651
|
Dickinson MH, Muijres FT. The aerodynamics and control of free flight manoeuvres in Drosophila. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150388. [PMID: 27528778 PMCID: PMC4992712 DOI: 10.1098/rstb.2015.0388] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2016] [Indexed: 11/12/2022] Open
Abstract
A firm understanding of how fruit flies hover has emerged over the past two decades, and recent work has focused on the aerodynamic, biomechanical and neurobiological mechanisms that enable them to manoeuvre and resist perturbations. In this review, we describe how flies manipulate wing movement to control their body motion during active manoeuvres, and how these actions are regulated by sensory feedback. We also discuss how the application of control theory is providing new insight into the logic and structure of the circuitry that underlies flight stability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.
Collapse
Affiliation(s)
- Michael H Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Florian T Muijres
- Wageningen University and Research Center, Wageningen, The Netherlands
| |
Collapse
|
652
|
Comparison of Model Predictions and Laboratory Observations of Transgene Frequencies in Continuously-Breeding Mosquito Populations. INSECTS 2016; 7:insects7040047. [PMID: 27669312 PMCID: PMC5198195 DOI: 10.3390/insects7040047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/29/2016] [Accepted: 09/09/2016] [Indexed: 11/16/2022]
Abstract
The persistence of transgenes in the environment is a consideration in risk assessments of transgenic organisms. Combining mathematical models that predict the frequency of transgenes and experimental demonstrations can validate the model predictions, or can detect significant biological deviations that were neither apparent nor included as model parameters. In order to assess the correlation between predictions and observations, models were constructed to estimate the frequency of a transgene causing male sexual sterility in simulated populations of a malaria mosquito Anopheles gambiae that were seeded with transgenic females at various proportions. Concurrently, overlapping-generation laboratory populations similar to those being modeled were initialized with various starting transgene proportions, and the subsequent proportions of transgenic individuals in populations were determined weekly until the transgene disappeared. The specific transgene being tested contained a homing endonuclease gene expressed in testes, I-PpoI, that cleaves the ribosomal DNA and results in complete male sexual sterility with no effect on female fertility. The transgene was observed to disappear more rapidly than the model predicted in all cases. The period before ovipositions that contained no transgenic progeny ranged from as little as three weeks after cage initiation to as long as 11 weeks.
Collapse
|
653
|
Criscione F, Qi Y, Tu Z. GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi. eLife 2016; 5. [PMID: 27644420 PMCID: PMC5061544 DOI: 10.7554/elife.19281] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/12/2016] [Indexed: 12/02/2022] Open
Abstract
Despite their importance in sexual differentiation and reproduction, Y chromosome genes are rarely described because they reside in repeat-rich regions that are difficult to study. Here, we show that Guy1, a unique Y chromosome gene of a major urban malaria mosquito Anopheles stephensi, confers 100% female lethality when placed on the autosomes. We show that the small GUY1 protein (56 amino acids in length) causes female lethality and that males carrying the transgene are reproductively more competitive than their non-transgenic siblings under laboratory conditions. The GUY1 protein is a primary signal from the Y chromosome that affects embryonic development in a sex-specific manner. Our results have demonstrated, for the first time in mosquitoes, the feasibility of stable transgenic manipulation of sex ratios using an endogenous gene from the male-determining chromosome. These results provide insights into the elusive M factor and suggest exciting opportunities to reduce mosquito populations and disease transmission. DOI:http://dx.doi.org/10.7554/eLife.19281.001 Much like humans, Anopheles mosquitoes have a pair of sex chromosomes that determine whether they are male or female: females have two X chromosomes, while males have an X and a Y. Genetic evidence has indicated that there is a dominant male-determining factor on the Y chromosome that acts as a master switch to cause mosquitoes to develop into males. Mosquitoes that lack a Y chromosome, and hence the male-determining factor, therefore develop into the default female sex. Because only female mosquitoes feed on blood and transmit disease-causing microbes – including those that cause malaria – there is strong interest in identifying the male-determining factor. Introducing this gene into females could allow mosquito sex ratios to be manipulated towards the harmless non-biting males. In 2013, a study of male Anopheles stephensi mosquitoes identified a gene called Guy1 that is only found on the Y chromosome. Criscione et al. – who were involved in the 2013 study – now show that female A. stephensi mosquitoes die when the Guy1 gene is placed on their non-sex chromosomes. Further investigation confirmed that the protein produced from the Guy1 gene kills the females. This protein is an initiating signal that affects embryonic development in a sex-specific manner, making it a strong candidate to be the male determining factor in A. stephensi. This is consistent with previous reports in which the master switches of sex determination could be manipulated to kill specific sexes in fruit flies and nematode worms. Criscione et al. also found that males that carry the inserted Guy1 gene on their non-sex chromosomes – and so could potentially pass it on to both male and female offspring – are reproductively more competitive than their non-modified siblings under laboratory conditions. As the resulting female offspring would not survive, it is thus feasible, in principle, to genetically manipulate the sex ratio of the mosquitoes. A future challenge will be to identify how the protein encoded by the Guy1 gene acts to kill female mosquitoes. This knowledge will help to investigate the feasibility of using genetically modified mosquitoes to reduce Anopheles populations in order to control malaria. DOI:http://dx.doi.org/10.7554/eLife.19281.002
Collapse
Affiliation(s)
- Frank Criscione
- Department of Biochemistry, Virginia Tech, Blacksburg, United States
| | - Yumin Qi
- Department of Biochemistry, Virginia Tech, Blacksburg, United States
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, United States
| |
Collapse
|
654
|
Perkin LC, Adrianos SL, Oppert B. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control. INSECTS 2016; 7:insects7030046. [PMID: 27657138 PMCID: PMC5039559 DOI: 10.3390/insects7030046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/26/2022]
Abstract
Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.
Collapse
Affiliation(s)
- Lindsey C Perkin
- Center for Grain and Animal Health Research, Agricultural Research Service, USDA, 1515 College Avenue, Manhattan, KS 66502, USA.
| | - Sherry L Adrianos
- Center for Grain and Animal Health Research, Agricultural Research Service, USDA, 1515 College Avenue, Manhattan, KS 66502, USA.
| | - Brenda Oppert
- Center for Grain and Animal Health Research, Agricultural Research Service, USDA, 1515 College Avenue, Manhattan, KS 66502, USA.
| |
Collapse
|
655
|
Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol 2016; 34:933-941. [DOI: 10.1038/nbt.3659] [Citation(s) in RCA: 577] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 07/31/2016] [Indexed: 02/06/2023]
|
656
|
Abstract
Malaria continues to impose a significant disease burden on low- and middle-income countries in the tropics. However, revolutionary progress over the last 3 years in nucleic acid sequencing, reverse genetics, and post-genome analyses has generated step changes in our understanding of malaria parasite (Plasmodium spp.) biology and its interactions with its host and vector. Driven by the availability of vast amounts of genome sequence data from Plasmodium species strains, relevant human populations of different ethnicities, and mosquito vectors, researchers can consider any biological component of the malarial process in isolation or in the interactive setting that is infection. In particular, considerable progress has been made in the area of population genomics, with Plasmodium falciparum serving as a highly relevant model. Such studies have demonstrated that genome evolution under strong selective pressure can be detected. These data, combined with reverse genetics, have enabled the identification of the region of the P. falciparum genome that is under selective pressure and the confirmation of the functionality of the mutations in the kelch13 gene that accompany resistance to the major frontline antimalarial, artemisinin. Furthermore, the central role of epigenetic regulation of gene expression and antigenic variation and developmental fate in P. falciparum is becoming ever clearer. This review summarizes recent exciting discoveries that genome technologies have enabled in malaria research and highlights some of their applications to healthcare. The knowledge gained will help to develop surveillance approaches for the emergence or spread of drug resistance and to identify new targets for the development of antimalarial drugs and perhaps vaccines.
Collapse
Affiliation(s)
- Sebastian Kirchner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - B Joanne Power
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Andrew P Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| |
Collapse
|
657
|
Hunter P. Challenges and options for disease vector control: The outbreak of Zika virus in South America and increasing insecticide resistance among mosquitoes have rekindled efforts for controlling disease vectors. EMBO Rep 2016; 17:1370-1373. [PMID: 27596624 DOI: 10.15252/embr.201643233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
658
|
Johnson B. Animal Bytes. APPLIED BIOSAFETY 2016. [DOI: 10.1177/1535676016661771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
659
|
Zamanian M, Andersen EC. Prospects and challenges of CRISPR/Cas genome editing for the study and control of neglected vector-borne nematode diseases. FEBS J 2016; 283:3204-21. [PMID: 27300487 PMCID: PMC5053252 DOI: 10.1111/febs.13781] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/05/2016] [Accepted: 06/13/2016] [Indexed: 01/19/2023]
Abstract
Neglected tropical diseases caused by parasitic nematodes inflict an immense health and socioeconomic burden throughout much of the developing world. Current estimates indicate that more than two billion people are infected with nematodes, resulting in the loss of 14 million disability-adjusted life years per annum. Although these parasites cause significant mortality, they primarily cause chronic morbidity through a wide range of severe clinical ailments. Treatment options for nematode infections are restricted to a small number of anthelmintic drugs, and the rapid expansion of anthelmintic mass drug administration raises concerns of drug resistance. Preservation of existing drugs is necessary, as well as the development of new treatment options and methods of control. We focus this review on how the democratization of CRISPR/Cas9 genome editing technology can be enlisted to improve our understanding of the biology of nematode parasites and our ability to treat the infections they cause. We will first explore how this robust method of genome manipulation can be used to newly exploit the powerful model nematode Caenorhabditis elegans for parasitology research. We will then discuss potential avenues to develop CRISPR/Cas9 editing protocols in filarial nematodes. Lastly, we will propose potential ways in which CRISPR/Cas9 can be used to engineer gene drives that target the transmission of mosquito-borne filarial nematodes.
Collapse
Affiliation(s)
- Mostafa Zamanian
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonILUSA
| | - Erik C. Andersen
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonILUSA
| |
Collapse
|
660
|
Pugh J. Driven to extinction? The ethics of eradicating mosquitoes with gene-drive technologies. JOURNAL OF MEDICAL ETHICS 2016; 42:578-81. [PMID: 27118691 DOI: 10.1136/medethics-2016-103462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/07/2016] [Indexed: 05/14/2023]
Abstract
Mosquito-borne diseases represent a significant global disease burden, and recent outbreaks of such diseases have led to calls to reduce mosquito populations. Furthermore, advances in 'gene-drive' technology have raised the prospect of eradicating certain species of mosquito via genetic modification. This technology has attracted a great deal of media attention, and the idea of using gene-drive technology to eradicate mosquitoes has been met with criticism in the public domain. In this paper, I shall dispel two moral objections that have been raised in the public domain against the use of gene-drive technologies to eradicate mosquitoes. The first objection invokes the concept of the 'sanctity of life' in order to claim that we should not drive an animal to extinction. In response, I follow Peter Singer in raising doubts about general appeals to the sanctity of life, and argue that neither individual mosquitoes nor mosquitoes species considered holistically are appropriately described as bearing a significant degree of moral status. The second objection claims that seeking to eradicate mosquitoes amounts to displaying unacceptable degrees of hubris. Although I argue that this objection also fails, I conclude by claiming that it raises the important point that we need to acquire more empirical data about, inter alia, the likely effects of mosquito eradication on the ecosystem, and the likelihood of gene-drive technology successfully eradicating the intended mosquito species, in order to adequately inform our moral analysis of gene-drive technologies in this context.
Collapse
|
661
|
Ceasar SA, Rajan V, Prykhozhij SV, Berman JN, Ignacimuthu S. Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2333-44. [PMID: 27350235 DOI: 10.1016/j.bbamcr.2016.06.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/26/2022]
Abstract
The clustered, regularly interspaced, short palindromic repeat (CRISPR) and CRISPR associated protein 9 (Cas9) system discovered as an adaptive immunity mechanism in prokaryotes has emerged as the most popular tool for the precise alterations of the genomes of diverse species. CRISPR/Cas9 system has taken the world of genome editing by storm in recent years. Its popularity as a tool for altering genomes is due to the ability of Cas9 protein to cause double-stranded breaks in DNA after binding with short guide RNA molecules, which can be produced with dramatically less effort and expense than required for production of transcription-activator like effector nucleases (TALEN) and zinc-finger nucleases (ZFN). This system has been exploited in many species from prokaryotes to higher animals including human cells as evidenced by the literature showing increasing sophistication and ease of CRISPR/Cas9 as well as increasing species variety where it is applicable. This technology is poised to solve several complex molecular biology problems faced in life science research including cancer research. In this review, we highlight the recent advancements in CRISPR/Cas9 system in editing genomes of prokaryotes, fungi, plants and animals and provide details on software tools available for convenient design of CRISPR/Cas9 targeting plasmids. We also discuss the future prospects of this advanced molecular technology.
Collapse
Affiliation(s)
- S Antony Ceasar
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, Chennai, India; Centre for Plant Sciences and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Vinothkumar Rajan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sergey V Prykhozhij
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jason N Berman
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - S Ignacimuthu
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, Chennai, India; International Scientific Partnership Program, Deanship of Scientific Research, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
662
|
microRNA-309 targets the Homeobox gene SIX4 and controls ovarian development in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2016; 113:E4828-36. [PMID: 27489347 DOI: 10.1073/pnas.1609792113] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Obligatory blood-triggered reproductive strategy is an evolutionary adaptation of mosquitoes for rapid egg development. It contributes to the vectorial capacity of these insects. Therefore, understanding the molecular mechanisms underlying reproductive processes is of particular importance. Here, we report that microRNA-309 (miR-309) plays a critical role in mosquito reproduction. A spatiotemporal expression profile of miR-309 displayed its blood feeding-dependent onset and ovary-specific manifestation in female Aedes aegypti mosquitoes. Antagomir silencing of miR-309 impaired ovarian development and resulted in nonsynchronized follicle growth. Furthermore, the genetic disruption of miR-309 by CRISPR/Cas9 system led to the developmental failure of primary follicle formation. Examination of genomic responses to miR-309 depletion revealed that several pathways associated with ovarian development are down-regulated. Comparative analysis of genes obtained from the high-throughput RNA sequencing of ovarian tissue from the miR-309 antagomir-silenced mosquitoes with those from the in silico computation target prediction identified that the gene-encoding SIX homeobox 4 protein (SIX4) is a putative target of miR-309. Reporter assay and RNA immunoprecipitation confirmed that SIX4 is a direct target of miR-309. RNA interference of SIX4 was able to rescue phenotypic manifestations caused by miR-309 depletion. Thus, miR-309 plays a critical role in mosquito reproduction by targeting SIX4 in the ovary and serves as a regulatory switch permitting a stage-specific degradation of the ovarian SIX4 mRNA. In turn, this microRNA (miRNA)-targeted degradation is required for appropriate initiation of a blood feeding-triggered phase of ovarian development, highlighting involvement of this miRNA in mosquito reproduction.
Collapse
|
663
|
A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci Rep 2016; 6:31139. [PMID: 27484623 PMCID: PMC4971495 DOI: 10.1038/srep31139] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/12/2016] [Indexed: 12/25/2022] Open
Abstract
Genetic control aims to reduce the ability of insect pest populations to cause harm via the release of modified insects. One strategy is to bias the reproductive sex ratio towards males so that a population decreases in size or is eliminated altogether due to a lack of females. We have shown previously that sex ratio distortion can be generated synthetically in the main human malaria vector Anopheles gambiae, by selectively destroying the X-chromosome during spermatogenesis, through the activity of a naturally-occurring endonuclease that targets a repetitive rDNA sequence highly-conserved in a wide range of organisms. Here we describe a CRISPR-Cas9 sex distortion system that targets ribosomal sequences restricted to the member species of the Anopheles gambiae complex. Expression of Cas9 during spermatogenesis resulted in RNA-guided shredding of the X-chromosome during male meiosis and produced extreme male bias among progeny in the absence of any significant reduction in fertility. The flexibility of CRISPR-Cas9 combined with the availability of genomic data for a range of insects renders this strategy broadly applicable for the species-specific control of any pest or vector species with an XY sex-determination system by targeting sequences exclusive to the female sex chromosome.
Collapse
|
664
|
Wolff JN, Tompkins DM, Gemmell NJ, Dowling DK. Mitonuclear interactions, mtDNA-mediated thermal plasticity, and implications for the Trojan Female Technique for pest control. Sci Rep 2016; 6:30016. [PMID: 27443488 PMCID: PMC4956753 DOI: 10.1038/srep30016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/29/2016] [Indexed: 01/27/2023] Open
Abstract
Pest species pose major challenges to global economies, ecosystems, and health. Unfortunately, most conventional approaches to pest control remain costly, and temporary in effect. As such, a heritable variant of the Sterile Insect Technique (SIT) was proposed, based on the introduction of mitochondrial DNA mutations into pest populations, which impair male fertility but have no effects on females. Evidence for this "Trojan Female Technique" (TFT) was recently provided, in the form of a mutation in the mitochondrial cytochrome b gene (mt:Cyt-b) of Drosophila melanogaster which reduces male fertility across diverse nuclear backgrounds. However, recent studies have shown that the magnitude of mitochondrial genetic effects on the phenotype can vary greatly across environments, with mtDNA polymorphisms commonly entwined in genotype-by-environment (G × E) interactions. Here we test whether the male-sterilizing effects previously associated with the mt:Cyt-b mutation are consistent across three thermal and three nuclear genomic contexts. The effects of this mutation were indeed moderated by the nuclear background and thermal environment, but crucially the fertility of males carrying the mutation was invariably reduced relative to controls. This mutation thus constitutes a promising candidate for the further development of the TFT.
Collapse
Affiliation(s)
- Jonci N. Wolff
- School of Biological Sciences, Monash University, Victoria, 3800, Australia
| | | | - Neil J. Gemmell
- Allan Wilson Centre for Molecular Ecology and Evolution, Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Damian K. Dowling
- School of Biological Sciences, Monash University, Victoria, 3800, Australia
| |
Collapse
|
665
|
Chen L, Wang G, Zhu YN, Xiang H, Wang W. Advances and perspectives in the application of CRISPR/Cas9 in insects. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2016; 37:220-8. [PMID: 27469253 PMCID: PMC4978943 DOI: 10.13918/j.issn.2095-8137.2016.4.220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/13/2016] [Indexed: 11/01/2022]
Abstract
Insects compose more than half of all living organisms on earth, playing essential roles in global ecosystems and forming complex relationships with humans. Insect research has significant biological and practical importance. However, the application of genetic manipulation technology has long been restricted to several model insects only, such as gene knockout in Drosophila, which has severely restrained the development of insect biology research. Recently, with the increase in the release of insect genome data and the introduction of the CRISPR/Cas9 system for efficient genetic modification, it has been possible to conduct meaningful functional studies in a broad array of insect species. Here, we summarize the advances in CRISPR/Cas9 in different insect species, discuss methods for its promotion, and consider its application in future insect studies. This review provides detailed information about the application of the CRISPR/Cas9 system in insect research and presents possible ways to improve its use in functional studies and insect pest control.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Genetic Resources & Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gui Wang
- College of Hetao, Bayannaoer Inner Mongolia 015000, China
| | - Ya-Nan Zhu
- State Key Laboratory of Genetic Resources & Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650223, China
| | - Hui Xiang
- State Key Laboratory of Genetic Resources & Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources & Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.
| |
Collapse
|
666
|
Qiao L, Du M, Liang X, Hao Y, He X, Si F, Mei T, Chen B. Tyrosine Hydroxylase is crucial for maintaining pupal tanning and immunity in Anopheles sinensis. Sci Rep 2016; 6:29835. [PMID: 27416870 PMCID: PMC4945905 DOI: 10.1038/srep29835] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/31/2016] [Indexed: 11/09/2022] Open
Abstract
Tyrosine hydroxylase (TH), the initial enzyme in the melanin pathway, catalyzes tyrosine conversion into Dopa. Although expression and regulation of TH have been shown to affect cuticle pigmentation in insects, no direct functional studies to date have focused on the specific physiological processes involving the enzyme during mosquito development. In the current study, silencing of AsTH during the time period of continuous high expression in Anopheles sinensis pupae led to significant impairment of cuticle tanning and thickness, imposing a severe obstacle to eclosion in adults. Meanwhile, deficiency of melanin in interference individuals led to suppression of melanization, compared to control individuals. Consequently, the ability to defend exogenous microorganisms declined sharply. Accompanying down-regulation of the basal expression of five antimicrobial peptide genes resulted in further significant weakening of immunity. TH homologs as well as the composition of upstream transcription factor binding sites at the pupal stage are highly conserved in the Anopheles genus, implying that the TH-mediated functions are crucial in Anopheles. The collective evidence strongly suggests that TH is essential for Anopheles pupae tanning and immunity and provides a reference for further studies to validate the utility of the key genes involved in the melanization pathway in controlling mosquito development.
Collapse
Affiliation(s)
- Liang Qiao
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Minghui Du
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Xin Liang
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Youjin Hao
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Xiu He
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Fengling Si
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Ting Mei
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
667
|
|
668
|
Zhu J, Dong YC, Li P, Niu CY. The effect of silencing 20E biosynthesis relative genes by feeding bacterially expressed dsRNA on the larval development of Chilo suppressalis. Sci Rep 2016; 6:28697. [PMID: 27352880 PMCID: PMC4926234 DOI: 10.1038/srep28697] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) is a robust tool to study gene functions as well as potential for insect pest control. Finding suitable target genes is the key step in the development of an efficient RNAi-mediated pest control technique. Based on the transcriptome of Chilo suppressalis, 24 unigenes which putatively associated with insect hormone biosynthesis were identified. Amongst these, four genes involved in ecdysteroidogenesis i.e., ptth, torso, spook and nm-g were evaluated as candidate targets for function study. The partial cDNA of these four genes were cloned and their bacterially expressed dsRNA were fed to the insects. Results revealed a significant reduction in mRNA abundance of target genes after 3 days. Furthermore, knocked down of these four genes resulted in abnormal phenotypes and high larval mortality. After 15 days, the survival rates of insects in dsspook, dsptth, dstorso, and dsnm-g groups were significantly reduced by 32%, 38%, 56%, and 67% respectively, compared with control. Moreover, about 80% of surviving larvae showed retarded development in dsRNA-treated groups. These results suggest that oral ingestion of bacterially expressed dsRNA in C. suppressalis could silence ptth, torso, spook and nm-g. Oral delivery of bacterially expressed dsRNA provides a simple and potential management scheme against C. suppressalis.
Collapse
Affiliation(s)
- Jian Zhu
- College of Plant Science &Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-Cheng Dong
- College of Plant Science &Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Li
- Pest Control Division, National Agricultural Technology Extension and Service Center, Ministry of Agricultural, Beijing 100125, China
| | - Chang-Ying Niu
- College of Plant Science &Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
669
|
Ndo C, Kopya E, Menze-Djantio B, Toto JC, Awono-Ambene P, Lycett G, Wondji CS. High susceptibility of wild Anopheles funestus to infection with natural Plasmodium falciparum gametocytes using membrane feeding assays. Parasit Vectors 2016; 9:341. [PMID: 27301693 PMCID: PMC4908716 DOI: 10.1186/s13071-016-1626-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/07/2016] [Indexed: 01/15/2023] Open
Abstract
Background Anopheles funestus is a major vector of malaria in sub-Saharan Africa. However, because it is difficult to colonize, research on this mosquito species has lagged behind other vectors, particularly the understanding of its susceptibility and interactions with the Plasmodium parasite. The present study reports one of the first experimental infections of progeny from wild-caught An. funestus with the P. falciparum parasite providing a realistic avenue for the characterisation of immune responses associated with this infection. Methods Wild-fed resting An. funestus females were collected using electric aspirators and kept in cages for four days until they were fully gravid and ready to oviposit. The resulting eggs were reared to adults F1 mosquitoes under insectary conditions. Three to five day-old An. funestus F1 females were fed with infected blood taken from gametocyte carriers using an artificial glass-parafilm feeding system. Feeding rate was recorded and fed mosquitoes were dissected at day 7 to count oocysts in midguts. Parallel experiments were performed with the known Plasmodium-susceptible An. coluzzii Ngousso laboratory strain, to monitor our blood handling procedures and infectivity of gametocytes. Results The results revealed that An. funestus displays high and similar level of susceptibility to Plasmodium infection compared to An. coluzzii, and suggest that our methodology produces robust feeding and infection rates in wild An. funestus progeny. The prevalence of infection in An. funestus mosquitoes was 38.52 % (range 6.25–100 %) and the median oocyst number was 12.5 (range 1–139). In parallel, the prevalence in An. coluzzii was 39.92 % (range 6.85–97.5 %), while the median oocyst number was 32.1 (range 1–351). Conclusions Overall, our observations are in line with the fact that both species are readily infected with P. falciparum, the most common and dangerous malaria parasite in sub-Saharan Africa, and since An. funestus is widespread throughout Africa, malaria vector control research and implementation needs to seriously address this vector species too. Additionally, the present work indicates that it is feasible to generate large number of wild F1 infected An. funestus mosquitoes using membrane feeding assays, which can be used for comprehensive study of interactions with the Plasmodium parasite. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1626-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cyrille Ndo
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. .,Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 2701, Douala, Cameroon.
| | - Edmond Kopya
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Benjamin Menze-Djantio
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Research Unit Liverpool School of Tropical Medicine, OCEAC, P.O. Box 288, Yaoundé, Cameroon
| | - Jean Claude Toto
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Gareth Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Charles S Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Research Unit Liverpool School of Tropical Medicine, OCEAC, P.O. Box 288, Yaoundé, Cameroon
| |
Collapse
|
670
|
Redmond SN, Neafsey DE. Genomic Dark Matter Illuminated: Anopheles Y Chromosomes. Trends Parasitol 2016; 32:585-587. [PMID: 27263828 DOI: 10.1016/j.pt.2016.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
Hall et al. have strategically used long-read sequencing technology to characterize the structure and highly repetitive content of the Y chromosome in Anopheles malaria mosquitoes. Their work confirms that this important but elusive heterochromatic sex chromosome is evolving extremely rapidly and harbors a remarkably small number of genes.
Collapse
|
671
|
Barakate A, Stephens J. An Overview of CRISPR-Based Tools and Their Improvements: New Opportunities in Understanding Plant-Pathogen Interactions for Better Crop Protection. FRONTIERS IN PLANT SCIENCE 2016; 7:765. [PMID: 27313592 PMCID: PMC4887484 DOI: 10.3389/fpls.2016.00765] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/17/2016] [Indexed: 05/04/2023]
Abstract
Modern omics platforms have made the determination of susceptible/resistance genes feasible in any species generating huge numbers of potential targets for crop protection. However, the efforts to validate these targets have been hampered by the lack of a fast, precise, and efficient gene targeting system in plants. Now, the repurposing of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has solved this problem. CRISPR/Cas9 is the latest synthetic endonuclease that has revolutionized basic research by allowing facile genome editing in prokaryotes and eukaryotes. Gene knockout is now feasible at an unprecedented efficiency with the possibility of multiplexing several targets and even genome-wide mutagenesis screening. In a short time, this powerful tool has been engineered for an array of applications beyond gene editing. Here, we briefly describe the CRISPR/Cas9 system, its recent improvements and applications in gene manipulation and single DNA/RNA molecule analysis. We summarize a few recent tests targeting plant pathogens and discuss further potential applications in pest control and plant-pathogen interactions that will inform plant breeding for crop protection.
Collapse
|
672
|
Mao XY, Dai JX, Zhou HH, Liu ZQ, Jin WL. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future. Oncotarget 2016; 7:33461-71. [PMID: 26993776 PMCID: PMC5078110 DOI: 10.18632/oncotarget.8075] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/29/2016] [Indexed: 12/26/2022] Open
Abstract
Although brain tumors have been known tremendously over the past decade, there are still many problems to be solved. The etiology of brain tumors is not well understood and the treatment remains modest. There is in great need to develop a suitable brain tumor models that faithfully mirror the etiology of human brain neoplasm and subsequently get more efficient therapeutic approaches for these disorders. In this review, we described the current status of animal models of brain tumors and analyzed their advantages and disadvantages. Additionally, prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a versatile genome editing technology for investigating the functions of target genes, and its application were also introduced in our present work. We firstly proposed that brain tumor modeling could be well established via CRISPR/Cas9 techniques. And CRISPR/Cas9-mediated brain tumor modeling was likely to be more suitable for figuring out the pathogenesis of brain tumors, as CRISPR/Cas9 platform was a simple and more efficient biological toolbox for implementing mutagenesis of oncogenes or tumor suppressors that were closely linked with brain tumors.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Jin-Xiang Dai
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
673
|
Sadhu MJ, Bloom JS, Day L, Kruglyak L. CRISPR-directed mitotic recombination enables genetic mapping without crosses. Science 2016; 352:1113-6. [PMID: 27230379 PMCID: PMC4933295 DOI: 10.1126/science.aaf5124] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/30/2022]
Abstract
Linkage and association studies have mapped thousands of genomic regions that contribute to phenotypic variation, but narrowing these regions to the underlying causal genes and variants has proven much more challenging. Resolution of genetic mapping is limited by the recombination rate. We developed a method that uses CRISPR (clustered, regularly interspaced, short palindromic repeats) to build mapping panels with targeted recombination events. We tested the method by generating a panel with recombination events spaced along a yeast chromosome arm, mapping trait variation, and then targeting a high density of recombination events to the region of interest. Using this approach, we fine-mapped manganese sensitivity to a single polymorphism in the transporter Pmr1. Targeting recombination events to regions of interest allows us to rapidly and systematically identify causal variants underlying trait differences.
Collapse
Affiliation(s)
- Meru J Sadhu
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Joshua S Bloom
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Laura Day
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
674
|
Peterson A. CRISPR: express delivery to any DNA address. Oral Dis 2016; 23:5-11. [PMID: 27040868 DOI: 10.1111/odi.12487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/26/2022]
Abstract
The sudden emergence and worldwide adoption of CRISPR gene-editing technology confronts humanity with unprecedented opportunities and choices. CRISPR's transformative impact on our future understanding of biology, along with its potential to unleash control over the most fundamental of biological processes, is predictable by already achieved applications. Although its origin, composition, and function were revealed only recently, close to 3000 CRISPR-based publications have appeared including insightful and diversely focused reviews referenced here. Adding further to scientific and public awareness, a recent symposium addressed the ethical implications of interfacing CRISPR technology and human biology. However, the magnitude of CRISPR's rapidly emerging power mandates its broadest assessment. Only with the participation of a diverse and informed community can the most effective and humanity-positive CRISPR applications be defined. This brief review is aimed at those with little previous exposure to the CRISPR revolution. The molecules that constitute CRISPR's core components and their functional organization are described along with how the mechanism has been harnessed to edit genome structure and modulate gene function. Additionally, a glimpse into CRISPR's potential to unleash genetic changes with far-reaching consequences is presented.
Collapse
Affiliation(s)
- A Peterson
- Laboratory of Developmental Biology, Departments of Oncology, Human Genetics, Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
675
|
Birceanu O. ‘CRISPR-ed’ mosquitos, anyone? J Exp Biol 2016. [DOI: 10.1242/jeb.130112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
676
|
Huang Y, Liu Z, Rong YS. Genome Editing: From Drosophila to Non-Model Insects and Beyond. J Genet Genomics 2016; 43:263-72. [PMID: 27216295 DOI: 10.1016/j.jgg.2016.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/06/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022]
Abstract
Insect is the largest group of animals on land. Many insect species inflict economical and health losses to humans. Yet many more benefit us by helping to maintain balances in our ecosystem. The benefits that insects offer remain largely untapped, justifying our continuing efforts to develop tools to better understand their biology and to better manage their activities. Here we focus on reviewing the progresses made in the development of genome engineering tools for model insects. Instead of detailed descriptions of the molecular mechanisms underlying each technical advance, we focus our discussion on the logistics for implementing similar tools in non-model insects. Since none of the tools were developed specific for insects, similar approaches can be applied to other non-model organisms.
Collapse
Affiliation(s)
- Yueping Huang
- Institute of Entomology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiping Liu
- Institute of Entomology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yikang S Rong
- Institute of Entomology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
677
|
Woltjen K, Yamamoto T, Kokubu C, Takeda J. Report on the Conference on Transposition and Genome Engineering 2015 (TGE 2015): advancing cutting-edge genomics technology in the ancient city of Nara. Genes Cells 2016; 21:392-5. [PMID: 27028186 DOI: 10.1111/gtc.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/03/2016] [Indexed: 11/29/2022]
Abstract
From November 17 to 20 in 2015, the Conference on Transposition and Genome Engineering 2015 (TGE 2015) was held at Nara Kasugano International Forum-IRAKA-in Nara, Japan, located at the center of Nara Park. All of the presentations were carried out at Nohgaku hall in Nara Kasugano International Forum-IRAKA. Participation totaled 148 persons (30 international, 118 domestic), who were able to engage in lively scientific discussions over the 4-day period. The guest speaker list consisted of many top-notch international researchers, an achievement for which the conference received praise from the attendees. There were 36 oral presentations including the keynote lecture (22 presentations from guest speakers, complemented with 14 selected from abstract submissions). Additionally, there were 46 poster presentations. The conference uniquely combined research mainly from two different genomics approaches: (i) transposon technology allowing random genomic integration followed by gene discovery-related phenotypes and (ii) genome editing technology with designer nuclease allowing precise modification of a gene-of-interest.
Collapse
Affiliation(s)
- Knut Woltjen
- CiRA, Kyoto University, Kyoto, 606-8507, Japan.,Hakubi Center for Advanced Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Science, Graduate School of Science, Hiroshima University, Higashihiroshima, 739-8526, Japan
| | - Chikara Kokubu
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Junji Takeda
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
678
|
|
679
|
Sim S, Hibberd ML. Genomic approaches for understanding dengue: insights from the virus, vector, and host. Genome Biol 2016; 17:38. [PMID: 26931545 PMCID: PMC4774013 DOI: 10.1186/s13059-016-0907-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host–pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring.
Collapse
Affiliation(s)
- Shuzhen Sim
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Martin L Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
680
|
Champer J, Buchman A, Akbari OS. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet 2016; 17:146-59. [PMID: 26875679 DOI: 10.1038/nrg.2015.34] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered gene drives - the process of stimulating the biased inheritance of specific genes - have the potential to enable the spread of desirable genes throughout wild populations or to suppress harmful species, and may be particularly useful for the control of vector-borne diseases such as malaria. Although several types of selfish genetic elements exist in nature, few have been successfully engineered in the laboratory thus far. With the discovery of RNA-guided CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated 9) nucleases, which can be utilized to create, streamline and improve synthetic gene drives, this is rapidly changing. Here, we discuss the different types of engineered gene drives and their potential applications, as well as current policies regarding the safety and regulation of gene drives for the manipulation of wild populations.
Collapse
Affiliation(s)
- Jackson Champer
- Department of Entomology, University of California, Riverside, Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Anna Buchman
- Department of Entomology, University of California, Riverside, Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Omar S Akbari
- Department of Entomology, University of California, Riverside, Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
681
|
Gonçalves D, Hunziker P. Transmission-blocking strategies: the roadmap from laboratory bench to the community. Malar J 2016; 15:95. [PMID: 26888537 PMCID: PMC4758146 DOI: 10.1186/s12936-016-1163-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/11/2016] [Indexed: 11/10/2022] Open
Abstract
Malaria remains one of the most prevalent tropical and infectious diseases in the world, with an estimated more than 200 million clinical cases every year. In recent years, the mosquito stages of the parasite life cycle have received renewed attention with some progress being made in the development of transmission-blocking strategies. From gametocytes to late ookinetes, some attractive antigenic targets have been found and tested in order to develop a transmission blocking vaccine, and drugs are being currently screened for gametocytocidal activity, and also some new and less conventional approaches are drawing increased attention, such as genetically modified and fungus-infected mosquitoes that become refractory to Plasmodium infection. In this review some of those strategies focusing on the progress made so far will be summarized, but also, the challenges that come from the translation of early promising benchwork resulting in successful applications in the field. To do this, the available literature will be screened and all the pieces of the puzzle must be combined: from molecular biology to epidemiologic and clinical data.
Collapse
Affiliation(s)
- Daniel Gonçalves
- CLINAM Foundation for Nanomedicine, University of Basel, Basel, Switzerland.
| | - Patrick Hunziker
- CLINAM Foundation for Nanomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
682
|
Didion JP, Morgan AP, Yadgary L, Bell TA, McMullan RC, Ortiz de Solorzano L, Britton-Davidian J, Bult CJ, Campbell KJ, Castiglia R, Ching YH, Chunco AJ, Crowley JJ, Chesler EJ, Förster DW, French JE, Gabriel SI, Gatti DM, Garland T, Giagia-Athanasopoulou EB, Giménez MD, Grize SA, Gündüz İ, Holmes A, Hauffe HC, Herman JS, Holt JM, Hua K, Jolley WJ, Lindholm AK, López-Fuster MJ, Mitsainas G, da Luz Mathias M, McMillan L, Ramalhinho MDGM, Rehermann B, Rosshart SP, Searle JB, Shiao MS, Solano E, Svenson KL, Thomas-Laemont P, Threadgill DW, Ventura J, Weinstock GM, Pomp D, Churchill GA, Pardo-Manuel de Villena F. R2d2 Drives Selfish Sweeps in the House Mouse. Mol Biol Evol 2016; 33:1381-95. [PMID: 26882987 PMCID: PMC4868115 DOI: 10.1093/molbev/msw036] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether “selfish” genes are capable of fixation—thereby leaving signatures identical to classical selective sweeps—despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2HC) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2HC rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2HC is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution.
Collapse
Affiliation(s)
- John P Didion
- Department of Genetics, The University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill Carolina Center for Genome Science, The University of North Carolina at Chapel Hill
| | - Andrew P Morgan
- Department of Genetics, The University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill Carolina Center for Genome Science, The University of North Carolina at Chapel Hill
| | - Liran Yadgary
- Department of Genetics, The University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill Carolina Center for Genome Science, The University of North Carolina at Chapel Hill
| | - Timothy A Bell
- Department of Genetics, The University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill Carolina Center for Genome Science, The University of North Carolina at Chapel Hill
| | - Rachel C McMullan
- Department of Genetics, The University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill Carolina Center for Genome Science, The University of North Carolina at Chapel Hill
| | - Lydia Ortiz de Solorzano
- Department of Genetics, The University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill Carolina Center for Genome Science, The University of North Carolina at Chapel Hill
| | - Janice Britton-Davidian
- Institut des Sciences de l'Evolution, Université De Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | | | - Karl J Campbell
- Island Conservation, Puerto Ayora, Galápagos Island, Ecuador School of Geography, Planning & Environmental Management, The University of Queensland, St Lucia, QLD, Australia
| | - Riccardo Castiglia
- Department of Biology and Biotechnologies "Charles Darwin", University of Rome "La Sapienza", Rome, Italy
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien City, Taiwan
| | | | - James J Crowley
- Department of Genetics, The University of North Carolina at Chapel Hill
| | | | - Daniel W Förster
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - John E French
- National Toxicology Program, National Institute of Environmental Sciences, NIH, Research Triangle Park, NC
| | - Sofia I Gabriel
- Department of Animal Biology & CESAM - Centre for Environmental and Marine Studies, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| | | | | | | | - Mabel D Giménez
- Instituto de Biología Subtropical, CONICET - Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - Sofia A Grize
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - İslam Gündüz
- Department of Biology, Faculty of Arts and Sciences, University of Ondokuz Mayis, Samsun, Turkey
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD
| | - Heidi C Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige, TN, Italy
| | - Jeremy S Herman
- Department of Natural Sciences, National Museums Scotland, Edinburgh, United Kingdom
| | - James M Holt
- Department of Computer Science, The University of North Carolina at Chapel Hill
| | - Kunjie Hua
- Department of Genetics, The University of North Carolina at Chapel Hill
| | | | - Anna K Lindholm
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - George Mitsainas
- Section of Animal Biology, Department of Biology, University of Patras, Patras, Greece
| | - Maria da Luz Mathias
- Department of Animal Biology & CESAM - Centre for Environmental and Marine Studies, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| | - Leonard McMillan
- Department of Computer Science, The University of North Carolina at Chapel Hill
| | - Maria da Graça Morgado Ramalhinho
- Department of Animal Biology & CESAM - Centre for Environmental and Marine Studies, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD
| | - Stephan P Rosshart
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Emanuela Solano
- Department of Biology and Biotechnologies "Charles Darwin", University of Rome "La Sapienza", Rome, Italy
| | | | | | - David W Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station Department of Molecular and Cellular Medicine, Texas A&M University, College Station
| | - Jacint Ventura
- Departament de Biologia Animal, de Biologia Vegetal y de Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Daniel Pomp
- Department of Genetics, The University of North Carolina at Chapel Hill Carolina Center for Genome Science, The University of North Carolina at Chapel Hill
| | | | - Fernando Pardo-Manuel de Villena
- Department of Genetics, The University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill Carolina Center for Genome Science, The University of North Carolina at Chapel Hill
| |
Collapse
|
683
|
Schmidt M, de Lorenzo V. Synthetic bugs on the loose: containment options for deeply engineered (micro)organisms. Curr Opin Biotechnol 2016; 38:90-6. [PMID: 26874261 DOI: 10.1016/j.copbio.2016.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
Synthetic Biology (SynBio) has brought up again questions on the environmental fate of microorganisms carrying genetic modifications. The growing capacity of editing genomes for deployment of man-made programs opens unprecedented biotechnological opportunities. But the same exacerbate concerns regarding fortuitous or deliberate releases to the natural medium. Most approaches to tackle these worries involve endowing SynBio agents with containment devices for halting horizontal gene transfer and survival of the live agents only at given times and places. Genetic circuits and trophic restraint schemes have been proposed to this end in the pursuit of complete containment. The most promising include adoption of alternative genetic codes and/or dependency on xenobiotic amino acids and nucleotides. But the field has to still overcome serious bottlenecks.
Collapse
Affiliation(s)
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain.
| |
Collapse
|
684
|
|
685
|
Driving out malaria. Nat Methods 2016; 13:111. [DOI: 10.1038/nmeth.3755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
686
|
Genetic Control Of Malaria Mosquitoes. Trends Parasitol 2016; 32:174-176. [PMID: 26809567 DOI: 10.1016/j.pt.2016.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 01/16/2023]
Abstract
Experiments demonstrating the feasibility of genetically modifying mosquito vectors to impair their ability to transmit the malaria parasite have been known for well over a decade. However, means to spread resistance or population control genes into wild mosquito populations remains an unsolved challenge. Two recent reports give hope that CRISPR technology may allow such challenge to be overcome.
Collapse
|
687
|
Reegan AD, Ceasar SA, Paulraj MG, Ignacimuthu S, Al-Dhabi NA. Current status of genome editing in vector mosquitoes: A review. Biosci Trends 2016; 10:424-432. [DOI: 10.5582/bst.2016.01180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Appadurai Daniel Reegan
- Division of Vector Control, Entomology Research Institute, Loyola College
- Department of Zoology, Madras Christian College
| | | | | | - Savarimuthu Ignacimuthu
- Division of Vector Control, Entomology Research Institute, Loyola College
- Division of Molecular Biology, Entomology Research Institute, Loyola College
- International Scientific Partnership Program, Deanship of Research, King Saud University
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah chair for Environmental Studies, College of Science, King Saud University
| |
Collapse
|
688
|
|