601
|
Mancini L, Moradi-Bidhendi N, Brandi ML, Perretti M, MacIntyre I. Modulation of the effects of osteoprotegerin (OPG) ligand in a human leukemic cell line by OPG and calcitonin. Biochem Biophys Res Commun 2000; 279:391-7. [PMID: 11118297 DOI: 10.1006/bbrc.2000.3953] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery of osteoprotegerin (OPG), osteoprotegerin ligand (OPGL), and RANK has elucidated the mechanism by which osteoblasts and stromal cells regulate osteoclastic differentiation and function and mediate the effects exerted by other hormones and cytokines. We have investigated the effects of these novel cytokines on the preosteoclastic cell line FLG 29.1. We show that OPGL alone and in combination with macrophage colony-stimulating factor (CSF-1) dramatically reduced replication and increased tartrate-resistant acid phosphatase activity. However, although FLG29.1 cells appear to adhere to the bone surface, they are not able to form resorption lacunae. OPG and calcitonin completely abolished the differentiation induced by OPGL. RANK was detectable in FLG 29.1 and the number of positive cells was increased by OPGL/CSF-1 treatment while reduced by calcitonin. We propose that calcitonin could interact with the OPG/OPGL, and its effects on RANK may explain in part the action of this hormone in suppressing bone resorption.
Collapse
Affiliation(s)
- L Mancini
- Division of Pharmacology, William Harvey Research Institute, St. Bartholomew's and Royal London School of Medicine and Dentistry, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | | | | | | | | |
Collapse
|
602
|
Takami M, Takahashi N, Udagawa N, Miyaura C, Suda K, Woo JT, Martin TJ, Nagai K, Suda T. Intracellular calcium and protein kinase C mediate expression of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in osteoblasts. Endocrinology 2000; 141:4711-9. [PMID: 11108286 DOI: 10.1210/endo.141.12.7852] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG) produced by osteoblasts/stromal cells are involved as positive and negative regulators in osteoclast formation. Three independent signals have been proposed to induce RANKL expression in osteoblasts/stromal cells: vitamin D receptor-, cAMP-, and gp130-mediated signals. We previously reported that intracellular calcium-elevating compounds such as ionomycin, cyclopiazonic acid, and thapsigargin induced osteoclast formation in cocultures of mouse bone marrow cells and primary osteoblasts. Increases in calcium concentration in culture medium also induced osteoclast formation in cocultures. Treatment of primary osteoblasts with these compounds or with high calcium medium stimulated the expression of both RANKL and OPG messenger RNAs (mRNAs). 1,2-Bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)-tetra(acetoxymethyl)ester, an intracellular calcium chelator, suppressed both ionomycin-induced osteoclast formation in cocultures and expression of RANKL and OPG mRNAs in primary osteoblasts. Phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, also stimulated osteoclast formation in these cocultures and the expression of RANKL and OPG mRNAs in primary osteoblasts. Protein kinase C inhibitors such as calphostin and staurosporin suppressed ionomycin- and PMA-induced osteoclast formation in cocultures and expression of RANKL and OPG mRNAs in primary osteoblasts. Ionomycin stimulated RANKL mRNA expression in ST2 and MC3T3-G2/PA6 cells, but not in MC3T3-E1 or NIH-3T3 cells. These effects were closely correlated with osteoclast formation in response to ionomycin in cocultures with these stromal cell lines. OPG strongly inhibited osteoclast formation induced by calcium-elevating compounds and PMA in cocultures, suggesting that RANKL expression in osteoblasts is a rate-limiting step for osteoclast induction. Forskolin, an activator of cAMP signals, also stimulated osteoclast formation in cocultures. Forskolin enhanced RANKL mRNA expression but suppressed OPG mRNA expression in primary osteoblasts. These results suggest that the calcium/protein kinase C signal in osteoblasts/stromal cells is the fourth signal for inducing RANKL mRNA expression, which, in turn, stimulates osteoclast formation.
Collapse
Affiliation(s)
- M Takami
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
603
|
Wise GE, Lumpkin SJ, Huang H, Zhang Q. Osteoprotegerin and osteoclast differentiation factor in tooth eruption. J Dent Res 2000; 79:1937-42. [PMID: 11201042 DOI: 10.1177/00220345000790120301] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A critical cellular event in tooth eruption is the formation of osteoclasts that are needed for bone resorption to form an eruption pathway. To analyze molecular regulation of osteoclast formation and activation, we examined the expression of osteoprotegerin (OPG), an inhibitor of osteoclast formation. In vivo, the gene expression of OPG is reduced in the dental follicle of the first mandibular molar of the rat at day 3 post-natally and in the mouse at day 5. This correlates with the days of maximal mononuclear cell influx and osteoclast numbers in the rat and mouse. Thus, inhibition of OPG gene expression on these days might allow osteoclasts to be formed and/or activated. In vitro studies demonstrated that both colony-stimulating factor-1 and parathyroid hormone-related protein reduced OPG gene expression in follicle cells, suggesting that these are candidate molecules for the in vivo inhibition of OPG expression. Osteoclast differentiation factor (ODF) immunolocalizes to the alveolar bone stromal cells adjacent to the follicle, whereby it might act to stimulate fusion of the mononuclear cells in the follicle.
Collapse
Affiliation(s)
- G E Wise
- Department of Veterinary Anatomy and Cell Biology, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803-8408, USA.
| | | | | | | |
Collapse
|
604
|
Gori F, Hofbauer LC, Dunstan CR, Spelsberg TC, Khosla S, Riggs BL. The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated. Endocrinology 2000; 141:4768-76. [PMID: 11108292 DOI: 10.1210/endo.141.12.7840] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The one or more molecular mechanisms that determine the obligatory sequence of resorption followed by formation during bone remodeling is unclear. RANK ligand (RANK-L) is an essential requirement for osteoclastogenesis, and its activity is neutralized by binding to the soluble decoy receptor, osteoprotegerin (OPG). Because both molecules are produced by osteoblast lineage cells, we studied their developmental regulation in a conditionally immortalized human marrow stromal (hMS[2-15]) cell line. These cells can simulate the complete developmental sequence from undifferentiated precursor(s) to cells with the complete osteoblast phenotype that are capable of forming mineralized nodules. During osteoblast differentiation, RANK-L messenger RNA levels decreased by 5-fold, whereas OPG messenger RNA levels increased by 7-fold, resulting in a 35-fold change in the RANK-L/OPG ratio. OPG protein also increased by 6-fold. Mouse bone marrow cells generated osteoclast-like cells in coculture with undifferentiated hMS(2-15) cells, but did not when cocultured with hMS(2-15) cells in varying stages of differentiation, unless an excess of RANK-L was added. Thus, undifferentiated marrow stromal cells with a high RANK-L/OPG ratio can initiate and support osteoclastogenesis, but after differentiation to the mature osteoblast phenotype, they cannot. We speculate that the developmental regulation of OPG and RANK-L production by stromal/osteoblast cells contributes to the coordinated sequence of osteoclast and osteoblast differentiation during the bone remodeling cycle.
Collapse
Affiliation(s)
- F Gori
- Department of Biochemistry, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
605
|
Sakuma Y, Tanaka K, Suda M, Komatsu Y, Yasoda A, Miura M, Ozasa A, Narumiya S, Sugimoto Y, Ichikawa A, Ushikubi F, Nakao K. Impaired bone resorption by lipopolysaccharide in vivo in mice deficient in the prostaglandin E receptor EP4 subtype. Infect Immun 2000; 68:6819-25. [PMID: 11083800 PMCID: PMC97785 DOI: 10.1128/iai.68.12.6819-6825.2000] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous study we showed that the involvement of EP4 subtype of the prostaglandin E (PGE) receptor is crucial for lipopolysaccharide (LPS)-induced osteoclast formation in vitro. The present study was undertaken to test whether EP4 is actually associated with LPS-induced bone resorption in vivo. In wild-type (WT) mice, osteoclast formation in vertebrae and tibiae increased 5 days after systemic LPS injection, and urinary excretion of deoxypyridinoline, a sensitive marker for bone resorption, statistically increased 10 days after injection. In EP4 knockout (KO) mice, however, LPS injection caused no significant changes in these parameters throughout the experiment. LPS exposure for 4 h strongly induced osteoclast differentiation factor (ODF) mRNA expression in primary osteoblastic cells (POB) both from WT and EP4 KO mice, and this expression was not inhibited by indomethacin, suggesting prostaglandin (PG) independence. LPS exposure for 24 h further induced ODF expression in WT POB, but not in EP4 KO POB. Indomethacin partially inhibited ODF expression in WT POB, but not in EP4 KO POB. These data suggest that ODF is induced both PG dependently and PG independently. LPS exposure for 24 h induced slightly greater osteoclastgenesis inhibitory factor (OCIF) mRNA expression in EP4 KO than in WT POB. These findings suggest that the reduced ODF expression and apparently increased OCIF expression also are responsible for the markedly reduced LPS-induced osteoclast formation in EP4 KO mice. Our results show that the EP4 subtype of the PGE receptor is involved in LPS-induced bone resorption in vivo also. Since LPS is considered to be largely involved in bacterially induced bone loss, such as in periodontitis and osteomyelitis, our study is expected to help broaden our understanding of the pathophysiology of these conditions.
Collapse
Affiliation(s)
- Y Sakuma
- Department of Medicine and Clinical Science, Kyoto University, Sakyo, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
606
|
Proposed standard nomenclature for new tumor necrosis factor members involved in the regulation of bone resorption. The American Society for Bone and Mineral Research President's Committee on Nomenclature. Bone 2000; 27:761-4. [PMID: 11113385 DOI: 10.1016/s8756-3282(00)00420-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, three new family members of the tumor necrosis factor (TNF) ligand and receptor signaling system that play a critical role in the regulation of bone resorption have been identified and cloned. These also have been shown to play an important role in regulating the immune system. A proliferation of synonyms for these molecules has led to miscommunication and redundancy. To resolve this, the President of the American Society for Bone and Mineral Research (ASBMR) appointed a special committee to recommend a standard nomenclature. After considerable deliberation and after vetting by workers in the field, the Committee recommends the names of receptor activator of NF-kappaB (RANKL) for the membrane receptor, RANK ligand (RANK) for the ligand, and osteoprotegerin (OPG) for the decoy receptor.
Collapse
|
607
|
Proposed standard nomenclature for new tumor necrosis factor family members involved in the regulation of bone resorption. The American Society for Bone and Mineral Research President's Committee on Nomenclature. J Bone Miner Res 2000; 15:2293-6. [PMID: 11127193 DOI: 10.1359/jbmr.2000.15.12.2293] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, three new family members of the tumor necrosis factor (TNF) ligand and receptor signaling system that play a critical role in the regulation of bone resorption have been identified and cloned. These also have been shown to play an important role in regulating the immune system. A proliferation of synonyms for these molecules has led to miscommunication and redundancy. To resolve this, the President of the American Society for Bone and Mineral Research (ASBMR) appointed a special committee to recommend a standard nomenclature. After considerable deliberation and after vetting by workers in the field, the Committee recommends the names of receptor activator of NF-kappaB (RANK) for the membrane receptor, RANK ligand (RANKL) for the ligand, and osteoprotegerin (OPG) for the decoy receptor.
Collapse
|
608
|
Shigeyama Y, Pap T, Kunzler P, Simmen BR, Gay RE, Gay S. Expression of osteoclast differentiation factor in rheumatoid arthritis. ARTHRITIS AND RHEUMATISM 2000; 43:2523-30. [PMID: 11083276 DOI: 10.1002/1529-0131(200011)43:11<2523::aid-anr20>3.0.co;2-z] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To analyze the expression pattern of osteoclast differentiation factor (ODF) and its contribution to osteoclastogenesis in rheumatoid arthritis (RA). METHODS The expression of ODF was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) in RA synovial fibroblasts (RASF) isolated from 7 RA patients and in normal skin fibroblasts. Using RNA probes specific for ODF, in situ hybridization was performed. Immunohistochemical double labeling for CD68 was applied to characterize the ODF-expressing cells. ODF protein and messenger RNA (mRNA) expression by RASF with or without 1,25(OH)2D3 was studied by Western blot analysis and quantitative real-time PCR. In addition, we performed coculture experiments with RASF and normal peripheral blood mononuclear cells with or without 1,25(OH)2D3. RESULTS By RT-PCR, ODF mRNA expression was found in all RASF investigated, but not in normal skin fibroblasts. In situ hybridization revealed that in RA synovial tissues, ODF mRNA was expressed mainly in the lining layer and at sites where synovium was attached to bone. Immunohistochemical double labeling demonstrated ODF mRNA expression mainly in CD68-fibroblast-like synoviocytes and CD68+ multinucleated osteoclast-like cells. By Western blotting, all RASF expressed ODF protein. However, different levels of ODF expression were found in the RASF from different patients. Interestingly, RASF expressing higher levels of ODF induced a larger number of osteoclast-like cells than did RASF expressing only low levels of ODF. Although 1,25(OH)2D3 did not alter the levels of ODF expression in RASF on either Western blot or quantitative real-time PCR, osteoclastogenesis required the presence of 1,25(OH)2D3. CONCLUSION The present results suggest that activated RASF, by expressing ODF, play an important role in rheumatoid bone destruction. Moreover, the data provide evidence that RASF not only activate osteoclasts, but also contribute directly to osteoclastogenesis.
Collapse
Affiliation(s)
- Y Shigeyama
- WHO Collaborating Center for Molecular Biology and Novel Therapeutic Strategies for Rheumatic Diseases, University Hospital, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
609
|
Xu J, Tan JW, Huang L, Gao XH, Laird R, Liu D, Wysocki S, Zheng MH. Cloning, sequencing, and functional characterization of the rat homologue of receptor activator of NF-kappaB ligand. J Bone Miner Res 2000; 15:2178-86. [PMID: 11092398 DOI: 10.1359/jbmr.2000.15.11.2178] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A complementary DNA (cDNA) encoding the rat homologue of receptor activator of NF-kappaB ligand/osteoprotegerin ligand/osteoclast differentiation factor/tumor necrosis factor (TNF)-related activation-induced cytokine (RANKL/OPGL/ODF/TRANCE) was cloned and sequenced from tibias of ovariectomized (OVX) rats. The predicted amino acid sequence of rat RANKL (rRANKL) has 84% and 96% identity to that of human and mouse RANKL, respectively, and 35% and 37% similarity to that of human and mouse TNF-related apoptosis-inducing ligand (TRAIL), respectively. RANKL transcripts were expressed abundantly in the thymus and bone tissues of OVX rats. rRANKL has a single hydrophobic region between residues 53 and 69, which is most likely to serve as a transmembrane domain. The long C-terminal region containing beta-sheet-forming sequences of the TNF-like core is considered the extracellular region. Three truncated domains within the TNF-like core region were expressed as glutathione S-transferase (GST) fusion proteins and investigated for their ability to induce osteoclastogenesis. The results showed that GST-rRANKL (aa160-318) containing the full TNF-like core region had the highest capability to induce the formation of osteoclast-like cells from RAW264.7 cells. GST-rRANKL (aa239-318 and aa160-268) had lesser degrees of osteoclast inductivity. Furthermore, the GST-rRANKL (aa160-318) is capable of (1) inducing osteoclast formation from rat spleen cells in the presence of macrophage colony-stimulating factor (M-CSF), (2) stimulating mature rat osteoclast polarization and bone resorption ex vivo, and (3) inducing systemic hypercalcemia in vivo; thus the full TNF-like core region of rRANKL is an important regulator of calcium homeostasis and osteoclastic function.
Collapse
Affiliation(s)
- J Xu
- Department of Orthopedic Surgery, The University of Western Australia, WA Institute for Medical Research, QEII Medical Center, Nedlands, Australia
| | | | | | | | | | | | | | | |
Collapse
|
610
|
Abstract
Bone remodeling is the normal physiologic process that is used by vertebrates to maintain a constant bone mass during the period bracketed by the end of puberty and the onset of gonadal failure in later life. Besides the well-characterized and critical process of local regulation of bone remodeling, achieved by autocrine and paracrine mechanisms, recent genetic studies have shown that there is a central control of bone formation, mediated by a neuroendocrine mechanism. This central regulation involves leptin, an adipocyte-secreted hormone that controls body weight, reproduction and bone remodeling, and which binds to and exerts its effect through the cells of the hypothalamic nuclei in the brain. This genetic result in mice is in line with clinical observations in humans and generates a whole new direction of research in bone physiology. BioEssays 22:970-975, 2000.
Collapse
Affiliation(s)
- M Amling
- Dept. Trauma Surgery, Hamburg University School of Medicine, Hamburg, Germany
| | | | | |
Collapse
|
611
|
Goldring SR. The final pathogenetic steps in focal bone erosions in rheumatoid arthritis. Ann Rheum Dis 2000; 59 Suppl 1:i72-4. [PMID: 11053093 PMCID: PMC1766621 DOI: 10.1136/ard.59.suppl_1.i72] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- S R Goldring
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School and New England Baptist Bone and Joint Institute, Harvard Institutes of Medicine, Boston, MA 02215, USA.
| |
Collapse
|
612
|
Willard D, Chen WJ, Barrett G, Blackburn K, Bynum J, Consler T, Hoffman C, Horne E, Iannone MA, Kadwell S, Parham J, Ellis B. Expression, purification, and characterization of the human receptor activator of NF-kappaB ligand (RANKL) extracellular domain. Protein Expr Purif 2000; 20:48-57. [PMID: 11035950 DOI: 10.1006/prep.2000.1278] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Receptor activator of NF-kappaB ligand (RANKL) is a type II transmembrane protein found on osteoblasts which functions as a major determinant of osteoclast differentiation and activation. RANKL mediates bone homeostasis through binding to the cognate ligand on osteoclasts, RANK, and a soluble decoy receptor, osteoprotegerin (OPG). We designed a construct encoding the extracellular domain of human RANKL that conformed to reports of native processing. To encourage folding and posttranslational modification of a normally membrane-inserted moiety, we expressed the RANKL truncate as a secreted protein using the signal sequence from OPG in a Trichoplusia ni cell line using a baculovirus expression vector. RANKL was purified by a three-step process including an OPG-Fc affinity column. SDS-PAGE and mass spectral analysis indicated that the protein was >99% pure and glycosylated. Circular dichroism spectra revealed that the protein exhibited structural elements similar to tumor necrosis factor-alpha. By BIAcore analysis, RANKL bound to OPG with an affinity of 6.7 nM. Sedimentation equilibrium analytical ultracentrifugation analyses established that our protein existed as a trimer. We conclude that our expressed human RANKL truncate is folded, is functional, and exhibits self-association consistent with other family members.
Collapse
Affiliation(s)
- D Willard
- Molecular Sciences Department, Structural Chemistry Department, Glaxo Wellcome, Inc., Five Moore Drive, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
613
|
|
614
|
Gravallese EM, Goldring SR. Cellular mechanisms and the role of cytokines in bone erosions in rheumatoid arthritis. ARTHRITIS AND RHEUMATISM 2000; 43:2143-51. [PMID: 11037873 DOI: 10.1002/1529-0131(200010)43:10<2143::aid-anr1>3.0.co;2-s] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- E M Gravallese
- Beth Israel Deaconess Medical Center and New England Baptist Bone and Joint Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
615
|
Takeyama S, Yoshimura Y, Shirai Y, Deyama Y, Hasegawa T, Yawaka Y, Kikuiri T, Matsumoto A, Fukuda H. Low calcium environment effects osteoprotegerin ligand/osteoclast differentiation factor. Biochem Biophys Res Commun 2000; 276:524-9. [PMID: 11027507 DOI: 10.1006/bbrc.2000.3498] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In coculture with osteoblastic cell line MC3T3-E1 (E1) and mouse bone marrow cells, we reported that numbers of osteoclasts rose significantly on exposure to a low-calcium environment. Here we examined how osteoblasts influence osteoclastogenesis under a low-calcium environment. Comparing low extracellular calcium with a regular calcium environment, osteoprotegerin ligand (OPGL)/osteoclast differentiation factor (ODF) mRNA expression show more increase in the culture of low-calcium environment than in that of a regular calcium environment. Calcium-sensing receptor (CaSR), which was supposed as one of the mechanisms of recognizing extracellular calcium, existedon the surface of E1 cells. When E1 cells stimulated with agonists of CaSR, gadolinium, and neomycin, OPGL/ODF mRNA expression decreased. Moreover, these agonists reduced osteoclast formation in coculture. Taken together, it is possible that osteoblasts may recognize extracellular calcium via CaSR and regulate osteoclastogenesis.
Collapse
Affiliation(s)
- S Takeyama
- Oral Medicine and Diagnosis, Dental Pharmacology, Pediatric Dentistry, Department of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi 7, Kika-ku, Hokkaido, Sapporo, 060-8586, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
616
|
Nakashima T, Kobayashi Y, Yamasaki S, Kawakami A, Eguchi K, Sasaki H, Sakai H. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun 2000; 275:768-75. [PMID: 10973797 DOI: 10.1006/bbrc.2000.3379] [Citation(s) in RCA: 383] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A variety of humoral factors modulate the osteoclastogenesis. Receptor activator of NF-kappaB ligand (RANKL) expressed on osteoblast/stromal lineage cells plays a pivotal role to transduce an essential differentiation signal to osteoclast lineage cells through binding to its receptor, RANK, expressed on the latter cell population; however, the difficulty to detect RANKL protein expression hampers us in investigating the regulation of RANKL expression by humoral factors. To determine protein expression of RANKL, we have established a new method, named as a ligand-receptor precipitation (LRP) Western blot analysis, which can specifically concentrate the target protein by the use of specific binding characteristic between RANKL and RANK/osteoprotegrin (OPG). RANKL protein expression in the postnuclear supernatant was not detected by common Western blotting, but LRP Western blot analysis clearly showed that RANKL is produced as a membrane-bound protein on murine osteoblasts/stromal cells, and cleaved into a soluble form by metalloprotease. Cytokines stimulating the osteoclastogenesis, such as IL-1beta, IL-6, IL-11, IL-17, and TNF-alpha, increased the expression of RANKL with decrease of OPG expression in osteoblasts/stromal cells. In contrast, cytokines inhibiting the osteoclastogenesis, such as IL-13, INF-gamma, and TGF-beta1 suppressed the expression of RANKL and/or augmented OPG expression. Functional difference between membrane-bound and soluble RANKL was demonstrated, which showed that membrane-bound RANKL works more efficiently than soluble RANKL in the osteoclastogenesis developed from murine bone marrow cell culture. The present study indicates the usefulness of LRP Western blot analysis, which shows that the modulation of osteoclastogenesis by humoral factors is achieved, in part, by regulation of the expression of RANKL and OPG in osteoblast/stromal lineage cells.
Collapse
Affiliation(s)
- T Nakashima
- Department of Hospital Pharmacy, First Department of Internal Medicine, Nagasaki University School of Medicine, Sakamoto 1-7-1, Nagasaki, 852-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
617
|
Abstract
The osteoclast is the cell that resorbs bone. It has been known for many years that its formation and function are regulated by cells of the osteoblastic lineage. Recently the molecular basis for this regulation was identified; osteoblastic cells induce osteoclastic differentiation and resorptive activity through expression of tumour necrosis factor (TNF) activation-induced cytokine (TRANCE) (also known as RANKL, ODF, OPGL, and TNFSF11), a novel membrane-inserted member of the TNF superfamily. Osteoclastic regulation is assisted through secretion of an inhibitor, osteoprotegerin (OPG) (OCIF, TNFRSF11B), a soluble (decoy) receptor for TRANCE. Osteoclast formation and survival also depend on and are substantially enhanced by transforming growth factor-beta (TGF-beta), which is abundant in bone matrix. Surprisingly, not only TRANCE but also TNF-alpha can induce osteoclast formation in vitro from bone marrow-derived mononuclear phagocytes, especially in the presence of TGF-beta. Whether or not TNF-alpha does the same in vivo, its ability to generate osteoclasts in vitro has significant implications regarding the nature of osteoclasts and their relationship to other mononuclear phagocytes, and a possible wider role for TRANCE in macrophage pathobiology. A hypothesis is presented in which the osteoclast is a mononuclear phagocyte directed towards a debriding function by TGF-beta, activated for this function by TRANCE, and induced to become specifically osteoclastic by the characteristics of the substrate or signals from bone cells that betoken such characteristics.
Collapse
Affiliation(s)
- T J Chambers
- Department of Histopathology, St George's Hospital Medical School, London, UK.
| |
Collapse
|
618
|
Itonaga I, Fujikawa Y, Sabokbar A, Murray DW, Athanasou NA. Rheumatoid arthritis synovial macrophage-osteoclast differentiation is osteoprotegerin ligand-dependent. J Pathol 2000; 192:97-104. [PMID: 10951406 DOI: 10.1002/1096-9896(2000)9999:9999<::aid-path672>3.0.co;2-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteoprotegerin ligand (OPGL) is a newly discovered molecule which is essential for osteoclast differentiation. Both OPGL and its soluble decoy receptor, osteoprotegerin (OPG), which inhibits osteoclast formation, are known to be produced by osteoblasts and inflammatory cells found in the rheumatoid arthritis (RA) synovium. In this study, RA synovial macrophages were incubated in the presence or absence of OPGL, macrophage-colony stimulating factor (M-CSF), and dexamethasone for various time points. The results indicated that osteoclast formation from RA synovial macrophages is OPGL-dependent and that OPGL and M-CSF are the only humoral factors required for RA synovial macrophage-osteoclast differentiation. OPG was found to inhibit osteoclast formation by RA synovial macrophages in a dose-dependent manner. This study has shown that macrophages isolated from the synovium of RA patients are capable of differentiating into osteoclastic bone-resorbing cells; this process is OPGL- and M-CSF-dependent and is modulated by corticosteroids. Cellular (T and B cells, dendritic cells) and humoral factors in RA synovium and bone may influence osteoclast formation and bone resorption by controlling OPGL/OPG production.
Collapse
Affiliation(s)
- I Itonaga
- Nuffield Department of Orthopaedic Surgery, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
619
|
Udagawa N, Takahashi N, Yasuda H, Mizuno A, Itoh K, Ueno Y, Shinki T, Gillespie MT, Martin TJ, Higashio K, Suda T. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 2000; 141:3478-84. [PMID: 10965921 DOI: 10.1210/endo.141.9.7634] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoclast differentiation factor, inhibits both differentiation and function of osteoclasts. We previously reported that OPG-deficient mice exhibited severe osteoporosis caused by enhanced osteoclastic bone resorption. In the present study, potential roles of OPG in osteoclast differentiation were examined using a mouse coculture system of calvarial osteoblasts and bone marrow cells prepared from OPG-deficient mice. In the absence of bone-resorbing factors, no osteoclasts were formed in cocultures of wild-type (+/+) or heterozygous (+/-) mouse-derived osteoblasts with bone marrow cells prepared from homozygous (-/-) mice. In contrast, homozygous (-/-) mouse-derived osteoblasts strongly supported osteoclast formation in the cocultures with homozygous (-/-) bone marrow cells, even in the absence of bone-resorbing factors. Addition of OPG to the cocultures with osteoblasts and bone marrow cells derived from homozygous (-/-) mice completely inhibited spontaneously occurring osteoclast formation. Adding 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] to these cocultures significantly enhanced osteoclast differentiation. In addition, bone-resorbing activity in organ cultures of fetal long bones derived from homozygous (-/-) mice was markedly increased, irrespective of the presence and absence of bone-resorbing factors, in comparison with that from wild-type (+/+) mice. Osteoblasts prepared from homozygous (-/-), heterozygous (+/-), and wild-type (+/+) mice constitutively expressed similar levels of RANKL messenger RNA, which were equally increased by the treatment with 1alpha,25(OH)2D3. When homozygous (-/-) mouse-derived osteoblasts and hemopoietic cells were cocultured, but direct contact between them was prevented, no osteoclasts were formed, even in the presence of 1alpha,25(OH)2D3 and macrophage colony-stimulating factor. These findings suggest that OPG produced by osteoblasts/stromal cells is a physiologically important regulator in osteoclast differentiation and function and that RANKL expressed by osteoblasts functions as a membrane-associated form.
Collapse
Affiliation(s)
- N Udagawa
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
620
|
Min H, Morony S, Sarosi I, Dunstan CR, Capparelli C, Scully S, Van G, Kaufman S, Kostenuik PJ, Lacey DL, Boyle WJ, Simonet WS. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med 2000; 192:463-74. [PMID: 10952716 PMCID: PMC2193236 DOI: 10.1084/jem.192.4.463] [Citation(s) in RCA: 386] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
High systemic levels of osteoprotegerin (OPG) in OPG transgenic mice cause osteopetrosis with normal tooth eruption and bone elongation and inhibit the development and activity of endosteal, but not periosteal, osteoclasts. We demonstrate that both intravenous injection of recombinant OPG protein and transgenic overexpression of OPG in OPG(-/-) mice effectively rescue the osteoporotic bone phenotype observed in OPG-deficient mice. However, intravenous injection of recombinant OPG over a 4-wk period could not reverse the arterial calcification observed in OPG(-/-) mice. In contrast, transgenic OPG delivered from mid-gestation through adulthood does prevent the formation of arterial calcification in OPG(-/-) mice. Although OPG is normally expressed in arteries, OPG ligand (OPGL) and receptor activator of NF-kappaB (RANK) are not detected in the arterial walls of wild-type adult mice. Interestingly, OPGL and RANK transcripts are detected in the calcified arteries of OPG(-/-) mice. Furthermore, RANK transcript expression coincides with the presence of multinuclear osteoclast-like cells. These findings indicate that the OPG/OPGL/RANK signaling pathway may play an important role in both pathological and physiological calcification processes. Such findings may also explain the observed high clinical incidence of vascular calcification in the osteoporotic patient population.
Collapse
Affiliation(s)
- Hosung Min
- Department of Biosystems Analysis, Amgen, Incorporated, Thousand Oaks, California 91320
| | - Sean Morony
- Department of Pharmacology/Pathology, Amgen, Incorporated, Thousand Oaks, California 91320
| | - Ildiko Sarosi
- Department of Pharmacology/Pathology, Amgen, Incorporated, Thousand Oaks, California 91320
| | - Colin R. Dunstan
- Department of Pharmacology/Pathology, Amgen, Incorporated, Thousand Oaks, California 91320
| | - Casey Capparelli
- Department of Pharmacology/Pathology, Amgen, Incorporated, Thousand Oaks, California 91320
| | - Sheila Scully
- Department of Pharmacology/Pathology, Amgen, Incorporated, Thousand Oaks, California 91320
| | - Gwyneth Van
- Department of Pharmacology/Pathology, Amgen, Incorporated, Thousand Oaks, California 91320
| | - Steve Kaufman
- Department of Pharmacology/Pathology, Amgen, Incorporated, Thousand Oaks, California 91320
| | - Paul J. Kostenuik
- Department of Pharmacology/Pathology, Amgen, Incorporated, Thousand Oaks, California 91320
| | - David L. Lacey
- Department of Pharmacology/Pathology, Amgen, Incorporated, Thousand Oaks, California 91320
| | - William J. Boyle
- Department of Inflammation, Amgen, Incorporated, Thousand Oaks, California 91320
| | - W. Scott Simonet
- Department of Inflammation, Amgen, Incorporated, Thousand Oaks, California 91320
| |
Collapse
|
621
|
Shiba H, Nakanishi K, Sakata M, Fujita T, Uchida Y, Kurihara H. Effects of ageing on proliferative ability, and the expressions of secreted protein, acidic and rich in cysteine (SPARC) and osteoprotegerin (osteoclastogenesis inhibitory factor) in cultures of human periodontal ligament cells. Mech Ageing Dev 2000; 117:69-77. [PMID: 10958924 DOI: 10.1016/s0047-6374(00)00140-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Secreted protein, acidic and rich in cysteine (SPARC) has been suggested to play an important role in wound repair and mineralization. Osteoprotegerin/osteoclastogenesis inhibitory factor (OPG/OCIF) is a secreted protein that inhibits the maturation, activity and survival of osteoclasts. An examination of the changes in expression of these proteins as well as their proliferative ability according to ageing in cultured cells may elucidate characteristic changes in periodontal tissues induced by ageing. In the present study, proliferative ability and the expression of SPARC and OPG/OCIF were compared between cultures of human periodontal ligament (HPL) cells obtained from young and senior donors (in vivo cellular ageing) as well as in cultures of HPL cells at early and late passages (in vitro cellular ageing). Cumulative population doubling levels and cell population doubling time of HPL cells from young donors were greater and shorter, respectively, than those of HPL cells from senior donors. Levels of SPARC mRNA in HPL cells increased with cellular ageing in vivo. No change in the levels of OPG/OCIF mRNA in HPL cells with cellular ageing in vivo was observed. The changes in proliferative ability and the mRNA levels of SPARC and OPG/OCIF with cellular ageing in vitro were similar to those with ageing in vivo. This study demonstrated for the first time a relationship between in vivo and in vitro cellular ageing in the functional changes in HPL cells. These findings suggest that the impairment of periodontal ligament repair with ageing is due to the decrease in proliferative ability in HPL cells with ageing. Furthermore, the increase in SPARC with ageing may be related to changes in metabolism of periodontal ligament that occur with ageing.
Collapse
Affiliation(s)
- H Shiba
- Department of Periodontology and Endodontology, Hiroshima University Faculty of Dentistry, 1-2-3, Kasumi, Minami-ku, 734-8553, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
622
|
Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:435-48. [PMID: 10934148 PMCID: PMC1850124 DOI: 10.1016/s0002-9440(10)64556-7] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteoprotegerin ligand (OPGL) targets osteoclast precursors and osteoclasts to enhance differentiation and activation, however, little is known about OPGL effects on osteoclast survival. In vitro, the combination of OPGL + colony-stimulating factor-1 (CSF-1) is required for optimal osteoclast survival. Ultrastructurally, apoptotic changes were observed in detached cells and culture lysates exhibited elevated caspase 3 activity, particularly in cultures lacking CSF-1. DEVD-FMK (caspase 3 inhibitor) partially protected cells when combined with OPGL, but not when used alone or in combination with CSF-1. CSF-1 maintained NF-kappaB activation and increased the expression of bcl-2 and bcl-X(L) mRNA, but had no effect on JNK activation. In contrast, OPGL enhanced both NF-kappaB and JNK kinase activation and increased the expression of c-src, but not bcl-2 and bcl-X(L) mRNA. These data suggest that aspects of both OPGL's and CSF-1's signaling/survival pathways are required for optimal osteoclast survival. In mice, a single dose of OPG, the OPGL decoy receptor, led to a >90% loss of osteoclasts because of apoptosis within 48 hours of exposure without impacting osteoclast precursor cells. Therefore, OPGL is essential, but not sufficient, for osteoclast survival and endogenous CSF-1 levels are insufficient to maintain osteoclast viability in the absence of OPGL.
Collapse
|
623
|
Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev 2000; 21:393-411. [PMID: 10950158 DOI: 10.1210/edrv.21.4.0403] [Citation(s) in RCA: 401] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteoblasts arise from common progenitors with chondrocytes, muscle and adipocytes, and various hormones and local factors regulate their differentiation. We review here regulation of osteoblast differentiation mediated by the local factors such as bone morphogenetic proteins (BMPs) and hedgehogs and the transcription factor, core-binding factor alpha-1 (Cbfa1). BMPs are the most potent regulators of osteoblast differentiation among the local factors. Sonic and Indian hedgehogs are involved in osteoblast differentiation by interacting with BMPs. Cbfa1, a member of the runt domain gene family, plays a major role in the processes of a determination of osteoblast cell lineage and maturation of osteoblasts. Cbfa1 is an essential transcription factor for osteoblast differentiation and bone formation, because Cbfa1-deficient mice completely lacked bone formation due to maturation arrest ofosteoblasts. Although the regulatory mechanism of Cbfa1 expression has not been fully clarified, BMPs are an important local factor that up-regulates Cbfa1 expression. Thus, the intimate interaction between local factors such as BMPs and hedgehogs and the transcription factor, Cbfa1, is important to osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- A Yamaguchi
- Department of Oral Pathology, Nagasaki University School of Dentistry, Sakamoto, Japan.
| | | | | |
Collapse
|
624
|
Deyama Y, Takeyama S, Koshikawa M, Shirai Y, Yoshimura Y, Nishikata M, Suzuki K, Matsumoto A. Osteoblast maturation suppressed osteoclastogenesis in coculture with bone marrow cells. Biochem Biophys Res Commun 2000; 274:249-54. [PMID: 10903926 DOI: 10.1006/bbrc.2000.3127] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The analysis of co-culture system using osteoblast and bone marrow indicated that the mineralized osteoblast decreased osteoclast formation. This finding was an incentive to better investigate the relation of osteoblast development and osteoclastogenesis. The expression of osteoclast differentiation factor (ODF/RANKL) mRNA and protein dramatically decreased. Alternatively, macropharge colony stimulation factor (M-CSF/CSF-1) transcription and protein secreted in media slightly decreased as the development of osteoblast. On the other hands, mRNA expression and the secretion to the culture medium of osteoclastogenesis inhibitory factor (OPG/OCIF) didn't significantly change depending on osteoblast differentiation. We conclude that osteoblast development might suppress osteoclastogenesis especially with the decrease of ODF/RANKL.
Collapse
Affiliation(s)
- Y Deyama
- Department of Dental Pharmacology, Hokkaido University, Sapporo, 060-8586, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
625
|
Malyankar UM, Scatena M, Suchland KL, Yun TJ, Clark EA, Giachelli CM. Osteoprotegerin is an alpha vbeta 3-induced, NF-kappa B-dependent survival factor for endothelial cells. J Biol Chem 2000; 275:20959-62. [PMID: 10811631 DOI: 10.1074/jbc.c000290200] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Osteopontin protects endothelial cells from apoptosis induced by growth factor withdrawal. This interaction is mediated by the alpha(v)beta(3) integrin and is NF-kappaB-dependent (Scatena, M., Almeida, M., Chaisson, M. L., Fausto, N., Nicosia, R. F., and Giachelli, C. M. (1998) J. Cell Biol. 141, 1083-1093). In the present study we used differential cloning to identify osteopontin-induced, NF-kappaB-dependent genes in endothelial cells. One of the genes identified in this screen was osteoprotegerin, a member of the tumor necrosis factor receptor superfamily. By Northern and Western blot analysis, osteoprotegerin mRNA and protein levels were very low in endothelial cells plated on the non-integrin cell attachment factor, poly-d-lysine. In contrast, osteoprotegerin mRNA and protein levels were induced 5-7-fold following alpha(v)beta(3) ligation by osteopontin. Osteoprotegerin induction by osteopontin was time-dependent and observed as early as 3 h following treatment. NF-kappaB inactivation achieved by over expression of an IkappaB super repressor in endothelial cells completely inhibited osteoprotegerin induction by osteopontin. Finally, purified osteoprotegerin protected endothelial cells with inactive NF-kappaB from apoptosis induced by growth factor deprivation. These data suggest that alpha(v)beta(3)-mediated endothelial survival depends on osteoprotegerin induction by NF-kappaB and indicate a new function for osteoprotegerin in endothelial cells.
Collapse
Affiliation(s)
- U M Malyankar
- Departments of Bioengineering and Immunology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
626
|
Abstract
Numerous functions have been attributed to CD9 and other members of the transmembrane 4 (TM4) superfamily. CD9 is thought to be involved in cell proliferation, differentiation, motility and survival. It may also function as part of toxin and virus receptor complexes. Although much remains to be learned about molecular mechanisms, the molecule associates with several integrins, small G proteins, MHC class II molecules and other TM4 superfamily proteins on a given cell surface membrane. Here, we briefly discuss the CD9 displayed on stromal cells that support hematopoiesis and the potential importance of this molecule to osteoclast differentiation.
Collapse
Affiliation(s)
- S Hayashi
- Department of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Japan.
| | | | | |
Collapse
|
627
|
Yamane T, Kunisada T, Yamazaki H, Nakano T, Orkin SH, Hayashi SI. Sequential requirements for SCL/tal-1, GATA-2, macrophage colony-stimulating factor, and osteoclast differentiation factor/osteoprotegerin ligand in osteoclast development. Exp Hematol 2000; 28:833-40. [PMID: 10907645 DOI: 10.1016/s0301-472x(00)00175-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Osteoclasts are of hematopoietic origin. The mechanism by which hematopoietic stem cells are specified to the osteoclast lineage is unclear. To understand the process of generation and differentiation of this lineage of cells, we performed in vitro studies on the differentiation of embryonic stem cells. MATERIALS AND METHODS We examined the potential of mutant embryonic stem cell lines harboring targeted deletions of the GATA-1, FOG, SCL/tal-1, or GATA-2 genes to differentiate into osteoclasts and determined when these molecules function in osteoclast development. RESULTS The lack of GATA-1 or FOG did not affect osteoclastogenesis. In contrast, SCL/tal-1-null embryonic stem cells generated no osteoclasts. In the case of the loss of GATA-2, a small number of osteoclasts were generated. GATA-2-null osteoclasts were morphologically normal and the terminal maturation was not disturbed, but a defect was observed in the generation of osteoclast progenitors. Experiments using specific inhibitors that block the signaling through macrophage colony-stimulating factor and osteoclast differentiation factor/osteoprotegerin ligand suggested that GATA-2 seems to act earlier in osteoclastogenesis than these cytokines. Interestingly, macrophage colony-forming units were not severely reduced by the loss of GATA-2 compared to osteoclast progenitors. CONCLUSION These results indicate that osteocalsts need SCL/tal-1 at an early point in development, and that GATA-2 is required for generation of osteoclast progenitors but not for the later stages when macrophage colony-stimulating factor and osteoclast differentiation factor/ osteoprotegerin ligand are needed. We also demonstrated that osteoclast progenitors behave as a different population than macrophage colony-forming units.
Collapse
Affiliation(s)
- T Yamane
- Department of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Japan.
| | | | | | | | | | | |
Collapse
|
628
|
Menaa C, Reddy SV, Kurihara N, Maeda H, Anderson D, Cundy T, Cornish J, Singer FR, Bruder JM, Roodman GD. Enhanced RANK ligand expression and responsivity of bone marrow cells in Paget's disease of bone. J Clin Invest 2000; 105:1833-8. [PMID: 10862799 PMCID: PMC378510 DOI: 10.1172/jci9133] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Paget's disease is characterized by highly localized areas of increased osteoclast (OCL) activity. This suggests that the microenvironment in pagetic lesions is highly osteoclastogenic, or that OCL precursors in these lesions are hyperresponsive to osteoclastogenic factors (or both). To examine these possibilities, we compared RANK ligand (RANKL) mRNA expression in a marrow stromal cell line developed from a pagetic lesion (PSV10) with that in a normal stromal cell line (Saka), and expression in marrow samples from affected bones of Paget's patients with that in normal marrow. RANKL mRNA was increased in PSV10 cells and pagetic marrow compared with Saka cells and normal marrow, and was also increased in marrow from affected bones compared with uninvolved bones from Paget's patients. Furthermore, pagetic marrow cells formed OCLs at much lower RANKL concentrations than did normal marrow. Anti-IL-6 decreased the RANKL responsivity of pagetic marrow to normal levels, whereas addition of IL-6 to normal marrow enhanced RANKL responsivity. Thus, RANKL expression and responsivity is increased in pagetic lesions, in part mediated by IL-6. These data suggest that the combination of enhanced expression of RANKL in affected bones and increased RANKL sensitivity of pagetic OCL precursors may contribute to the elevated numbers of OCLs in Paget's disease.
Collapse
Affiliation(s)
- C Menaa
- Department of Medicine/Hematology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
629
|
Abstract
BACKGROUND Breast carcinoma commonly metastasizes to the skeleton in patients with advanced disease to cause bone destruction and the associated pain, hypercalcemia, fracture, and nerve-compression syndromes. In this scenario, the bone destruction is mediated by the osteoclast. Tumor-produced parathyroid hormone-related protein (PTHrP), a known stimulator of osteoclastic bone resorption, is a major mediator of the osteolytic process. Transforming growth factor beta (TGFbeta), which is abundant in bone matrix and is released as a consequence of osteoclastic bone resorption, may promote breast carcinoma osteolysis by stimulating PTHrP production by tumor cells. METHODS Stable breast carcinoma MDA-MB-231 cell lines were constructed that expressed mutant TGFbeta receptors, Smad proteins, or estrogen receptor (ER)-alpha and were used to determine the role of TGFbeta in modulating tumor production of PTHrP. These stable cell lines were applied to a mouse model of human breast carcinoma metastases to the bone to dissect the molecular mechanisms responsible for osteolytic bone metastases. RESULTS TGFbeta promoted the development and progression of osteolytic bone metastases by inducing tumor production of PTHrP, the effect of which was mediated through the Smad signaling pathway. PTHrP stimulated osteoclastic bone resorption by increasing osteoblast production of the receptor activator of nuclear factor K B (RANK) ligand and decreasing osteoblast production of osteoprotegerin (OPG). A constitutively active ER-alpha mutation (Tyr537Asn), identified from a human bone metastases, when it was expressed in human breast carcinoma cells, caused increased production of PTHrP. TGFbeta significantly enhanced the ER-alpha-mediated transcriptional activity induced by ER-alpha (Tyr537Asn), and this resulted in further stimulation of PTHrP production. CONCLUSIONS These data indicate a central role for TGFbeta in the pathogenesis of osteolytic bone metastases from breast carcinoma by 1) the induction of PTHrP through the Smad signaling pathway and 2) the potentiation of ER-alpha-mediated transcription induced by a constitutively active ER-alpha. Understanding the mechanisms of osteolysis at a molecular level will generate more effective therapeutic agents for patients with this devastating complication of cancer.
Collapse
Affiliation(s)
- T A Guise
- Department of Medicine, University of Texas Health Science Center at San Antonio 78229-3900, USA
| |
Collapse
|
630
|
Atkins GJ, Haynes DR, Geary SM, Loric M, Crotti TN, Findlay DM. Coordinated cytokine expression by stromal and hematopoietic cells during human osteoclast formation. Bone 2000; 26:653-61. [PMID: 10831938 DOI: 10.1016/s8756-3282(00)00280-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An in vitro culture system to generate human osteoclasts (OC) was recently described in which OC precursors in the human peripheral blood mononuclear cell (PBMC) population differentiate in the presence of murine ST-2 stromal cells. We used this culture system to define the cytokine environment in which human OC form and to determine the separate contributions of the stromal and hematopoietic elements. We designed a panel of reverse transcriptase-polymerase chain reaction (RT-PCR) primers that specifically amplify the respective murine or human mRNA species that correspond to cytokines and their cognate receptors previously shown to promote or inhibit OC differentiation. ST-2 cells were cocultured with human PBMC for up to 21 days in the presence of 1alpha,25(OH)(2) vitamin D(3), dexamethasone, and recombinant human macrophage-colony stimulating factor (M-CSF). OC formation was monitored by the appearance of cells that were positive for tartrate-resistant acid phosphatase (TRAP) and able to form resorption lacunae on slices of dentine. We found that the ST-2 cells in these cultures express messenger RNA (mRNA) encoding a repertoire of many of the reported osteoclastogenic factors (interleukins [IL]-1/IL-1R1, IL-11, IL-6/IL-6R, and IL-17 transforming growth factor [TGF]-beta), as well as the recently described OC differentiation factor (ODF/TRANCE/RANKL). The stromal cells also expressed mRNA encoding two molecules shown to be inhibitory to osteoclastogenesis, osteoprotegerin (OPG) and IL-18. OPG, IL-1, IL-1R1, IL-6, IL-6R, IL-11R, IL-17, IL-18, IL-18R, TGF-beta, and M-CSF were expressed by both the stromal cells and the PBMC. Expression of mRNA encoding RANK, IL-1R2, and c-fms, was specific for the PBMC. In addition, PBMC were found to express sIL-6R, granulocyte macrophage (GM)-CSF, GM-CSFRalpha, and tumor necrosis factor (TNF)-alpha. Whereas this indicated that human OC formation occurs in a complex environment of many positive and negative influences, we identified three apparent features of the cytokine environment that may be a characteristic of normal osteoclast formation. First, the ratio of mouse ODF:OPG mRNA was found to increase during the cocultures, consistent with a key role for ODF in the promotion by stromal cells of OC formation. Second, we found that mRNA encoding IL-1 and IL-17, as well as IL-6 and sIL-6R, were coordinately expressed by the PBMC. Third, analysis of the culture medium showed that the PBMC secreted IL-1, IL-6, and TNF-alpha protein only in coculture with ST-2 cells during the first few days of osteoclast development. We conclude that human OC formation occurs in a complex environment of many positive and negative influences; however, these are likely to be strictly regulated by a coordinated cytokine response of both stromal and hematopoietic cells.
Collapse
Affiliation(s)
- G J Atkins
- Department of 1Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, Australia
| | | | | | | | | | | |
Collapse
|
631
|
Onyia JE, Miles RR, Yang X, Halladay DL, Hale J, Glasebrook A, McClure D, Seno G, Churgay L, Chandrasekhar S, Martin TJ. In vivo demonstration that human parathyroid hormone 1-38 inhibits the expression of osteoprotegerin in bone with the kinetics of an immediate early gene. J Bone Miner Res 2000; 15:863-71. [PMID: 10804015 DOI: 10.1359/jbmr.2000.15.5.863] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteoprotegerin (OPG) is a potent inhibitor of osteoclast formation and function. To elucidate how OPG is regulated in bone, we examined (1) the expression and localization of OPG protein in bone tissue, (2) the effect of human parathyroid hormone 1-38 (hPTH 1-38) on OPG messenger RNA (mRNA) levels in rat femur metaphyseal and diaphyseal bone, and (3) the effect of hPTH(1-38) on expression of OPG mRNA in cultured osteoblast-like cells derived from the metaphysis and diaphysis, and in ROS 17/2.8 osteosarcoma cells. Because PTH has been shown to stimulate osteoblast activity via the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signal transduction pathway we also investigated whether PTH action on OPG in vivo is dependent on activation of cAMP/PKA pathway. Immunohistochemistry was used to evaluate OPG protein expression and Northern blot hybridization was used to analyze OPG mRNA expression both in vivo and in vitro. Immunohistochemistry of OPG protein expression in the rat distal femur metaphysis revealed that it was localized predominantly in preosteoblasts, osteoblasts, lining cells, and the osteoid layer, with occasional immunoreactivity in osteocytes and cells of the bone marrow. Subcutaneous (sc) administration of a single injection of hPTH(1-38) at 80 microg/kg induced a rapid and transient decrease in OPG mRNA expression in both metaphyseal and diaphyseal bone. The decrease in OPG message was evident by 1 h and mRNA levels returned to baseline after 3 h. PTH analog PTH(1-31), which stimulates intracellular cAMP accumulation, inhibited OPG expression, whereas PTH analogs (3-34 and 7-34) that do not stimulate cAMP production had no effect on expression. In contrast to PTH, prostaglandin E2 (PGE2) had no effect on OPG mRNA expression in vivo in the metaphyseal bone cells, under conditions in which PGE2 does promote expression of the c-fos gene. The in vivo effects of hPTH(1-38) on OPG mRNA were confirmed in isolated primary osteoblast cultures derived from either metaphyseal or diaphyseal bone as well as in ROS 17/2.8 osteosarcoma cells. We propose that the rapid and transient decrease in OPG expression may initiate a cascade of events resulting in the differentiation of osteoclast progenitor. Such a spatially and temporally programmed effect of PTH might contribute to bone turnover.
Collapse
Affiliation(s)
- J E Onyia
- Endocrine Division, Lilly Research Labs, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
632
|
Mano H, Kimura C, Fujisawa Y, Kameda T, Watanabe-Mano M, Kaneko H, Kaneda T, Hakeda Y, Kumegawa M. Cloning and function of rabbit peroxisome proliferator-activated receptor delta/beta in mature osteoclasts. J Biol Chem 2000; 275:8126-32. [PMID: 10713135 DOI: 10.1074/jbc.275.11.8126] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteoclasts modulate bone resorption under physiological and pathological conditions. Previously, we showed that both estrogens and retinoids regulated osteoclastic bone resorption and postulated that such regulation was directly mediated through their cognate receptors expressed in mature osteoclasts. In this study, we searched for expression of other members of the nuclear hormone receptor superfamily in osteoclasts. Using the low stringency homologous hybridization method, we isolated the peroxisome proliferator-activated receptor delta/beta (PPARdelta/beta) cDNA from mature rabbit osteoclasts. Northern blot analysis showed that PPARdelta/beta mRNA was highly expressed in highly enriched rabbit osteoclasts. Carbaprostacyclin, a prostacyclin analogue known to be a ligand for PPARdelta/beta, significantly induced both bone-resorbing activities of isolated mature rabbit osteoclasts and mRNA expression of the cathepsin K, carbonic anhydrase type II, and tartrate-resistant acid phosphatase genes in these cells. Moreover, the carbaprostacyclin-induced bone resorption was completely blocked by an antisense phosphothiorate oligodeoxynucleotide of PPARdelta/beta but not by the sense phosphothiorate oligodeoxynucleotide of the same DNA sequence. Our results suggest that PPARdelta/beta may be involved in direct modulation of osteoclastic bone resorption.
Collapse
Affiliation(s)
- H Mano
- Department of Oral Anatomy, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-02, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
633
|
Rao LG, Murray TM. Studies of human osteoblasts in vitro: Estrogen actions and interactions with other hormones at different stages of differentiation. Drug Dev Res 2000. [DOI: 10.1002/(sici)1098-2299(200003)49:3<174::aid-ddr8>3.0.co;2-s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
634
|
Rani CS, MacDougall M. Dental cells express factors that regulate bone resorption. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 3:145-52. [PMID: 10860862 DOI: 10.1006/mcbr.2000.0205] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Odontoblasts and osteoblasts produce similar highly mineralized extracellular matrices. In bone, osteoblasts/stromal cells regulate osteoclast (ocl) formation and bone resorption by producing factors like osteoprotegerin (OPG), osteoclast differentiating factor (ODF/RANKL), and macrophage colony-stimulating factor (M-CSF) that interact with hematopoietic ocl precursor cells. Using odontoblast and pulp cell lines, we detected a constitutive expression of OPG, RANKL, and M-CSF mRNA in both cell types. OPG and RANKL proteins were also detectable. In vivo, RANKL and OPG were localized to odontoblasts, ameloblasts, and pulp cells in developing mouse teeth by immunohistochemistry. In a coculture system, we found the dental cells to be inhibitory to ocl formation from spleen and bone marrow precursors, despite their production of osteoclast stimulatory factors. Our data indicate for the first time that dental cells express factors important in regulation of osteoclastogenesis and bone resorption. Since both stimulatory (RANKL, M-CSF) and inhibitory (OPG) factors are expressed, a balance between positive and negative factors may contribute to regulation of bone resorption.
Collapse
Affiliation(s)
- C S Rani
- Department of Pediatric Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229-3900, USA.
| | | |
Collapse
|
635
|
Makhluf HA, Mueller SM, Mizuno S, Glowacki J. Age-related decline in osteoprotegerin expression by human bone marrow cells cultured in three-dimensional collagen sponges. Biochem Biophys Res Commun 2000; 268:669-72. [PMID: 10679262 DOI: 10.1006/bbrc.2000.2182] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With advancing age, an increase in bone resorption relative to bone formation results in bone loss. Bone marrow stromal cells and their products support osteoclastogenesis from hematopoietic progenitors. Another of their products, osteoprotegerin (OPG), blocks the osteoclast-stimulatory effects of OPG ligand. We tested the hypothesis that with advancing age there is a decrease in OPG expression by human bone marrow cells. Bone marrow cells were obtained from 18 subjects (age range 38-84 years). Expression of mRNA transcripts of OPG was assessed by quantitative competitive RT-PCR. Median number of OPG transcripts in the younger group was 0. 3 zetptomoles (range 0.01 to 1.30) and was higher than in the older group's median of 0.06 (range 0 to 0.5; p < 0.05). The decline in the expression of OPG with age may increase the capacity of stromal/osteoblast cells to support osteoclastogenesis.
Collapse
Affiliation(s)
- H A Makhluf
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
636
|
Fuller K, Bayley KE, Chambers TJ. Activin A is an essential cofactor for osteoclast induction. Biochem Biophys Res Commun 2000; 268:2-7. [PMID: 10652202 DOI: 10.1006/bbrc.2000.2075] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, receptor activator of NF-kappaB ligand (RANKL) was shown to be necessary for osteoclast formation. We now report that activin A, a cytokine enriched in bone matrix and secreted by osteoblasts and osteoclasts, powerfully synergized with RANKL for induction of osteoclast-like cells (OCL) from bone marrow precursors depleted of stromal cells. Moreover, OCL formation in RANKL was virtually abolished by soluble type II A activin receptors (ActR-II(A)), suggesting that activin A is essential for OCL formation. Activin A was most effective when precursors were exposed to RANKL and activin A simultaneously: resistance to OCL-induction that occurs when precursors are pre-incubated in M-CSF was reduced. Incubation on bone matrix also enhanced the sensitivity of precursors to OCL-induction by RANKL; and this was prevented by soluble ActR-II(A). Thus, activin A in bone matrix, or released from osteoblastic or other cells, enhances the osteoclast-forming potential of precursors and synergizes with RANKL in inducing osteoclastic differentiation.
Collapse
Affiliation(s)
- K Fuller
- Department of Histopathology, St. George's Hospital Medical School, London, SW17 ORE, United Kingdom.
| | | | | |
Collapse
|
637
|
Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 2000; 191:275-86. [PMID: 10637272 PMCID: PMC2195746 DOI: 10.1084/jem.191.2.275] [Citation(s) in RCA: 1006] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteoclast differentiation factor (ODF, also called RANKL/TRANCE/OPGL) stimulates the differentiation of osteoclast progenitors of the monocyte/macrophage lineage into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF, also called CSF-1). When mouse bone marrow cells were cultured with M-CSF, M-CSF-dependent bone marrow macrophages (M-BMM phi) appeared within 3 d. Tartrate-resistant acid phosphatase-positive osteoclasts were also formed when M-BMM phi were further cultured for 3 d with mouse tumor necrosis factor alpha (TNF-alpha) in the presence of M-CSF. Osteoclast formation induced by TNF-alpha was inhibited by the addition of respective antibodies against TNF receptor 1 (TNFR1) or TNFR2, but not by osteoclastogenesis inhibitory factor (OCIF, also called OPG, a decoy receptor of ODF/RANKL), nor the Fab fragment of anti-RANK (ODF/RANKL receptor) antibody. Experiments using M-BMM phi prepared from TNFR1- or TNFR2-deficient mice showed that both TNFR1- and TNFR2-induced signals were important for osteoclast formation induced by TNF-alpha. Osteoclasts induced by TNF-alpha formed resorption pits on dentine slices only in the presence of IL-1alpha. These results demonstrate that TNF-alpha stimulates osteoclast differentiation in the presence of M-CSF through a mechanism independent of the ODF/RANKL-RANK system. TNF-alpha together with IL-1alpha may play an important role in bone resorption of inflammatory bone diseases.
Collapse
MESH Headings
- Acid Phosphatase/metabolism
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Bone Marrow Cells/cytology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Carrier Proteins/metabolism
- Carrier Proteins/pharmacology
- Cell Differentiation
- Cells, Cultured
- Gene Expression
- Humans
- Interleukin-1/metabolism
- Isoenzymes/metabolism
- Macrophage Colony-Stimulating Factor/metabolism
- Macrophage Colony-Stimulating Factor/pharmacology
- Male
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Osteoclasts/cytology
- Osteoclasts/drug effects
- Osteoclasts/metabolism
- Osteoclasts/physiology
- RANK Ligand
- Receptor Activator of Nuclear Factor-kappa B
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Tartrate-Resistant Acid Phosphatase
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Kanichiro Kobayashi
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo 142-8555, Japan
| | - Naoyuki Takahashi
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo 142-8555, Japan
| | - Eijiro Jimi
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo 142-8555, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo 142-8555, Japan
| | - Masamichi Takami
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo 142-8555, Japan
| | - Shigeru Kotake
- The Institute of Rheumatology, Tokyo Women's Medical University, Tokyo 162-0054, Japan
| | - Nobuaki Nakagawa
- Research Institute of Life Science, Snow Brand Milk Products Co., Ltd., Tochigi 329-0512, Japan
| | - Masahiko Kinosaki
- Research Institute of Life Science, Snow Brand Milk Products Co., Ltd., Tochigi 329-0512, Japan
| | - Kyoji Yamaguchi
- Research Institute of Life Science, Snow Brand Milk Products Co., Ltd., Tochigi 329-0512, Japan
| | - Nobuyuki Shima
- Research Institute of Life Science, Snow Brand Milk Products Co., Ltd., Tochigi 329-0512, Japan
| | - Hisataka Yasuda
- Research Institute of Life Science, Snow Brand Milk Products Co., Ltd., Tochigi 329-0512, Japan
| | - Tomonori Morinaga
- Research Institute of Life Science, Snow Brand Milk Products Co., Ltd., Tochigi 329-0512, Japan
| | - Kanji Higashio
- Research Institute of Life Science, Snow Brand Milk Products Co., Ltd., Tochigi 329-0512, Japan
| | - T. John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Tatsuo Suda
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo 142-8555, Japan
| |
Collapse
|
638
|
Itonaga I, Sabokbar A, Murray DW, Athanasou NA. Effect of osteoprotegerin and osteoprotegerin ligand on osteoclast formation by arthroplasty membrane derived macrophages. Ann Rheum Dis 2000; 59:26-31. [PMID: 10627423 PMCID: PMC1752988 DOI: 10.1136/ard.59.1.26] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Osteoprotegerin ligand (OPGL) is a newly discovered molecule, which is expressed by osteoblasts/bone stromal cells. This ligand and M-CSF are now known to be essential for osteoclast differentiation from marrow and circulating precursors. This study examined whether OPGL and its soluble receptor osteoprotegerin (OPG), influenced osteoclast formation from human arthroplasty derived macrophages, to determine if the effects of OPGL and OPG on these cells could contribute to the osteolysis of aseptic loosening. METHODS OPGL (+/- dexamethasone/M-CSF) was added to cultures of macrophages isolated from the pseudomembrane of loosened hip arthroplasties incubated on glass coverslips and dentine slices. OPG was added to cocultures of arthroplasty derived macrophages and UMR106 osteoblast-like cells. Osteoclast differentiation in long term cultures was assessed by expression of macrophage (CD14) and osteoclast markers (tartrate resistant acid phosphatase (TRAP), vitronectin receptor (VNR) and lacunar resorption). RESULTS In the absence of osteoblastic cells, the addition of OPGL alone was sufficient to induce differentiation of macrophages (CD14(+), TRAP(-), VNR(-)) into TRAP(+) and VNR(+) multinucleated cells, capable of extensive lacunar resorption. OPG was found to inhibit osteoclast formation by arthroplasty macrophages in a dose dependent manner. OPG (100 ng/ml) more than halved the formation of TRAP(+) and VNR(+) cells and the extent of lacunar resorption in co-cultures of UMR106 cells and arthroplasty macrophages. CONCLUSIONS This study has shown that macrophages, isolated from the pseudomembrane surrounding loose arthroplasty components, are capable of differentiating into osteoclastic bone resorbing cells and that OPGL is required for this to occur. OPG inhibits this process, most probably by interrupting the cell-cell interaction between osteoblasts and mononuclear phagocyte osteoclast precursors present in the pseudomembrane.
Collapse
Affiliation(s)
- I Itonaga
- Nuffield Department of Orthopaedic Surgery, University of Oxford, Oxford
| | | | | | | |
Collapse
|
639
|
Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000; 15:2-12. [PMID: 10646108 DOI: 10.1359/jbmr.2000.15.1.2] [Citation(s) in RCA: 792] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although multiple hormones and cytokines regulate various aspects of osteoclast formation, the final two effectors are osteoprotegerin ligand (OPG-L)/osteoclast differentiation factor (ODF), a recently cloned member of the tumor necrosis factor superfamily, and macrophage colony-stimulating factor. OPG-L/ODF is produced by osteoblast lineage cells and exerts its biological effects through binding to its receptor, osteoclast differentiation and activation receptor (ODAR)/receptor activator of NF-kappa B (RANK), on osteoclast lineage cells, in either a soluble or a membrane-bound form, the latter of which requires cell-to-cell contact. Binding results in rapid differentiation of osteoclast precursors in bone marrow to mature osteoclasts and, at higher concentrations, in increased functional activity and reduced apoptosis of mature osteoclasts. The biological activity of OPG-L/ODF is neutralized by binding to osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor (OCIF), a member of the TNF-receptor superfamily that also is secreted by osteoblast lineage cells. The biological importance of this system is underscored by the induction in mice of severe osteoporosis by targeted ablation of OPG/OCIF and by the induction of osteopetrosis by targeted ablation of OPG-L/ODF or overexpression of OPG/OCIF. Thus, osteoclast formation may be determined principally by the relative ratio of OPG-L/ODF to OPG/OCIF in the bone marrow microenvironment, and alterations in this ratio may be a major cause of bone loss in many metabolic disorders, including estrogen deficiency and glucocorticoid excess. That changes in but two downstream cytokines mediate the effects of large numbers of upstream hormones and cytokines suggests a regulatory mechanism for osteoclastogenesis of great efficiency and elegance.
Collapse
Affiliation(s)
- L C Hofbauer
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
640
|
Yamashita T, Yoshitake H, Tsuji K, Kawaguchi N, Nabeshima Y, Noda M. Retardation in bone resorption after bone marrow ablation in klotho mutant mice. Endocrinology 2000; 141:438-45. [PMID: 10614667 DOI: 10.1210/endo.141.1.7252] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The klotho gene mutant mice exhibit both osteopetrotic phenotype, including elongation of trabeculae in the epiphyses of long bones and vertebral bodies, and osteopenic phenotype, such as thin cortical bones in the diaphyses of these bones. These diverse features raise the question of whether the klotho gene defect results in alteration in bone resorption in vivo. Therefore, we examined the effect of the klotho gene defect on bone resorption by using bone marrow ablation model. At 1 week after bone marrow ablation, trabecular bones were formed in the ablated marrow cavity to levels higher than those in unablated bones in both klotho mutant and wild-type mice. At 2 weeks postsurgery, newly formed trabecular bones were resorbed in wild-type mice to resume normal bone marrow and trabecular bone volume fraction as reported previously. In contrast, the newly formed trabecular bones in the ablated marrow in klotho mutant mice remained at levels similar to those at 1 week. The defect in the bone resorption phase in klotho mutant mice is associated with site-specific reduction of the number and size of osteoclasts in klotho mutant mice. Moreover, the expression levels of osteoprotegerin messenger RNA in the ablated femora of klotho mutant mice were higher than those in wild-type mice. These results indicate that lack of klotho gene expression suppressed bone resorption that should normally take place 2 weeks after bone marrow ablation.
Collapse
Affiliation(s)
- T Yamashita
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|
641
|
Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med 1999; 190:1741-54. [PMID: 10601350 PMCID: PMC2195707 DOI: 10.1084/jem.190.12.1741] [Citation(s) in RCA: 541] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteoclasts are terminally differentiated cells derived from hematopoietic stem cells. However, how their precursor cells diverge from macrophagic lineages is not known. We have identified early and late stages of osteoclastogenesis, in which precursor cells sequentially express c-Fms followed by receptor activator of nuclear factor kappaB (RANK), and have demonstrated that RANK expression in early-stage of precursor cells (c-Fms(+)RANK(-)) was stimulated by macrophage colony-stimulating factor (M-CSF). Although M-CSF and RANKL (ligand) induced commitment of late-stage precursor cells (c-Fms(+)RANK(+)) into osteoclasts, even late-stage precursors have the potential to differentiate into macrophages without RANKL. Pretreatment of precursors with M-CSF and delayed addition of RANKL showed that timing of RANK expression and subsequent binding of RANKL are critical for osteoclastogenesis. Thus, the RANK-RANKL system determines the osteoclast differentiation of bipotential precursors in the default pathway of macrophagic differentiation.
Collapse
Affiliation(s)
- Fumio Arai
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan
- Department of Periodontology, Meikai University School of Dentistry, Sakado 350-0248, Japan
| | - Takeshi Miyamoto
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan
| | - Osamu Ohneda
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan
| | - Tomohisa Inada
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan
| | - Tetsuo Sudo
- Basic Research Laboratories, Toray Industries, Incorporated, Kamakura 248-0036, Japan
| | - Kenneth Brasel
- Department of Molecular Biology, Immunex Corporation, Seattle, Washington 98101-2936
| | - Takashi Miyata
- Department of Periodontology, Meikai University School of Dentistry, Sakado 350-0248, Japan
| | - Dirk M. Anderson
- Department of Molecular Biology, Immunex Corporation, Seattle, Washington 98101-2936
| | - Toshio Suda
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan
| |
Collapse
|
642
|
Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, Choi Y. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 1999; 4:1041-9. [PMID: 10635328 DOI: 10.1016/s1097-2765(00)80232-4] [Citation(s) in RCA: 471] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
TRANCE, a TNF family member, and its receptor, TRANCE-R, are critical regulators of dendritic cell and osteoclast function. Here, we demonstrate that TRANCE activates the antiapoptotic serine/threonine kinase Akt/PKB through a signaling complex involving c-Src and TRAF6. A deficiency in c-Src or addition of Src family kinase inhibitors blocks TRANCE-mediated PKB activation in osteoclasts. c-Src and TRAF6 interact with each other and with TRANCE-R upon receptor engagement. TRAF6, in turn, enhances the kinase activity of c-Src leading to tyrosine phosphorylation of downstream signaling molecules such as c-Cbl. These results define a mechanism by which TRANCE activates Src family kinases and PKB and provide evidence of cross-talk between TRAF proteins and Src family kinases.
Collapse
Affiliation(s)
- B R Wong
- Laboratory of Immunology, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
643
|
Nakagawa N, Yasuda H, Yano K, Mochizuki SI, Kobayashi N, Fujimoto H, Shima N, Morinaga T, Chikazu D, Kawaguchi H, Higashio K. Basic fibroblast growth factor induces osteoclast formation by reciprocally regulating the production of osteoclast differentiation factor and osteoclastogenesis inhibitory factor in mouse osteoblastic cells. Biochem Biophys Res Commun 1999; 265:158-63. [PMID: 10548507 DOI: 10.1006/bbrc.1999.1601] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Basic fibroblast growth factor (bFGF) induced osteoclast formation in co-cultures of mouse spleen cells and osteoblasts. Osteoclastogenesis inhibitory factor (OCIF) and a selective cyclooxygenase-2 (COX-2) inhibitor, NS-398, abolished bFGF-induced osteoclast formation. bFGF did not affect spleen cells, but it did affect osteoblasts, to stimulate osteoclast formation. Northern blot analysis revealed that bFGF up-regulated the expression of osteoclast differentiation factor (ODF) and COX-2 and down-regulated the expression of OCIF in primary osteoblastic cells. NS-398 abolished the increase of ODF mRNA, but it had no effect on the decrease of OCIF mRNA. NS-398 suppressed the binding of (125)I-labeled OCIF to osteoblastic cells treated with bFGF. Enzyme-linked immunosorbent assay showed that bFGF inhibited OCIF production by osteoblastic cells, and the inhibition was not affected by NS-398. We conclude that bFGF induces osteoclast formation by stimulating ODF production through COX-2-mediated prostaglandin synthesis and by suppressing OCIF production through a mechanism independent of prostaglandin synthesis.
Collapse
Affiliation(s)
- N Nakagawa
- Research Institute of Life Science, Snow Brand Milk Products Co. Ltd. , Tochigi, 329-0512, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
644
|
Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E, Higashio K, Gillespie MT, Martin TJ, Suda T. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand. Bone 1999; 25:517-23. [PMID: 10574571 DOI: 10.1016/s8756-3282(99)00210-0] [Citation(s) in RCA: 317] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We previously reported that osteoblasts/stromal cells are essentially involved in the activation as well as differentiation of osteoclasts through a mechanism involving cell-to-cell contact between osteoblasts/stromal cells and osteoclast precursors/osteoclasts. Osteoclast differentiation factor (ODF, also called RANKL/OPGL/TRANCE) and macrophage colony-stimulating factor (M-CSF, also called CSF-1) are two essential factors produced by osteoblasts/stromal cells for osteoclastogenesis. In other words, osteoblasts/stromal cells were not necessary to generate osteoclasts from spleen cells in the presence of both ODF/RANKL and M-CSF. In the present study, we examined the precise roles of ODF/RANKL and M-CSF in the activation of osteoclasts induced by calvarial osteoblasts. Osteoclasts were formed in mouse bone marrow cultures on collagen gel-coated dishes in response to a soluble form of ODF/RANKL (sODF/sRANKL) and M-CSF, and recovered by collagenase digestion. When recovered osteoclasts were further cultured on plastic dishes, most of the osteoclasts spontaneously died within 24 h. Osteoclasts cultured for 24 h on dentine slices could not form resorption pits. Addition of sODF/sRANKL to the recovered osteoclasts markedly enhanced their survival and pit-forming activity. M-CSF similarly stimulated the survival of osteoclasts, but did not induce their pit-forming activity. When primary mouse osteoblasts were added to the recovered osteoclasts, resorption pits were formed on dentine slices. Bone-resorbing factors such as 1alpha,25-dihydroxyvitamin D3, parathyroid hormone, or prostaglandin E2 enhanced pit-forming activity of osteoclasts only in the presence of osteoblasts. M-CSF-deficient osteoblasts prepared from op/op mice similarly enhanced pit-forming activity of osteoclasts. The pit-forming activity of osteoclasts induced by sODF/sRANKL or osteoblasts was completely inhibited by simultaneous addition of osteoprotegerin/osteoclastogenesis inhibitory factor, a decoy receptor of ODF/RANKL. Primary osteoblasts constitutively expressed ODF/RANKL mRNA, and its level was upregulated by treatment with 1alpha,25-dihydroxyvitamin D3, parathyroid hormone, and prostaglandin E2. These results, obtained by using an assay system that unequivocally assesses osteoclast activation, suggest that ODF/RANKL but not M-CSF mediates osteoblast-induced pit-forming activity of osteoclasts, and that bone-resorbing factors stimulate osteoclast activation through upregulation of ODF/RANKL by osteoblasts/stromal cells.
Collapse
Affiliation(s)
- N Udagawa
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
645
|
Okazaki R, Toriumi M, Fukumoto S, Miyamoto M, Fujita T, Tanaka K, Takeuchi Y. Thiazolidinediones inhibit osteoclast-like cell formation and bone resorption in vitro. Endocrinology 1999; 140:5060-5. [PMID: 10537132 DOI: 10.1210/endo.140.11.7116] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteoblasts and adipocytes are derived from common bone marrow stromal cells that play crucial roles in the generation of osteoclasts. Activation of peroxisome proliferator-activated receptor-gamma (PPARgamma) induces adipogenic differentiation of stromal cells; however, whether this would affect osteoblast/osteoclast differentiation is unknown. Thus, we examined the effects of the thiazolidinedione (TZD) class of antidiabetic agents that activate PPARgamma on osteoblast/osteoclast differentiation using mouse whole bone marrow cell culture. As reported, all TZDs we tested (troglitazone, pioglitazone, and BRL 49653) markedly increased the number of Oil Red O-positive adipocytes and the expression of adipsin and PPARgamma 2. 1alpha,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] did not affect adipogenic differentiation induced by TZDs. TZDs did not affect alkaline phosphatase activity, an early marker of osteoblastic differentiation, despite their marked adipogenic effects. TZDs decreased the number of tartrate-resistant acid phosphatase-positive multinucleated osteoclast-like cells induced by 1,25-(OH)2D3 or PTH. Troglitazone dose dependently inhibited basal and 1,25-(OH)2D3- and PTH-induced bone resorption as assessed by pit formation assay. Interleukin-11 blocked the induction by troglitazone of adipogenesis, but had no effect on the inhibition of osteoclast-like cell formation. These results indicate that TZDs are potent inhibitors of bone resorption in vitro. Inhibitory effects of TZDs on osteoclastic bone resorption was not osteotropic factor specific and did not appear to be related to their adipogenic effects. Thus, TZDs may suppress bone resorption in diabetic patients and prevent bone loss.
Collapse
Affiliation(s)
- R Okazaki
- Third Department of Medicine, Teikyo University School of Medicine, Ichihara, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
646
|
Nakagawa N, Yasuda H, Yano K, Mochizuki SI, Kobayashi N, Fujimoto H, Yamaguchi K, Shima N, Morinaga T, Higashio K. Basic fibroblast growth factor inhibits osteoclast formation induced by 1alpha,25-dihydroxyvitamin D(3) through suppressing the production of osteoclast differentiation factor. Biochem Biophys Res Commun 1999; 265:45-50. [PMID: 10548488 DOI: 10.1006/bbrc.1999.1621] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Basic fibroblast growth factor (bFGF) inhibited osteoclast-like cell (OCL) formation in cocultures of mouse spleen cells with either osteoblasts or a stromal cell line, ST2, in the presence of 1alpha, 25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. bFGF directly acted on osteoblasts/stromal cells, but not osteoclast progenitors, to inhibit 1,25(OH)(2)D(3)-induced OCL formation. bFGF suppressed the mRNA expression of osteoclast differentiation factor (ODF) but did not affect that of osteoclastogenesis inhibitory factor (OCIF) in ST2 cells treated with 1,25(OH)(2)D(3) and dexamethasone. Enzyme-linked immunosorbent assay showed that bFGF hardly affected OCIF production in the treated ST2 cells. A genetically engineered soluble form of ODF, but not anti-OCIF neutralizing antibody, abolished bFGF-mediated inhibition of OCL formation. bFGF suppressed the binding of (125)I-labeled OCIF to both ST2 cells and osteoblasts treated with 1,25(OH)(2)D(3). These findings indicate that bFGF inhibits 1,25(OH)(2)D(3)-induced OCL formation via suppression of ODF production by osteoblasts/stromal cells.
Collapse
Affiliation(s)
- N Nakagawa
- Research Institute of Life Science, Snow Brand Milk Products Co. Ltd. , Tochigi, 329-0512, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
647
|
Hofbauer LC, Gori F, Riggs BL, Lacey DL, Dunstan CR, Spelsberg TC, Khosla S. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 1999; 140:4382-9. [PMID: 10499489 DOI: 10.1210/endo.140.10.7034] [Citation(s) in RCA: 388] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteoporosis is a serious complication of systemic glucocorticoid use. However, while glucocorticoids increase bone resorption in vitro and in vivo, the mechanism(s) of this effect are at present unclear. Recent studies have identified the osteoprotegerin (OPG) ligand (OPG-L) as the final effector of osteoclastogenesis, an action that is opposed by the soluble neutralizing receptor, OPG. Thus, we assessed glucocorticoid regulation of OPG and OPG-L in various human osteoblastic lineage cells using Northern analysis, RT-PCR, and ELISA. Dexamethasone inhibited constitutive OPG messenger RNA (mRNA) steady-state levels by 70-90% in primary (MS) and immortalized stromal cells (hMS), primary trabecular osteoblasts (hOB), immortalized fetal osteoblasts (hFOB), and osteosarcoma cells (MG-63). In hFOB cells, dexamethasone inhibited constitutive OPG mRNA steady-state levels in a dose- and time-dependent fashion by 90%, and also suppressed cytokine-stimulated OPG mRNA steady-state levels. Dexamethasone-induced inhibition of OPG mRNA levels was not affected by the protein synthesis inhibitor, cycloheximide, and was shown to be due to inhibition of OPG gene transcription using a nuclear run-on assay. Moreover, dexamethasone also dose dependently (10(-10) M-10(-7) M) inhibited constitutive OPG protein concentrations in the conditioned medium of hFOB cells from 2.59 +/- 0.02 ng/ml (control) to 0.30 +/- 0.01 ng/ml (88% inhibition; P < 0.001 by ANOVA). Concurrently, dexamethasone stimulated OPG-L mRNA steady-state levels in MS and hFOB cells by 2- and 4-fold, respectively. Treatment of murine marrow cultures with conditioned medium harvested from dexamethasone-treated MG-63 cells increased tartrate-resistant acid phosphatase (TRAP) activity by 54% (P < 0.005) compared with medium harvested from control-treated cells (in the presence of OPG-L and macrophage colony-stimulating factor). Moreover, dexamethasone (10(-8) M) promoted osteoclast formation in vitro, as assessed by a 2.5-fold increase of TRAP activity in cell lysates (P < 0.001) and the appearance of TRAP-positive multinucleated cells. Our data are thus consistent with the hypothesis that glucocorticoids promote osteoclastogenesis by inhibiting OPG and concurrently stimulating OPG-L production by osteoblastic lineage cells, thereby enhancing bone resorption.
Collapse
Affiliation(s)
- L C Hofbauer
- Endocrine Research Unit, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
648
|
Thomas RJ, Guise TA, Yin JJ, Elliott J, Horwood NJ, Martin TJ, Gillespie MT. Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 1999; 140:4451-8. [PMID: 10499498 DOI: 10.1210/endo.140.10.7037] [Citation(s) in RCA: 329] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Breast cancers commonly cause osteolytic metastases in bone, a process that is dependent upon osteoclast-mediated bone resorption. Recently the osteoclast differentiation factor (ODF), better termed RANKL (receptor activator of NF-kappaB ligand), expressed by osteoblasts has been cloned as well as its cognate signaling receptor, receptor activator of NFkappaB (RANK), and a secreted decoy receptor osteoprotegerin (OPG) that limits RANKL's biological action. We determined that the breast cancer cell lines MDA-MB-231, MCF-7, and T47D as well as primary breast cancers do not express RANKL but express OPG and RANK. MCF-7, MDA-MB-231, and T47D cells did not act as surrogate osteoblasts to support osteoclast formation in coculture experiments, a result consistent with the fact that they do not express RANKL. When MCF-7 cells overexpressing PTH-related protein (PTHrP) were added to cocultures of murine osteoblasts and hematopoietic cells, osteoclast formation resulted without the addition of any osteotropic agents; cocultures with MCF-7 or MCF-7 cells transfected with pcDNAIneo required exogenous agents for osteoclast formation. When MCF-7 cells overexpressing PTHrP were cultured with murine osteoblasts, osteoblastic RANKL messenger RNA (mRNA) levels were enhanced and osteoblastic OPG mRNA levels diminished; MCF-7 parental cells had no effect on RANKL or OPG mRNA levels when cultured with osteoblastic cells. Using a murine model of breast cancer metastasis to bone, we established that MCF-7 cells that overexpress PTHrP caused significantly more bone metastases, which were associated with increased osteoclast formation, elevated plasma PTHrP concentrations and hypercalcaemia compared with parental or empty vector controls.
Collapse
Affiliation(s)
- R J Thomas
- St. Vincent's Institute of Medical Research and The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
649
|
Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J. RANK is essential for osteoclast and lymph node development. Genes Dev 1999; 13:2412-24. [PMID: 10500098 PMCID: PMC317030 DOI: 10.1101/gad.13.18.2412] [Citation(s) in RCA: 1078] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The physiological role of the TNF receptor (TNFR) family member, RANK, was investigated by generating RANK-deficient mice. RANK(-/-) mice were characterized by profound osteopetrosis resulting from an apparent block in osteoclast differentiation. RANK expression was not required for the commitment, differentiation, and functional maturation of macrophages and dendritic cells from their myeloid precursors but provided a necessary and specific signal for the differentiation of myeloid-derived osteoclasts. RANK(-/-) mice also exhibited a marked deficiency of B cells in the spleen. RANK(-/-) mice retained mucosal-associated lymphoid tissues including Peyer's patches but completely lacked all other peripheral lymph nodes, highlighting an additional major role for RANK in lymph node formation. These experiments reveal that RANK provides critical signals necessary for lymph node organogenesis and osteoclast differentiation.
Collapse
Affiliation(s)
- W C Dougall
- Immunex Corporation, Seattle, Washington 98101 USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
650
|
Sakata M, Shiba H, Komatsuzawa H, Fujita T, Ohta K, Sugai M, Suginaka H, Kurihara H. Expression of osteoprotegerin (osteoclastogenesis inhibitory factor) in cultures of human dental mesenchymal cells and epithelial cells. J Bone Miner Res 1999; 14:1486-92. [PMID: 10469276 DOI: 10.1359/jbmr.1999.14.9.1486] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor (OCIF) inhibits osteoclast differentiation, activity, and survival; therefore OPG/OCIF may regulate the resorption of dental hard tissues, such as alveolar bone, cementum, and dentin. To investigate this issue, reverse transcriptase-polymerase chain reaction using specific primers for OPG/OCIF was performed with total RNAs isolated from human gingival keratinocytes (HGKs), human gingival fibroblasts (HGFs), human periodontal ligament cells (HPDLs), and human pulp cells (HPCs) in culture. PCR products were found in HGFs, HPDLs, and HPCs, but not in HGKs, and the DNA sequence of these products was 100% identical to the reported sequence of the OPG gene. Northern blot analyses also showed that HGFs, HPDLs, and HPCs, but not HGKs, expressed OPG/OCIF transcripts of approximately 2.5 kb. Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) increased OPG/OCIF mRNA levels in a dose-and time-dependent manner in HPDL. After 12 h of treatment, IL-1beta at 3 ng/ml and TNF-alpha at 3 ng/ml increased OPG/OCIF mRNA expression by 190% and 110%, respectively, with a maximal effect. The stimulatory effects of IL-1beta and TNF-alpha were also seen in HPC. However, IL-6 and transforming growth factor-beta had little effect on OPG/OCIF mRNA levels in HPDL. These findings suggest that OPG/OCIF synthesized by dental mesenchymal cells locally regulates the resorption of dental hard tissues through cytokines.
Collapse
Affiliation(s)
- M Sakata
- Department of Periodontology and Endodontology, Hiroshima University School of Dentistry, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|