevali I, Tibiletti MG, Pasca MR. Gut Microbiota Analysis in Postoperative Lynch Syndrome Patients. Front Microbiol 2019; 10:1746. [PMID: 31417532 PMCID: PMC6682596 DOI: 10.3389/fmicb.2019.01746] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/15/2019] [Indexed: 01/02/2023] Open
Abstract
Lynch syndrome (LS) is a dominantly inherited condition with incomplete penetrance, characterized by high predisposition to colorectal cancer (CRC), endometrial and ovarian cancers, as well as to other tumors. LS is associated with constitutive DNA mismatch repair (MMR) gene defects, and carriers of the same pathogenic variants can show great phenotypic heterogeneity in terms of cancer spectrum. In the last years, human gut microbiota got a foothold among risk factors responsible for the onset and evolution of sporadic CRC, but its possible involvement in the modulation of LS patients’ phenotype still needs to be investigated. In this pilot study, we performed 16S rRNA gene sequencing of bacterial DNA extracted from fecal samples of 10 postoperative LS female patients who had developed colonic lesions (L-CRC) or gynecological cancers (L-GC). Our preliminary data show no differences between microbial communities of L-CRC and L-GC patients, but they plant the seed of the possible existence of a fecal microbiota pattern associated with LS genetic background, with Faecalibacterium prausnitzii, Parabacteroides distasonis, Ruminococcus bromii, Bacteroides plebeius, Bacteroides fragilis and Bacteroides uniformis species being the most significantly over-represented in LS patients (comprising both L-CRC and L-GC groups) compared to healthy subjects.
Collapse
Affiliation(s)
- Giorgia Mori
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Beatrice Silvia Orena
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Ilenia Cultrera
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Alessandra M Albertini
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Guglielmina Nadia Ranzani
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Research Center for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| | - Ileana Carnevali
- Research Center for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy.,Department of Pathology, ASST-Sette Laghi, Varese, Italy
| | - Maria Grazia Tibiletti
- Research Center for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy.,Department of Pathology, ASST-Sette Laghi, Varese, Italy
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
616
|
Zhu W, Miyata N, Winter MG, Arenales A, Hughes ER, Spiga L, Kim J, Sifuentes-Dominguez L, Starokadomskyy P, Gopal P, Byndloss MX, Santos RL, Burstein E, Winter SE. Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer. J Exp Med 2019; 216:2378-2393. [PMID: 31358565 PMCID: PMC6781011 DOI: 10.1084/jem.20181939] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/28/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Enterobacteriaceae family members such as E. coli exacerbate development of intestinal malignancy. Zhu et al. report that targeting the metabolism of protumoral Enterobacteriaceae by tungstate prevents tumor development in murine models of colitis-associated colorectal cancer. Chronic inflammation and gut microbiota dysbiosis, in particular the bloom of genotoxin-producing E. coli strains, are risk factors for the development of colorectal cancer. Here, we sought to determine whether precision editing of gut microbiota metabolism and composition could decrease the risk for tumor development in mouse models of colitis-associated colorectal cancer (CAC). Expansion of experimentally introduced E. coli strains in the azoxymethane/dextran sulfate sodium colitis model was driven by molybdoenzyme-dependent metabolic pathways. Oral administration of sodium tungstate inhibited E. coli molybdoenzymes and selectively decreased gut colonization with genotoxin-producing E. coli and other Enterobacteriaceae. Restricting the bloom of Enterobacteriaceae decreased intestinal inflammation and reduced the incidence of colonic tumors in two models of CAC, the azoxymethane/dextran sulfate sodium colitis model and azoxymethane-treated, Il10-deficient mice. We conclude that metabolic targeting of protumoral Enterobacteriaceae during chronic inflammation is a suitable strategy to prevent the development of malignancies arising from gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Wenhan Zhu
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Naoteru Miyata
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX.,Digestive Disease Center, International University of Health and Welfare, Mita Hospital, Japan
| | - Maria G Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Alexandre Arenales
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elizabeth R Hughes
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Luisella Spiga
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jiwoong Kim
- Department of Clinical Science, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Petro Starokadomskyy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mariana X Byndloss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Renato L Santos
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX .,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
617
|
A potential species of next-generation probiotics? The dark and light sides of Bacteroides fragilis in health. Food Res Int 2019; 126:108590. [PMID: 31732047 DOI: 10.1016/j.foodres.2019.108590] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
Bacteroides fragilis (B. fragilis) is a commensal Gram-negative obligate anaerobe that resides in the mammalian lower gut and can profoundly affect the susceptibility of the host to inflammatory diseases. Previous studies have identified B. fragilis as a common opportunistic pathogen in clinical infections and suggested that it may be responsible for a range of diseases involving a permeable intestinal barrier. However, recent studies of the relationship between nontoxigenic B. fragilis and the immune system have indicated that several B. fragilis strains may be potential probiotic. In the present review, we summarize the factors influencing the intestinal abundance of B. fragilis and discuss the biological interactions between this microbe and the host. Immune system development, age, individual dietary habits, physical condition, drug intake and personal lifestyle habits can all affect the abundance of B. fragilis in the human intestine. Polysaccharide A or outer membrane vesicles from nontoxigenic B. fragilis may mediate beneficial interactions with the host, whereas enterotoxigenic B. fragilis toxin or lipopolysaccharide may stimulate colitis or even systemic inflammation. Generally, this review summarizes the biological characteristics of B. fragilis and describes future application of probiotics.
Collapse
|
618
|
Jiang Y, Stornetta A, Villalta PW, Wilson MR, Boudreau PD, Zha L, Balbo S, Balskus EP. Reactivity of an Unusual Amidase May Explain Colibactin's DNA Cross-Linking Activity. J Am Chem Soc 2019; 141:11489-11496. [PMID: 31251062 PMCID: PMC6728428 DOI: 10.1021/jacs.9b02453] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Certain commensal and pathogenic bacteria produce colibactin, a small-molecule genotoxin that causes interstrand cross-links in host cell DNA. Although colibactin alkylates DNA, the molecular basis for cross-link formation is unclear. Here, we report that the colibactin biosynthetic enzyme ClbL is an amide bond-forming enzyme that links aminoketone and β-keto thioester substrates in vitro and in vivo. The substrate specificity of ClbL strongly supports a role for this enzyme in terminating the colibactin NRPS-PKS assembly line and incorporating two electrophilic cyclopropane warheads into the final natural product scaffold. This proposed transformation was supported by the detection of a colibactin-derived cross-linked DNA adduct. Overall, this work provides a biosynthetic explanation for colibactin's DNA cross-linking activity and paves the way for further study of its chemical structure and biological roles.
Collapse
Affiliation(s)
- Yindi Jiang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, United States
| | - Matthew R. Wilson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| | - Paul D. Boudreau
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| | - Li Zha
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States
| |
Collapse
|
619
|
Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nat Commun 2019; 10:3224. [PMID: 31324782 PMCID: PMC6642099 DOI: 10.1038/s41467-019-11140-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Proteolytic homeostasis is important at mucosal surfaces, but its actors and their precise role in physiology are poorly understood. Here we report that healthy human and mouse colon epithelia are a major source of active thrombin. We show that mucosal thrombin is directly regulated by the presence of commensal microbiota. Specific inhibition of luminal thrombin activity causes macroscopic and microscopic damage as well as transcriptomic alterations of genes involved in host-microbiota interactions. Further, luminal thrombin inhibition impairs the spatial segregation of microbiota biofilms, allowing bacteria to invade the mucus layer and to translocate across the epithelium. Thrombin cleaves the biofilm matrix of reconstituted mucosa-associated human microbiota. Our results indicate that thrombin constrains biofilms at the intestinal mucosa. Further work is needed to test whether thrombin plays similar roles in other mucosal surfaces, given that lung, bladder and skin epithelia also express thrombin. The roles played by thrombin in the human intestinal mucosa are unclear. Here, the authors show that the commensal microbiota modulates epithelial production of active thrombin, which controls biofilm growth and contributes to protection of the mucosa from bacterial invasion.
Collapse
|
620
|
Crypt- and Mucosa-Associated Core Microbiotas in Humans and Their Alteration in Colon Cancer Patients. mBio 2019; 10:mBio.01315-19. [PMID: 31311881 PMCID: PMC6635529 DOI: 10.1128/mbio.01315-19] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Due to the huge number of bacteria constituting the human colon microbiota, alteration in the balance of its constitutive taxa (i.e., dysbiosis) is highly suspected of being involved in colorectal oncogenesis. Indeed, bacterial signatures in association with CRC have been described. These signatures may vary if bacteria are identified in feces or in association with tumor tissues. Here, we show that bacteria colonize human colonic crypts in tissues obtained from patients with CRC and with normal colonoscopy results. Aerobic nonfermentative Proteobacteria previously identified as constitutive of the crypt-specific core microbiota in murine colonic samples are similarly prevalent in human colonic crypts in combination with other anaerobic taxa. We also show that bacterial signatures characterizing the crypts of colonic tumors vary depending whether right-side or left-side tumors are analyzed. We have previously identified a crypt-specific core microbiota (CSCM) in the colons of healthy laboratory mice and related wild rodents. Here, we confirm that a CSCM also exists in the human colon and appears to be altered during colon cancer. The colonic microbiota is suggested to be involved in the development of colorectal cancer (CRC). Because the microbiota identified in fecal samples from CRC patients does not directly reflect the microbiota associated with tumor tissues themselves, we sought to characterize the bacterial communities from the crypts and associated adjacent mucosal surfaces of 58 patients (tumor and normal homologous tissue) and 9 controls with normal colonoscopy results. Here, we confirm that bacteria colonize human colonic crypts in both control and CRC tissues, and using laser-microdissected tissues and 16S rRNA gene sequencing, we further show that right and left crypt- and mucosa-associated bacterial communities are significantly different. In addition to Bacteroidetes and Firmicutes, and as with murine proximal colon crypts, environmental nonfermentative Proteobacteria are found in human colonic crypts. Fusobacterium and Bacteroides fragilis are more abundant in right-side tumors, whereas Parvimonas micra is more prevalent in left-side tumors. More precisely, Fusobacterium periodonticum is more abundant in crypts from cancerous samples in the right colon than in associated nontumoral samples from adjacent areas but not in left-side colonic samples. Future analysis of the interaction between these bacteria and the crypt epithelium, particularly intestinal stem cells, will allow deciphering of their possible oncogenic potential.
Collapse
|
621
|
|
622
|
Wang L, Yin G, Guo Y, Zhao Y, Zhao M, Lai Y, Sui P, Shi T, Guo W, Huang Z. Variations in Oral Microbiota Composition Are Associated With a Risk of Throat Cancer. Front Cell Infect Microbiol 2019; 9:205. [PMID: 31334130 PMCID: PMC6618584 DOI: 10.3389/fcimb.2019.00205] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, a next-generation sequencing strategy on 16S ribosomal RNA (16S rRNA) gene was employed to analyze 70 oral samples from 32 patients with throat cancer, nine patients with vocal cord polyp, and 29 healthy individuals (normal controls). Using this strategy, we demonstrated, for the first time, that the salivary microbiota of cancer patients were significantly different from those of patients with a polyp and healthy individuals. We observed that the beta diversity of the cancer group was divergent from both the normal and polyp groups, while alpha-diversity indices such as the Chao1 estimator (P = 8.1e-05), Simpson (P = 0.0045), and Shannon (P = 0.0071) were significantly reduced in cancer patients compared with patients containing a polyp and normal healthy individuals. Linear discriminant analysis (LDA) and Kruskal–Wallis test analyses and real-time quantitative polymerase chain reaction (qPCR) verification test revealed that the genera Aggregatibacter, Pseudomonas, Bacteroides, and Ruminiclostridium were significantly enriched in the throat cancer group compared with the vocal cord polyp and normal control groups (score value >2). Finally, diagnostic models based on putatively important constituent bacteria were constructed with 87.5% accuracy [area under the curve (AUC) = 0.875, 95% confidence interval (CI): 0.695–1]. In summary, in this study we characterized, for the first time, the oral microbiota of throat cancer patients without smoking history. We speculate that these results will help in the pathogenic mechanism and early diagnosis of throat cancer.
Collapse
Affiliation(s)
- Lili Wang
- Beijing Cheer Land Biotechnology Co., Ltd., CL Investment Group, Beijing, China
| | - Gaofei Yin
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Guo
- Beijing Cheer Land Biotechnology Co., Ltd., CL Investment Group, Beijing, China
| | - Yaqi Zhao
- Beijing Cheer Land Biotechnology Co., Ltd., CL Investment Group, Beijing, China
| | - Meng Zhao
- Beijing Cheer Land Biotechnology Co., Ltd., CL Investment Group, Beijing, China
| | - Yunyun Lai
- Beijing Cheer Land Biotechnology Co., Ltd., CL Investment Group, Beijing, China
| | - Pengcheng Sui
- Beijing Cheer Land Biotechnology Co., Ltd., CL Investment Group, Beijing, China
| | - Taiping Shi
- Beijing Cheer Land Biotechnology Co., Ltd., CL Investment Group, Beijing, China
| | - Wei Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhigang Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
623
|
Silva-Santos B, Mensurado S, Coffelt SB. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer 2019; 19:392-404. [PMID: 31209264 PMCID: PMC7614706 DOI: 10.1038/s41568-019-0153-5] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The potential of cancer immunotherapy relies on the mobilization of immune cells capable of producing antitumour cytokines and effectively killing tumour cells. These are major attributes of γδ T cells, a lymphoid lineage that is often underestimated despite its major role in tumour immune surveillance, which has been established in a variety of preclinical cancer models. This situation notwithstanding, in particular instances the tumour microenvironment seemingly mobilizes γδ T cells with immunosuppressive or tumour-promoting functions, thus emphasizing the importance of regulating γδ T cell responses in order to realize their translation into effective cancer immunotherapies. In this Review we outline both seminal work and recent advances in our understanding of how γδ T cells participate in tumour immunity and how their functions are regulated in experimental models of cancer. We also discuss the current strategies aimed at maximizing the therapeutic potential of human γδ T cells, on the eve of their exploration in cancer clinical trials that may position them as key players in cancer immunotherapy.
Collapse
Affiliation(s)
- Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Sofia Mensurado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow and Cancer Research UK Beatson Institute, Glasgow, UK.
| |
Collapse
|
624
|
Molan K, Podlesek Z, Hodnik V, Butala M, Oswald E, Žgur Bertok D. The Escherichia coli colibactin resistance protein ClbS is a novel DNA binding protein that protects DNA from nucleolytic degradation. DNA Repair (Amst) 2019; 79:50-54. [DOI: 10.1016/j.dnarep.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/29/2019] [Accepted: 05/18/2019] [Indexed: 01/19/2023]
|
625
|
Morales E, Chen J, Greathouse KL. Compositional Analysis of the Human Microbiome in Cancer Research. Methods Mol Biol 2019; 1928:299-335. [PMID: 30725462 DOI: 10.1007/978-1-4939-9027-6_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gut microbial composition has shown to be associated with obesity, diabetes mellitus, inflammatory bowel disease, colitis, autoimmune disorders, and cancer, among other diseases. Microbiome research has significantly evolved through the years and continues to advance as we develop new and better strategies to more accurately measure its composition and function. Careful selection of study design, inclusion and exclusion criteria of participants, and methodology are paramount to accurately analyze microbial structure. Here we present the most up-to-date available information on methods for gut microbial collection and analysis.
Collapse
Affiliation(s)
- Elisa Morales
- Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - K Leigh Greathouse
- Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA.
| |
Collapse
|
626
|
Volpe MR, Wilson MR, Brotherton CA, Winter ES, Johnson SE, Balskus EP. In Vitro Characterization of the Colibactin-Activating Peptidase ClbP Enables Development of a Fluorogenic Activity Probe. ACS Chem Biol 2019; 14:1097-1101. [PMID: 31059217 DOI: 10.1021/acschembio.9b00069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The gut bacterial genotoxin colibactin is linked to the development of colorectal cancer. In the final stages of colibactin's biosynthesis, an inactive precursor (precolibactin) undergoes proteolytic cleavage by ClbP, an unusual inner-membrane-bound periplasmic peptidase, to generate the active genotoxin. This enzyme presents an opportunity to monitor and modulate colibactin biosynthesis, but its active form has not been studied in vitro and limited tools exist to measure its activity. Here, we describe the in vitro biochemical characterization of catalytically active, full-length ClbP. We elucidate its substrate preferences and use this information to develop a fluorogenic activity probe. This tool will enable the discovery of ClbP inhibitors and streamline identification of colibactin-producing bacteria.
Collapse
Affiliation(s)
- Matthew R. Volpe
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Matthew R. Wilson
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Carolyn A. Brotherton
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Ethan S. Winter
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Sheila E. Johnson
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
627
|
Abstract
Microbiome data should be incorporated into the prevention, diagnosis, and treatment of colon cancer
Collapse
Affiliation(s)
- Wendy S Garrett
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; and Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
628
|
Li Q, Peng W, Wu J, Wang X, Ren Y, Li H, Peng Y, Tang X, Fu X. Autoinducer-2 of gut microbiota, a potential novel marker for human colorectal cancer, is associated with the activation of TNFSF9 signaling in macrophages. Oncoimmunology 2019; 8:e1626192. [PMID: 31646072 DOI: 10.1080/2162402x.2019.1626192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
Objectives: The interaction between the quorum sensing (QS) molecules of gut microbiota and the immunity of colorectal cancer (CRC) has not been investigated before. Methods: We measured the concentration of autoinducer-2 (AI-2) in samples of stool, colorectal tissue, saliva and serum of CRC patients, and compared this to AI-2 levels in colorectal adenoma (AD) and normal colon mucosa (NC). To explore the activated signaling pathways involved, we utilized AI-2 extracted from Fusobacterium nucleatum to stimulate macrophages and validated these in vitro findings in human CRC tissues. Results: The AI-2 concentration in both colorectal tissue and stool of CRC patients was significantly higher when compared to that in AD and NC (all P values < .01). The AI-2 concentration along with the progression of CRC in both tissues and stools was significantly increased (P= .045,P= .0003, respectively). After AI-2 stimulation, TNFSF9 was the most significantly increased protein in macrophage cells (P < .01). TNFSF9 expression was significantly higher in CRC tissues when compared to NCs (P< .0001), which was mainly derived from macrophages in the tumor microenvironment. Moreover, AI-2 level was positively associated with CD3 + T cell numbers (P= .0462), and negatively associated with CD4/CD8 ratio (P= .0113) within CRC tissues. Conclusions: We demonstrated for the first time that AI-2 may serve as a novel marker for screening CRC in the clinic. AI-2 was associated with tumor immunity in CRCs through tumor-associated macrophages and CD4/CD8 ratio in a TNFSF9-dependent manner.
Collapse
Affiliation(s)
- Qing Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Wei Peng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jiao Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xianfei Wang
- Department of Gastroenterology, The Second Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Yixing Ren
- Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Huan Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Yan Peng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xiaowei Tang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| |
Collapse
|
629
|
Di Guglielmo MD, Franke K, Cox C, Crowgey EL. Whole genome metagenomic analysis of the gut microbiome of differently fed infants identifies differences in microbial composition and functional genes, including an absent CRISPR/Cas9 gene in the formula-fed cohort. HUMAN MICROBIOME JOURNAL 2019; 12:100057. [PMID: 34278055 PMCID: PMC8281965 DOI: 10.1016/j.humic.2019.100057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Advancements in sequencing capabilities have enhanced the study of the human microbiome. There are limited studies focused on the gastro-intestinal (gut) microbiome of infants, particularly the impact of diet between breast-fed (BF) versus formula-fed (FF). It is unclear what effect, if any, early feeding has on short-term or long-term composition and function of the gut microbiome. RESULTS Using a shotgun metagenomics approach, differences in the gut microbiome between BF (n = 10) and FF (n = 5) infants were detected. A Jaccard distance principle coordinate analysis was able to cluster BF versus FF infants based on the presence or absence of species identified in their gut microbiome. Thirty-two genera were identified as statistically different in the gut microbiome sequenced between BF and FF infants. Furthermore, the computational workflow identified 371 bacterial genes that were statistically different between the BF and FF cohorts in abundance. Only seven genes were lower in abundance (or absent) in the FF cohort compared to the BF cohort, including CRISPR/Cas9; whereas, the remaining candidates, including autotransporter adhesins, were higher in abundance in the FF cohort compared to BF cohort. CONCLUSIONS These studies demonstrated that FF infants have, at an early age, a significantly different gut microbiome with potential implications for function of the fecal microbiota. Interactions between the fecal microbiota and host hinted at here have been linked to numerous diseases. Determining whether these non-abundant or more abundant genes have biological consequence related to infant feeding may aid in understanding the adult gut microbiome, and the pathogenesis of obesity.
Collapse
Affiliation(s)
- Matthew D. Di Guglielmo
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Karl Franke
- Biomedical Research Department, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Courtney Cox
- Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Erin L. Crowgey
- Biomedical Research Department, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| |
Collapse
|
630
|
Epigenetic Changes Induced by Bacteroides fragilis Toxin. Infect Immun 2019; 87:IAI.00447-18. [PMID: 30885929 DOI: 10.1128/iai.00447-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) is a Gram-negative, obligate anaerobe member of the gut microbial community in up to 40% of healthy individuals. This bacterium is found more frequently in people with colorectal cancer (CRC) and causes tumor formation in the distal colon of multiple intestinal neoplasia (Apcmin/+ ) mice; tumor formation is dependent on ETBF-secreted Bacteroides fragilis toxin (BFT). Because of the extensive data connecting alterations in the epigenome with tumor formation, initial experiments attempting to connect BFT-induced tumor formation with methylation in colon epithelial cells (CECs) have been performed, but the effect of BFT on other epigenetic processes, such as chromatin structure, remains unexplored. Here, the changes in gene expression (transcriptome sequencing [RNA-seq]) and chromatin accessibility (assay for transposase-accessible chromatin using sequencing) induced by treatment of HT29/C1 cells with BFT for 24 and 48 h were examined. Our data show that several genes are differentially expressed after BFT treatment and that these changes relate to the interaction between bacteria and CECs. Further, sites of increased chromatin accessibility are associated with the location of enhancers in CECs and the binding sites of transcription factors in the AP-1/ATF family; they are also enriched for common differentially methylated regions (DMRs) in CRC. These data provide insight into the mechanisms by which BFT induces tumor formation and lay the groundwork for future in vivo studies to explore the impact of BFT on nuclear structure and function.
Collapse
|
631
|
Tibbs TN, Lopez LR, Arthur JC. The influence of the microbiota on immune development, chronic inflammation, and cancer in the context of aging. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:324-334. [PMID: 31403049 PMCID: PMC6685047 DOI: 10.15698/mic2019.08.685] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
From birth, the microbiota plays an essential role in human development by educating host immune responses. Proper maturation of the immune system perturbs chronic inflammation and the pathogenesis of disease by preventing inappropriate immune responses. While many have detailed the roles of specific microbial groups in immune development and human disease, it remains to be elucidated how the microbiota influences the immune system during aging. Furthermore, it is not yet understood how age-related changes to the microbiota and immune system influence the development of age-related diseases. In this review, we outline the role of the microbiota in immune system development as well as functional changes that occur to immune cell populations during immunosenescence. In addition, we highlight how commensal microbes influence the pathogenesis of cancer, a prominent disease of aging. The information provided herein suggests that age-related changes to the microbiota and immune system should be considered in disease treatment and prevention strategies.
Collapse
Affiliation(s)
- Taylor N. Tibbs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lacey R. Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
632
|
Ge Z, Feng Y, Sheh A, Muthupalani S, Gong G, Chawanthayatham S, Essigmann JM, Fox JG. Mutagenicity of Helicobacter hepaticus infection in the lower bowel mucosa of 129/SvEv Rag2 -/- Il10 -/- gpt delta mice is influenced by sex. Int J Cancer 2019; 145:1042-1054. [PMID: 30977112 DOI: 10.1002/ijc.32332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/05/2019] [Indexed: 12/29/2022]
Abstract
Inflammatory bowel disease and colonic tumors induced by Helicobacter hepaticus (Hh) infection in susceptible mouse strains are utilized to dissect the mechanisms underlying similar human diseases. In our study, infection with genotoxic cytolethal distending toxin-producing Hh in 129/SvEv Rag2-/- Il10-/- gpt delta (RagIl10gpt) mice of both sexes for 21 weeks induced significantly more severe cecal and colonic pathology compared to uninfected controls. The mutation frequencies in the infected RagIl10gpt males were 2.1-fold higher for the cecum and 1.7-fold higher for the colon than male RagIl10gpt controls. In addition, there was a 12.5-fold increase of G:C-to-T:A transversions in the colon of Hh-infected males compared to controls. In contrast, there was no statistical significance in mutation frequencies between infected female Rag2Il10gpt mice and controls. Moreover, Hh infection in RagIl10gpt males significantly up-regulated transcription of Tnfα and iNos, and decreased mRNA levels of cecal Atm compared to the infected females; there was no significant difference in mRNA levels of Il-22, Il-17A, Ifnγ and Atr between the infected males and females. Significantly higher levels of cecal and colonic iNos expression and γH2AX-positive epithelial cells (a biomarker for double-strand DNA breaks [DSB]) in Hh-infected Rag2Il10gpt males vs. Hh-infected females were noted. Finally, Hh infection and associated inflammation increased levels of intestinal mucosa-associated genotoxic colibactin-producing pks+ Escherichia coli. Elevated Tnfα and iNos responses and bacterial genotoxins, in concert with suppression of the DSB repair responses, may have promoted mutagenesis in the lower bowel mucosa of Hh-infected male RagIl10gpt mice.
Collapse
Affiliation(s)
- Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Guanyu Gong
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - John M Essigmann
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
633
|
Qi YF, Sun JN, Ren LF, Cao XL, Dong JH, Tao K, Guan XM, Cui YN, Su W. Intestinal Microbiota Is Altered in Patients with Gastric Cancer from Shanxi Province, China. Dig Dis Sci 2019; 64:1193-1203. [PMID: 30535886 DOI: 10.1007/s10620-018-5411-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/01/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many diseases have been associated with intestinal microbial dysbiosis. Host-microbial interactions regulate immune function, which influences the development of gastric cancer. AIMS The aims were to investigate the characteristics of intestinal microbiota composition in gastric cancer patients and correlations between the intestinal microbiota and cellular immunity. METHODS Fecal samples were collected from 116 gastric cancer patients and 88 healthy controls from Shanxi Province, China. The intestinal microbiota was investigated by 16S rRNA gene sequencing. Peripheral blood samples were also collected from the 66 gastric cancer patients and 46 healthy controls. The populations of peripheral T lymphocyte subpopulations and NK cells were analyzed by flow cytometry. RESULTS The intestinal microbiota in gastric cancer patients was characterized by increased species richness, decreased butyrate-producing bacteria, and the enrichment of other symbiotic bacteria, especially Lactobacillus, Escherichia, and Klebsiella. Lactobacillus and Lachnospira were key species in the network of gastric cancer-associated bacterial genera. The combination of the genera Lachnospira, Lactobacillus, Streptococcus, Veillonella, and Tyzzerella_3 showed good performance in distinguishing gastric cancer patients from healthy controls. There was no significant difference in enterotype distribution between healthy controls and gastric cancer patients. The percentage of CD3+ T cells was positively correlated with the abundance of Lactobacillus and Streptococcus, and CD3+ T cells, CD4+ T cells, and NK cells were associated with Lachnospiraceae taxa. CONCLUSIONS Our study revealed a dysbiotic intestinal microbiota in gastric cancer patients. The abundance of some intestinal bacterial genera was correlated with the population of peripheral immune cells.
Collapse
Affiliation(s)
- Yu-Feng Qi
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Immunology Department, Shanxi Cancer Hospital, No. 3 Zhigong New Street, Taiyuan, 030013, Shanxi, China
| | - Jun-Ning Sun
- Immunology Department, Shanxi Cancer Hospital, No. 3 Zhigong New Street, Taiyuan, 030013, Shanxi, China
| | - Lai-Feng Ren
- Immunology Department, Shanxi Cancer Hospital, No. 3 Zhigong New Street, Taiyuan, 030013, Shanxi, China
| | - Xue-Ling Cao
- Department of Health Examination Center, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Jian-Hong Dong
- Center of Minimally Invasive Gastrointestinal Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Kai Tao
- Center of Minimally Invasive Gastrointestinal Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Xue-Mei Guan
- Department of Health Examination Center, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Ya-Ni Cui
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Immunology Department, Shanxi Cancer Hospital, No. 3 Zhigong New Street, Taiyuan, 030013, Shanxi, China
| | - Wen Su
- Immunology Department, Shanxi Cancer Hospital, No. 3 Zhigong New Street, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
634
|
Sethi V, Vitiello GA, Saxena D, Miller G, Dudeja V. The Role of the Microbiome in Immunologic Development and its Implication For Pancreatic Cancer Immunotherapy. Gastroenterology 2019; 156:2097-2115.e2. [PMID: 30768986 DOI: 10.1053/j.gastro.2018.12.045] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Our understanding of the microbiome and its role in immunity, cancer initiation, and cancer progression has evolved significantly over the past century. The "germ theory of cancer" was first proposed in the early 20th century, and shortly thereafter the bacterium Helicobacter pylori, and later Fusobacterium nucleatum, were implicated in the development of gastric and colorectal cancers, respectively. However, with the development of reliable mouse models and affordable sequencing technologies, the most fascinating aspect of the microbiome-cancer relationship, where microbes undermine cancer immune surveillance and indirectly promote oncogenesis, has only recently been described. In this review, we highlight the essential role of the microbiome in immune system development and maturation. We review how microbe-induced immune activation promotes oncogenesis, focusing particularly on pancreatic carcinogenesis, and show that modulation of the microbiome augments the anti-cancer immune response and enables successful immunotherapy against pancreatic cancer.
Collapse
Affiliation(s)
- Vrishketan Sethi
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Gerardo A Vitiello
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Deepak Saxena
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York; Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Vikas Dudeja
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida.
| |
Collapse
|
635
|
Rizzato C, Torres J, Kasamatsu E, Camorlinga-Ponce M, Bravo MM, Canzian F, Kato I. Potential Role of Biofilm Formation in the Development of Digestive Tract Cancer With Special Reference to Helicobacter pylori Infection. Front Microbiol 2019; 10:846. [PMID: 31110496 PMCID: PMC6501431 DOI: 10.3389/fmicb.2019.00846] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria are highly social organisms that communicate via signaling molecules and can assume a multicellular lifestyle to build biofilm communities. Until recently, complications from biofilm-associated infection have been primarily ascribed to increased bacterial resistance to antibiotics and host immune evasion, leading to persistent infection. In this theory and hypothesis article we present a relatively new argument that biofilm formation has potential etiological role in the development of digestive tract cancer. First, we summarize recent new findings suggesting the potential link between bacterial biofilm and various types of cancer to build the foundation of our hypothesis. To date, evidence has been particularly convincing for colorectal cancer and its precursor, i.e., polyps, pointing to several key individual bacterial species, such as Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus gallolyticus subsp. Gallolyticus. Then, we further extend this hypothesis to one of the most common bacterial infection in humans, Helicobacter pylori (Hp), which is considered a major cause of gastric cancer. Thus far, there has been no direct evidence linking in vivo Hp gastric biofilm formation to gastric carcinogenesis. Yet, we synthesize the information to support an argument that biofilm associated-Hp is potentially more carcinogenic, summarizing biological characteristics of biofilm-associated bacteria. We also discuss mechanistic pathways as to how Hp or other biofilm-associated bacteria control biofilm formation and highlight recent findings on Hp genes that influence biofilm formation, which may lead to strain variability in biofilm formation. This knowledge may open a possibility of developing targeted intervention. We conclude, however, that this field is still in its infancy. To test the hypothesis rigorously and to link it ultimately to gastric pathologies (e.g., premalignant lesions and cancer), studies are needed to learn more about Hp biofilms, such as compositions and biological properties of extracellular polymeric substance (EPS), presence of non-Hp microbiome and geographical distribution of biofilms in relation to gastric gland types and structures. Identification of specific Hp strains with enhanced biofilm formation would be helpful not only for screening patients at high risk for sequelae from Hp infection, but also for development of new antibiotics to avoid resistance, regardless of its association with gastric cancer.
Collapse
Affiliation(s)
- Cosmeri Rizzato
- Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elena Kasamatsu
- Instituto de Investigaciones en Ciencias de la Salud, National University of Asunción, Asunción, Paraguay
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Maria Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
636
|
Nie P, Li Z, Wang Y, Zhang Y, Zhao M, Luo J, Du S, Deng Z, Chen J, Wang Y, Chen S, Wang L. Gut microbiome interventions in human health and diseases. Med Res Rev 2019; 39:2286-2313. [PMID: 30994937 DOI: 10.1002/med.21584] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/27/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023]
Abstract
Ongoing studies have determined that the gut microbiota is a major factor influencing both health and disease. Host genetic factors and environmental factors contribute to differences in gut microbiota composition and function. Intestinal dysbiosis is a cause or a contributory cause for diseases in multiple body systems, ranging from the digestive system to the immune, cardiovascular, respiratory, and even nervous system. Investigation of pathogenesis has identified specific species or strains, bacterial genes, and metabolites that play roles in certain diseases and represent potential drug targets. As research progresses, gut microbiome-based diagnosis and therapy are proposed and applied, which might lead to considerable progress in precision medicine. We further discuss the limitations of current studies and potential solutions.
Collapse
Affiliation(s)
- Pengqing Nie
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yimeng Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yubing Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Mengna Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shiming Du
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yunfu Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
637
|
Abstract
The effects of diversity of the gut microbiome on inflammation have centered mainly on bacterial flora. Recent research has implicated fungal species and their interactions with other organisms in the inflammatory process. New ways to restore microbial balance in the gut are being explored. Our goal was to identify beneficial probiotic strains that would antagonize these fungal and bacterial pathogens that are elevated in the inflamed gut, and which also have antibiofilm activity. Fungus-bacterium correlation analysis allowed us to identify candidate probiotic species that can antagonize microbial pathogens, which we subsequently incorporated into a novel probiotic formulation. Amylase, which is known to have some antibiofilm activity, was also added to the probiotic mixture. This novel probiotic may have utility for the management of inflammatory bowel diseases by disrupting polymicrobial biofilm formation. Dysbiosis of the gut microbiome has been implicated in inflammatory bowel diseases. We have shown that levels of Candida tropicalis, along with those of Escherichia coli and Serratia marcescens, are significantly elevated in Crohn’s disease (CD) patients. Here, we evaluated the ability of a novel probiotic to prevent and treat polymicrobial biofilms (PMB) formed by C. tropicalis with E. coli and S. marcescens. Since Candida albicans has been reported to be elevated in CD patients, we investigated the interactions of C. albicans with these bacterial species in biofilm formation. We determined whether the interaction between Candida spp. and bacteria is specific by using Trichosporon inkin and Saccharomyces fibuligera as comparators. Additionally, the effects of probiotics on C. albicans germination and biofilm formation were determined. To determine the ability of the probiotic to prevent or treat mature biofilms, probiotic filtrate was added to the PMB at early (prevention) and mature (treatment) phases. Biofilm thickness and architecture were assessed by confocal scanning laser microscopy. The effects of the probiotic on germination were evaluated in the presence of serum. Exposure of C. tropicalis PMB to probiotic filtrate reduced biofilm matrix, decreased thickness, and inhibited hyphal formation. We showed that C. albicans or C. tropicalis formed significantly thicker PMB than control biofilms, indicating that this interaction is Candida specific. Treatment with probiotic filtrate inhibited C. albicans germination and prevented/treated C. albicans PMB. The designed probiotic may have utility in the management of biofilm-associated gastrointestinal diseases such as Crohn’s and colorectal cancer.
Collapse
|
638
|
Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F, Zolfo M, Beghini F, Manara S, Karcher N, Pozzi C, Gandini S, Serrano D, Tarallo S, Francavilla A, Gallo G, Trompetto M, Ferrero G, Mizutani S, Shiroma H, Shiba S, Shibata T, Yachida S, Yamada T, Wirbel J, Schrotz-King P, Ulrich CM, Brenner H, Arumugam M, Bork P, Zeller G, Cordero F, Dias-Neto E, Setubal JC, Tett A, Pardini B, Rescigno M, Waldron L, Naccarati A, Segata N. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med 2019; 25:667-678. [PMID: 30936548 PMCID: PMC9533319 DOI: 10.1038/s41591-019-0405-7] [Citation(s) in RCA: 514] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023]
Abstract
Several studies have investigated links between the gut microbiome and colorectal cancer (CRC), but questions remain about the replicability of biomarkers across cohorts and populations. We performed a meta-analysis of five publicly available datasets and two new cohorts and validated the findings on two additional cohorts, considering in total 969 fecal metagenomes. Unlike microbiome shifts associated with gastrointestinal syndromes, the gut microbiome in CRC showed reproducibly higher richness than controls (P < 0.01), partially due to expansions of species typically derived from the oral cavity. Meta-analysis of the microbiome functional potential identified gluconeogenesis and the putrefaction and fermentation pathways as being associated with CRC, whereas the stachyose and starch degradation pathways were associated with controls. Predictive microbiome signatures for CRC trained on multiple datasets showed consistently high accuracy in datasets not considered for model training and independent validation cohorts (average area under the curve, 0.84). Pooled analysis of raw metagenomes showed that the choline trimethylamine-lyase gene was overabundant in CRC (P = 0.001), identifying a relationship between microbiome choline metabolism and CRC. The combined analysis of heterogeneous CRC cohorts thus identified reproducible microbiome biomarkers and accurate disease-predictive models that can form the basis for clinical prognostic tests and hypothesis-driven mechanistic studies.
Collapse
Affiliation(s)
- Andrew Maltez Thomas
- Department CIBIO, University of Trento, Trento, Italy
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, Brazil
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | | | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Serena Manara
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Chiara Pozzi
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Gandini
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Sonia Tarallo
- Italian Institute for Genomic Medicine, Turin, Italy
| | | | - Gaetano Gallo
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | - Mario Trompetto
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | - Giulio Ferrero
- Department of Computer Science, University of Turin, Turin, Italy
| | - Sayaka Mizutani
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hirotsugu Shiroma
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Satoshi Shiba
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinichi Yachida
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Cancer Genome Informatics, Osaka University, Osaka, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Jakob Wirbel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Hermann Brenner
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Healthy Sciences, University of Southern Denmark, Odense, Denmark
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Emmanuel Dias-Neto
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Neurosciences, Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - João Carlos Setubal
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, Brazil
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, USA
| | - Adrian Tett
- Department CIBIO, University of Trento, Trento, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maria Rescigno
- Mucosal Immunology and Microbiota Unit, Humanitas Research Hospital, Milan, Italy
| | - Levi Waldron
- Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
- Institute for Implementation Science in Population Health, City University of New York, New York, NY, USA
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine, Turin, Italy
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
639
|
Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, Fleck JS, Voigt AY, Palleja A, Ponnudurai R, Sunagawa S, Coelho LP, Schrotz-King P, Vogtmann E, Habermann N, Niméus E, Thomas AM, Manghi P, Gandini S, Serrano D, Mizutani S, Shiroma H, Shiba S, Shibata T, Yachida S, Yamada T, Waldron L, Naccarati A, Segata N, Sinha R, Ulrich CM, Brenner H, Arumugam M, Bork P, Zeller G. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med 2019; 25:679-689. [PMID: 30936547 PMCID: PMC7984229 DOI: 10.1038/s41591-019-0406-6] [Citation(s) in RCA: 657] [Impact Index Per Article: 131.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023]
Abstract
Association studies have linked microbiome alterations with many human diseases. However, they have not always reported consistent results, thereby necessitating cross-study comparisons. Here, a meta-analysis of eight geographically and technically diverse fecal shotgun metagenomic studies of colorectal cancer (CRC, n = 768), which was controlled for several confounders, identified a core set of 29 species significantly enriched in CRC metagenomes (false discovery rate (FDR) < 1 × 10-5). CRC signatures derived from single studies maintained their accuracy in other studies. By training on multiple studies, we improved detection accuracy and disease specificity for CRC. Functional analysis of CRC metagenomes revealed enriched protein and mucin catabolism genes and depleted carbohydrate degradation genes. Moreover, we inferred elevated production of secondary bile acids from CRC metagenomes, suggesting a metabolic link between cancer-associated gut microbes and a fat- and meat-rich diet. Through extensive validations, this meta-analysis firmly establishes globally generalizable, predictive taxonomic and functional microbiome CRC signatures as a basis for future diagnostics.
Collapse
Affiliation(s)
- Jakob Wirbel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Paul Theodor Pyl
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark.,Division of Surgery, Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Ece Kartal
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Konrad Zych
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alireza Kashani
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alessio Milanese
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jonas S Fleck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anita Y Voigt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Albert Palleja
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ruby Ponnudurai
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shinichi Sunagawa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Luis Pedro Coelho
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Emily Vogtmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nina Habermann
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Emma Niméus
- Division of Surgery, Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.,Division of Surgery, Department of Clinical Sciences Lund, Faculty of Medicine, Skane University Hospital, Lund, Sweden
| | - Andrew M Thomas
- Department CIBIO, University of Trento, Trento, Italy.,Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | - Sara Gandini
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Sayaka Mizutani
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hirotsugu Shiroma
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Satoshi Shiba
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinichi Yachida
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan.,Department of Cancer Genome Informatics, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Levi Waldron
- Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA.,Institute for Implementation Science in Population Health, City University of New York, New York, NY, USA
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Hermann Brenner
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark. .,Faculty of Healthy Sciences, University of Southern Denmark, Odense, Denmark.
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. .,Molecular Medicine Partnership Unit, Heidelberg, Germany. .,Max Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
640
|
Morcrette G, Hirsch TZ, Badour E, Pilet J, Caruso S, Calderaro J, Martin Y, Imbeaud S, Letouzé E, Rebouissou S, Branchereau S, Taque S, Chardot C, Guettier C, Scoazec JY, Fabre M, Brugières L, Zucman-Rossi J. APC germline hepatoblastomas demonstrate cisplatin-induced intratumor tertiary lymphoid structures. Oncoimmunology 2019; 8:e1583547. [PMID: 31069152 PMCID: PMC6492969 DOI: 10.1080/2162402x.2019.1583547] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatoblastoma (HB) is the most common liver cancer in children. We aimed to characterize HB related to APC (Adenomatous Polyposis Coli) germline mutation (APC-HB). This French multicentric retrospective study included 12 APC-HB patients under 5 at diagnosis. Clinical features of APC-HB were compared to the French SIOPEL2-3 cohort of HB patients. Molecular and histopathological analyses of APC-HB were compared to 15 consecutive sporadic HB treated at Bicêtre hospital from 2013 to 2015 (non-APC-HB). APC-HB patients have a peculiar spectrum of germline APC mutations, with no events in the main hotspot of classical APC mutations at codon 1309 (P < .05). Compared to sporadic HB, they have similar clinical features including good prognosis since all patients are alive in complete remission at last follow-up. APC-HB are mostly well-limited tumors with fetal predominance and few mesenchymal components. All APC-HB have an activated Wnt/β-catenin pathway without CTNNB1 mutation, confirming that germline APC and somatic CTNNB1 mutations are mutually exclusive (P < .001). Pathological reviewing identified massive intratumor tertiary lymphoid structures (TLS) containing both lymphocytes and antigen-presenting cells in all 11 APC-HB cases who received cisplatin-based neoadjuvant chemotherapy but not in five pre-chemotherapy samples (four paired biopsies and one patient resected without chemotherapy), indicating that these TLS are induced by chemotherapy (P < .001). Conclusion: APC-HB show a good prognosis, they are all infiltrated by cisplatin-induced TLS, a feature only retrieved in a minority of non-APC-HB. This suggests that APC inactivation can synergize with cisplatin to induce an immunogenic cell death that initiates an anti-tumor immune response.
Collapse
Affiliation(s)
- Guillaume Morcrette
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Service de Pathologie Pédiatrique, Assistance Publique Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | - Theo Z Hirsch
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Elise Badour
- Service de pédiatrie, Centre Hospitalier de la Côte Basque, Bayonne, France
| | - Jill Pilet
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Julien Calderaro
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Service d'anatomopathologie, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France.,Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, France
| | - Yoann Martin
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Sandrine Imbeaud
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Branchereau
- Service de chirurgie pédiatrique, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Université Paris-Saclay, Le Kremlin, France
| | - Sophie Taque
- Département de Médecine de l'Enfant et l'Adolescent, CHU de Rennes, France
| | - Christophe Chardot
- Service de Chirurgie viscérale pédiatrique, Assistance Publique Hôpitaux de Paris, Hôpital Necker-Enfants malades, Paris, France
| | - Catherine Guettier
- Service d'anatomie et de cytologie pathologiques, Hôpitaux Universitaires Paris Sud, Assistance Publique Hôpitaux de Paris Le Kremlin Bicêtre, Faculté de Médecine Paris Sud, INSERM, Paris, France
| | - Jean-Yves Scoazec
- Service d'anatomie et de cytologie pathologiques, Gustave Roussy Cancer Center, Villejuif, France
| | - Monique Fabre
- Service d'anatomie et de cytologie pathologiques, Assistance Publique Hôpitaux de Paris, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Laurence Brugières
- Département de cancérologie de l'Enfant et l'adolescent, Gustave Roussy Cancer Center, Villejuif, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Département de cancérologie, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
641
|
Guo M, Xu E, Ai D. Inferring Bacterial Infiltration in Primary Colorectal Tumors From Host Whole Genome Sequencing Data. Front Genet 2019; 10:213. [PMID: 30930939 PMCID: PMC6428740 DOI: 10.3389/fgene.2019.00213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer is the third most common cancer worldwide with abysmal survival, thus requiring novel therapy strategies. Numerous studies have frequently observed infiltrating bacteria within the primary tumor tissues derived from patients. These studies have implicated the relative abundance of these bacteria as a contributing factor in tumor progression. Infiltrating bacteria are believed to be among the major drivers of tumorigenesis, progression, and metastasis and, hence, promising targets for new treatments. However, measuring their abundance directly remains challenging. One potential approach is to use the unmapped reads of host whole genome sequencing (hWGS) data, which previous studies have considered as contaminants and discarded. Here, we developed rigorous bioinformatics and statistical procedures to identify tumor-infiltrating bacteria associated with colorectal cancer from such whole genome sequencing data. Our approach used the reads of whole genome sequencing data of colon adenocarcinoma tissues not mapped to the human reference genome, including unmapped paired-end read pairs and single-end reads, the mates of which were mapped. We assembled the unmapped read pairs, remapped all those reads to the collection of human microbiome reference, and then computed their relative abundance of microbes by maximum likelihood (ML) estimation. We analyzed and compared the relative abundance and diversity of infiltrating bacteria between primary tumor tissues and associated normal blood samples. Our results showed that primary tumor tissues contained far more diverse total infiltrating bacteria than normal blood samples. The relative abundance of Bacteroides fragilis, Bacteroides dorei, and Fusobacterium nucleatum was significantly higher in primary colorectal tumors. These three bacteria were among the top ten microbes in the primary tumor tissues, yet were rarely found in normal blood samples. As a validation step, most of these bacteria were also closely associated with colorectal cancer in previous studies with alternative approaches. In summary, our approach provides a new analytic technique for investigating the infiltrating bacterial community within tumor tissues. Our novel cloud-based bioinformatics and statistical pipelines to analyze the infiltrating bacteria in colorectal tumors using the unmapped reads of whole genome sequences can be freely accessed from GitHub at https://github.com/gutmicrobes/UMIB.git.
Collapse
Affiliation(s)
- Man Guo
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Er Xu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Dongmei Ai
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
- Basic Experimental of Natural Science, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
642
|
Tomkovich S, Dejea CM, Winglee K, Drewes JL, Chung L, Housseau F, Pope JL, Gauthier J, Sun X, Mühlbauer M, Liu X, Fathi P, Anders RA, Besharati S, Perez-Chanona E, Yang Y, Ding H, Wu X, Wu S, White JR, Gharaibeh RZ, Fodor AA, Wang H, Pardoll DM, Jobin C, Sears CL. Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. J Clin Invest 2019; 129:1699-1712. [PMID: 30855275 PMCID: PMC6436866 DOI: 10.1172/jci124196] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
Mucus-invasive bacterial biofilms are identified on the colon mucosa of approximately 50% of colorectal cancer (CRC) patients and approximately 13% of healthy subjects. Here, we test the hypothesis that human colon biofilms comprise microbial communities that are carcinogenic in CRC mouse models. Homogenates of human biofilm-positive colon mucosa were prepared from tumor patients (tumor and paired normal tissues from surgical resections) or biofilm-positive biopsies from healthy individuals undergoing screening colonoscopy; homogenates of biofilm-negative colon biopsies from healthy individuals undergoing screening colonoscopy served as controls. After 12 weeks, biofilm-positive, but not biofilm-negative, human colon mucosal homogenates induced colon tumor formation in 3 mouse colon tumor models (germ-free ApcMinΔ850/+;Il10-/- or ApcMinΔ850/+ and specific pathogen-free ApcMinΔ716/+ mice). Remarkably, biofilm-positive communities from healthy colonoscopy biopsies induced colon inflammation and tumors similarly to biofilm-positive tumor tissues. By 1 week, biofilm-positive human tumor homogenates, but not healthy biopsies, displayed consistent bacterial mucus invasion and biofilm formation in mouse colons. 16S rRNA gene sequencing and RNA-Seq analyses identified compositional and functional microbiota differences between mice colonized with biofilm-positive and biofilm-negative communities. These results suggest human colon mucosal biofilms, whether from tumor hosts or healthy individuals undergoing screening colonoscopy, are carcinogenic in murine models of CRC.
Collapse
Affiliation(s)
- Sarah Tomkovich
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Christine M. Dejea
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Kathryn Winglee
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Julia L. Drewes
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Liam Chung
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Franck Housseau
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Jillian L. Pope
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Josee Gauthier
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Xiaolun Sun
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marcus Mühlbauer
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Xiuli Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Payam Fathi
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Robert A. Anders
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sepideh Besharati
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Ye Yang
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Hua Ding
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Xinqun Wu
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Shaoguang Wu
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | - Raad Z. Gharaibeh
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Hao Wang
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Drew M. Pardoll
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, USA
| | - Cynthia L. Sears
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
643
|
Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ 2019; 26:2447-2463. [PMID: 30850734 DOI: 10.1038/s41418-019-0312-y] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Metastasis is a complex process that requires the interaction between tumor cells and their microenvironment. As an important regulator of intestinal microenvironment, gut microbiota plays a significant role in the initiation and progression of colorectal cancer (CRC), but the underlying mechanisms remain elusive. In this study, a metastasis-related secretory protein cathepsin K (CTSK) was identified as a vital mediator between the imbalance of intestinal microbiota and CRC metastasis. We implanted MC38 cells into the cecal mesentry of antibiotic-treated mice with intragastrically administration of E. coli to mimic gut microbiota imbalance. The bigger primary tumors and more liver metastatic foci were detected in the E. coli group accompanied with high LPS secretion and CTSK overexpression compared with that in the control group. CTSK contributes to the aggressive phenotype of CRC cells both in vitro and in vivo. Silencing CTSK or administration of Odanacatib, a CTSK-specific inhibitor, totally abolished the CTSK-enhanced migration and motility of CRC cells. Interestingly, the tumor-secreted CTSK could bind to toll-like receptor 4 (TLR4) to stimulate the M2 polarization of tumor-associated macrophages (TAMs) via an mTOR-dependent pathway. Recombinant CTSK could neither stimulate CRC growth and metastasis, nor induce M2 macrophage polarization in TRL4-/- mice. Meanwhile, CTSK could stimulate the secretion of cytokines by M2 TAMs including IL10 and IL17, which, in turn, promote the invasion and metastasis of CRC cells through NFκB pathway. Clinically, overexpression of CTSK in human CRC tissues is always accompanied with high M2 TAMs in the stroma, and correlated with CRC metastasis and poor prognosis. Our current research identified CTSK as a mediator between the imbalance of gut microbiota and CRC metastasis. More importantly, we illustrated a CTSK-mediated-positive feedback loop between CRC cells and TAMs during metastasis, prompting CTSK as a novel predictive biomarker and feasible therapeutic target for CRC.
Collapse
|
644
|
Wu Y, Shi L, Li Q, Wu J, Peng W, Li H, Chen K, Ren Y, Fu X. Microbiota Diversity in Human Colorectal Cancer Tissues Is Associated with Clinicopathological Features. Nutr Cancer 2019; 71:214-222. [PMID: 30843732 DOI: 10.1080/01635581.2019.1578394] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yaxin Wu
- Department of Gastroenterology, Central Hospital of Dazhou City, Sichuan, China
| | - Lei Shi
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Qing Li
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jiao Wu
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Wei Peng
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Huan Li
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Kequan Chen
- Department of Gastroenterology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yixing Ren
- Department of Gastrointestinal surgery, the Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, the Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| |
Collapse
|
645
|
Pope JL, Yang Y, Newsome RC, Sun W, Sun X, Ukhanova M, Neu J, Issa JP, Mai V, Jobin C. Microbial Colonization Coordinates the Pathogenesis of a Klebsiella pneumoniae Infant Isolate. Sci Rep 2019; 9:3380. [PMID: 30833613 PMCID: PMC6399262 DOI: 10.1038/s41598-019-39887-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Enterobacteriaceae are among the first colonizers of neonate intestine. Members of this family, such as Escherichia and Klebsiella, are considered pathobionts and as such are capable of inducing local and systemic disease under specific colonization circumstances. Interplay between developing microbiota and pathogenic function of pathobionts are poorly understood. In this study, we investigate the functional interaction between various colonization patterns on an early colonizer, K. pneumoniae. K. pneumoniae 51-5 was isolated from stool of a healthy, premature infant, and found to contain the genotoxin island pks associated with development of colorectal cancer. Using intestinal epithelial cells, macrophages, and primary splenocytes, we demonstrate K. pneumoniae 51-5 upregulates expression of proinflammatory genes in vitro. Gnotobiotic experiments in Il10-/- mice demonstrate the neonate isolate induces intestinal inflammation in vivo, with increased expression of proinflammatory genes. Regulation of microbiota assembly revealed K. pneumoniae 51-5 accelerates onset of inflammation in Il10-/- mice, most significantly when microbiota is naturally acquired. Furthermore, K. pneumoniae 51-5 induces DNA damage and cell cycle arrest. Interestingly, K. pneumoniae 51-5 induced tumors in ApcMin/+; Il10-/- mice was not significantly affected by absence of colibactin activating enzyme, ClbP. These findings demonstrate pathogenicity of infant K. pneumoniae isolate is sensitive to microbial colonization status.
Collapse
Affiliation(s)
- Jillian L Pope
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ye Yang
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Rachel C Newsome
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Wei Sun
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Xiaolun Sun
- Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Poultry Science, University of Arkanasas, Fayetteville, Arkansas, USA
| | - Maria Ukhanova
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Josef Neu
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jean-Pierre Issa
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Volker Mai
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida, USA.
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
646
|
Rubinstein MR, Baik JE, Lagana SM, Han RP, Raab WJ, Sahoo D, Dalerba P, Wang TC, Han YW. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO Rep 2019; 20:embr.201847638. [PMID: 30833345 DOI: 10.15252/embr.201847638] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/29/2022] Open
Abstract
Fusobacterium nucleatum, a Gram-negative oral anaerobe, is a significant contributor to colorectal cancer. Using an in vitro cancer progression model, we discover that F. nucleatum stimulates the growth of colorectal cancer cells without affecting the pre-cancerous adenoma cells. Annexin A1, a previously unrecognized modulator of Wnt/β-catenin signaling, is a key component through which F. nucleatum exerts its stimulatory effect. Annexin A1 is specifically expressed in proliferating colorectal cancer cells and involved in activation of Cyclin D1. Its expression level in colon cancer is a predictor of poor prognosis independent of cancer stage, grade, age, and sex. The FadA adhesin from F. nucleatum up-regulates Annexin A1 expression through E-cadherin. A positive feedback loop between FadA and Annexin A1 is identified in the cancerous cells, absent in the non-cancerous cells. We therefore propose a "two-hit" model in colorectal carcinogenesis, with somatic mutation(s) serving as the first hit, and F. nucleatum as the second hit exacerbating cancer progression after benign cells become cancerous. This model extends the "adenoma-carcinoma" model and identifies microbes such as F. nucleatum as cancer "facilitators".
Collapse
Affiliation(s)
- Mara Roxana Rubinstein
- Division of Periodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Jung Eun Baik
- Division of Periodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Stephen M Lagana
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | | | - William J Raab
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Piero Dalerba
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.,Columbia Stem Cell Initiative, Columbia University, New York, NY, USA.,Division of Digestive and Liver Diseases, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Yiping W Han
- Division of Periodontics, College of Dental Medicine, Columbia University, New York, NY, USA .,Division of Digestive and Liver Diseases, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.,Department of Microbiology and Immunology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
647
|
Greathouse KL, White JR, Padgett RN, Perrotta BG, Jenkins GD, Chia N, Chen J. Gut microbiome meta-analysis reveals dysbiosis is independent of body mass index in predicting risk of obesity-associated CRC. BMJ Open Gastroenterol 2019; 6:e000247. [PMID: 30899534 PMCID: PMC6398873 DOI: 10.1136/bmjgast-2018-000247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Objective Obesity is a risk factor for colorectal cancer (CRC), accounting for more than 14% of CRC incidence. Microbial dysbiosis and chronic inflammation are common characteristics in both obesity and CRC. Human and murine studies, together, demonstrate the significant impact of the microbiome in governing energy metabolism and CRC development; yet, little is understood about the contribution of the microbiome to development of obesity-associated CRC as compared to individuals who are not obese. Design In this study, we conducted a meta-analysis using five publicly available stool and tissue-based 16S rRNA and whole genome sequencing (WGS) data sets of CRC microbiome studies. High-resolution analysis was employed for 16S rRNA data, which allowed us to achieve species-level information to compare with WGS. Results Characterisation of the confounders between studies, 16S rRNA variable region and sequencing method did not reveal any significant effect on alpha diversity in CRC prediction. Both 16S rRNA and WGS were equally variable in their ability to predict CRC. Results from diversity analysis confirmed lower diversity in obese individuals without CRC; however, no universal differences were found in diversity between obese and non-obese individuals with CRC. When examining taxonomic differences, the probability of being classified as CRC did not change significantly in obese individuals for all taxa tested. However, random forest classification was able to distinguish CRC and non-CRC stool when body mass index was added to the model. Conclusion Overall, microbial dysbiosis was not a significant factor in explaining the higher risk of colon cancer among individuals with obesity.
Collapse
Affiliation(s)
- K Leigh Greathouse
- Nutrition Sciences Division, Robbins College of Health and Human Science, Baylor University, Waco, Texas, USA.,Department of Biology, Baylor University, Waco, Texas, USA
| | | | - R Noah Padgett
- Department of Educational Psychology, Baylor University, Waco, Texas, USA
| | | | - Gregory D Jenkins
- Department of Surgery, Mayo Clinic, Rochester, New York, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, New York, USA
| | - Nicholas Chia
- Department of Surgery, Mayo Clinic, Rochester, New York, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, New York, USA.,Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, New York, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, New York, USA
| |
Collapse
|
648
|
Increased Intracellular Cyclic di-AMP Levels Sensitize Streptococcus gallolyticus subsp. gallolyticus to Osmotic Stress and Reduce Biofilm Formation and Adherence on Intestinal Cells. J Bacteriol 2019; 201:JB.00597-18. [PMID: 30617242 PMCID: PMC6398277 DOI: 10.1128/jb.00597-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
Streptococcus gallolyticus is an opportunistic pathogen responsible for septicemia and endocarditis in the elderly and is also strongly associated with colorectal cancer. S. gallolyticus can form biofilms, express specific pili to colonize the host tissues, and produce a specific bacteriocin allowing killing of commensal bacteria in the murine colon. Nevertheless, how the expression of these colonization factors is regulated remains largely unknown. Here, we show that c-di-AMP plays pleiotropic roles in S. gallolyticus, controlling the tolerance to osmotic stress, cell size, biofilm formation on abiotic surfaces, adherence and cell aggregation on human intestinal cells, expression of Pil3 pilus, and production of bacteriocin. This study indicates that c-di-AMP may constitute a key regulatory molecule for S. gallolyticus host colonization and pathogenesis. Cyclic di-AMP is a recently identified second messenger exploited by a number of Gram-positive bacteria to regulate important biological processes. Here, we studied the phenotypic alterations induced by the increased intracellular c-di-AMP levels in Streptococcus gallolyticus, an opportunistic pathogen responsible for septicemia and endocarditis in the elderly. We report that an S. gallolyticus c-di-AMP phosphodiesterase gdpP knockout mutant, which displays a 1.5-fold higher intracellular c-di-AMP levels than the parental strain UCN34, is more sensitive to osmotic stress and is morphologically smaller than the parental strain. Unexpectedly, we found that a higher level of c-di-AMP reduced biofilm formation of S. gallolyticus on abiotic surfaces and reduced adherence and cell aggregation on human intestinal cells. A genome-wide transcriptomic analysis indicated that c-di-AMP regulates many biological processes in S. gallolyticus, including the expression of various ABC transporters and disease-associated genes encoding bacteriocin and Pil3 pilus. Complementation of the gdpP in-frame deletion mutant with a plasmid carrying gdpP in trans from its native promoter restored bacterial morphology, tolerance to osmotic stress, biofilm formation, adherence to intestinal cells, bacteriocin production, and Pil3 pilus expression. Our results indicate that c-di-AMP is a pleiotropic signaling molecule in S. gallolyticus that may be important for S. gallolyticus pathogenesis. IMPORTANCEStreptococcus gallolyticus is an opportunistic pathogen responsible for septicemia and endocarditis in the elderly and is also strongly associated with colorectal cancer. S. gallolyticus can form biofilms, express specific pili to colonize the host tissues, and produce a specific bacteriocin allowing killing of commensal bacteria in the murine colon. Nevertheless, how the expression of these colonization factors is regulated remains largely unknown. Here, we show that c-di-AMP plays pleiotropic roles in S. gallolyticus, controlling the tolerance to osmotic stress, cell size, biofilm formation on abiotic surfaces, adherence and cell aggregation on human intestinal cells, expression of Pil3 pilus, and production of bacteriocin. This study indicates that c-di-AMP may constitute a key regulatory molecule for S. gallolyticus host colonization and pathogenesis.
Collapse
|
649
|
Allen J, Sears CL. Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Med 2019; 11:11. [PMID: 30803449 PMCID: PMC6388476 DOI: 10.1186/s13073-019-0621-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, the number of studies investigating the impact of the gut microbiome in colorectal cancer (CRC) has risen sharply. As a result, we now know that various microbes (and microbial communities) are found more frequently in the stool and mucosa of individuals with CRC than healthy controls, including in the primary tumors themselves, and even in distant metastases. We also know that these microbes induce tumors in various mouse models, but we know little about how they impact colon epithelial cells (CECs) directly, or about how these interactions might lead to modifications at the genetic and epigenetic levels that trigger and propagate tumor growth. Rates of CRC are increasing in younger individuals, and CRC remains the second most frequent cause of cancer-related deaths globally. Hence, a more in-depth understanding of the role that gut microbes play in CRC is needed. Here, we review recent advances in understanding the impact of gut microbes on the genome and epigenome of CECs, as it relates to CRC. Overall, numerous studies in the past few years have definitively shown that gut microbes exert distinct impacts on DNA damage, DNA methylation, chromatin structure and non-coding RNA expression in CECs. Some of the genes and pathways that are altered by gut microbes relate to CRC development, particularly those involved in cell proliferation and WNT signaling. We need to implement more standardized analysis strategies, collate data from multiple studies, and utilize CRC mouse models to better assess these effects, understand their functional relevance, and leverage this information to improve patient care.
Collapse
Affiliation(s)
- Jawara Allen
- Department of Medicine, Johns Hopkins University School of Medicine, Orleans Street, Baltimore, MD, 21231, USA
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Orleans Street, Baltimore, MD, 21231, USA. .,Bloomberg-Kimmel Institute for Immunotherapy and Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, North Broadway, Baltimore, MD, 21231, USA.
| |
Collapse
|
650
|
Deciphering the Colorectal Cancer Gut Microbiota: Association vs. Causality. CURRENT COLORECTAL CANCER REPORTS 2019. [DOI: 10.1007/s11888-019-00431-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|