651
|
Abstract
Reactive oxygen species contribute to the pathogenesis of a number of disparate disorders including tissue inflammation, heart failure, hypertension, and atherosclerosis. In response to oxidative stress, cells activate expression of a number of genes, including those required for the detoxification of reactive molecules as well as for the repair and maintenance of cellular homeostasis. In many cases, these induced genes are regulated by transcription factors whose structure, subcellular localization, or affinity for DNA is directly or indirectly regulated by the level of oxidative stress. This review summarizes the recent progress on how cellular redox status can regulate transcription-factor activity and the implications of this regulation for cardiovascular disease.
Collapse
Affiliation(s)
- Hongjun Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
652
|
Finkel M, Cohen H. Models of acetylation and the regulation of longevity: From yeast to humans. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ddmod.2005.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
653
|
Talasz H, Lindner HH, Sarg B, Helliger W. Histone H4-Lysine 20 Monomethylation Is Increased in Promoter and Coding Regions of Active Genes and Correlates with Hyperacetylation. J Biol Chem 2005; 280:38814-22. [PMID: 16166085 DOI: 10.1074/jbc.m505563200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation and acetylation of position-specific lysine residues in the N-terminal tail of histones H3 and H4 play an important role in regulating chromatin structure and function. In the case of H3-Lys(4), H3-Lys(9), H3-Lys(27), and H4-Lys(20), the degree of methylation was variable from the mono- to the di- or trimethylated state, each of which was presumed to be involved in the organization of chromatin and the activation or repression of genes. Here we investigated the interplay between histone H4-Lys(20) mono- and trim-ethylation and H4 acetylation at induced (beta-major/beta-minor glo-bin), repressed (c-myc), and silent (embryonic beta-globin) genes during in vitro differentiation of mouse erythroleukemia cells. By using chromatin immunoprecipitation, we found that the beta-major and beta-minor promoter and the beta-globin coding regions as well as the promoter and the transcribed exon 2 regions of the highly expressed c-myc gene were hyperacetylated and monomethylated at H4-Lys(20). Although activation of the beta-globin gene resulted in an increase in hyperacetylated, monomethylated H4, down-regulation of the c-myc gene did not cause a decrease in hyperacetylated, monomethylated H4-Lys(20), thus showing a stable pattern of histone modifications. Immunofluorescence microscopy studies revealed that monomethylated H4-Lys(20) mainly overlaps with RNA pol II-stained euchromatic regions, thus indicating an association with transcriptionally engaged chromatin. Our chromatin immunoprecipitation results demonstrated that in contrast to trimethylated H4-Lys(20), which was found to inversely correlate with H4 hyper-acetylation, H4-Lys(20) monomethylation is compatible with histone H4 hyperacetylation and correlates with the transcriptionally active or competent chromatin state.
Collapse
Affiliation(s)
- Heribert Talasz
- Biocenter, Division of Clinical Biochemistry, Innsbruck Medical University, A-6020, Innsbruck, Austria.
| | | | | | | |
Collapse
|
654
|
Santoro R, De Lucia F. Many players, one goal: how chromatin states are inherited during cell division. Biochem Cell Biol 2005; 83:332-43. [PMID: 15959559 DOI: 10.1139/o05-021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Replication of genomic material is a process that requires not only high fidelity in the duplication of DNA sequences but also inheritance of the chromatin states. In the last few years enormous effort has been put into elucidating the mechanisms involved in the correct propagation of chromatin states. From all these studies it emerges that an epigenetic network is at the base of this process. A coordinated interplay between histone modifications and histone variants, DNA methylation, RNA components, ATP-dependent chromatin remodeling, and histone-specific assembly factors regulates establishment of the replication timing program, initiation of replication, and propagation of chromatin domains. The aim of this review is to examine, in light of recent findings, how so many players can be coordinated with each other to achieve the same goal, a correct inheritance of the chromatin state.
Collapse
Affiliation(s)
- Raffaella Santoro
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany.
| | | |
Collapse
|
655
|
Zinner R, Albiez H, Walter J, Peters AHFM, Cremer T, Cremer M. Histone lysine methylation patterns in human cell types are arranged in distinct three-dimensional nuclear zones. Histochem Cell Biol 2005; 125:3-19. [PMID: 16215742 DOI: 10.1007/s00418-005-0049-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2005] [Indexed: 01/09/2023]
Abstract
The impact of histone lysine methylation as an essential epigenetic mechanism for gene regulation has been demonstrated by numerous studies where it was functionally and structurally linked to euchromatin and heterochromatin. Most of these data have been obtained by biochemical and two-dimensional (2D)-microscopic techniques providing little information about the global nuclear arrangement of histone modifications. We investigated the 3D architecture and spatial interrelationships of different histone lysine methylation sites (tri-H3K4, mono-H4K20, mono-H3K9, tri-H3K27, tri-H4K20 and tri-H3K9) in various human cell types. Immunofluorescence and confocal microscopy were used together with a quantitative evaluation of 3D images, to reveal spatial relations of specific methylation sites with either centromeres, nascent RNA or with each other. A close association with centromeres was found only for histone methylation sites previously linked to constitutively repressed chromatin. Differences observed in these sites in relation to the cell cycle emphasize the potential relevance of the dynamic properties of heterochromatin for nuclear functions. Nascent RNA was found associated, though to a different degree, with all histone methylation sites, supporting the increasing evidence that transcription occurs across a wide range of the human genome. Finally we demonstrated by simultaneous visualization of different histone lysine methylation sites that methylation patterns are organized in distinct nuclear zones with little apparent intermingling.
Collapse
Affiliation(s)
- Roman Zinner
- Anthropology and Human Genetics, Department of Biology II, Ludwig-Maximilians-University, Grosshadernerstrasse 2, D-82152, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
656
|
Abstract
Silent information regulator 2, a member of NAD+-dependent histone deacetylase in yeast, and its homologs in mice and humans, participate in numerous important cell functions, including cell protection and cell cycle regulation. The sirtuin family members are highly conserved evolutionarily, and are predicted to have a role in cell survival. The science of sirtuins is an emerging field and is expected to contribute significantly to the role of sirtuins in healthy aging in humans. The role of sirtuins in neuronal protection has been studied in lower organisms, such as yeast, worms, flies and rodents. Both yeast Sir2 and mammalian sirtuin proteins are up-regulated under calorie-restricted and resveratrol treatments. Increased sirtuin expression protects cells from various insults. Caloric restriction and antioxidant treatments have shown useful effects in mouse models of aging and Alzheimer's disease (AD) and in limited human AD clinical trials. The role sirtuins may play in modifying and protecting neurons in patients with neurodegenerative diseases is still unknown. However, a recent report of Huntington's disease revealed that Sirtuin protects neurons in a Huntington's disease mouse model, suggesting that sirtuins may protect neurons in patients with neurodegenerative diseases, such as AD. In this review, we discuss the possible mechanisms of sirtuins involved in neuronal protection and the potential therapeutic value of sirtuins in healthy aging and AD.
Collapse
Affiliation(s)
- Thimmappa S Anekonda
- Neurogenetics Laboratory, Neurological Sciences Institute, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | |
Collapse
|
657
|
Mellor J. The dynamics of chromatin remodeling at promoters. Mol Cell 2005; 19:147-57. [PMID: 16039585 DOI: 10.1016/j.molcel.2005.06.023] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 04/01/2005] [Accepted: 06/13/2005] [Indexed: 01/08/2023]
Abstract
The nucleosome, the structural unit of chromatin, is known to play a central role in regulating gene transcription from promoters. The last seven years have spawned a vast amount of data on the enzymes that remodel and modify nucleosomes and the rules governing how transcription factors interact with the epigenetic code on histones. Yet despite this effort, there has yet to emerge a unifying mechanism by which nucleosomes are remodeled during gene regulation. Recent advances have allowed nucleosome dynamics on promoters to be studied in real time, dramatically changing how we think about gene regulation on chromatin templates.
Collapse
Affiliation(s)
- Jane Mellor
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, UK.
| |
Collapse
|
658
|
Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A, Akhtar A. hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 2005; 25:6798-810. [PMID: 16024812 PMCID: PMC1190338 DOI: 10.1128/mcb.25.15.6798-6810.2005] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reversible histone acetylation plays an important role in regulation of chromatin structure and function. Here, we report that the human orthologue of Drosophila melanogaster MOF, hMOF, is a histone H4 lysine K16-specific acetyltransferase. hMOF is also required for this modification in mammalian cells. Knockdown of hMOF in HeLa and HepG2 cells causes a dramatic reduction of histone H4K16 acetylation as detected by Western blot analysis and mass spectrometric analysis of endogenous histones. We also provide evidence that, similar to the Drosophila dosage compensation system, hMOF and hMSL3 form a complex in mammalian cells. hMOF and hMSL3 small interfering RNA-treated cells also show dramatic nuclear morphological deformations, depicted by a polylobulated nuclear phenotype. Reduction of hMOF protein levels by RNA interference in HeLa cells also leads to accumulation of cells in the G(2) and M phases of the cell cycle. Treatment with specific inhibitors of the DNA damage response pathway reverts the cell cycle arrest caused by a reduction in hMOF protein levels. Furthermore, hMOF-depleted cells show an increased number of phospho-ATM and gammaH2AX foci and have an impaired repair response to ionizing radiation. Taken together, our data show that hMOF is required for histone H4 lysine 16 acetylation in mammalian cells and suggest that hMOF has a role in DNA damage response during cell cycle progression.
Collapse
Affiliation(s)
- Mikko Taipale
- European Molecular Biology Laboratory, Gene Expression Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
659
|
Morales V, Regnard C, Izzo A, Vetter I, Becker PB. The MRG domain mediates the functional integration of MSL3 into the dosage compensation complex. Mol Cell Biol 2005; 25:5947-54. [PMID: 15988010 PMCID: PMC1168827 DOI: 10.1128/mcb.25.14.5947-5954.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The male-specific-lethal (MSL) proteins in Drosophila melanogaster serve to adjust gene expression levels in male flies containing a single X chromosome to equal those in females with a double dose of X-linked genes. Together with noncoding roX RNA, MSL proteins form the "dosage compensation complex" (DCC), which interacts selectively with the X chromosome to restrict the transcription-activating histone H4 acetyltransferase MOF (males-absent-on-the-first) to that chromosome. We showed previously that MSL3 is essential for the activation of MOF's nucleosomal histone acetyltransferase activity within an MSL1-MOF complex. By characterizing the MSL3 domain structure and its associated functions, we now found that the nucleic acid binding determinants reside in the N terminus of MSL3, well separable from the C-terminal MRG signatures that form an integrated domain required for MSL1 interaction. Interaction with MSL1 mediates the activation of MOF in vitro and the targeting of MSL3 to the X-chromosomal territory in vivo. An N-terminal truncation that lacks the chromo-related domain and all nucleic acid binding activity is able to trigger de novo assembly of the DCC and establishment of an acetylated X-chromosome territory.
Collapse
Affiliation(s)
- Violette Morales
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstr. 44, 80336 München, Germany
| | | | | | | | | |
Collapse
|
660
|
Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005; 16:4623-35. [PMID: 16079181 PMCID: PMC1237069 DOI: 10.1091/mbc.e05-01-0033] [Citation(s) in RCA: 1041] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sir2 is a NAD+-dependent protein deacetylase that extends lifespan in yeast and worms. This study examines seven human proteins homologous to Sir2 (SIRT1 through SIRT7) for cellular localization, expression profiles, protein deacetylation activity, and effects on human cell lifespan. We found that: 1) three nuclear SIRT proteins (SIRT1, SIRT6, and SIRT7) show different subnuclear localizations: SIRT6 and SIRT7 are associated with heterochromatic regions and nucleoli, respectively, where yeast Sir2 functions; 2) SIRT3, SIRT4, and SIRT5 are localized in mitochondria, an organelle that links aging and energy metabolism; 3) cellular p53 is a major in vivo substrate of SIRT1 deacetylase, but not the other six SIRT proteins; 4) SIRT1, but not the other two nuclear SIRT proteins, shows an in vitro deacetylase activity on histone H4 and p53 peptides; and 5) overexpression of any one of the seven SIRT proteins does not extend cellular replicative lifespan in normal human fibroblasts or prostate epithelial cells. This study supports the notion that multiple human SIRT proteins have evolutionarily conserved and nonconserved functions at different cellular locations and reveals that the lifespan of normal human cells, in contrast to that of lower eukaryotes, cannot be manipulated by increased expression of a single SIRT protein.
Collapse
Affiliation(s)
- Eriko Michishita
- Laboratory of Biosystems and Cancer, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
661
|
|
662
|
Kustatscher G, Hothorn M, Pugieux C, Scheffzek K, Ladurner AG. Splicing regulates NAD metabolite binding to histone macroH2A. Nat Struct Mol Biol 2005; 12:624-5. [PMID: 15965484 DOI: 10.1038/nsmb956] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 05/24/2005] [Indexed: 12/12/2022]
Abstract
Histone macroH2A is a hallmark of mammalian heterochromatin. Here we show that human macroH2A1.1 binds the SirT1-metabolite O-acetyl-ADP-ribose (OAADPR) through its macro domain. The 1.6-A crystal structure and mutants reveal how the metabolite is recognized. Mutually exclusive exon use in the gene H2AFY produces macroH2A1.2, whose tissue distribution differs. MacroH2A1.2 shows only subtle structural changes but cannot bind nucleotides. Alternative splicing may thus regulate the binding of nicotinamide adenine dinucleotide (NAD) metabolites to chromatin.
Collapse
Affiliation(s)
- Georg Kustatscher
- Gene Expression Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
663
|
Abstract
Yeast SIR2, the most evolutionarily conserved deacetylase, plays an essential role in epigenetic silencing at the silent mating type loci and telomeres. SIR2 has been implicated in chromatin silencing and lifespan determination in several organisms. Discovery that Drosophila SIR2 is also involved in epigenetic silencing mediated by the Polycomb group proteins and is physically associated with a complex containing the E(Z) histone methyltransferase has wide implications. These findings suggest possible link of Polycomb system to diverse cellular processes including senescence.
Collapse
Affiliation(s)
- Vivek S Chopra
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | |
Collapse
|
664
|
Avalos JL, Bever KM, Wolberger C. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell 2005; 17:855-68. [PMID: 15780941 DOI: 10.1016/j.molcel.2005.02.022] [Citation(s) in RCA: 336] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 01/27/2005] [Accepted: 02/16/2005] [Indexed: 10/25/2022]
Abstract
Sir2 enzymes form a unique class of NAD(+)-dependent deacetylases required for diverse biological processes, including transcriptional silencing, regulation of apoptosis, fat mobilization, and lifespan regulation. Sir2 activity is regulated by nicotinamide, a noncompetitive inhibitor that promotes a base-exchange reaction at the expense of deacetylation. To elucidate the mechanism of nicotinamide inhibition, we determined ternary complex structures of Sir2 enzymes containing nicotinamide. The structures show that free nicotinamide binds in a conserved pocket that participates in NAD(+) binding and catalysis. Based on our structures, we engineered a mutant that deacetylates peptides by using nicotinic acid adenine dinucleotide (NAAD) as a cosubstrate and is inhibited by nicotinic acid. The characteristics of the altered specificity enzyme establish that Sir2 enzymes contain a single site that participates in catalysis and nicotinamide regulation and provides additional insights into the Sir2 catalytic mechanism.
Collapse
Affiliation(s)
- José L Avalos
- Howard Hughes Medical Institute, Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
665
|
Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW. DNA repair, genome stability, and aging. Cell 2005; 120:497-512. [PMID: 15734682 DOI: 10.1016/j.cell.2005.01.028] [Citation(s) in RCA: 648] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aging can be defined as progressive functional decline and increasing mortality over time. Here, we review evidence linking aging to nuclear DNA lesions: DNA damage accumulates with age, and DNA repair defects can cause phenotypes resembling premature aging. We discuss how cellular DNA damage responses may contribute to manifestations of aging. We review Sir2, a factor linking genomic stability, metabolism, and aging. We conclude with a general discussion of the role of mutant mice in aging research and avenues for future investigation.
Collapse
Affiliation(s)
- David B Lombard
- Howard Hughes Medical Institute, The Children's Hospital, Department of Genetics, Harvard Medical School and, The CBR Institute for Biomedical Research, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
666
|
Saeki H, Ohsumi K, Aihara H, Ito T, Hirose S, Ura K, Kaneda Y. Linker histone variants control chromatin dynamics during early embryogenesis. Proc Natl Acad Sci U S A 2005; 102:5697-702. [PMID: 15821029 PMCID: PMC556016 DOI: 10.1073/pnas.0409824102] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complex transitions in chromatin structure produce changes in genome function during development in metazoa. Linker histones, the last component of nucleosomes to be assembled into chromatin, comprise considerably divergent subtypes as compared with core histones. In all metazoa studied, their composition changes dramatically during early embryogenesis concomitant with zygotic gene activation, leading to distinct functional changes that are still poorly understood. Here, we show that early embryonic linker histone B4, which is maternally expressed, is functionally different from somatic histone H1 in influencing chromatin structure and dynamics. We developed a chromatin assembly system with nucleosome assembly protein-1 as a linker histone chaperone. This assay system revealed that maternal histone B4 allows chromatin to be remodeled by ATP-dependent chromatin remodeling factor, whereas somatic histone H1 prevents this remodeling. Structural analysis shows that histone B4 does not significantly restrict the accessibility of linker DNA. These findings define the functional significance of developmental changes in linker histone variants. We propose a model that holds that maternally expressed linker histones are key molecules specifying nuclear dynamics with respect to embryonic totipotency.
Collapse
Affiliation(s)
- Hideaki Saeki
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
667
|
Pavri R, Lewis B, Kim TK, Dilworth FJ, Erdjument-Bromage H, Tempst P, de Murcia G, Evans R, Chambon P, Reinberg D. PARP-1 Determines Specificity in a Retinoid Signaling Pathway via Direct Modulation of Mediator. Mol Cell 2005; 18:83-96. [PMID: 15808511 DOI: 10.1016/j.molcel.2005.02.034] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2004] [Revised: 01/26/2005] [Accepted: 02/28/2005] [Indexed: 12/20/2022]
Abstract
We show that PARP-1 is indispensable to retinoic acid receptor (RAR)-mediated transcription from the RARbeta2 promoter in a highly purified, reconstituted transcription system and that RA-inducible expression of all RARbeta isoforms is abrogated in PARP-1(-/-) cells in vivo. Importantly, PARP-1 activity was independent of its catalytic domain. PARP-1 directly interacts with RAR and Mediator. Chromatin immunoprecipitation experiments confirmed the presence of PARP-1 and Mediator on RAR-responsive promoters in vivo. Importantly, Mediator was inactive (Cdk8+) under basal conditions but was activated (Cdk8-) upon induction. However, in PARP-1(-/-) cells, Mediator was retained in its inactive state (Cdk8+) upon induction consistent with the absence of gene expression. PARP-1 became dispensable for ligand-dependent transcription in a chromatin reconstituted transcription assay when Mediator was devoid of the Cdk8 module (CRSP). PARP-1 appears to function as a specificity factor regulating the RA-induced switch of Mediator from the inactive (Cdk8+) to the active (Cdk8-) state in RAR-dependent transcription.
Collapse
Affiliation(s)
- Rushad Pavri
- Department of Biochemistry, Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey, 683 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
668
|
Pagans S, Pedal A, North BJ, Kaehlcke K, Marshall BL, Dorr A, Hetzer-Egger C, Henklein P, Frye R, McBurney MW, Hruby H, Jung M, Verdin E, Ott M. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol 2005; 3:e41. [PMID: 15719057 PMCID: PMC546329 DOI: 10.1371/journal.pbio.0030041] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 12/01/2004] [Indexed: 12/11/2022] Open
Abstract
The human immunodeficiency virus (HIV) Tat protein is acetylated by the transcriptional coactivator p300, a necessary step in Tat-mediated transactivation. We report here that Tat is deacetylated by human sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent class III protein deacetylase in vitro and in vivo. Tat and SIRT1 coimmunoprecipitate and synergistically activate the HIV promoter. Conversely, knockdown of SIRT1 via small interfering RNAs or treatment with a novel small molecule inhibitor of the SIRT1 deacetylase activity inhibit Tat-mediated transactivation of the HIV long terminal repeat. Tat transactivation is defective in SIRT1-null mouse embryonic fibroblasts and can be rescued by expression of SIRT1. These results support a model in which cycles of Tat acetylation and deacetylation regulate HIV transcription. SIRT1 recycles Tat to its unacetylated form and acts as a transcriptional coactivator during Tat transactivation. Cycles of Tat acetylation and deacetylation, mediated by human sirtuin 1 (SIRT1), regulate HIV transcription suggesting that SIRT1 could be a therapeutic target
Collapse
Affiliation(s)
- Sara Pagans
- 1Gladstone Institute of Virology and Immunology, University of CaliforniaSan Francisco, CaliforniaUnited States of America
| | - Angelika Pedal
- 1Gladstone Institute of Virology and Immunology, University of CaliforniaSan Francisco, CaliforniaUnited States of America
| | - Brian J North
- 1Gladstone Institute of Virology and Immunology, University of CaliforniaSan Francisco, CaliforniaUnited States of America
| | - Katrin Kaehlcke
- 1Gladstone Institute of Virology and Immunology, University of CaliforniaSan Francisco, CaliforniaUnited States of America
| | - Brett L Marshall
- 1Gladstone Institute of Virology and Immunology, University of CaliforniaSan Francisco, CaliforniaUnited States of America
| | - Alexander Dorr
- 2Applied Tumorvirology, Deutsches KrebsforschungszentrumHeidelbergGermany
| | | | - Peter Henklein
- 3Institute of Biochemistry, Humboldt UniversityBerlinGermany
| | - Roy Frye
- 4Department of Pathology, University of PittsburghPittsburgh, PennsylvaniaUnited States of America
| | | | - Henning Hruby
- 6Department of Pharmaceutical Sciences, Albert-Ludwigs-UniversityFreiburgGermany
| | - Manfred Jung
- 6Department of Pharmaceutical Sciences, Albert-Ludwigs-UniversityFreiburgGermany
| | - Eric Verdin
- 1Gladstone Institute of Virology and Immunology, University of CaliforniaSan Francisco, CaliforniaUnited States of America
| | - Melanie Ott
- 1Gladstone Institute of Virology and Immunology, University of CaliforniaSan Francisco, CaliforniaUnited States of America
- 2Applied Tumorvirology, Deutsches KrebsforschungszentrumHeidelbergGermany
| |
Collapse
|
669
|
Kuzmichev A, Margueron R, Vaquero A, Preissner TS, Scher M, Kirmizis A, Ouyang X, Brockdorff N, Abate-Shen C, Farnham P, Reinberg D. Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc Natl Acad Sci U S A 2005; 102:1859-64. [PMID: 15684044 PMCID: PMC548563 DOI: 10.1073/pnas.0409875102] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in the substrate specificities of factors that irreversibly modify the histone components of chromatin are expected to have a profound effect on gene expression through epigenetics. Ezh2 is a histone-lysine methyltransferase with activity dependent on its association with other components of the Polycomb Repressive Complexes 2 and 3 (PRC2/3). Ezh2 levels are increasingly elevated during prostate cancer progression. Other PRC2/3 components also are elevated in cancer cells. Overexpression of Ezh2 in tissue culture promotes formation of a previously undescribed PRC complex, PRC4, that contains the NAD+-dependent histone deacetylase SirT1 and isoform 2 of the PRC component Eed. Eed2 is expressed in cancer and undifferentiated embryonic stem (ES) cells but is undetectable in normal and differentiated ES cells. The distinct PRCs exhibit differential histone substrate specificities. These findings suggest that formation of a transformation-specific PRC complex may have a major role in resetting patterns of gene expression by regulating chromatin structure.
Collapse
Affiliation(s)
- Andrei Kuzmichev
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
670
|
Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 2005; 280:13560-7. [PMID: 15653680 DOI: 10.1074/jbc.m414670200] [Citation(s) in RCA: 553] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
SIRT3 is one of the seven mammalian sirtuin homologs of the yeast Sir2 gene, which mediates the effect of caloric restriction on life span extension in yeast and Caenorhabditis elegans. Because adipose tissue is essential in energy homeostasis and also plays a role in life span determination, we decided to investigate the function of sirtuin members in fat. We report here that murine SIRT3 is expressed in brown adipose tissue and is localized on the mitochondria inner membrane. Caloric restriction activates SIRT3 expression in both white and brown adipose. Additionally, cold exposure up-regulates SIRT3 expression in brown fat, whereas elevated climate temperature reduces the expression. Enforced expression of SIRT3 in the HIB1B brown adipocytes enhances the expression of the uncoupling protein PGC-1alpha, UCP1, and a series of mitochondria-related genes. Both ADP-ribosyltransferase and deacetylase activities of SIRT3 are required for this action. Furthermore, the SIRT3 deacetylase mutant exhibits a dominant negative effect by inhibiting UCP1 expression. This inhibitive effect can be abolished by the coexpression of PGC-1alpha, indicating a major role of PGC-1alpha in the SIRT3 action. In addition, SIRT3 stimulates CREB phosphorylation, which reportedly activates PGC-1alpha promoter directly. Functionally, sustained expression of SIRT3 decreases membrane potential and reactive oxygen species production while increasing cellular respiration. Finally, SIRT3, along with genes related to mitochondrial function, is down-regulated in the brown adipose tissue of several genetically obese mice. In summary, our results demonstrate that SIRT3 activates mitochondria functions and plays an important role in adaptive thermogenesis in brown adipose.
Collapse
Affiliation(s)
- Tong Shi
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
671
|
Blander G, Olejnik J, Krzymanska-Olejnik E, McDonagh T, Haigis M, Yaffe MB, Guarente L. SIRT1 shows no substrate specificity in vitro. J Biol Chem 2005; 280:9780-5. [PMID: 15640142 DOI: 10.1074/jbc.m414080200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
SIR2 is a key regulator of the aging process in many model organisms. The human ortholog SIRT1 plays a pivotal role in the regulation of cellular differentiation, metabolism, cell cycle, and apoptosis. SIRT1 is an NAD(+)-dependent deacetylase, and its enzymatic activity may be regulated by cellular energy. There is a growing number of known SIRT1 substrates that contain epsilon-acetyl lysine but for which no obvious consensus sequence has been defined. In this study, we developed a novel unbiased method to identify deacetylase sequence specificity using oriented peptide libraries containing acetylated lysine. Following incubation with SIRT1, the subset of deacetylated peptides was selectively captured using a photocleavable N-hydroxysuccinimide (NHS)-biotin linker and streptavidin beads and analyzed using mass spectrometry and Edman degradation. These studies revealed that substrate recognition by SIRT1 does not depend on the amino acid sequence proximate to the acetylated lysine. This result brings us one step closer to understanding how SIRT1 and possibly other protein deacetylases chose their substrate.
Collapse
Affiliation(s)
- Gil Blander
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
672
|
In Brief. Nat Rev Mol Cell Biol 2004. [DOI: 10.1038/nrm1534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|