651
|
Chiang WD, Shibu MA, Lee KI, Wu JP, Tsai FJ, Pan LF, Huang CY, Lin WT. Lipolysis-stimulating peptide-VHVV ameliorates high fat diet induced hepatocyte apoptosis and fibrosis. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
652
|
Umegaki K, Yamazaki Y, Yokotani K, Chiba T, Sato Y, Shimura F. Induction of fatty liver by Coleus forskohlii extract through enhancement of de novo triglyceride synthesis in mice. Toxicol Rep 2014; 1:787-794. [PMID: 28962291 PMCID: PMC5598419 DOI: 10.1016/j.toxrep.2014.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/15/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022] Open
Abstract
Coleus forskohlii extract (CFE), an herbal ingredient, is used for weight-loss products. CFE's alleged efficacy is attributed to forskolin. However, CFE has been shown to induce fatty liver in mice, with components other than forskolin playing a part in this effect. The present study addressed the underlying mechanism of CFE-induced fatty liver by analyzing changes in CFE-treated mice of lipid concentrations and of the levels of mRNAs encoding enzymes and transcription factors known to be related to fatty liver. Mice were fed a diet containing 0, 0.3 and 1% CFE for 2 weeks. CFE at 1% clearly induced fatty liver, as demonstrated by histological examination and confirmed by increases in triglyceride concentrations in liver. However, treated mice did not exhibit elevation in plasma levels of non-esterified fatty acids. Comprehensive analysis of liver mRNA levels revealed accumulation of multiple transcripts, including mRNAs encoding enzymes acetyl-CoA carboxylase and long-chain elongase; transcription factor peroxisome proliferator-activated receptor gamma (PPARγ); and lipid-droplet-associated fat-specific protein 27 (Fsp27). These findings suggest that the de novo synthesis and accumulation of triglyceride in the liver, through the enhanced expression of specific lipogenic mRNAs, is a major underlying mechanism of fatty liver induction by CFE.
Collapse
Affiliation(s)
- Keizo Umegaki
- National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | - Yuko Yamazaki
- Department of Food & Nutrition, Jumonji University, 2-1-28 Sugasawa, Niiza-shi, Saitama 352-8510, Japan
| | - Kaori Yokotani
- National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | - Tsuyoshi Chiba
- National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | - Yoko Sato
- National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | - Fumio Shimura
- Department of Food & Nutrition, Jumonji University, 2-1-28 Sugasawa, Niiza-shi, Saitama 352-8510, Japan
| |
Collapse
|
653
|
Zhu C, Xie P, Zhao F, Zhang L, An W, Zhan Y. Mechanism of the promotion of steatotic HepG2 cell apoptosis by cholesterol. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:6807-6813. [PMID: 25400762 PMCID: PMC4230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
The role of cholesterol in the pathogenesis of non-alcoholic steatohepatitis (NASH) remains unclear. It is known that apoptosis of hepatocytes is an important characteristics of NASH. The objective of this study was to investigate the effects of cholesterol on steatotic HepG2 cell apoptosis and the possible mechanism in vitro. In this study, HepG2 cells were divided into three groups: (1) normal group, (2) steatosis group and (3) cholesterol group. HepG2 cells were treated with oleic acid to establish a steatosis study model. Steatosis was assessed by Oil Red O staining and triglyceride content assay. Cell apoptosis was measured using an apoptosis kit. The expression levels of apoptosis-related proteins (P53, Bcl-2, Bax, caspase-3, cyclin A, cyclin B1 and cyclin E) were determined by western blot analyses. We found that a hepatocyte steatosis model was successfully established by oleic acid (200 μmol/L) induction. The cholesterol (50 mg/L) group had similar amount of lipid droplets and triglyceride content as steatosis group (P > 0.5). However, the apoptosis rate (P < 0.01) of the cholesterol group was significantly higher than that of the normal group or the steatosis group, and the protein expressions of Bax and caspase-3, but not P53, Bcl-2, cyclin A, cyclin B1 and cyclin E, were also increased in the cholesterol group. Those results suggested that cholesterol markedly promoted apoptosis of steatosis HepG2 cells in vitro, likely through the up-regulation of Bax and caspase-3 expression. This study contributes to explain the effect of cholesterol on NASH pathogenesis.
Collapse
Affiliation(s)
- Chunyan Zhu
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
| | - Ping Xie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation MedicineBeijing 102206, China
| | - Fei Zhao
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation MedicineBeijing 102206, China
| | - Wei An
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical UniversityBeijing 100069, China
| | - Yutao Zhan
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical UniversityBeijing 100730, China
| |
Collapse
|
654
|
Paland N, Gamliel-Lazarovich A, Coleman R, Fuhrman B. Urokinase-type plasminogen activator (uPA) stimulates triglyceride synthesis in Huh7 hepatoma cells via p38-dependent upregulation of DGAT2. Atherosclerosis 2014; 237:200-7. [PMID: 25244504 DOI: 10.1016/j.atherosclerosis.2014.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The liver is the central organ of fatty acid and triglyceride metabolism. Oxidation and synthesis of fatty acids and triglycerides is under the control of peroxisome-proliferator-activated receptors (PPAR) α. Impairment of these receptors' function contributes to the accumulation of triglycerides in the liver resulting in non-alcoholic fatty liver disease. Urokinase-type plasminogen activator (uPA) was shown to regulate gene expression in the liver involving PPARγ transcriptional activity. In this study we questioned whether uPA modulates triglyceride metabolism in the liver, and investigated the mechanisms involved in the observed processes. METHODS AND RESULTS Huh7 hepatoma cells were incubated with increasing concentrations of uPA for 24 h uPA dose-dependently increased the cellular triglyceride mass, and this effect resulted from increased de novo triglyceride synthesis mediated by the enzyme diglyceride acyltransferase 2 (DGAT2). Also, the amount of free fatty acids was highly up regulated by uPA through activation of the transcription factor SREBP-1. Chemical activation of PPARα further increased uPA-stimulated triglyceride synthesis, whereas inhibition of p38, an upstream activator of PPARα, completely abolished the stimulatory effect of uPA on both triglyceride synthesis and DGAT2 upregulation. The effect of uPA on triglyceride synthesis in Huh7 cells was mediated via binding to its receptor, the uPAR. In vivo studies in uPAR(-/-) mice demonstrated that no lipid droplets were observed in their livers compared to C57BL/6 mice and the triglyceride levels were significantly lower. CONCLUSION This study presents a new biological function of the uPA/uPAR system in the metabolism of triglycerides and might present a new target for an early therapeutic intervention for NAFLD.
Collapse
Affiliation(s)
- Nicole Paland
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Raymond Coleman
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Bianca Fuhrman
- The Lipid Research Laboratory, Technion Faculty of Medicine and Rambam Health Care Campus, Haifa 31096, Israel.
| |
Collapse
|
655
|
Amacher DE. Progress in the search for circulating biomarkers of nonalcoholic fatty liver disease. Biomarkers 2014; 19:541-52. [PMID: 25189636 DOI: 10.3109/1354750x.2014.958535] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT The definitive standard for the diagnosis of nonalcoholic fatty liver disease (NAFLD) is clinico-pathological correlation, but frequently the only laboratory abnormality is an elevation of serum aminotransferases. OBJECTIVE This has resulted in the search for more specific laboratory biomarkers. METHODS The literature was searched for novel plasma/serum markers of NAFLD. RESULTS Studies reviewed here included histologically-confirmed patients presenting some stage of NAFLD and monitored one or more novel serum/plasma biomarkers. CONCLUSION The most promising application of some of these novel biomarkers for the detection and quantification of NAFLD and particularly NASH appears to be in the combination of several into diagnostic panels.
Collapse
|
656
|
Gruben N, Shiri-Sverdlov R, Koonen DPY, Hofker MH. Nonalcoholic fatty liver disease: A main driver of insulin resistance or a dangerous liaison? Biochim Biophys Acta Mol Basis Dis 2014; 1842:2329-2343. [PMID: 25128743 DOI: 10.1016/j.bbadis.2014.08.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/02/2014] [Accepted: 08/07/2014] [Indexed: 12/17/2022]
Abstract
Insulin resistance is one of the key components of the metabolic syndrome and it eventually leads to the development of type 2 diabetes, making it one of the biggest medical problems of modern society. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are tightly associated with insulin resistance. While it is fairly clear that insulin resistance causes hepatic steatosis, it is not known if NAFLD causes insulin resistance. Hepatic inflammation and lipid accumulation are believed to be the main drivers of hepatic insulin resistance in NAFLD. Here we give an overview of the evidence linking hepatic lipid accumulation to the development of insulin resistance, including the accumulation of triacylglycerol and lipid metabolites, such as diacylglycerol and ceramides. In particular, we discuss the role of obesity in this relation by reviewing the current evidence in terms of the reported changes in body weight and/or adipose tissue mass. We further discuss whether the activation or inhibition of inflammatory pathways, Kupffer cells and other immune cells influences the development of insulin resistance. We show that, in contrast to what is commonly believed, neither hepatic steatosis nor hepatic inflammation is sufficient to cause insulin resistance. Many studies show that obesity cannot be ignored as an underlying factor in this relationship and NAFLD is therefore less likely to be one of the main drivers of insulin resistance.
Collapse
Affiliation(s)
- Nanda Gruben
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Ronit Shiri-Sverdlov
- Maastricht University, Department of Molecular Genetics, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | - Debby P Y Koonen
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Marten H Hofker
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
657
|
Beneficial effects of heat-treated Enterococcus faecalis FK-23 on high-fat diet-induced hepatic steatosis in mice. Br J Nutr 2014; 112:868-75. [PMID: 25089585 DOI: 10.1017/s0007114514001792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A high-fat diet (HFD) is one of the causes of hepatic steatosis. We previously demonstrated that Enterococcus faecalis FK-23 (FK-23), a type of lactic acid bacteria, exhibits an anti-obesity effect in mice fed a HFD. In the present study, we examined the effects of FK-23 on HFD-induced hepatic steatosis. Male C57BL/6 mice were divided into four groups and given one of four treatments: standard diet (SD); standard diet supplemented with FK-23 (SD+FK); HFD; or HFD supplemented with FK-23 (HFD+FK). For the administration of FK-23, the drinking water was supplemented with FK-23 at a concentration of 2% (w/w). After 11 weeks, histological findings revealed hepatic steatosis in the liver of HFD-fed mice; however, this effect was attenuated by the administration of FK-23. The expression levels of genes involved in fatty acid oxidation in the liver tissue were significantly reduced in the HFD group compared with the SD group, but FK-23 supplementation tended to up-regulate the expression levels of these genes. Our findings show that the inhibitory effect of FK-23 against hepatic steatosis in HFD-fed mice can be explained by the prevention of fat accumulation in the liver through the modulation of the activities of genes involved in hepatic fatty acid oxidation.
Collapse
|
658
|
Matikainen N, Adiels M, Söderlund S, Stennabb S, Ahola T, Hakkarainen A, Borén J, Taskinen MR. Hepatic lipogenesis and a marker of hepatic lipid oxidation, predict postprandial responses of triglyceride-rich lipoproteins. Obesity (Silver Spring) 2014; 22:1854-9. [PMID: 24890344 DOI: 10.1002/oby.20781] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/21/2014] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Postprandial hypertriglyceridemia is an important risk factor for cardiovascular disease. The mechanisms are still unclear. Here it was tested if hepatic de novo lipogenesis (DNL) and lipid oxidation influence the postprandial responses of triglyceride-rich lipoproteins (TRL) in humans. METHODS The contribution of hepatic DNL to hepatic TRL production was analyzed in 67 men and women with a moderate range of BMI after a fat-rich meal. Also, lipase activities, liver fat, and 3-OH-butyrate were quantitated as an indicator of β-oxidation. Lipoproteins and metabolic markers were measured in fasting and postprandial blood samples. RESULTS Postprandial DNL correlates with postprandial TG and apolipoprotein (apo) C-III responses in plasma and with TG, apoB48 and apoB100 responses in TRLs and their larger remnant particles. Fasting and 8-h postprandial DNL was inversely related to 3-OH-butyrate but not to liver fat content. Fasting apoC-III and 3-OH-butyrate, but not liver fat, independently predicted fasting DNL. CONCLUSIONS The fasting and 8-h postprandial rate of DNL was inversely associated with the hepatic lipid oxidation in humans. DNL contributes significantly to the TG content in TRLs but not to the amount of liver fat, suggesting that an imbalance between DNL and fat oxidation contributes to postprandial atherogenic dyslipidemia.
Collapse
Affiliation(s)
- Niina Matikainen
- Department of Medicine, Cardiovascular Research Unit, Diabetes and Obesity Research Program, Heart and Lung Center, University of Helsinki, Finland; Division of Endocrinology, Helsinki University Central Hospital, University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
659
|
Dullaart RP, van den Berg EH, van der Klauw MM, Blokzijl H. Low normal thyroid function attenuates serum alanine aminotransferase elevations in the context of metabolic syndrome and insulin resistance in white people. Clin Biochem 2014; 47:1028-32. [PMID: 24769275 DOI: 10.1016/j.clinbiochem.2014.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/08/2014] [Accepted: 04/13/2014] [Indexed: 12/26/2022]
|
660
|
McIntosh AL, Huang H, Storey SM, Landrock KK, Landrock D, Petrescu AD, Gupta S, Atshaves BP, Kier AB, Schroeder F. Human FABP1 T94A variant impacts fatty acid metabolism and PPAR-α activation in cultured human female hepatocytes. Am J Physiol Gastrointest Liver Physiol 2014; 307:G164-76. [PMID: 24875102 PMCID: PMC4101680 DOI: 10.1152/ajpgi.00369.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/27/2014] [Indexed: 02/07/2023]
Abstract
Although human liver fatty acid-binding protein (FABP1) T94A variant has been associated with nonalcoholic fatty liver disease and reduced ability of fenofibrate to lower serum triglycerides (TG) to target levels, molecular events leading to this phenotype are poorly understood. Cultured primary hepatocytes from female human subjects expressing the FABP1 T94A variant exhibited increased neutral lipid (TG, cholesteryl ester) accumulation associated with (1) upregulation of total FABP1, a key protein stimulating mitochondrial glycerol-3-phosphate acyltransferase (GPAM), the rate-limiting enzyme in lipogenesis; (2) increased mRNA expression of key enzymes in lipogenesis (GPAM, LPIN2) in heterozygotes; (3) decreased mRNA expression of microsomal triglyceride transfer protein; (4) increased secretion of ApoB100 but not TG; (5) decreased long-chain fatty acid (LCFA) β-oxidation. TG accumulation was not due to any increase in LCFA uptake, de novo lipogenesis, or the alternate monoacylglycerol O-acyltransferase pathway in lipogenesis. Despite increased expression of total FABP1 mRNA and protein, fenofibrate-mediated FABP1 redistribution to nuclei and ligand-induced peroxisome proliferator-activated receptor (PPAR-α) transcription of LCFA β-oxidative enzymes (carnitine palmitoyltransferase 1A, carnitine palmitoyltransferase 2, and acyl-coenzyme A oxidase 1, palmitoyl) were attenuated in FABP1 T94A hepatocytes. Although the phenotype of FABP1 T94A variant human hepatocytes exhibits some similarities to that of FABP1-null or PPAR-α-null hepatocytes and mice, expression of FABP1 T94A variant did not abolish or reduce ligand binding. Thus the FABP1 T94A variant represents an altered/reduced function mutation resulting in TG accumulation.
Collapse
Affiliation(s)
| | - Huan Huang
- Departments of Physiology and Pharmacology, and
| | | | | | - Danilo Landrock
- Pathobiology, Texas A & M University, College Station, Texas
| | | | - Shipra Gupta
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Ann B Kier
- Pathobiology, Texas A & M University, College Station, Texas
| | | |
Collapse
|
661
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological change characterized by the accumulation of triglycerides in hepatocytes and has frequently been associated with obesity, type 2 diabetes mellitus, hyperlipidemia, and insulin resistance. It is an increasingly recognized condition that has become the most common liver disorder in developed countries, affecting over one-third of the population and is associated with increased cardiovascular- and liver-related mortality. NAFLD is a spectrum of disorders, beginning as simple steatosis. In about 15% of all NAFLD cases, simple steatosis can evolve into non-alcoholic steatohepatitis, a medley of inflammation, hepatocellular injury, and fibrosis, often resulting in cirrhosis and even hepatocellular cancer. However, the molecular mechanism underlying NAFLD progression is not completely understood. Its pathogenesis has often been interpreted by the “double-hit” hypothesis. The primary insult or the “first hit” includes lipid accumulation in the liver, followed by a “second hit” in which proinflammatory mediators induce inflammation, hepatocellular injury, and fibrosis. Nowadays, a more complex model suggests that fatty acids (FAs) and their metabolites may be the true lipotoxic agents that contribute to NAFLD progression; a multiple parallel hits hypothesis has also been suggested. In NAFLD patients, insulin resistance leads to hepatic steatosis via multiple mechanisms. Despite the excess hepatic accumulation of FAs in NAFLD, it has been described that not only de novo FA synthesis is increased, but FAs are also taken up from the serum. Furthermore, a decrease in mitochondrial FA oxidation and secretion of very-low-density lipoproteins has been reported. This review discusses the molecular mechanisms that underlie the pathophysiological changes of hepatic lipid metabolism that contribute to NAFLD.
Collapse
Affiliation(s)
- Alba Berlanga
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Esther Guiu-Jurado
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - José Antonio Porras
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain ; Department of Internal Medicine, Hospital Universitari Joan XXIII Tarragona, Tarragona, Spain
| | - Teresa Auguet
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain ; Department of Internal Medicine, Hospital Universitari Joan XXIII Tarragona, Tarragona, Spain
| |
Collapse
|
662
|
Kani AH, Alavian SM, Esmaillzadeh A, Adibi P, Azadbakht L. Effects of a novel therapeutic diet on liver enzymes and coagulating factors in patients with non-alcoholic fatty liver disease: A parallel randomized trial. Nutrition 2014; 30:814-21. [PMID: 24984998 DOI: 10.1016/j.nut.2013.11.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 01/27/2023]
Abstract
OBJECTIVE There are several reports regarding the role of therapeutic diets for patients with non-alcoholic fatty liver disease (NAFLD). Therefore, the aim of this study was to determine the effects of a low-calorie, low-carbohydrate soy-containing diet on lipid profiles, liver enzymes, and coagulating factors in patients with NAFLD. METHOD This was a randomized parallel clinical trial involving 45 patients with NAFLD. The participants consumed three kinds of diets for 8 wk. Patients were randomly assigned to consume a low-calorie diet; a low-calorie, low-carbohydrate diet; or a low-calorie, low-carbohydrate soy-containing diet. Measurements were done according to the standard method. RESULTS Changes in weight were not significantly different in the three groups. The low-calorie, low-carbohydrate soy-containing diet could reduce alanine aminotransferase (-15.2 ± 12.1 versus -6.8 ± 4.6 in the low-calorie, low-carbohydrate diet, and -6.4 ± 4.4 IU/L in the low-calorie diet; P = 0.02) and serum fibrinogen levels (-49.1 ± 60.1 versus -12.9 ± 8.1 and -17.4 ± 8.4 g/L, respectively; P = 0.01). Reductions in aspartate aminotransferase were significantly higher in the low-calorie, low-carbohydrate soy-containing group. Changes in lipid profiles did not differ significantly between the groups. The soy-containing diet did reduce malondialdehyde more than the other diets (P = 0.01). CONCLUSION A low-calorie, low-carbohydrate soy-containing diet could have beneficial effects on liver enzymes, malondialdehyde, and serum fibrinogen levels in patients with NAFLD.
Collapse
Affiliation(s)
- Ali Hashemi Kani
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ahmad Esmaillzadeh
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi
- Integrative Functional Gastroenterology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Azadbakht
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
663
|
Thioesterase superfamily member 2 (Them2) and phosphatidylcholine transfer protein (PC-TP) interact to promote fatty acid oxidation and control glucose utilization. Mol Cell Biol 2014; 34:2396-408. [PMID: 24732803 DOI: 10.1128/mcb.01601-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Thioesterase superfamily member 2 (Them2) is a mitochondrion-associated long-chain fatty acyl coenzyme A (CoA) thioesterase that is highly expressed in the liver and oxidative tissues. Them2 activity in vitro is increased when it interacts with phosphatidylcholine transfer protein (PC-TP), a cytosolic lipid binding protein. Them2-/- and Pctp-/- mice exhibit enhanced hepatic insulin sensitivity and increased adaptive thermogenesis, and Them2-/- mice are also resistant to diet-induced hepatic steatosis. Although we showed previously that a Them2-PC-TP complex suppresses insulin signaling, the enzymatic activity of Them2 suggests additional direct involvement in regulating hepatic nutrient homeostasis. Here we used cultured primary hepatocytes to elucidate biochemical and cellular mechanisms by which Them2 and PC-TP regulate lipid and glucose metabolism. Under conditions simulating fasting, Them2-/- and Pctp-/- hepatocytes each exhibited decreased rates of fatty acid oxidation and gluconeogenesis. In results indicative of Them2-dependent regulation by PC-TP, chemical inhibition of PC-TP failed to reproduce these changes in Them2-/- hepatocytes. In contrast, rates of glucose oxidation and lipogenesis in the presence of high glucose concentrations were decreased only in Them2-/- hepatocytes. These findings reveal a primary role for Them2 in promoting mitochondrial oxidation of fatty acids and glucose in the liver.
Collapse
|
664
|
BL153 partially prevents high-fat diet induced liver damage probably via inhibition of lipid accumulation, inflammation, and oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:674690. [PMID: 24803983 PMCID: PMC3997087 DOI: 10.1155/2014/674690] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/20/2014] [Indexed: 02/08/2023]
Abstract
The present study was to investigate whether a magnolia extract, named BL153, can prevent obesity-induced liver damage and identify the possible protective mechanism. To this end, obese mice were induced by feeding with high fat diet (HFD, 60% kcal as fat) and the age-matched control mice were fed with control diet (10% kcal as fat) for 6 months. Simultaneously these mice were treated with or without BL153 daily at 3 dose levels (2.5, 5, and 10 mg/kg) by gavage. HFD feeding significantly increased the body weight and the liver weight. Administration of BL153 significantly reduced the liver weight but without effects on body weight. As a critical step of the development of NAFLD, hepatic fibrosis was induced in the mice fed with HFD, shown by upregulating the expression of connective tissue growth factor and transforming growth factor beta 1, which were significantly attenuated by BL153 in a dose-dependent manner. Mechanism study revealed that BL153 significantly suppressed HFD induced hepatic lipid accumulation and oxidative stress and slightly prevented liver inflammation. These results suggest that HFD induced fibrosis in the liver can be prevented partially by BL153, probably due to reduction of hepatic lipid accumulation, inflammation and oxidative stress.
Collapse
|
665
|
Modes-of-Action Related to Repeated Dose Toxicity: Tissue-Specific Biological Roles of PPAR γ Ligand-Dependent Dysregulation in Nonalcoholic Fatty Liver Disease. PPAR Res 2014; 2014:432647. [PMID: 24772164 PMCID: PMC3977565 DOI: 10.1155/2014/432647] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/13/2014] [Accepted: 01/24/2014] [Indexed: 12/17/2022] Open
Abstract
Comprehensive understanding of the precise mode of action/adverse outcome pathway (MoA/AOP) of chemicals becomes a key step towards superseding the current repeated dose toxicity testing methodology with new generation predictive toxicology tools. The description and characterization of the toxicological MoA leading to non-alcoholic fatty liver disease (NAFLD) are of specific interest, due to its increasing incidence in the modern society. Growing evidence stresses on the PPAR γ ligand-dependent dysregulation as a key molecular initiating event (MIE) for this adverse effect. The aim of this work was to analyze and systematize the numerous scientific data about the steatogenic role of PPAR γ . Over 300 papers were ranked according to preliminary defined criteria and used as reliable and significant sources of data about the PPAR γ -dependent prosteatotic MoA. A detailed analysis was performed regarding proteins which PPAR γ -mediated expression changes had been confirmed to be prosteatotic by most experimental evidence. Two probable toxicological MoAs from PPAR γ ligand binding to NAFLD were described according to the Organisation for Economic Cooperation and Development (OECD) concepts: (i) PPAR γ activation in hepatocytes and (ii) PPAR γ inhibition in adipocytes. The possible events at different levels of biological organization starting from the MIE to the organ response and the connections between them were described in details.
Collapse
|
666
|
Hughes AN, Oxford JT. A lipid-rich gestational diet predisposes offspring to nonalcoholic fatty liver disease: a potential sequence of events. Hepat Med 2014; 6:15-23. [PMID: 24696627 PMCID: PMC3953741 DOI: 10.2147/hmer.s57500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome. It affects 20%–30% of the US population, and it is increasing worldwide. Recently, the role of lipid-rich maternal gestational nutrition in spurring the development of NAFLD among offspring has been indicated. Fetal predisposition to NAFLD involves numerous physiological reroutings that are initiated by increased delivery of nonesterified fatty acids to the fetal liver. Hampered β-oxidation, uncontrolled oxidative stress, increased triacylglycerol synthesis, and the endoplasmic reticulum unfolded protein response are all implicated in sculpting a hepatic phenotype with a propensity to develop NAFLD in the postnatal state. This review suggests a mechanism that integrates outcomes reported by a variety of studies conducted in an analysis of fetal hepatic metabolic capacity amid the maternal consumption of a high-fat diet. Potential preventive measures and therapies for use both as part of prenatal nutrition and for those at risk for the development of NAFLD are also discussed.
Collapse
Affiliation(s)
- Alexandria N Hughes
- Department of Biological Sciences, Biomolecular Research Center, Boise State University, Boise, ID, USA
| | - Julia Thom Oxford
- Department of Biological Sciences, Biomolecular Research Center, Boise State University, Boise, ID, USA
| |
Collapse
|
667
|
Zhang X, Xie X, Heckmann BL, Saarinen AM, Czyzyk TA, Liu J. Targeted disruption of G0/G1 switch gene 2 enhances adipose lipolysis, alters hepatic energy balance, and alleviates high-fat diet-induced liver steatosis. Diabetes 2014; 63:934-46. [PMID: 24194501 PMCID: PMC3931401 DOI: 10.2337/db13-1422] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent biochemical and cell-based studies identified G0/G1 switch gene 2 (G0S2) as an inhibitor of adipose triglyceride lipase (ATGL), a key mediator of intracellular triacylglycerol (TG) mobilization. Here, we show that upon fasting, G0S2 protein expression exhibits an increase in liver and a decrease in adipose tissue. Global knockout of G0S2 in mice enhanced adipose lipolysis and attenuated gain of body weight and adiposity. More strikingly, G0S2 knockout mice displayed a drastic decrease in hepatic TG content and were resistant to high-fat diet (HFD)-induced liver steatosis, both of which were reproduced by liver-specific G0S2 knockdown. Mice with hepatic G0S2 knockdown also showed increased ketogenesis, accelerated gluconeogenesis, and decelerated glycogenolysis. Conversely, overexpression of G0S2 inhibited fatty acid oxidation in mouse primary hepatocytes and caused sustained steatosis in liver accompanied by deficient TG clearance during the fasting-refeeding transition. In response to HFD, there was a profound increase in hepatic G0S2 expression in the fed state. Global and hepatic ablation of G0S2 both led to improved insulin sensitivity in HFD-fed mice. Our findings implicate a physiological role for G0S2 in the control of adaptive energy response to fasting and as a contributor to obesity-associated liver steatosis.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, AZ
- HEAL Program, Mayo Clinic in Arizona, Scottsdale, AZ
| | - Xitao Xie
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, AZ
- HEAL Program, Mayo Clinic in Arizona, Scottsdale, AZ
| | - Bradlee L. Heckmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, AZ
- HEAL Program, Mayo Clinic in Arizona, Scottsdale, AZ
- Mayo Graduate School, Rochester, MN
| | - Alicia M. Saarinen
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, AZ
- HEAL Program, Mayo Clinic in Arizona, Scottsdale, AZ
| | - Traci A. Czyzyk
- HEAL Program, Mayo Clinic in Arizona, Scottsdale, AZ
- Department of Physiology and Biomedical Engineering, Mayo Clinic in Arizona, Scottsdale, AZ
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, AZ
- HEAL Program, Mayo Clinic in Arizona, Scottsdale, AZ
- Corresponding author: Jun Liu,
| |
Collapse
|
668
|
Abril N, Ruiz-Laguna J, García-Sevillano MÁ, Mata AM, Gómez-Ariza JL, Pueyo C. Heterologous microarray analysis of transcriptome alterations in Mus spretus mice living in an industrial settlement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2183-2192. [PMID: 24460498 DOI: 10.1021/es4053973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work demonstrates the successful application of a commercial oligonucleotide microarray containing Mus musculus whole-genome probes to assess the biological effects of an industrial settlement on inhabitant Mus spretus mice. The transcriptomes of animals in the industrial settlement contrasted with those of specimens collected from a nearby protected ecosystem. Proteins encoded by the differentially expressed genes were broadly categorized into six main functional classes. Immune-associated genes were mostly induced and related to innate and acquired immunity and inflammation. Genes sorted into the stress-response category were mainly related to oxidative-stress tolerance and biotransformation. Metabolism-associated genes were mostly repressed and related to lipid metabolic pathways; these included genes that encoded 11 of the 20 cholesterol biosynthetic pathway enzymes. Crosstalk between members of different functional categories was also revealed, including the repression of serine-protease genes and the induction of protease-inhibitor genes to control the inflammatory response. Absolute quantification of selected transcripts was performed via RT-PCR to verify the microarray results and assess interindividual variability. Microarray data were further validated by immunoblotting and by cholesterol and protein-thiol oxidation level determinations. Reported data provide a broad impression of the biological consequences of residing in an industrial area.
Collapse
Affiliation(s)
- Nieves Abril
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), Severo Ochoa Building, University of Córdoba , Rabanales Campus, 14071 Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
669
|
Liu Y, Ma Z, Zhao C, Wang Y, Wu G, Xiao J, McClain CJ, Li X, Feng W. HIF-1α and HIF-2α are critically involved in hypoxia-induced lipid accumulation in hepatocytes through reducing PGC-1α-mediated fatty acid β-oxidation. Toxicol Lett 2014; 226:117-23. [PMID: 24503013 DOI: 10.1016/j.toxlet.2014.01.033] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 02/07/2023]
Abstract
During periods of cellular hypoxia, hepatocytes adapt to consume less oxygen by shifting energy production from mitochondrial fatty acid β-oxidation to glycolysis. One of the earliest responses to pathologic hypoxia is the activation of the hypoxia-inducible factor (HIF). In the present study, we examined whether HIF-1 and HIF-2 were involved in the regulation of fatty acid synthesis and β-oxidation. We showed that hypoxia induced fat accumulation in the livers of mice and in HepG2 cells. These hypoxia-induced changes in fatty acid metabolism were mediated by suppressing fatty acid β-oxidation, without significantly influencing fatty acid synthesis. Exposing hepatocytes to 1% O2 reduced the mRNA expression of carnitine palmitoyltransferase 1 (CPT-1), which catalyzes the rate-limiting step in the mitochondrial import of fatty acids for β-oxidation. Moreover, hypoxia exposure reduced proliferator-activated receptor-γ coactivator-1α (PGC-1α) protein levels, which plays an important role in regulation of β-oxidation. Exposure of HIF-1α or HIF-2α deficient hepatocytes to hypoxia abrogated the reduction in PGC-1α and CPT-1 expression and cellular lipid accumulation observed in normal hepatocytes exposed to hypoxia. These results suggest that both HIF-1α and HIF-2α are involved in hypoxia-induced lipid accumulation in hepatocytes via reducing PGC-1α mediated fatty acid β-oxidation.
Collapse
Affiliation(s)
- Yanlong Liu
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Departments of Medicine and Pharmacology and Toxicology, University of Louisville, Louisville, KY USA
| | - Zhenhua Ma
- Departments of Medicine and Pharmacology and Toxicology, University of Louisville, Louisville, KY USA; First Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Cuiqing Zhao
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Departments of Medicine and Pharmacology and Toxicology, University of Louisville, Louisville, KY USA; Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Yuhua Wang
- Departments of Medicine and Pharmacology and Toxicology, University of Louisville, Louisville, KY USA; College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Guicheng Wu
- Departments of Medicine and Pharmacology and Toxicology, University of Louisville, Louisville, KY USA; Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Jian Xiao
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Craig J McClain
- Departments of Medicine and Pharmacology and Toxicology, University of Louisville, Louisville, KY USA; Robley Rex Louisville VAMC, Louisville, KY USA
| | - Xiaokun Li
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenke Feng
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Departments of Medicine and Pharmacology and Toxicology, University of Louisville, Louisville, KY USA.
| |
Collapse
|
670
|
Lin S, Xiao K, Liu Y, Su P, Chen P, Zhang Y, Bai Y. Omega-3 polyunsaturated fatty acids for non-alcoholic fatty liver disease. Cochrane Database Syst Rev 2013. [DOI: 10.1002/14651858.cd010838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Siheng Lin
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; Department of Gastroenterology; 3 Qingchun Road East Hangzhou Zhejiang China 310016
- Nanfang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology; No.1838, Guangzhou North Avenue Guangzhou Guangdong China 510515
| | - Kun Xiao
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Gastroenterology; No.1838, Guangzhou North Avenue Baiyun District Guangzhou Guangdong China 510515
| | - Yangyang Liu
- Zhiguang Biotechnology Limited Company; Department of Pharmaceutical Research and Development; Room 322, Building F, Guangzhou International Business Incubator, Lanyue Road No. 3 Guangzhou Science Town Guangzhou 510663 China Guangdong
| | - Peizhu Su
- Zhuangjiang Hospital, Southern Medical University; Department of Gastroenterology and Hepatology; NO. 253 Middle Industry Avenue Guangzhou Guangdong China 510280
| | - Pingyan Chen
- Southern Medical University; Department of Biostatistics; 1838# North Guangzhou Avenue Guangzhou Guangdong China 510515
| | - Yali Zhang
- Nanfang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology; No.1838, Guangzhou North Avenue Guangzhou Guangdong China 510515
| | - Yang Bai
- Nanfang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology; No.1838, Guangzhou North Avenue Guangzhou Guangdong China 510515
| |
Collapse
|
671
|
Abstract
Cardiovascular disease represents the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD). Patients with NAFLD exhibit an atherogenic dyslipidemia that is characterized by an increased plasma concentration of triglycerides, reduced concentration of high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) particles that are smaller and more dense than normal. The pathogenesis of NAFLD-associated atherogenic dyslipidemia is multifaceted, but many aspects are attributable to manifestations of insulin resistance. Here the authors review the structure, function, and metabolism of lipoproteins, which are macromolecular particles of lipids and proteins that transport otherwise insoluble triglyceride and cholesterol molecules within the plasma. They provide a current explanation of the metabolic perturbations that are observed in the setting of insulin resistance. An improved understanding of the pathophysiology of atherogenic dyslipidemia would be expected to guide therapies aimed at reducing morbidity and mortality in patients with NAFLD.
Collapse
Affiliation(s)
- Edward Fisher
- Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York
| | - David Cohen
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
672
|
Guéant JL, Elakoum R, Ziegler O, Coelho D, Feigerlova E, Daval JL, Guéant-Rodriguez RM. Nutritional models of foetal programming and nutrigenomic and epigenomic dysregulations of fatty acid metabolism in the liver and heart. Pflugers Arch 2013; 466:833-50. [PMID: 23999818 DOI: 10.1007/s00424-013-1339-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/23/2022]
Abstract
Barker's concept of 'foetal programming' proposes that intrauterine growth restriction (IUGR) predicts complex metabolic diseases through relationships that may be further modified by the postnatal environment. Dietary restriction and deficit in methyl donors, folate, vitamin B12, and choline are used as experimental conditions of foetal programming as they lead to IUGR and decreased birth weight. Overfeeding and deficit in methyl donors increase central fat mass and lead to a dramatic increase of plasma free fatty acids (FFA) in offspring. Conversely, supplementing the mothers under protein restriction with folic acid reverses metabolic and epigenomic phenotypes of offspring. High-fat diet or methyl donor deficiency (MDD) during pregnancy and lactation produce liver steatosis and myocardium hypertrophy that result from increased import of FFA and impaired fatty acid β-oxidation, respectively. The underlying molecular mechanisms show dysregulations related with similar decreased expression and activity of sirtuin 1 (SIRT1) and hyperacetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α). High-fat diet and overfeeding impair AMPK-dependent phosphorylation of PGC-1α, while MDD decreases PGC-1α methylation through decreased expression of PRMT1 and cellular level of S-adenosyl methionine. The visceral manifestations of metabolic syndrome are under the influence of endoplasmic reticulum (ER) stress in overnourished animal models. These mechanisms should also deserve attention in the foetal programming effects of MDD since vitamin B12 influences ER stress through impaired SIRT1 deacetylation of HSF1. Taken together, similarities and synergies of high-fat diet and MDD suggest, therefore, considering their consecutive or contemporary influence in the mechanisms of complex metabolic diseases.
Collapse
Affiliation(s)
- Jean-Louis Guéant
- Inserm U954, Nutrition-Genetics-Environmental Risk Exposure (N-GERE), University of Lorraine and University Hospital Center of Nancy, BP 184, 54511, Vandœuvre-lès-Nancy, France,
| | | | | | | | | | | | | |
Collapse
|
673
|
Nassir F, Adewole OL, Brunt EM, Abumrad NA. CD36 deletion reduces VLDL secretion, modulates liver prostaglandins, and exacerbates hepatic steatosis in ob/ob mice. J Lipid Res 2013; 54:2988-97. [PMID: 23964120 DOI: 10.1194/jlr.m037812] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent findings described the role of CD36-mediated signaling in regulating cellular calcium and the release of various bioactive molecules, including the prostaglandins, neurotransmitters, cholecystokinin, and secretin. Here we document the role of CD36 in the secretion of hepatic VLDL. CD36 deletion resulted in 60% suppression of VLDL output in vivo, and VLDL secretion was reduced in vitro using incubated liver slices. The effect of CD36 deletion was mediated by enhancing formation of hepatic prostaglandins D2, F2, and E2. Treatment of CD36-deficient slices with inhibitors of cyclooxygenases reversed the reduction in triglyceride secretion. We also examined the effect of CD36 deletion on the obesity-associated spontaneous steatosis of the ob/ob mouse that is driven by enhanced de novo lipogenesis. Homozygous ob/ob mice lacking CD36 (ob-CD36⁻/⁻) were generated and studied for hepatic triglyceride accumulation and VLDL secretion. Livers of ob/ob mice were steatotic as expected and had 5-fold more CD36 on Kupffer cells and hepatocytes. CD36 deletion exacerbated the steatosis by impairing hepatic triglyceride and apoB secretion through increasing prostaglandin levels. These findings suggest an unappreciated role of CD36 in regulating VLDL secretion, which might have relevance to some forms of fatty liver. They provide insight into the association reported in humans between CD36 protein expression and serum levels of apoB and VLDL particle number.
Collapse
Affiliation(s)
- Fatiha Nassir
- Department of Medicine Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | |
Collapse
|
674
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disease spanning from simple benign steatosis to steatohepatitis with fibrosis and scarring that can eventually lead to cirrhosis. Its prevalence is rising rapidly and is developing into the leading indication for liver transplantation worldwide. Abnormalities in endocrine axes have been associated with NALFD, including hypogonadism, hypothyroidism, GH deficiency and hypercortisolaemia. In some instances, correction of the endocrine defects has been shown to have a beneficial impact. While in patients with type 2 diabetes the association with NAFLD is well established and recognised, there is a more limited appreciation of the condition among common endocrine diseases presenting with hormonal excess or deficiency. In this review, we examine the published data that have suggested a mechanistic link between endocrine abnormalities and NAFLD and summarise the clinical data endorsing these observations.
Collapse
Affiliation(s)
- Jonathan M Hazlehurst
- Centre for Diabetes, Endocrinology and Metabolism, School of Clinical and Experimental Medicine, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2YY, UK
| | | |
Collapse
|