601
|
Chen Y, Zitello E, Guo R, Deng Y. The function of LncRNAs and their role in the prediction, diagnosis, and prognosis of lung cancer. Clin Transl Med 2021; 11:e367. [PMID: 33931980 PMCID: PMC8021541 DOI: 10.1002/ctm2.367] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains a major threat to human health. Low dose CT scan (LDCT) has become the main method of early screening for lung cancer due to the low sensitivity of chest X-ray. However, LDCT not only has a high false positive rate, but also entails risks of overdiagnosis and cumulative radiation exposure. In addition, cumulative radiation by LDCT screening and subsequent follow-up can increase the risk of lung cancer. Many studies have shown that long noncoding RNAs (lncRNAs) remain stable in blood, and profiling of blood has the advantages of being noninvasive, readily accessible and inexpensive. Serum or plasma assay of lncRNAs in blood can be used as a novel detection method to assist LDCT while improving the accuracy of early lung cancer screening. LncRNAs can participate in the regulation of various biological processes. A large number of researches have reported that lncRNAs are key regulators involved in the progression of human cancers through multiple action models. Especially, some lncRNAs can affect various hallmarks of lung cancer. In addition to their diagnostic value, lncRNAs also possess promising potential in other clinical applications toward lung cancer. LncRNAs can be used as predictive markers for chemosensitivity, radiosensitivity, and sensitivity to epidermal growth factor receptor (EGFR)-targeted therapy, and as well markers of prognosis. Different lncRNAs have been implicated to regulate chemosensitivity, radiosensitivity, and sensitivity to EGFR-targeted therapy through diverse mechanisms. Although many challenges need to be addressed in the future, lncRNAs have bright prospects as an adjunct to radiographic methods in the clinical management of lung cancer.
Collapse
Affiliation(s)
- Yu Chen
- Department of Quantitative Health SciencesJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human ResourcesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Emory Zitello
- Department of Quantitative Health SciencesJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human ResourcesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Rui Guo
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Youping Deng
- Department of Quantitative Health SciencesJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
| |
Collapse
|
602
|
Sun K, Du Y, Hou Y, Zhao M, Li J, Du Y, Zhang L, Chen C, Yang H, Yan F, Su R. Saikosaponin D exhibits anti-leukemic activity by targeting FTO/m 6A signaling. Theranostics 2021; 11:5831-5846. [PMID: 33897884 PMCID: PMC8058711 DOI: 10.7150/thno.55574] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/14/2021] [Indexed: 02/06/2023] Open
Abstract
Purpose: The implementation of targeted therapies for acute myeloid leukemia (AML) has been challenging. Fat mass and obesity associated protein (FTO), an mRNA N6-methyladenosine (m6A) demethylase, functions as an oncogene that promotes leukemic oncogene-mediated cell transformation and leukemogenesis. Here, we investigated the role of Saikosaponin-d (SsD) in broad anti-proliferation effects in AML and evaluated the m6A demethylation activity by targeting FTO of SsD. Methods: It was examined whether and how SsD regulates FTO/m6A signaling in AML. The pharmacologic activities and mechanisms of actions of SsD in vitro, in mice, primary patient cells, and tyrosine kinase inhibitors-resistant cells were determined. Results: SsD showed a broadly-suppressed AML cell proliferation and promoted apoptosis and cell-cycle arrest both in vitro and in vivo. Mechanistically, SsD directly targeted FTO, thereby increasing global m6A RNA methylation, which in turn decreased the stability of downstream gene transcripts, leading to the suppression of relevant pathways. Importantly, SsD also overcame FTO/m6A-mediated leukemia resistance to tyrosine kinase inhibitors. Conclusion: Our findings demonstrated that FTO-dependent m6A RNA methylation mediated the anti-leukemic actions of SsD, thereby opening a window to develop SsD as an epitranscriptome-base drug for leukemia therapy.
Collapse
Affiliation(s)
- Kaiju Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Yangyang Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yuzhu Hou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Mingyue Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Jiajia Li
- Department of Obstetrics and Gynecology, First Hospital, Jilin University, 130021, P. R. China
| | - Yazhe Du
- Department of blood specialty, First Hospital, Jilin University, 130021, China
| | - Lingxiao Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Hongmei Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Rui Su
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| |
Collapse
|
603
|
Hua YQ, Zhang K, Sheng J, Ning ZY, Li Y, Shi WD, Liu LM. NUCB1 Suppresses Growth and Shows Additive Effects With Gemcitabine in Pancreatic Ductal Adenocarcinoma via the Unfolded Protein Response. Front Cell Dev Biol 2021; 9:641836. [PMID: 33855021 PMCID: PMC8041069 DOI: 10.3389/fcell.2021.641836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/03/2021] [Indexed: 01/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient prognosis. A cellular stress response mechanism called the unfolded protein response (UPR) has been implicated in PDAC progression. More recently, nucleobindin 1 (NUCB1), a calcium-binding protein, has been shown to control the UPR but its precise role in PDAC has not been explored. Here, we found that downregulation of NUCB1 was associated with poor prognosis in patients with PDAC. Functionally, NUCB1 overexpression suppressed pancreatic cancer cell proliferation and showed additive effects with gemcitabine (GEM) in vitro and in vivo. Moreover, by controlling ATF6 activity, NUCB1 overexpression suppressed GEM-induced UPR and autophagy. Last but not least, we uncovered METTL3-mediated m6A modification on NUCB1 5'UTR via the reader YTHDF2 as a mechanism for NUCB1 downregulation in PDAC. Taken together, our study revealed crucial functions of NUCB1 in suppressing proliferation and enhancing the effects of gemcitabine in pancreatic cancer cells and identified METTL3-mediated m6A modification as a mechanism for NUCB1 downregulation in PDAC.
Collapse
Affiliation(s)
- Yong-Qiang Hua
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke Zhang
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Sheng
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhou-Yu Ning
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Li
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei-Dong Shi
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu-Ming Liu
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
604
|
Wu X, Sheng H, Wang L, Xia P, Wang Y, Yu L, Lv W, Hu J. A five-m6A regulatory gene signature is a prognostic biomarker in lung adenocarcinoma patients. Aging (Albany NY) 2021; 13:10034-10057. [PMID: 33795529 PMCID: PMC8064222 DOI: 10.18632/aging.202761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
We analyzed the prognostic value of N6-methyladenosine (m6A) regulatory genes in lung adenocarcinoma (LADC) and their association with tumor immunity and immunotherapy response. Seventeen of 20 m6A regulatory genes were differentially expressed in LDAC tissue samples from the TCGA and GEO databases. We developed a five-m6A regulatory gene prognostic signature based on univariate and Lasso Cox regression analysis. Western blot analysis confirmed that the five prognostic m6A regulatory proteins were highly expressed in LADC tissues. We constructed a nomogram with five-m6A regulatory gene prognostic risk signature and AJCC stages. ROC curves and calibration curves showed that the nomogram was well calibrated and accurately distinguished high-risk and low-risk LADC patients. Weighted gene co-expression analysis showed significant correlation between prognostic risk signature genes and the turquoise module enriched with cell cycle genes. The high-risk LADC patients showed significantly higher PD-L1 levels, increased tumor mutational burden, and a lower proportion of CD8+ T cells in the tumor tissues and improved response to immune checkpoint blockade therapy. These findings show that this five-m6A regulatory gene signature is a prognostic biomarker in LADC and that immune checkpoint blockade is a potential therapeutic option for high-risk LADC patients.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hongxu Sheng
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Luming Wang
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Pinghui Xia
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yiqing Wang
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Li Yu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wang Lv
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Hu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
605
|
He J, Yuan L, Lin H, Lin A, Chen H, Luo A, Zhuo Z, Liu X. Genetic variants in m 6A modification core genes are associated with glioma risk in Chinese children. Mol Ther Oncolytics 2021; 20:199-208. [PMID: 33665358 PMCID: PMC7889446 DOI: 10.1016/j.omto.2020.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Glioma is a highly heritable disease with a strong genetic component. The N6-methyladenosine (m6A) modification core genes play important roles in the context of cancer. However, the effects of polymorphisms in the m6A modification core genes on the risk of pediatric glioma remain undefined. Here, we intended to demonstrate the relationship between 24 functional single-nucleotide polymorphisms (SNPs) in eight m6A modification core genes and glioma risk. Case-control design and multinomial logistic regression were used to develop models to estimate the risk of glioma while accounting for the subtypes of glioma. A total of 171 glioma cases and 228 controls from South China were genotyped using a TaqMan assay. The WTAP rs7766006, YTHDF2 rs3738067, and FTO rs9939609 variants conferred a statistically significant increased risk of glioma, respectively. YTHDC1 rs2293595, YTHDC1 rs3813832, and FTO rs8047395 were associated with a significant inverse association with risk of glioma, respectively. The significant associations were more predominant in stratification analyses of certain subgroups. Functional annotations revealed that WTAP rs7766006 and YTHDF2 rs3738067 could be potential functional variants by increasing expression of WTAP and YTHDF2 mRNA, respectively. Overall, these findings implicate variants in the m6A modification core genes as playing a role in pediatric glioma etiology.
Collapse
Affiliation(s)
- Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huiran Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Laboratory Animal Management Office, Public Technology Service Platform, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Ao Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huitong Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Ailing Luo
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Corresponding author: Zhenjian Zhuo, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China.
| | - Xiaoping Liu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Corresponding author: Xiaoping Liu, Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
606
|
Chen XY, Liang R, Yi YC, Fan HN, Chen M, Zhang J, Zhu JS. The m 6A Reader YTHDF1 Facilitates the Tumorigenesis and Metastasis of Gastric Cancer via USP14 Translation in an m 6A-Dependent Manner. Front Cell Dev Biol 2021; 9:647702. [PMID: 33791305 PMCID: PMC8006284 DOI: 10.3389/fcell.2021.647702] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 01/08/2023] Open
Abstract
Objectives N6-methyladenosine (m6A) RNA methylation is implicated in the progression of multiple cancers via influencing mRNA modification. YTHDF1 can act as an oncogene in gastric cancer (GC), while the biological mechanisms via which YTHDF1 regulates gastric tumorigenesis through m6A modification remain largely unknown. Methods GEO and TCGA cohorts were analyzed for differentially expressed m6A modification components in GC clinical specimens and their association with clinical prognosis. Transwell and flow cytometry assays as well as subcutaneous xenograft and lung metastasis models were used to evaluate the phenotype of YTHDF1 in GC. Intersection of RNA/MeRIP-seq, luciferase assay, RIP-PCR, RNA pull-down and MeRIP-PCR was used to identify YTHDF1- modified USP14 and its m6A levels in GC cells. Results High-expressed YTHDF1 was found in GC tissues and was related to poor prognosis, acting as an independent prognostic factor of poor survival in GC patients. YTHDF1 deficiency inhibited cell proliferation and invasion (in vitro), and gastric tumorigenesis and lung metastasis (in vivo) and also induced cell apoptosis. Intersection assays revealed that YTHDF1 promoted USP14 protein translation in an m6A-dependent manner. USP14 upregulation was positively correlated with YTHDF1 expression and indicated a poor prognosis in GC. Conclusion Our data suggested that m6A reader YTHDF1 facilitated tumorigenesis and metastasis of GC by promoting USP14 protein translation in an m6A-dependent manner and might provide a potential target for GC treatment.
Collapse
Affiliation(s)
- Xiao-Yu Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Liang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - You-Cai Yi
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ming Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
607
|
Fu Y, Sun S, Bi J, Kong C, Yin L. Expression patterns and prognostic value of m6A RNA methylation regulators in adrenocortical carcinoma. Medicine (Baltimore) 2021; 100:e25031. [PMID: 33725886 PMCID: PMC7969304 DOI: 10.1097/md.0000000000025031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/05/2021] [Indexed: 01/05/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is considered a rare cancer with poor prognosis. We used public datasets from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases to assess the relationships between N6-methyladenosine (m6A)-related genes and ACC.We used the Wilcoxon signed-rank test to compare m6A-related gene expression in ACC tissues with that in normal tissues. Then, ACC patients were grouped based on a cluster analysis of m6A-related gene expression. m6A-related genes that were significantly associated with survival were incorporated into a risk signature, and 2 groups were divided according to median risk score. Fisher exact tests were utilized to analyze differences in clinical variables between groups. We compared the overall survival (OS) rates of the groups by means of Kaplan-Meier curves and Cox regression analyses.We found that RBM15, ZC3H3, YTDHF1, YTDHF2, and ALBH5 were overexpressed in ACC and that KIAA1429, YTHDC1, HNRNPC, WTAP, METTL3, and FTO were down regulated in ACC. In addition, membership in cluster 2 or the high-risk group was associated with advanced clinical factors and poor prognosis. The univariable and multivariable Cox regression analyses showed that risk score can be considered an independent prognostic factor for ACC.We found that the expression of m6A-related genes could be used as an independent prognostic factor in ACC. However, the current study has some limitations, and further studies of m6A-related genes in ACC are needed.
Collapse
Affiliation(s)
| | - Shanshan Sun
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, PR China
| | | | | | | |
Collapse
|
608
|
Jin Y, Wang Z, He D, Zhu Y, Hu X, Gong L, Xiao M, Chen X, Cheng Y, Cao K. Analysis of m6A-Related Signatures in the Tumor Immune Microenvironment and Identification of Clinical Prognostic Regulators in Adrenocortical Carcinoma. Front Immunol 2021; 12:637933. [PMID: 33746977 PMCID: PMC7966528 DOI: 10.3389/fimmu.2021.637933] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/29/2021] [Indexed: 12/22/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a high rate of mortality and recurrence. N6-methyladenosine methylation (m6A) is the most common modification to affect cancer development, but to date, the potential role of m6A regulators in ACC prognosis is not well understood. In this study, we systematically analyzed 21 m6A regulators in ACC samples from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. We identified three m6A modification patterns with different clinical outcomes and discovered a significant relationship between diverse m6A clusters and the tumor immune microenvironment (immune cell types and ESTIMATE algorithm). Additionally, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed that the m6A clusters were strongly associated with immune infiltration in the ACC. Next, to further explore the m6A prognostic signatures in ACC, we implemented Lasso (Least Absolute Shrinkage and Selection Operator) Cox regression to establish an eight-m6A-regulator prognostic model in the TCGA dataset, and the results showed that the model-based high-risk group was closely correlated with poor overall survival (OS) compared with the low-risk group. Subsequently, we validated the key modifications in the GEO datasets and found that high HNRNPA2B1 expression resulted in poor OS and event-free survival (EFS) in ACC. Moreover, to further decipher the molecular mechanisms, we constructed a competing endogenous RNA (ceRNA) network based on HNRNPA2B1, which consists of 12 long noncoding RNAs (lncRNAs) and 1 microRNA (miRNA). In conclusion, our findings indicate the potential role of m6A modification in ACC, providing novel insights into ACC prognosis and guiding effective immunotherapy.
Collapse
Affiliation(s)
- Yi Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China.,Department of Radiation Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dong He
- Department of Respiratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xueying Hu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lian Gong
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yaxin Cheng
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
609
|
Dai B, Sun F, Cai X, Li C, Liu H, Shang Y. Significance of RNA N6-Methyladenosine Regulators in the Diagnosis and Subtype Classification of Childhood Asthma Using the Gene Expression Omnibus Database. Front Genet 2021; 12:634162. [PMID: 33763115 PMCID: PMC7982807 DOI: 10.3389/fgene.2021.634162] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/05/2021] [Indexed: 12/22/2022] Open
Abstract
RNA N6-methyladenosine (m6A) regulators play important roles in a variety of biological functions. Nonetheless, the roles of m6A regulators in childhood asthma remain unknown. In this study, 11 significant m6A regulators were selected using difference analysis between non-asthmatic and asthmatic patients from the Gene Expression Omnibus GSE40888 dataset. The random forest model was used to screen five candidate m6A regulators (fragile X mental retardation 1, KIAA1429, Wilm's tumor 1-associated protein, YTH domain-containing 2, and zinc finger CCCH domain-containing protein 13) to predict the risk of childhood asthma. A nomogram model was established based on the five candidate m6A regulators. Decision curve analysis indicated that patients could benefit from the nomogram model. The consensus clustering method was performed to differentiate children with asthma into two m6A patterns (clusterA and clusterB) based on the selected significant m6A regulators. Principal component analysis algorithms were constructed to calculate the m6A score for each sample to quantify the m6A patterns. The patients in clusterB had higher m6A scores than those in clusterA. Furthermore, we found that the patients in clusterA were linked to helper T cell type 1 (Th1)-dominant immunity while those in clusterB were linked to Th2-dominant immunity. In summary, m6A regulators play nonnegligible roles in the occurrence of childhood asthma. Our investigation of m6A patterns may be able to guide future immunotherapy strategies for childhood asthma.
Collapse
Affiliation(s)
- Bing Dai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feifei Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuxu Cai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunlu Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Henan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
610
|
Zhu X, Wang X, Yan W, Yang H, Xiang Y, Lv F, Shi Y, Li HY, Lan L. Ubiquitination-mediated degradation of TRDMT1 regulates homologous recombination and therapeutic response. NAR Cancer 2021; 3:zcab010. [PMID: 33778494 PMCID: PMC7984809 DOI: 10.1093/narcan/zcab010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/08/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
The RNA methyltransferase TRDMT1 has recently emerged as a key regulator of homologous recombination (HR) in the transcribed regions of the genome, but how it is regulated and its relevance in cancer remain unknown. Here, we identified that TRDMT1 is poly-ubiquitinated at K251 by the E3 ligase TRIM28, removing TRDMT1 from DNA damage sites and allowing completion of HR. Interestingly, K251 is adjacent to G155 in the 3D structure, and the G155V mutation leads to hyper ubiquitination of TRDMT1, reduced TRDMT1 levels and impaired HR. Accordingly, a TRDMT1 G155V mutation in an ovarian cancer super responder to platinum treatment. Cells expressing TRDMT1-G155V are sensitive to cisplatin in vitro and in vivo. In contrast, high expression of TRDMT1 in patients with ovarian cancer correlates with platinum resistance. A potent TRDMT1 inhibitor resensitizes TRDMT1-high tumor cells to cisplatin. These results suggest that TRDMT1 is a promising therapeutic target to sensitize ovarian tumors to platinum therapy.
Collapse
Affiliation(s)
- Xiaolan Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiangyu Wang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Haibo Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, 3501 fifth Ave., Pittsburgh, PA 15260, USA
| | - Fengping Lv
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, 3501 fifth Ave., Pittsburgh, PA 15260, USA
| | - Hong-yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
611
|
Zhang Y, Hamada M. Identification of m 6A-Associated RNA Binding Proteins Using an Integrative Computational Framework. Front Genet 2021; 12:625797. [PMID: 33732286 PMCID: PMC7957075 DOI: 10.3389/fgene.2021.625797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/05/2021] [Indexed: 12/05/2022] Open
Abstract
N6-methyladenosine (m6A) is an abundant modification on mRNA that plays an important role in regulating essential RNA activities. Several wet lab studies have identified some RNA binding proteins (RBPs) that are related to m6A's regulation. The objective of this study was to identify potential m6A-associated RBPs using an integrative computational framework. The framework was composed of an enrichment analysis and a classification model. Utilizing RBPs' binding data, we analyzed reproducible m6A regions from independent studies using this framework. The enrichment analysis identified known m6A-associated RBPs including YTH domain-containing proteins; it also identified RBM3 as a potential m6A-associated RBP for mouse. Furthermore, a significant correlation for the identified m6A-associated RBPs is observed at the protein expression level rather than the gene expression level. On the other hand, a Random Forest classification model was built for the reproducible m6A regions using RBPs' binding data. The RBP-based predictor demonstrated not only competitive performance when compared with sequence-based predictions but also reflected m6A's action of repelling against RBPs, which suggested that our framework can infer interaction between m6A and m6A-associated RBPs beyond sequence level when utilizing RBPs' binding data. In conclusion, we designed an integrative computational framework for the identification of known and potential m6A-associated RBPs. We hope the analysis will provide more insights on the studies of m6A and RNA modifications.
Collapse
Affiliation(s)
- Yiqian Zhang
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Michiaki Hamada
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Tokyo, Japan.,AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, Japan.,Institute for Medical-Oriented Structural Biology, Waseda University, Tokyo, Japan.,Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
612
|
Zhang L, Qin X, Liu M, Xu Z, Liu G. DNN-m6A: A Cross-Species Method for Identifying RNA N6-Methyladenosine Sites Based on Deep Neural Network with Multi-Information Fusion. Genes (Basel) 2021; 12:354. [PMID: 33670877 PMCID: PMC7997228 DOI: 10.3390/genes12030354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
As a prevalent existing post-transcriptional modification of RNA, N6-methyladenosine (m6A) plays a crucial role in various biological processes. To better radically reveal its regulatory mechanism and provide new insights for drug design, the accurate identification of m6A sites in genome-wide is vital. As the traditional experimental methods are time-consuming and cost-prohibitive, it is necessary to design a more efficient computational method to detect the m6A sites. In this study, we propose a novel cross-species computational method DNN-m6A based on the deep neural network (DNN) to identify m6A sites in multiple tissues of human, mouse and rat. Firstly, binary encoding (BE), tri-nucleotide composition (TNC), enhanced nucleic acid composition (ENAC), K-spaced nucleotide pair frequencies (KSNPFs), nucleotide chemical property (NCP), pseudo dinucleotide composition (PseDNC), position-specific nucleotide propensity (PSNP) and position-specific dinucleotide propensity (PSDP) are employed to extract RNA sequence features which are subsequently fused to construct the initial feature vector set. Secondly, we use elastic net to eliminate redundant features while building the optimal feature subset. Finally, the hyper-parameters of DNN are tuned with Bayesian hyper-parameter optimization based on the selected feature subset. The five-fold cross-validation test on training datasets show that the proposed DNN-m6A method outperformed the state-of-the-art method for predicting m6A sites, with an accuracy (ACC) of 73.58%-83.38% and an area under the curve (AUC) of 81.39%-91.04%. Furthermore, the independent datasets achieved an ACC of 72.95%-83.04% and an AUC of 80.79%-91.09%, which shows an excellent generalization ability of our proposed method.
Collapse
Affiliation(s)
- Lu Zhang
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; (L.Z.); (X.Q.); (M.L.)
| | - Xinyi Qin
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; (L.Z.); (X.Q.); (M.L.)
| | - Min Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; (L.Z.); (X.Q.); (M.L.)
| | - Ziwei Xu
- Polytech Nantes, Bâtiment Ireste, 44300 Nantes, France;
| | - Guangzhong Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; (L.Z.); (X.Q.); (M.L.)
| |
Collapse
|
613
|
Affiliation(s)
- Seung Hun Han
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| | - Junho Choe
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
614
|
Pan Y, Xiao K, Li Y, Li Y, Liu Q. RNA N6-Methyladenosine Regulator-Mediated Methylation Modifications Pattern and Immune Infiltration Features in Glioblastoma. Front Oncol 2021; 11:632934. [PMID: 33718217 PMCID: PMC7947873 DOI: 10.3389/fonc.2021.632934] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is a group of intracranial neoplasms with intra-tumoral heterogeneity. RNA N6-methyladenosine (m6A) methylation modification reportedly plays roles in immune response. The relationship between the m6A modification pattern and immune cell infiltration in GBM remains unknown. Utilizing expression data of GBM patients, we thoroughly explored the potential m6A modification pattern and m6A-related signatures based on 21 regulators. Thereafter, the m6A methylation modification-based prognostic assessment pipeline (MPAP) was constructed to quantitatively assess GBM patients’ clinical prognosis combining the Robustness and LASSO regression. Single-sample gene-set enrichment analysis (ssGSEA) was used to estimate the specific immune cell infiltration level. We identified two diverse clusters with diverse m6A modification characteristics. Based on differentially expressed genes (DEGs) within two clusters, m6A-related signatures were identified to establish the MPAP, which can be used to quantitatively forecast the prognosis of GBM patients. In addition, the relationship between 21 m6A regulators and specific immune cell infiltration was demonstrated in our study and the m6A regulator ELAVL1 was determined to play an important role in the anticancer response to PD-L1 therapy. Our findings indicated the relationship between m6A methylation modification patterns and tumor microenvironment immune cell infiltration, through which we could comprehensively understand resistance to multiple therapies in GBM, as well as accomplish precise risk stratification according to m6A-related signatures.
Collapse
Affiliation(s)
- Yimin Pan
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Kai Xiao
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Yue Li
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Yuzhe Li
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
615
|
Ruszkowska A. METTL16, Methyltransferase-Like Protein 16: Current Insights into Structure and Function. Int J Mol Sci 2021; 22:ijms22042176. [PMID: 33671635 PMCID: PMC7927073 DOI: 10.3390/ijms22042176] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 12/31/2022] Open
Abstract
Methyltransferase-like protein 16 (METTL16) is a human RNA methyltransferase that installs m6A marks on U6 small nuclear RNA (U6 snRNA) and S-adenosylmethionine (SAM) synthetase pre-mRNA. METTL16 also controls a significant portion of m6A epitranscriptome by regulating SAM homeostasis. Multiple molecular structures of the N-terminal methyltransferase domain of METTL16, including apo forms and complexes with S-adenosylhomocysteine (SAH) or RNA, provided the structural basis of METTL16 interaction with the coenzyme and substrates, as well as indicated autoinhibitory mechanism of the enzyme activity regulation. Very recent structural and functional studies of vertebrate-conserved regions (VCRs) indicated their crucial role in the interaction with U6 snRNA. METTL16 remains an object of intense studies, as it has been associated with numerous RNA classes, including mRNA, non-coding RNA, long non-coding RNA (lncRNA), and rRNA. Moreover, the interaction between METTL16 and oncogenic lncRNA MALAT1 indicates the existence of METTL16 features specifically recognizing RNA triple helices. Overall, the number of known human m6A methyltransferases has grown from one to five during the last five years. METTL16, CAPAM, and two rRNA methyltransferases, METTL5/TRMT112 and ZCCHC4, have joined the well-known METTL3/METTL14. This work summarizes current knowledge about METTL16 in the landscape of human m6A RNA methyltransferases.
Collapse
Affiliation(s)
- Agnieszka Ruszkowska
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
616
|
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C, Chen Y. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 2021; 6:74. [PMID: 33611339 PMCID: PMC7897327 DOI: 10.1038/s41392-020-00450-x] [Citation(s) in RCA: 1069] [Impact Index Per Article: 267.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent, abundant and conserved internal cotranscriptional modification in eukaryotic RNAs, especially within higher eukaryotic cells. m6A modification is modified by the m6A methyltransferases, or writers, such as METTL3/14/16, RBM15/15B, ZC3H3, VIRMA, CBLL1, WTAP, and KIAA1429, and, removed by the demethylases, or erasers, including FTO and ALKBH5. It is recognized by m6A-binding proteins YTHDF1/2/3, YTHDC1/2 IGF2BP1/2/3 and HNRNPA2B1, also known as "readers". Recent studies have shown that m6A RNA modification plays essential role in both physiological and pathological conditions, especially in the initiation and progression of different types of human cancers. In this review, we discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems. We will mainly focus on recent progress in identifying the biological functions and the underlying molecular mechanisms of m6A RNA methylation, its regulators and downstream target genes, during cancer progression in above systems. We propose that m6A RNA methylation process offer potential targets for cancer therapy in the future.
Collapse
Affiliation(s)
- Xiulin Jiang
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Baiyang Liu
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhi Nie
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China ,grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Lincan Duan
- grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Qiuxia Xiong
- grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Zhixian Jin
- grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Cuiping Yang
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China
| | - Yongbin Chen
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.9227.e0000000119573309Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, Yunnan China
| |
Collapse
|
617
|
Huang L, Zhu J, Kong W, Li P, Zhu S. Expression and Prognostic Characteristics of m6A RNA Methylation Regulators in Colon Cancer. Int J Mol Sci 2021; 22:ijms22042134. [PMID: 33670062 PMCID: PMC7926939 DOI: 10.3390/ijms22042134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Colon cancer is a common and leading cause of death and malignancy worldwide. N6-methylation of adenosine (m6A) is the most common reversible mRNA modification in eukaryotes, and it plays a crucial role in various biological functions in vivo. Dysregulated expression and genetic changes of m6A regulators have been correlated with tumorigenesis, cancer cell proliferation, tumor microenvironment, and prognosis in cancers. This study used RNA-seq and colon cancer clinical data to explore the relationship between N6-methylation and colon cancer. Based on the seven m6A regulators related to prognosis, three molecular subgroups of colon cancer were identified. Surprisingly, we found that each subgroup had unique survival characteristics. We then identified three subtypes of tumors based on 299 m6A phenotype-related genes, and one subtype was characterized as an immunosuppressive tumor and patients in this subtype may be more suitable for immunotherapy than other subtypes. Finally, using m6A-related genes and clinical information from The Cancer Genome Atlas cohort, we constructed a prognosis model, and this model could be used to predict the prognosis of patients in clinics.
Collapse
Affiliation(s)
- Liting Huang
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China;
| | - Jie Zhu
- Peking University Health Science Center, Department of Pharmacology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (J.Z.); (W.K.)
| | - Weikaixin Kong
- Peking University Health Science Center, Department of Pharmacology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (J.Z.); (W.K.)
| | - Peifeng Li
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China;
- Correspondence: (P.L.); (S.Z.); Tel.: +86-0532-82991791 (S.Z.)
| | - Sujie Zhu
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China;
- Correspondence: (P.L.); (S.Z.); Tel.: +86-0532-82991791 (S.Z.)
| |
Collapse
|
618
|
Du J, Ji H, Ma S, Jin J, Mi S, Hou K, Dong J, Wang F, Zhang C, Li Y, Hu S. m6A regulator-mediated methylation modification patterns and characteristics of immunity and stemness in low-grade glioma. Brief Bioinform 2021; 22:6135369. [PMID: 33594424 DOI: 10.1093/bib/bbab013] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
m6A RNA methylation is an emerging epigenetic modification, and its potential role in immunity and stemness remains unknown. Based on 17 widely recognized m6A regulators, the m6A modification patterns and corresponding characteristics of immune infiltration and stemness of 1152 low-grade glioma samples were comprehensively analyzed. Machine-learning strategies for constructing m6AScores were trained to quantify the m6A modification patterns of individual samples. Here, we reveal a significant correlation between the multi-omics data of regulators and clinicopathological parameters. We identified two distinct m6A modification patterns (an immune-activated differentiation pattern and an immune-desert dedifferentiation pattern) and four regulatory patterns of m6A methylation on immunity and stemness. We show that the m6AScores can predict the molecular subtype of low-grade glioma, the abundance of immune infiltration, the enrichment of signaling pathways, gene variation and prognosis. The concentration of high immunogenicity and clinical benefits in the low-m6AScore group confirmed the sensitive response to radio-chemotherapy and immunotherapy in patients with high-m6AScore. The results of the pan-cancer analyses illustrate the significant correlation between m6AScore and clinical outcome, the burden of neoepitope, immune infiltration and stemness. The assessment of individual tumor m6A modification patterns will guide us in improving treatment strategies and developing objective diagnostic tools.
Collapse
Affiliation(s)
- Jianyang Du
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Hang Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Shuai Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Shan Mi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Kuiyuan Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Jiawei Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Chaochao Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130000, China
| | - Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shaoshan Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
619
|
Huang W, Li G, Wang Z, Zhou L, Yin X, Yang T, Wang P, Teng X, Feng Y, Yu H. A Ten-N 6-Methyladenosine (m 6A)-Modified Gene Signature Based on a Risk Score System Predicts Patient Prognosis in Rectum Adenocarcinoma. Front Oncol 2021; 10:567931. [PMID: 33680913 PMCID: PMC7925823 DOI: 10.3389/fonc.2020.567931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES The study aims to analyze the expression of N6-methyladenosine (m6A)-modified genes in rectum adenocarcinoma (READ) and identify reliable prognostic biomarkers to predict the prognosis of READ. MATERIALS AND METHODS RNA sequence data of READ and corresponding clinical survival data were obtained from The Cancer Genome Atlas (TCGA) database. N6-methyladenosine (m6A)-modified genes in READ were downloaded from the "m6Avar" database. Differentially expressed m6A-modified genes in READ stratified by different clinicopathological characteristics were identified using the "limma" package in R. Protein-protein interaction (PPI) network and co-expression analysis of differentially expressed genes (DEGs) were performed using "STRING" and Cytoscape, respectively. Principal component analysis (PCA) was done using R. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to functionally annotate the differentially expressed genes in different subgroups. Univariate Cox regression analyses were conducted to identify the powerful independent prognostic factors in READ associated with overall survival (OS). A robust likelihood-based survival model was built using the "rbsurv" package to screen for survival-associated signature genes. The Support Vector Machine (SVM) was used to predict the prognosis of READ through the risk score of survival-associated signature genes. Correlation analysis were carried out using GraphPad prism 8. RESULTS We screened 974 differentially expressed m6A-modified genes among four types of READ samples. Two READ subgroups (group 1 and group 2) were identified by K means clustering according to the expression of DEGs. The two subgroups were significantly different in overall survival and pathological stages. Next, 118 differentially expressed genes between the two subgroups were screened and the expression of 112 genes was found to be related to the prognosis of READ. Next, a panel of 10 survival-associated signature genes including adamtsl1, csmd2, fam13c, fam184a, klhl4, olfml2b, pdzd4, sec14l5, setbp1, tmem132b was constructed. The signature performed very well for prognosis prediction, time-dependent receiver-operating characteristic (ROC) analysis displaying an area under the curve (AUC) of 0.863, 0.8721, and 0.8752 for 3-year survival rate, prognostic status, and pathological stage prediction, respectively. Correlation analysis showed that the expression levels of the 10 m6A-modified genes were positively correlated with that of m6A demethylase FTO and ALKBH5. CONCLUSION This study identified potential m6A-modified genes that may be involved in the pathophysiology of READ and constructed a novel gene expression panel for READ risk stratification and prognosis prediction.
Collapse
Affiliation(s)
- Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Gen Li
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zihang Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Lin Zhou
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tianshu Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Pei Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yajuan Feng
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
620
|
Zhang Y, Yao Y, Qi X, Li J, Liu M, Che X, Xu Y, Wu G. Identification of a New Prognostic Risk Signature of Clear Cell Renal Cell Carcinoma Based on N 6-Methyladenosine RNA Methylation Regulators. J Immunol Res 2021; 2021:6617841. [PMID: 33628845 PMCID: PMC7895564 DOI: 10.1155/2021/6617841;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 10/11/2024] Open
Abstract
As the most prevalent internal eukaryotic modification, N6-methyladenosine (m6A) is installed by methyltransferases, removed by demethylases, and recognized by readers. However, there are few studies on the role of m6A in clear cell renal cell carcinoma (ccRCC). In this study, we researched the RNA-seq transcriptome data of ccRCC in the TCGA dataset and used bioinformatics analyses to detect the relationship between m6A RNA methylation regulators and ccRCC. First, we compared the expression of 18 m6A RNA methylation regulators in ccRCC patients and normal tissues. Then, data from ccRCC patients were divided into two clusters by consensus clustering. LASSO Cox regression analysis was used to build a risk signature to predict the prognosis of patients with ccRCC. An ROC curve, univariate Cox regression analysis, and multivariate Cox regression analysis were used to verify this risk signature's predictive ability. Then, we internally validated this signature by random sampling. Finally, we explored the role of the genes in the signature in some common pathways. Gene distribution between the two subgroups was different; cluster 2 was gender-related and had a worse prognosis. IGF2BP3, IGF2BP2, HNRNPA2B1, and METTL14 were chosen to build the risk signature. The overall survival of the high- and low-risk groups was significantly different (p = 7.47e − 12). The ROC curve also indicated that the risk signature had a decent predictive significance (AUC = 0.72). These results imply that the risk signature has a potential value for ccRCC treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Clinical Laboratory, The First People's Hospital of Linhai, Taizhou, China
| | - Yao Yao
- Department of Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianyi Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meihong Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
621
|
Zhang Y, Yao Y, Qi X, Li J, Liu M, Che X, Xu Y, Wu G. Identification of a New Prognostic Risk Signature of Clear Cell Renal Cell Carcinoma Based on N 6-Methyladenosine RNA Methylation Regulators. J Immunol Res 2021; 2021:6617841. [PMID: 33628845 PMCID: PMC7895564 DOI: 10.1155/2021/6617841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 12/29/2022] Open
Abstract
As the most prevalent internal eukaryotic modification, N6-methyladenosine (m6A) is installed by methyltransferases, removed by demethylases, and recognized by readers. However, there are few studies on the role of m6A in clear cell renal cell carcinoma (ccRCC). In this study, we researched the RNA-seq transcriptome data of ccRCC in the TCGA dataset and used bioinformatics analyses to detect the relationship between m6A RNA methylation regulators and ccRCC. First, we compared the expression of 18 m6A RNA methylation regulators in ccRCC patients and normal tissues. Then, data from ccRCC patients were divided into two clusters by consensus clustering. LASSO Cox regression analysis was used to build a risk signature to predict the prognosis of patients with ccRCC. An ROC curve, univariate Cox regression analysis, and multivariate Cox regression analysis were used to verify this risk signature's predictive ability. Then, we internally validated this signature by random sampling. Finally, we explored the role of the genes in the signature in some common pathways. Gene distribution between the two subgroups was different; cluster 2 was gender-related and had a worse prognosis. IGF2BP3, IGF2BP2, HNRNPA2B1, and METTL14 were chosen to build the risk signature. The overall survival of the high- and low-risk groups was significantly different (p = 7.47e - 12). The ROC curve also indicated that the risk signature had a decent predictive significance (AUC = 0.72). These results imply that the risk signature has a potential value for ccRCC treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Clinical Laboratory, The First People's Hospital of Linhai, Taizhou, China
| | - Yao Yao
- Department of Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianyi Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meihong Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
622
|
Zhong J, Liu Z, Cai C, Duan X, Deng T, Zeng G. m 6A modification patterns and tumor immune landscape in clear cell renal carcinoma. J Immunother Cancer 2021; 9:jitc-2020-001646. [PMID: 33574053 PMCID: PMC7880120 DOI: 10.1136/jitc-2020-001646] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2020] [Indexed: 01/14/2023] Open
Abstract
Background Recent studies have focused on the correlation between N6-methyladenosine (m6A) modification and specific tumor-infiltrating immune cells. However, the potential roles of m6A modification in the tumor immune landscape remain elusive. Methods We comprehensively evaluated the m6A modification patterns and tumor immune landscape of 513 clear cell renal cell carcinoma (ccRCC) patients, and correlated the m6A modification patterns with the immune landscape. The m6Ascore was established using principal component analysis. Multivariate Cox regression analysis was performed to evaluate the prognostic value of the m6Ascore. Results We identified three m6Aclusters—characterized by differences in Th17 signature, extent of intratumor heterogeneity, overall cell proliferation, aneuploidy, expression of immunomodulatory genes, overall somatic copy number alterations, and prognosis. The m6Ascore was established to quantify the m6A modification pattern of individual ccRCC patients. Further analyses revealed that the m6Ascore was an independent prognostic factor of ccRCC. Finally, we verified the prognostic value of the m6Ascore in the programmed cell death protein 1 (PD-1) blockade therapy of patients with advanced ccRCC. Conclusions This study demonstrated the correlation between m6A modification and the tumor immune landscape in ccRCC. The comprehensive evaluation of m6A modification patterns in individual ccRCC patients enhances our understanding of the tumor immune landscape and provides a new approach toward new and improved immunotherapeutic strategies for ccRCC patients.
Collapse
Affiliation(s)
- Jiehui Zhong
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Zezhen Liu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Tuo Deng
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| |
Collapse
|
623
|
Wang H, Zhao X, Lu Z. m 6A RNA Methylation Regulators Act as Potential Prognostic Biomarkers in Lung Adenocarcinoma. Front Genet 2021; 12:622233. [PMID: 33643384 PMCID: PMC7902930 DOI: 10.3389/fgene.2021.622233] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
N6-methyladenosine [m(6)A/m6A] methylation is one of the most common RNA modifications in eukaryotic cell mRNA and plays an important regulatory role in mRNA metabolism, splicing, translocation, stability, and translation. Previous studies have demonstrated that the m6A modification is highly associated with tumor cell proliferation, migration, and invasion. In the present study, five m6A regulatory factors have been revealed, namely heterogeneous nuclear ribonucleoprotein A2/B1(HNRNPA2B1), heterogeneous nuclear ribonucleoprotein C (HNRNPC), Vir like m6A methyltransferase associated protein (KIAA1429/VIRMA), RNA binding motif protein 15 (RBM15) and methyltransferase like 3 (METTL3), which are closely related to the overall survival (OS) of patients with lung adenocarcinoma (LUAD). These five m6A regulatory factors exhibited potential prognostic value for the 1, 3, and 5-years survival outcomes of LUAD patients. Our findings revealed that several signaling pathways, such as cell cycle, DNA replication, RNA degradation, RNA polymerase, nucleotide excision repair and basal transcription factors, are activated in the high-risk group of LUAD patients.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
624
|
Gulei D, Tomuleasa C, Qian L, Bagacean C, Croce CM, Ghiaur G. Editorial: Novel Drugs Targeting the Microenvironment and the Epigenetic Changes in Hematopoietic Malignancies. Front Pharmacol 2021; 11:614614. [PMID: 33536922 PMCID: PMC7849152 DOI: 10.3389/fphar.2020.614614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.,Department of Hematology, Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Liren Qian
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Cristina Bagacean
- INSERM UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, Centre Hospitalier Régional et Universitaire de Brest, Brest, France
| | - Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH, United States
| | - Gabriel Ghiaur
- Department of Leukemia, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
625
|
Wu H, Dong H, Fu Y, Tang Y, Dai M, Chen Y, Wang G, Wu Y. Expressions of m6A RNA methylation regulators and their clinical predictive value in cervical squamous cell carcinoma and endometrial adenocarcinoma. Clin Exp Pharmacol Physiol 2021; 48:270-278. [PMID: 33006785 DOI: 10.1111/1440-1681.13412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 01/22/2023]
Abstract
The mortality caused by cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) ranks second among female malignant tumour deaths, but their diagnostic and therapeutic targets are still limited. N6-methyladenosine (m6A) is the most common and extensive modification in mRNA molecules, and its methylation regulators participate in regulating the occurrence and development of many tumours. However, whether m6A RNA methylation regulators can be used as independent prognostic indicators of CESC remains unknown. This study unveiled differential expression of 20 m6A RNA methylation regulators between normal and CESC tumour samples, which RNA sequence data and clinical information were obtained from TCGA database. As a result, five m6A RNA methylation regulators (FTO, HNRNPA2B1, RBM15, IGF2BP1, IGF2BP3) were identified to be significantly linked to CESC tumour status. After Lasso cox regression analysis, six m6A RNA methylation regulators (YTHDC2, YTHDC1, ALKBH5, ZC3H13, RBMX, YTHDF1) were chosen to construct a risk signature. CESC patients were then classified as high-risk and low-risk group based on the median risk score. The overall survival (OS) of the CESC patients in high-risk group was significantly lower than that in low-risk group, and the area under curve (AUC) is 0.718. Moreover, the risk model can be an independent prognosis factors for CESC patients and can predict OS of CESC patients with different clinical factors. In conclusion, m6A RNA methylation regulators are closely correlated with CESC clinical characteristics and the selected six m6A RNA methylation regulators may be useful for CESC patients personalized treatment.
Collapse
Affiliation(s)
- Hongyuan Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Heling Dong
- School of Physical Education, Jinan University, Guangzhou, China
| | - You Fu
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Tang
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Dai
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanya Chen
- Department of Obstetrics and Gynecology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Gang Wang
- Department of Radiology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Yifen Wu
- Department of Oncology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| |
Collapse
|
626
|
Han SH, Choe J. Deciphering the molecular mechanisms of epitranscriptome regulation in cancer. BMB Rep 2021; 54:89-97. [PMID: 33298243 PMCID: PMC7907739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 11/25/2020] [Indexed: 08/08/2024] Open
Abstract
Post-transcriptional regulation is an indispensable cellular mechanism of gene expression control that dictates various cellular functions and cell fate decisions. Recently, various chemical RNA modifications, termed the "epitranscriptome," have been proposed to play crucial roles in the regulation of post-transcriptional gene expression. To date, more than 170 RNA modifications have been identified in almost all types of RNA. As with DNA modification-mediated control of gene expression, regulation of gene expression via RNA modification is also accomplished by three groups of proteins: writers, readers, and erasers. Several emerging studies have revealed that dysregulation in RNA modification is closely associated with tumorigenesis. Notably, the molecular outcomes of specific RNA modifications often have opposite cellular consequences. In this review, we highlight the current progress in the elucidation of the mechanisms of cancer development due to chemical modifications of various RNA species. [BMB Reports 2021; 54(2): 89-97].
Collapse
Affiliation(s)
- Seung Hun Han
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| | - Junho Choe
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
627
|
Mehdi A, Rabbani SA. Role of Methylation in Pro- and Anti-Cancer Immunity. Cancers (Basel) 2021; 13:cancers13030545. [PMID: 33535484 PMCID: PMC7867049 DOI: 10.3390/cancers13030545] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/09/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
DNA and RNA methylation play a vital role in the transcriptional regulation of various cell types including the differentiation and function of immune cells involved in pro- and anti-cancer immunity. Interactions of tumor and immune cells in the tumor microenvironment (TME) are complex. TME shapes the fate of tumors by modulating the dynamic DNA (and RNA) methylation patterns of these immune cells to alter their differentiation into pro-cancer (e.g., regulatory T cells) or anti-cancer (e.g., CD8+ T cells) cell types. This review considers the role of DNA and RNA methylation in myeloid and lymphoid cells in the activation, differentiation, and function that control the innate and adaptive immune responses in cancer and non-cancer contexts. Understanding the complex transcriptional regulation modulating differentiation and function of immune cells can help identify and validate therapeutic targets aimed at targeting DNA and RNA methylation to reduce cancer-associated morbidity and mortality.
Collapse
Affiliation(s)
- Ali Mehdi
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada;
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Shafaat A. Rabbani
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada;
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Correspondence: ; Tel.: +1-514-843-1632
| |
Collapse
|
628
|
Di Fazio P. The epitranscriptome: At the crossroad of cancer prognosis. EBioMedicine 2021; 64:103231. [PMID: 33517076 PMCID: PMC7847963 DOI: 10.1016/j.ebiom.2021.103231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Germany.
| |
Collapse
|
629
|
Wang S, Zou X, Chen Y, Cho WC, Zhou X. Effect of N6-Methyladenosine Regulators on Progression and Prognosis of Triple-Negative Breast Cancer. Front Genet 2021; 11:580036. [PMID: 33584787 PMCID: PMC7877483 DOI: 10.3389/fgene.2020.580036] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The N6-methyladenosine (m6A) modification plays a critical role in cancer development. Little is known about the m6A modification in triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer. Thus, the prognostic value of m6A RNA methylation in TNBC deserves exploration. Methods: The expression levels of the 13 m6A methylation regulators were compared between the 98 TNBC tumor samples and normal tissue samples based on the transcriptome profiles from The Cancer Genome Atlas (TCGA). The association between the m6A regulators and patients' overall survival was assessed by Kaplan-Meier survival analysis and Cox regression analysis. Lasso regression analysis was conducted to construct a prognostic model based on the m6A methylation system. The prognostic performance of the identified model was validated in GSE88847 and GSE135565 datasets. A nomogram combining the TNM stage and the m6A prognostic model was further constructed for the survival prediction of TNBC patients. Results: The m6A regulator genes were remarkably dysregulated in TNBC tumor tissues, with ALKBH5, YTHDF2, HNRNPC, KIAA1429, and RBM15 significantly up-regulated and FTO, YTHDC1, YTHDC2, METTL3, METTL14, and ZC3H13 significantly down-regulated (P < 0.01). The expression level of ALKBH5 was an independent unfavorable prognostic factor (HR = 3.327, P = 0.006), while METTL14 (HR = 0.425, P = 0.009) was an independent favorable prognostic factor for TNBC patients. A prognostic model consisting of ALKBH5 and METTL14 was therefore proposed displaying higher accuracy of risk prediction when combined with TNM stage with an AUC of 0.791. The prognostic value of the identified signature remained consistent within the two external validation datasets. Conclusion: The m6A methylation regulators were significantly dysregulated in TNBC tissues and could constitute a novel prognostic signature for the survival prediction of TNBC patients.
Collapse
Affiliation(s)
- Shanshan Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuan Zou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yajie Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Xiang Zhou
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|
630
|
de Polo A, Labbé DP. Diet-Dependent Metabolic Regulation of DNA Double-Strand Break Repair in Cancer: More Choices on the Menu. Cancer Prev Res (Phila) 2021; 14:403-414. [PMID: 33509805 DOI: 10.1158/1940-6207.capr-20-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/27/2020] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Despite several epidemiologic and preclinical studies supporting the role of diet in cancer progression, the complexity of the diet-cancer link makes it challenging to deconvolute the underlying mechanisms, which remain scantly elucidated. This review focuses on genomic instability as one of the cancer hallmarks affected by diet-dependent metabolic alterations. We discuss how altered dietary intake of metabolites of the one-carbon metabolism, including methionine, folate, and vitamins B and C, can impact the methylation processes and thereby tumorigenesis. We present the concept that the protumorigenic effect of certain diets, such as the Western diet, is in part due to a diet-induced erosion of the DNA repair capacity caused by altered epigenetic and epitranscriptomic landscapes, while the protective effect of other dietary patterns, such as the Mediterranean diet, can be partly explained by their ability to sustain a proficient DNA repair. In particular, considering that diet-dependent alterations of the one-carbon metabolism can impact the rate of methylation processes, changes in dietary patterns can affect the activity of writers and erasers of histone and RNA methyl marks and consequently impair their role in ensuring a proficient DNA damage repair.
Collapse
Affiliation(s)
- Anna de Polo
- Division of Urology, Department of Surgery, McGill University and Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - David P Labbé
- Division of Urology, Department of Surgery, McGill University and Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
631
|
Tassinari V, Cesarini V, Tomaselli S, Ianniello Z, Silvestris DA, Ginistrelli LC, Martini M, De Angelis B, De Luca G, Vitiani LR, Fatica A, Locatelli F, Gallo A. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biol 2021; 22:51. [PMID: 33509238 PMCID: PMC7842030 DOI: 10.1186/s13059-021-02271-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/14/2021] [Indexed: 01/15/2023] Open
Abstract
Background N6-methyladenosine (m6A) and adenosine-to-inosine (A-to-I) RNA editing are two of the most abundant RNA modification events affecting adenosines in mammals. Both these RNA modifications determine mRNA fate and play a pivotal role in tumor development and progression. Results Here, we show that METTL3, upregulated in glioblastoma, methylates ADAR1 mRNA and increases its protein level leading to a pro-tumorigenic mechanism connecting METTL3, YTHDF1, and ADAR1. We show that ADAR1 plays a cancer-promoting role independently of its deaminase activity by binding CDK2 mRNA, underlining the importance of ADARs as essential RNA-binding proteins for cell homeostasis as well as cancer progression. Additionally, we show that ADAR1 knockdown is sufficient to strongly inhibit glioblastoma growth in vivo. Conclusions Hence, our findings underscore METTL3/ADAR1 axis as a novel crucial pathway in cancer progression that connects m6A and A-to-I editing post-transcriptional events. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02271-9.
Collapse
Affiliation(s)
- Valentina Tassinari
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy.,Present address: Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valeriana Cesarini
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy.,Present address: Department of Biomedical Sciences, Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Sara Tomaselli
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy
| | - Zaira Ianniello
- Department of Biology and Biotechnology "Charles Darwin", La Sapienza University of Rome, Rome, Italy
| | | | - Lavinia Ceci Ginistrelli
- Department of Biology and Biotechnology "Charles Darwin", La Sapienza University of Rome, Rome, Italy
| | - Maurizio Martini
- Department of Women's, Children's and Public Health Studies, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy.,Department of Health Science and Public Health, Institute of Pathology, Largo F. vito 1, 00168, Rome, Italy
| | - Biagio De Angelis
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Lucia Ricci Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology "Charles Darwin", La Sapienza University of Rome, Rome, Italy
| | - Franco Locatelli
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy.,Department of Pediatrics, La Sapienza University of Rome, Rome, Italy
| | - Angela Gallo
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy.
| |
Collapse
|
632
|
Guo W, Huai Q, Zhang G, Guo L, Song P, Xue X, Tan F, Xue Q, Gao S, He J. Elevated Heterogeneous Nuclear Ribonucleoprotein C Expression Correlates With Poor Prognosis in Patients With Surgically Resected Lung Adenocarcinoma. Front Oncol 2021; 10:598437. [PMID: 33569346 PMCID: PMC7868529 DOI: 10.3389/fonc.2020.598437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD), as the most common histological subtype of lung cancer, is a high-grade malignancy and a leading cause of cancer-related death globally. Identification of biomarkers with prognostic value is of great significance for the diagnosis and treatment of LUAD. Heterogeneous nuclear ribonucleoprotein C (HNRNPC) is an RNA-binding protein “reader” of N6-methyladenosine (m6A) methylation, and is related to the progression of various cancers; however, its role in LUAD is unclear. The aims of this study aims were to study the expression and prognostic value of HNRNPC in LUAD. Methods The Oncomine database and gene expression profiling interactive analysis (GEPIA) were used for preliminary exploration of HNRNPC expression and prognostic value in LUAD. LUAD cases from The Cancer Genome Atlas (TCGA) (n = 416) and the Kaplan-Meier plotter database (n = 720) were extracted to study the differential expression and prognostic value of HNRNPC. HNRNPC expression in the National Cancer Center of China (NCC) cohort was analyzed by immunohistochemical staining, and the relationship between HNRNPC expression and survival rate evaluated using the Kaplan-Meier method and log-rank test. Univariate and multivariate Cox regression analyses were used to identify independent prognostic factors. Several pathways that were significantly enriched in the HNRNPC high expression group were identified by Gene Set Enrichment Analysis (GSEA). Results Five data sets from the Oncomine and GEPIA databases all supported that HNRNPC expression is significantly higher in LUAD than in normal lung tissue. In TCGA cohort, HNRNPC was highly expressed in LUAD tissues and significantly related to age, sex, smoking history, ethnicity, lymph node metastasis, and TNM staging (P < 0.001). High HNRNPC expression was significantly correlated with poor prognosis in the three cohorts (NCC, TCGA, and K-M plotter) (P < 0.05). Multivariate Cox regression analysis showed that HNRNPC expression was an independent prognostic factor in both TCGA and NCC cohorts (P < 0.05). Further, 10 significantly enriched pathways were identified from TCGA data and 118 lung cancer cell lines in CCLE, respectively. Conclusions High HNRNPC expression is significantly related to poor overall survival in patients with LUAD, suggesting that HNRNPC may be a cancer-promoting factor and a potential prognostic biomarker in LUAD.
Collapse
Affiliation(s)
- Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qilin Huai
- Department of Graduate School, Zunyi Medical University, Zunyi, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemin Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
633
|
Zhou D, Tang W, Xu Y, Xu Y, Xu B, Fu S, Wang Y, Chen F, Chen Y, Han Y, Wang G. METTL3/YTHDF2 m6A axis accelerates colorectal carcinogenesis through epigenetically suppressing YPEL5. Mol Oncol 2021; 15:2172-2184. [PMID: 33411363 PMCID: PMC8333777 DOI: 10.1002/1878-0261.12898] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/29/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023] Open
Abstract
N6‐methyladenosine (m6A) has emerged as the most prevalent post‐transcriptional modification on mRNA that contributes prominently to tumorigenesis. However, the specific function of m6A methyltransferase methyltransferase‐like 3 (METTL3) in colorectal cancer (CRC) remains elusive. Herein, we explored the biological function of METTL3 in CRC progression. Clinically, METTL3 was frequently upregulated in CRC tissues, cell lines, and plasma samples and its high expression predicted poor prognosis of CRC patients. Functionally, knockdown of METTL3 significantly repressed CRC cell proliferation and migration in vitro, while its overexpression accelerated CRC tumor formation and metastasis both in vitro and in vivo. Mechanistically, METTL3 epigenetically repressed YPEL5 in an m6A‐YTHDF2‐dependent manner by targeting the m6A site in the coding sequence region of the YPEL5 transcript. Moreover, overexpression of YPEL5 significantly reduced CCNB1 and PCNA expression. Collectively, we identified the pivotal role of METTL3‐catalyzed m6A modification in CRC tumorigenesis, wherein it facilitates CRC tumor growth and metastasis through suppressing YPEL5 expression in an m6A‐YTHDF2‐dependent manner, suggesting a promising strategy for the diagnosis and therapy of CRC.
Collapse
Affiliation(s)
- Dan Zhou
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China.,Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, China
| | - Weiwei Tang
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Teaching Hospital of Fujian Medical University, China
| | - Yidan Xu
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China
| | - Yajie Xu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, China
| | - Binbin Xu
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China
| | - Shanshan Fu
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China
| | - Yanting Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China
| | - Fangfang Chen
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China
| | - Yongxiong Chen
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, China
| | - Yinshu Han
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China
| | - Gueyhorng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China
| |
Collapse
|
634
|
Liao Y, Yuan L, Zhang Z, Lin A, Zhou J, Zhuo Z, Zhao J. No Association Between FTO Gene Polymorphisms and Central Nervous System Tumor Susceptibility in Chinese Children. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:109-115. [PMID: 33500652 PMCID: PMC7826062 DOI: 10.2147/pgpm.s289345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Background Central nervous system (CNS) tumor is a malignancy commonly seen occurring in childhood, worldwide. Fat mass and obesity-associated (FTO) enzyme, initially identified as an obesity-related protein, also functions as a susceptibility gene for cancers. However, predisposing effect of FTO gene single nucleotide polymorphisms (SNPs) on CNS tumor risk remains unknown. Methods Herein, we genotyped 314 CNS tumor patients and 380 healthy controls samples from three hospitals to explore whether FTO gene SNPs impact CNS tumor risk. TaqMan SNP genotyping assay was applied for the genotyping. Odds ratios (ORs) and 95% confidence intervals (CIs), generated from multinomial logistic regression, were applied to determine the associations of SNPs (rs1477196 G>A, rs9939609 T>A, rs7206790 C>G, and rs8047395 A>G) in FTO gene with risk of CNS tumor. Results We failed to detect significant associations between FTO gene SNPs and CNS tumor risk, either in single-locus or combined analysis. A significantly increased ependymoma risk was found for carriers with 3-4 risk genotypes in comparison to 0-2 risk genotypes (adjusted OR=1.94, 95% CI=1.11-3.37, P=0.020). Conclusion Our data indicated that FTO gene SNPs are unlikely to have large effects on CNS tumor risk but may have weaker effects.
Collapse
Affiliation(s)
- Yuxiang Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Changsha, People's Republic of China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Zhiping Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Changsha, People's Republic of China
| | - Ao Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Jingying Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, People's Republic of China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Changsha, People's Republic of China
| |
Collapse
|
635
|
Nombela P, Miguel-López B, Blanco S. The role of m 6A, m 5C and Ψ RNA modifications in cancer: Novel therapeutic opportunities. Mol Cancer 2021; 20:18. [PMID: 33461542 PMCID: PMC7812662 DOI: 10.1186/s12943-020-01263-w] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
RNA modifications have recently emerged as critical posttranscriptional regulators of gene expression programmes. Significant advances have been made in understanding the functional role of RNA modifications in regulating coding and non-coding RNA processing and function, which in turn thoroughly shape distinct gene expression programmes. They affect diverse biological processes, and the correct deposition of many of these modifications is required for normal development. Alterations of their deposition are implicated in several diseases, including cancer. In this Review, we focus on the occurrence of N6-methyladenosine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ) in coding and non-coding RNAs and describe their physiopathological role in cancer. We will highlight the latest insights into the mechanisms of how these posttranscriptional modifications influence tumour development, maintenance, and progression. Finally, we will summarize the latest advances on the development of small molecule inhibitors that target specific writers or erasers to rewind the epitranscriptome of a cancer cell and their therapeutic potential.
Collapse
Affiliation(s)
- Paz Nombela
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain
| | - Borja Miguel-López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
636
|
Qi LW, Jia JH, Jiang CH, Hu JM. Contributions and Prognostic Values of N6-Methyladenosine RNA Methylation Regulators in Hepatocellular Carcinoma. Front Genet 2021; 11:614566. [PMID: 33519919 PMCID: PMC7844396 DOI: 10.3389/fgene.2020.614566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction The methylation at position N6 of adenine is called N6-methyladenosine (m6A). This transcriptional RNA modification exerts a very active and important role in RNA metabolism and in other biological processes. However, the activities of m6A associated with malignant liver hepatocellular carcinoma (LIHC) are unknown and are worthy of study. Materials and Methods Using the data of University of California, Santa Cruz (UCSC), the expression of M6A methylation regulators in pan-cancer was evaluated as a screening approach to identify the association of M6A gene expression and 18 cancer types, with a specific focus on LIHC. LIHC datasets of The Cancer Genome Atlas (TCGA) were used to explore the expression of M6A methylation regulators and their clinical significance. Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA) were used to explore the underlying mechanism based on the evaluation of aberrant expression of m6A methylation regulators. Results The expression alterations of m6A-related genes varied across cancer types. In LIHC, we found that in univariate Cox regression analysis, up-regulated m6A modification regulators were associated with worse prognosis, except for ZC3H13. Kaplan-Meier survival curve analysis indicated that higher expression of methyltransferase-like protein 3 (METTL3) and YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) genes related to the worse survival rate defined by disease-related survival (DSS), overall survival (OS), progression-free interval (PFI), and disease-free interval (DFI). Up-regulated m6A methylation regulator group (cluster2) obtained by consensus clustering was associated with poor prognosis. A six-gene prognostic signature established using the least absolute shrinkage and selection operator (LASSO) Cox regression algorithm performed better in the early (I + II; T1 + T2) stages than in the late (III + IV; T3 + T4) stages of LIHC. Using the gene signature, we constructed a risk score and found that it was an independent predictive factor for prognosis. Using GSEA, we identified processes involved in DNA damage repair and several biological processes associated with malignant tumors that were closely related to the high-risk group. Conclusion In summary, our study identified several genes associated with m6A in LIHC, especially METTL3 and YTHDF1, and confirmed that a risk signature comprised of m6A-related genes was able to forecast prognosis.
Collapse
Affiliation(s)
- Li-Wen Qi
- Department of Clinical Oncology, Liaoning Cancer Hospital, Graduate School of Dalian Medical University, Dalian, China
| | - Jian-Hui Jia
- Department of Gastrointestinal Tumor, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Chen-Hao Jiang
- Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Jian-Ming Hu
- Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
637
|
Wang MC, McCown PJ, Schiefelbein GE, Brown JA. Secondary Structural Model of MALAT1 Becomes Unstructured in Chronic Myeloid Leukemia and Undergoes Structural Rearrangement in Cervical Cancer. Noncoding RNA 2021; 7:6. [PMID: 33450947 PMCID: PMC7838788 DOI: 10.3390/ncrna7010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) influence cellular function through binding events that often depend on the lncRNA secondary structure. One such lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), is upregulated in many cancer types and has a myriad of protein- and miRNA-binding sites. Recently, a secondary structural model of MALAT1 in noncancerous cells was proposed to form 194 hairpins and 13 pseudoknots. That study postulated that, in cancer cells, the MALAT1 structure likely varies, thereby influencing cancer progression. This work analyzes how that structural model is expected to change in K562 cells, which originated from a patient with chronic myeloid leukemia (CML), and in HeLa cells, which originated from a patient with cervical cancer. Dimethyl sulfate-sequencing (DMS-Seq) data from K562 cells and psoralen analysis of RNA interactions and structure (PARIS) data from HeLa cells were compared to the working structural model of MALAT1 in noncancerous cells to identify sites that likely undergo structural alterations. MALAT1 in K562 cells is predicted to become more unstructured, with almost 60% of examined hairpins in noncancerous cells losing at least half of their base pairings. Conversely, MALAT1 in HeLa cells is predicted to largely maintain its structure, undergoing 18 novel structural rearrangements. Moreover, 50 validated miRNA-binding sites are affected by putative secondary structural changes in both cancer types, such as miR-217 in K562 cells and miR-20a in HeLa cells. Structural changes unique to K562 cells and HeLa cells provide new mechanistic leads into how the structure of MALAT1 may mediate cancer in a cell-type specific manner.
Collapse
Affiliation(s)
| | | | | | - Jessica A. Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.C.W.); (P.J.M.); (G.E.S.)
| |
Collapse
|
638
|
Bayoumi M, Munir M. Structural Insights Into m6A-Erasers: A Step Toward Understanding Molecule Specificity and Potential Antiviral Targeting. Front Cell Dev Biol 2021; 8:587108. [PMID: 33511112 PMCID: PMC7835257 DOI: 10.3389/fcell.2020.587108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
The cellular RNA can acquire a variety of chemical modifications during the cell cycle, and compelling pieces of evidence highlight the importance of these modifications in determining the metabolism of RNA and, subsequently, cell physiology. Among myriads of modifications, methylation at the N6-position of adenosine (m6A) is the most important and abundant internal modification in the messenger RNA. The m6A marks are installed by methyltransferase complex proteins (writers) in the majority of eukaryotes and dynamically reversed by demethylases such as FTO and ALKBH5 (erasers). The incorporated m6A marks on the RNA transcripts are recognized by m6A-binding proteins collectively called readers. Recent epigenetic studies have unequivocally highlighted the association of m6A demethylases with a range of biomedical aspects, including human diseases, cancers, and metabolic disorders. Moreover, the mechanisms of demethylation by m6A erasers represent a new frontier in the future basic research on RNA biology. In this review, we focused on recent advances describing various physiological, pathological, and viral regulatory roles of m6A erasers. Additionally, we aim to analyze structural insights into well-known m6A-demethylases in assessing their substrate binding-specificity, efficiency, and selectivity. Knowledge on cellular and viral RNA metabolism will shed light on m6A-specific recognition by demethylases and will provide foundations for the future development of efficacious therapeutic agents to various cancerous conditions and open new avenues for the development of antivirals.
Collapse
Affiliation(s)
- Mahmoud Bayoumi
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom.,Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
639
|
Wei M, Bai JW, Niu L, Zhang YQ, Chen HY, Zhang GJ. The Complex Roles and Therapeutic Implications of m 6A Modifications in Breast Cancer. Front Cell Dev Biol 2021; 8:615071. [PMID: 33505967 PMCID: PMC7829551 DOI: 10.3389/fcell.2020.615071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence indicates that N6-methyladenosine (m6A), which directly regulates mRNA, is closely related to multiple biological processes and the progression of different malignancies, including breast cancer (BC). Studies of the aberrant expression of m6A mediators in BC revealed that they were associated with different BC subtypes and functions, such as proliferation, apoptosis, stemness, the cell cycle, migration, and metastasis, through several factors and signaling pathways, such as Bcl-2 and the PI3K/Akt pathway, among others. Several regulators that target m6A have been shown to have anticancer effects. Fat mass and obesity-associated protein (FTO) was identified as the first m6A demethylase, and a series of inhibitors that target FTO were reported to have potential for the treatment of BC by inhibiting cell proliferation and promoting apoptosis. However, the exact mechanism by which m6A modifications are regulated by FTO inhibitors remains unknown. m6A modifications in BC have only been preliminarily studied, and their mechanisms require further investigation.
Collapse
Affiliation(s)
- Min Wei
- Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Jing-Wen Bai
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lei Niu
- Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Yong-Qu Zhang
- Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Hong-Yu Chen
- Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Guo-Jun Zhang
- Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
640
|
Kim T, Croce CM. MicroRNA and ER stress in cancer. Semin Cancer Biol 2021; 75:3-14. [PMID: 33422566 DOI: 10.1016/j.semcancer.2020.12.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The development of biological technologies in genomics, proteomics, and bioinformatics has led to the identification and characterization of the complete set of coding genes and their roles in various cellular pathways in cancer. Nevertheless, the cellular pathways have not been fully figured out like a jigsaw puzzle with missing pieces. The discovery of noncoding RNAs including microRNAs (miRNAs) has provided the missing pieces of the cellular pathways. Likewise, miRNAs have settled many questions of inexplicable patches in the endoplasmic reticulum (ER) stress pathways. The ER stress-caused pathways typified by the unfolded protein response (UPR) are pivotal processes for cellular homeostasis and survival, rectifying uncontrolled proteostasis and determining the cell fate. Although various factors and pathways have been studied and characterized, the understanding of the ER stress requires more wedges to fill the cracks of knowledge about the ER stress pathways. Moreover, the roles of the ER stress and UPR are still controversial in cancer despite their strong potential to promote cancer. The noncoding RNAs, in particular, miRNAs aid in a better understanding of the ER stress and its role in cancer. In this review, miRNAs that are the more-investigated subtype of noncoding RNAs are focused on the interpretation of the ER stress in cancer, following the introduction of miRNA and ER stress.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518055, China; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
641
|
Yang R, Liang X, Wang H, Guo M, Shen H, Shi Y, Liu Q, Sun Y, Yang L, Zhan M. The RNA methyltransferase NSUN6 suppresses pancreatic cancer development by regulating cell proliferation. EBioMedicine 2021; 63:103195. [PMID: 33418496 PMCID: PMC7804980 DOI: 10.1016/j.ebiom.2020.103195] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most lethal solid malignancies in the world due to its excessive cell proliferation and aggressive metastatic features. Emerging evidences revealed the importance of posttranscriptional modifications of RNAs in PC progression. However, knowledge about the 5-methylcytosine (m5C) RNA modification in PC is still extremely limited. In this study, we attempted to explore the expression changes and clinical significances of 12 known m5C-related genes among PC patients. METHODS A total of 362 normal and 382 tumor specimens from PC patients were examined for candidate m5C-related gene and protein expression by using quantitative PCR (qPCR) and immunohistochemistry (IHC). The proliferation rate of PC cells was detected by MTS assay. Xenograft mouse models were used to assess the role of NSUN6 in PC tumor formation. FINDINGS Through analyzing the four Gene Expression Omnibus (GEO) databases, six m5C-related genes shown significant and consistent alterations were selected for further examination in our 3 independent PC cohorts. Finally, we identified the reduction of NSUN6 as a common feature of all PC sample sets examined. NSUN6 expression correlated with clinicopathologic parameters including T stage, and Ki67+ cell rate. Further assessing the transcriptional profiles of 50 PC tissues, we found biological processes associated with cell proliferation like cell cycle and G2M checkpoint were enriched in NSUN6 lower expression group. Helped by in vitro PC cell lines and in vivo xenograft mouse models, we confirmed the role of NSUN6 in regulating cell proliferation and PC tumor growth. Last but also importantly, we also show the good performance of NSUN6 in evaluating tumor recurrence and survival among PC patients. INTERPRETATION Our data suggested that NSUN6 is an important factor involved in regulating cell proliferation of PC, and highlights the potential of novel m5C-based clinical modalities as a therapeutic approach in PC patients. FUNDING This study was supported by the National Natural Science Foundation of China (Grant Nos. 81803014, 81802424, and 81802911).
Collapse
Affiliation(s)
- Ruimeng Yang
- The Core Laboratory in Medical Centre of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xing Liang
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Miaomiao Guo
- The Core Laboratory in Medical Centre of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Hui Shen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yongheng Shi
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Linhua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Ming Zhan
- The Core Laboratory in Medical Centre of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
642
|
Identification and Verification of Molecular Subtypes with Enhanced Immune Infiltration Based on m6A Regulators in Cutaneous Melanoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2769689. [PMID: 33490266 PMCID: PMC7801086 DOI: 10.1155/2021/2769689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/13/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
Background As the most aggressive type of skin cancer, cutaneous melanoma (CM) is experiencing a rapidly rising mortality in recent years. Exploring potential prognostic biomarkers or mechanisms of disease progression therefore has a great significance for CM. The purpose of this study was to identify genetic markers and prognostic performance of N6-methyladenosine (m6A) regulators in CM. Method Gene expression profiles, copy number variation (CNV), and single nucleotide polymorphism (SNP) data of patients were obtained from The Cancer Genome Atlas (TCGA) database. Results Genomic variation and association analysis of gene expressions revealed a high degree of genomic variation in the presence of m6A-regulated genes. m6A patients with high-frequency genomic variants in the regulatory gene tended to develop a worse prognosis (p < 0.01). Unsupervised cluster analysis of the expression profiles of m6A-regulated genes identified three clinically distinct molecular subtypes, including degradation-enhanced subgroup and immune-enhanced subgroup, with significant prognostic differences (p = 0.046). A novel prognostic signature, which was established according to m6A-related characteristic genes identified through genome-wide expression spectrum, could effectively identify samples with poor prognosis and enhanced immune infiltration, and the effectiveness was also verified in the dataset of the chip. Conclusion We identified genetic changes in the m6A regulatory gene in CM and related survival outcomes. The findings of this study provide new insights into the epigenetic understanding of m6A in CM.
Collapse
|
643
|
Zou Z, Zhou S, Liang G, Tang Z, Li K, Tan S, Zhang X, Zhu X. The pan-cancer analysis of the two types of uterine cancer uncovered clinical and prognostic associations with m6A RNA methylation regulators. Mol Omics 2021; 17:438-453. [PMID: 34110327 DOI: 10.1039/d0mo00113a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The role of m6A RNA methylation modification in uterine cancer has not been studied until now. We explored the relationship between m6A regulators and clinical characteristics and prognosis in uterine corpus endometrial carcinoma (UCEC) and uterine carcinosarcoma (UCS) with the data from the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). We found that several regulators were up-regulated or down-regulated in the two types of cancer, and identified two cluster subgroups with statistically significant differences in pathological grade, age and survival rate. Multivariate Cox regression analysis showed that methyltransferase-like 16 (METTL16) had a low hazard ratio in UCEC. We used several regulators to construct a risk signature and divided tumor patients into high-risk and low-risk groups, and found that the high-risk group had significantly lower survival rates. Independent prognostic analysis showed that the insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) was a pan-prognostic regulator of uterine cancer. This result was further verified in the Gene Expression Omnibus (GEO) database. Based on above results, we conducted gene-ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to further reveal a potential mechanism for m6A RNA methylation regulators. We found that IGF2BP1 was enriched in gene expression (GO:0010467), poly(A) RNA binding (GO:0044822) and RNA binding (GO:0003723) pathways. KEGG analysis showed that IGF2BP1 was enriched in microRNAs in the cancer (hsa05206) pathway. Our study systematically elucidated the relationship between m6A RNA methylation regulators and uterine cancer and constructed the risk signature that can predict the prognosis and clinicopathological characteristics of uterine cancer.
Collapse
Affiliation(s)
- Zhilin Zou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China.
| | | | | | | | | | | | | | | |
Collapse
|
644
|
Ren H, Zhuo ZJ, Duan F, Li Y, Yang Z, Zhang J, Cheng J, Li S, Li L, Geng J, Zhang Z, He J, Niu H. ALKBH5 Gene Polymorphisms and Hepatoblastoma Susceptibility in Chinese Children. JOURNAL OF ONCOLOGY 2021; 2021:6658480. [PMID: 33790968 PMCID: PMC7997766 DOI: 10.1155/2021/6658480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/11/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Incidence of hepatoblastoma has been increasing, but the causes of this disease remain unclear. Some studies have suggested that abnormal expressions of ALKBH5 gene are associated with multiple cancers. This study aims to test the hypothesis that hepatoblastoma risk may be modulated by genetic polymorphisms in ALKBH5 gene based on genotyped data from samples of 328 cases and 1476 controls enrolled from eight hospitals in China. We used TaqMan assay to genotype ALKBH5 gene single nucleotide polymorphisms (SNPs) rs1378602G > A and rs8400G > A. We calculated the odds ratios (ORs) and P values using logistic regression models to estimate the association between hepatoblastoma risk and ALKBH5 gene SNPs. We found the rs1378602G > A and rs8400G > A could not impact hepatoblastoma risk in single or combined analysis. Stratified analysis revealed that subjects with the rs8400 AA genotype are prone to getting hepatoblastoma in the clinical stage III + IV subgroup (adjusted OR = 1.93, 95% CI = 1.20-3.10, P=0.007), when compared to those with GG/GA genotype. False-positive report probability validated the reliability of the significant results. Preliminary functional annotations revealed that rs8400 A is correlated with increased expression of ALKBH5 gene in the expression quantitative trait locus (eQTL) analysis. In all, our investigation presents evidence of a weak impact of ALKBH5 gene polymorphisms on hepatoblastoma risk, using the largest hepatoblastoma sample size. These findings shed some light on the genetic basis of hepatoblastoma, implicating the role of ALKBH5 gene polymorphisms in the etiology of hepatoblastoma.
Collapse
Affiliation(s)
- Hui Ren
- 1Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Zhen-Jian Zhuo
- 2Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Fei Duan
- 1Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Yong Li
- 3Department of Pediatric Surgery, Hunan Children's Hospital, Changsha 410004, Hunan, China
| | - Zhonghua Yang
- 4Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jiao Zhang
- 5Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- 6Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Suhong Li
- 7Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shaanxi, China
| | - Li Li
- 8Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Jianlei Geng
- 1Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Zhiguang Zhang
- 1Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Jing He
- 2Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huizhong Niu
- 1Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| |
Collapse
|
645
|
Zhao Z, Cai Q, Zhang P, He B, Peng X, Tu G, Peng W, Wang L, Yu F, Wang X. N6-Methyladenosine RNA Methylation Regulator-Related Alternative Splicing (AS) Gene Signature Predicts Non-Small Cell Lung Cancer Prognosis. Front Mol Biosci 2021; 8:657087. [PMID: 34179079 PMCID: PMC8226009 DOI: 10.3389/fmolb.2021.657087] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Aberrant N6-methyladenosine (m6A) RNA methylation regulatory genes and related gene alternative splicing (AS) could be used to predict the prognosis of non-small cell lung carcinoma. This study focused on 13 m6A regulatory genes (METTL3, METTL14, WTAP, KIAA1429, RBM15, ZC3H13, YTHDC1, YTHDC2, YTHDF1, YTHDF2, HNRNPC, FTO, and ALKBH5) and expression profiles in TCGA-LUAD (n = 504) and TCGA-LUSC (n = 479) datasets from the Cancer Genome Atlas database. The data were downloaded and bioinformatically and statistically analyzed, including the gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. There were 43,948 mRNA splicing events in lung adenocarcinoma (LUAD) and 46,020 in lung squamous cell carcinoma (LUSC), and the data suggested that m6A regulators could regulate mRNA splicing. Differential HNRNPC and RBM15 expression was associated with overall survival (OS) of LUAD and HNRNPC and METTL3 expression with the OS of LUSC patients. Furthermore, the non-small cell lung cancer prognosis-related AS events signature was constructed and divided patients into high- vs. low-risk groups using seven and 14 AS genes in LUAD and LUSC, respectively. The LUAD risk signature was associated with gender and T, N, and TNM stages, but the LUSC risk signature was not associated with any clinical features. In addition, the risk signature and TNM stage were independent prognostic predictors in LUAD and the risk signature and T stage were independent prognostic predictors in LUSC after the multivariate Cox regression and receiver operating characteristic analyses. In conclusion, this study revealed the AS prognostic signature in the prediction of LUAD and LUSC prognosis.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guangxu Tu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Xiang Wang,
| |
Collapse
|
646
|
Rønningen T, Dahl MB, Valderhaug TG, Cayir A, Keller M, Tönjes A, Blüher M, Böttcher Y. m6A Regulators in Human Adipose Tissue - Depot-Specificity and Correlation With Obesity. Front Endocrinol (Lausanne) 2021; 12:778875. [PMID: 34950106 PMCID: PMC8689137 DOI: 10.3389/fendo.2021.778875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is one of the most abundant post-transcriptional modifications on mRNA influencing mRNA metabolism. There is emerging evidence for its implication in metabolic disease. No comprehensive analyses on gene expression of m6A regulators in human adipose tissue, especially in paired adipose tissue depots, and its correlation with clinical variables were reported so far. We hypothesized that inter-depot specific gene expression of m6A regulators may differentially correlate with clinical variables related to obesity and fat distribution. METHODS We extracted intra-individually paired gene expression data (omental visceral adipose tissue (OVAT) N=48; subcutaneous adipose tissue (SAT) N=56) of m6A regulators from an existing microarray dataset. We also measured gene expression in another sample set of paired OVAT and SAT (N=46) using RT-qPCR. Finally, we extracted existing gene expression data from peripheral mononuclear blood cells (PBMCs) and single nucleotide polymorphisms (SNPs) in METTL3 and YTHDF3 from genome wide data from the Sorbs population (N=1049). The data were analysed for differential gene expression between OVAT and SAT; and for association with obesity and clinical variables. We further tested for association of SNP markers with gene expression and clinical traits. RESULTS In adipose tissue we observed that several m6A regulators (WTAP, VIRMA, YTHDC1 and ALKBH5) correlate with obesity and clinical variables. Moreover, we found adipose tissue depot specific gene expression for METTL3, WTAP, VIRMA, FTO and YTHDC1. In PBMCs, we identified ALKBH5 and YTHDF3 correlated with obesity. Genetic markers in METTL3 associate with BMI whilst SNPs in YTHDF3 are associated with its gene expression. CONCLUSIONS Our data show that expression of m6A regulators correlates with obesity, is adipose tissue depot-specific and related to clinical traits. Genetic variation in m6A regulators adds an additional layer of variability to the functional consequences.
Collapse
Affiliation(s)
- Torunn Rønningen
- Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus Universitetssykehus, Lørenskog, Norway
| | - Mai Britt Dahl
- Department of Clinical Molecular Biology (EpiGen), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Akin Cayir
- Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus Universitetssykehus, Lørenskog, Norway
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Maria Keller
- Department of Medicine, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany
| | - Anke Tönjes
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany
| | - Yvonne Böttcher
- Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus Universitetssykehus, Lørenskog, Norway
- Department of Clinical Molecular Biology (EpiGen), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany
- *Correspondence: Yvonne Böttcher,
| |
Collapse
|
647
|
Wang Z, Zhuo Z, Li L, Hua RX, Li L, Zhang J, Cheng J, Zhou H, Li S, He J, Yan S. The contribution of YTHDF2 gene rs3738067 A>G to the Wilms tumor susceptibility. J Cancer 2021; 12:6165-6169. [PMID: 34539889 PMCID: PMC8425210 DOI: 10.7150/jca.62154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
YTHDF2 is responsible for maintaining the dynamic N6-methyladenosine (m6A) modification balance and influences a variety of cancers. We tested whether YTHDF2 gene rs3738067 A>G polymorphism is related to Wilms tumor by genotyping samples of Chinese children (450 cases and 1317 controls). However, the rs3738067 A>G polymorphism showed no statistical significance with Wilms tumor susceptibility. Stratification analysis also revealed that there was no remarkable association of rs3738067 variant AG/GG genotype with Wilms tumor risk in every subgroup (age, gender, and clinical stages). In all, the results indicated YTHDF2 gene rs3738067 A>G polymorphism could not alter Wilms tumor risk significantly.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650031, Yunnan, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Linyan Li
- Department of Clinical Laboratory, Yunnan Key Laboratory of Laboratory Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- ✉ Corresponding authors: Shan Yan, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, No. 1168 Chunrongxi Road, Kunming 650500, Yunnan, China, E-mail: ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, E-mail:
| | - Shan Yan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, Yunnan, China
- ✉ Corresponding authors: Shan Yan, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, No. 1168 Chunrongxi Road, Kunming 650500, Yunnan, China, E-mail: ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, E-mail:
| |
Collapse
|
648
|
Wang Q, Zhang Q, Li Q, Zhang J, Zhang J. Clinicopathological and immunological characterization of RNA m 6 A methylation regulators in ovarian cancer. Mol Genet Genomic Med 2021; 9:e1547. [PMID: 33225598 PMCID: PMC7963423 DOI: 10.1002/mgg3.1547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/11/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND N6 -methyladenosine (m6 A) modification is one of the critical gene regulatory mechanisms implicated in cancer biology. However, the roles of m6 A regulators in ovarian cancer are still poorly understood. METHODS We integrated multiple databases including Gene Expression Omnibus (GEO), ROC Plotter, Kaplan-Meier Plotter, and Tumor Immune Estimation Resource (TIMER) to explore clinicopathological significance of m6 A regulators in ovarian cancer. RESULTS We showed that alterations in the expression of m6 A regulators were related to the malignancy and poor prognosis of ovarian cancer. We found decreased YTHDC1 and increased RBM15 expressions were associated with ovarian cancer cell metastases and HNRNPC was a predictor of paclitaxel resistance. Moreover, dysregulated m6 A regulators were enriched in the activation of cancer-related pathways. Our results further demonstrated that the level of immune cell infiltration and the expression of various immune gene markers were closely associated with the expressions of specific m6 A regulators (RBM15B, ZC3H13, YTHDF1, and IGF2BP1). CONCLUSIONS Our study establishes a new prognostic profile of ovarian cancer patients based on m6 A regulators, and highlights the potential roles of m6 A regulators in ovarian cancer development.
Collapse
Affiliation(s)
- Qingying Wang
- Department of Obstetrics and GynecologyShanghai Tenth People’s HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Qinyi Zhang
- Department of Obstetrics and GynecologyShanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Qingxian Li
- Department of Gynecology and ObstetricsPutuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jing Zhang
- Department of Integrated TherapyShanghai Cancer CenterFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jiawen Zhang
- Department of Obstetrics and GynecologyShanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
649
|
Boccaletto P, Bagiński B. MODOMICS: An Operational Guide to the Use of the RNA Modification Pathways Database. Methods Mol Biol 2021; 2284:481-505. [PMID: 33835459 DOI: 10.1007/978-1-0716-1307-8_26] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MODOMICS is an established database of RNA modifications that provides comprehensive information concerning chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. This chapter covers the resources available on MODOMICS web server and the basic steps that can be undertaken by the user to explore them. MODOMICS is available at http://www.genesilico.pl/modomics .
Collapse
Affiliation(s)
- Pietro Boccaletto
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Błażej Bagiński
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
650
|
Jia CY, Xiang W, Liu JB, Jiang GX, Sun F, Wu JJ, Yang XL, Xin R, Shi Y, Zhang DD, Li W, Zuberi Z, Zhang J, Lu GX, Wang HM, Wang PY, Yu F, Lv ZW, Ma YS, Fu D. MiR-9-1 Suppresses Cell Proliferation and Promotes Apoptosis by Targeting UHRF1 in Lung Cancer. Technol Cancer Res Treat 2021; 20:15330338211041191. [PMID: 34520284 PMCID: PMC8445543 DOI: 10.1177/15330338211041191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/30/2021] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is listed as the most common reason for cancer-related death all over the world despite diagnostic improvements and the development of chemotherapy and targeted therapies. MicroRNAs control both physiological and pathological processes including development and cancer. A microRNA-9 to 1 (miR-9 to 1) overexpression model in lung cancer cell lines was established and miR-9 to 1 was found to significantly suppress the proliferation rate in lung cancer cell lines, colony formation in vitro, and tumorigenicity in nude mice of A549 cells. Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) was then identified to direct target of miR-9 to 1. The inhibition of UHRF1 by miR-9 to 1 causes G1 arrest and p15, p16, and p21 were re-expressed in miR-9 to 1 group in mRNA level and protein level. Silence of UHRF1 expression in A549 cells resulted in the similar re-expression of p15, p16, p21 which is similar with miR-9 to 1 infection. Therefore, we concluded that UHRF1 is a new target for miR-9 to 1 to suppress cell proliferation by re-expression of tumor suppressors p15, p16, and p21 mediated by UHRF1.
Collapse
Affiliation(s)
- Cheng-You Jia
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Xiang
- Shanghai Punan Hospital, Shanghai, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Geng-Xi Jiang
- Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China
| | - Feng Sun
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jian-Jun Wu
- Nantong Haimen Yuelai Health Centre, Haimen, China
| | - Xiao-Li Yang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Xin
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Shi
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dan-Dan Zhang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Li
- Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zavuga Zuberi
- Dares Salaam Institute of Technology, Salaam, Tanzania
| | - Jie Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Gai-Xia Lu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Min Wang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pei-Yao Wang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhong-Wei Lv
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Shui Ma
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital/Institute, National Center for Liver Cancer, the Second Military Medical University, Shanghai, China
| | - Da Fu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|