651
|
Zhang WJ, Wu XN, Shi TT, Xu HT, Yi J, Shen HF, Huang MF, Shu XY, Wang FF, Peng BL, Xiao RQ, Gao WW, Ding JC, Liu W. Regulation of Transcription Factor Yin Yang 1 by SET7/9-mediated Lysine Methylation. Sci Rep 2016; 6:21718. [PMID: 26902152 PMCID: PMC4763200 DOI: 10.1038/srep21718] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/29/2016] [Indexed: 11/14/2022] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor shown to be critical in a variety of biological processes. Although it is regulated by multiple types of post-translational modifications (PTMs), whether YY1 is methylated, which enzyme methylates YY1, and hence the functional significance of YY1 methylation remains completely unknown. Here we reported the first methyltransferase, SET7/9 (KMT7), capable of methylating YY1 at two highly conserved lysine (K) residues, K173 and K411, located in two distinct domains, one in the central glycine-rich region and the other in the very carboxyl-terminus. Functional studies revealed that SET7/9-mediated YY1 methylation regulated YY1 DNA-binding activity both in vitro and at specific genomic loci in cultured cells. Consistently, SET7/9-mediated YY1 methylation was shown to involve in YY1-regulated gene transcription and cell proliferation. Our findings revealed a novel regulatory strategy, methylation by lysine methyltransferase, imposed on YY1 protein, and linked YY1 methylation with its biological functions.
Collapse
Affiliation(s)
- Wen-juan Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Xiao-nan Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Tao-tao Shi
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Huan-teng Xu
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jia Yi
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Hai-feng Shen
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Ming-feng Huang
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Xing-yi Shu
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Fei-fei Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Bing-ling Peng
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Rong-quan Xiao
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Wei-wei Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.,College of Chemistry and Chemical Engineering, Xiamen University, No. 422 Siming South Road, Xiamen, Fujian 361105, China
| | - Jian-cheng Ding
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Wen Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
652
|
Gunnell A, Webb HM, Wood CD, McClellan MJ, Wichaidit B, Kempkes B, Jenner RG, Osborne C, Farrell PJ, West MJ. RUNX super-enhancer control through the Notch pathway by Epstein-Barr virus transcription factors regulates B cell growth. Nucleic Acids Res 2016; 44:4636-50. [PMID: 26883634 PMCID: PMC4889917 DOI: 10.1093/nar/gkw085] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/01/2016] [Indexed: 12/30/2022] Open
Abstract
In B cells infected by the cancer-associated Epstein-Barr virus (EBV), RUNX3 and RUNX1 transcription is manipulated to control cell growth. The EBV-encoded EBNA2 transcription factor (TF) activates RUNX3 transcription leading to RUNX3-mediated repression of the RUNX1 promoter and the relief of RUNX1-directed growth repression. We show that EBNA2 activates RUNX3 through a specific element within a −97 kb super-enhancer in a manner dependent on the expression of the Notch DNA-binding partner RBP-J. We also reveal that the EBV TFs EBNA3B and EBNA3C contribute to RUNX3 activation in EBV-infected cells by targeting the same element. Uncovering a counter-regulatory feed-forward step, we demonstrate EBNA2 activation of a RUNX1 super-enhancer (−139 to −250 kb) that results in low-level RUNX1 expression in cells refractory to RUNX1-mediated growth inhibition. EBNA2 activation of the RUNX1 super-enhancer is also dependent on RBP-J. Consistent with the context-dependent roles of EBNA3B and EBNA3C as activators or repressors, we find that these proteins negatively regulate the RUNX1 super-enhancer, curbing EBNA2 activation. Taken together our results reveal cell-type-specific exploitation of RUNX gene super-enhancers by multiple EBV TFs via the Notch pathway to fine tune RUNX3 and RUNX1 expression and manipulate B-cell growth.
Collapse
Affiliation(s)
- Andrea Gunnell
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Helen M Webb
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - C David Wood
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | - Billy Wichaidit
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Bettina Kempkes
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Marchioninistraße 25, 81377 Munich, Germany German Centre for Infection Research (DZIF), Partner site Munich, Helmholtz Center Munich, German Research Center for Environmental Health, Marchioninistraße 25, 81377 Munich, Germany
| | - Richard G Jenner
- University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Cameron Osborne
- Department of Genetics & Molecular Medicine, King's College London School of Medicine, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Paul J Farrell
- Department of Medicine, Virology Section, St Mary's Hospital Campus, Imperial College, London W2 1PG, UK
| | - Michelle J West
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
653
|
Xie X, Ma W, Songyang Z, Luo Z, Huang J, Dai Z, Xiong Y. CCSI: a database providing chromatin-chromatin spatial interaction information. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:bav124. [PMID: 26868054 PMCID: PMC4750547 DOI: 10.1093/database/bav124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 12/08/2015] [Indexed: 11/24/2022]
Abstract
Distal regulatory elements have been shown to regulate gene transcription through spatial interactions, and single nucleotide polymorphisms (SNPs) are linked with distal gene expression by spatial proximity, which helps to explain the causal role of disease-associated SNPs in non-coding region. Therefore, studies on spatial interactions between chromatin have created a new avenue for elucidating the mechanism of transcriptional regulation in disease pathogenesis. Recently, a growing number of chromatin interactions have been revealed by means of 3C, 4C, 5C, ChIA-PET and Hi-C technologies. To interpret and utilize these interactions, we constructed chromatin–chromatin spatial interaction (CCSI) database by integrating and annotating 91 sets of chromatin interaction data derived from published literature, UCSC database and NCBI GEO database, resulting in a total of 3 017 962 pairwise interactions (false discovery rate < 0.05), covering human, mouse and yeast. A web interface has been designed to provide access to the chromatin interactions. The main features of CCSI are (i) showing chromatin interactions and corresponding genes, enhancers and SNPs within the regions in the search page; (ii) offering complete interaction datasets, enhancer and SNP information in the download page; and (iii) providing analysis pipeline for the annotation of interaction data. In conclusion, CCSI will facilitate exploring transcriptional regulatory mechanism in disease pathogenesis associated with spatial interactions among genes, regulatory regions and SNPs. Database URL: http://120.79.23.67/ccsi/search.php
Collapse
Affiliation(s)
- Xiaowei Xie
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhenhua Luo
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229-3039, USA
| | - Junfeng Huang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhiming Dai
- Department of Electronics and Communication Engineering, School of Information Science and Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China SYSU-CMU Shunde International Joint Research Institute, Shunde, China
| |
Collapse
|
654
|
Understanding Spatial Genome Organization: Methods and Insights. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:7-20. [PMID: 26876719 PMCID: PMC4792841 DOI: 10.1016/j.gpb.2016.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
Abstract
The manner by which eukaryotic genomes are packaged into nuclei while maintaining crucial nuclear functions remains one of the fundamental mysteries in biology. Over the last ten years, we have witnessed rapid advances in both microscopic and nucleic acid-based approaches to map genome architecture, and the application of these approaches to the dissection of higher-order chromosomal structures has yielded much new information. It is becoming increasingly clear, for example, that interphase chromosomes form stable, multilevel hierarchical structures. Among them, self-associating domains like so-called topologically associating domains (TADs) appear to be building blocks for large-scale genomic organization. This review describes features of these broadly-defined hierarchical structures, insights into the mechanisms underlying their formation, our current understanding of how interactions in the nuclear space are linked to gene regulation, and important future directions for the field.
Collapse
|
655
|
Rowley MJ, Corces VG. The three-dimensional genome: principles and roles of long-distance interactions. Curr Opin Cell Biol 2016; 40:8-14. [PMID: 26852111 DOI: 10.1016/j.ceb.2016.01.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/04/2016] [Accepted: 01/18/2016] [Indexed: 01/01/2023]
Abstract
The linear sequence of eukaryotic genomes is arranged in a specific manner within the three-dimensional nuclear space. Interactions between distant sites partition the genome into domains of highly associating chromatin. Interaction domains are found in many organisms, but their properties and the principles governing their establishment vary between different species. Topologically associating domains (TADs) extending over large genomic regions are found in mammals and Drosophila melanogaster, whereas other types of contact domains exist in lower eukaryotes. Here we review recent studies that explore the mechanisms by which long distance chromatin interactions determine the 3D organization of the genome and the relationship between this organization and the establishment of specific patterns of gene expression.
Collapse
Affiliation(s)
- M Jordan Rowley
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA.
| |
Collapse
|
656
|
Corces MR, Corces VG. The three-dimensional cancer genome. Curr Opin Genet Dev 2016; 36:1-7. [PMID: 26855137 PMCID: PMC4880523 DOI: 10.1016/j.gde.2016.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
Abstract
The past decade of cancer research has ushered in a comprehensive understanding of the way that the sequence of the genome can be co-opted during the process of tumorigenesis. However, only recently has the epigenome, and in particular the three-dimensional topology of chromatin, been implicated in cancer progression. Here we review recent findings of how the cancer genome is regulated and dysregulated to effect changes in 3D genome topology. We discuss the impact of the spatial organization of the genome on the frequency of tumorigenic chromosomal translocations and the effects of disruption of the proteins responsible for the establishment of chromatin loops. Alteration of the three-dimensional cancer genome is a rapidly emerging hallmark of multiple cancer subtypes.
Collapse
Affiliation(s)
- M Ryan Corces
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA.
| |
Collapse
|
657
|
Ray-Jones H, Eyre S, Barton A, Warren RB. One SNP at a Time: Moving beyond GWAS in Psoriasis. J Invest Dermatol 2016; 136:567-573. [PMID: 26811024 DOI: 10.1016/j.jid.2015.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 01/24/2023]
Abstract
Although genome-wide association studies have revealed important insights into the global genetic basis of psoriasis, the findings require further investigation. At present, the known genetic risk loci are largely uncharacterized in terms of the variant or gene responsible for the association, the biological pathway involved, and the main cell type driving the pathology. This review primarily focuses on current approaches toward gaining a complete understanding of how these known genetic loci contribute to an increased disease risk in psoriasis.
Collapse
Affiliation(s)
- Helen Ray-Jones
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom; The Dermatology Centre, Salford Royal NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.
| | - Stephen Eyre
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Anne Barton
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom; NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Richard B Warren
- The Dermatology Centre, Salford Royal NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
658
|
Haussler MR, Whitfield GK, Haussler CA, Sabir MS, Khan Z, Sandoval R, Jurutka PW. 1,25-Dihydroxyvitamin D and Klotho: A Tale of Two Renal Hormones Coming of Age. VITAMINS AND HORMONES 2016; 100:165-230. [PMID: 26827953 DOI: 10.1016/bs.vh.2015.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1,25-Dihydroxyvitamin D3 (1,25D) is the renal metabolite of vitamin D that signals through binding to the nuclear vitamin D receptor (VDR). The ligand-receptor complex transcriptionally regulates genes encoding factors stimulating calcium and phosphate absorption plus bone remodeling, maintaining a skeleton with reduced risk of age-related osteoporotic fractures. 1,25D/VDR signaling exerts feedback control of Ca/PO4 via regulation of FGF23, klotho, and CYP24A1 to prevent age-related, ectopic calcification, fibrosis, and associated pathologies. Vitamin D also elicits xenobiotic detoxification, oxidative stress reduction, neuroprotective functions, antimicrobial defense, immunoregulation, anti-inflammatory/anticancer actions, and cardiovascular benefits. Many of the healthspan advantages conferred by 1,25D are promulgated by its induction of klotho, a renal hormone that is an anti-aging enzyme/coreceptor that protects against skin atrophy, osteopenia, hyperphosphatemia, endothelial dysfunction, cognitive defects, neurodegenerative disorders, and impaired hearing. In addition to the high-affinity 1,25D hormone, low-affinity nutritional VDR ligands including curcumin, polyunsaturated fatty acids, and anthocyanidins initiate VDR signaling, whereas the longevity principles resveratrol and SIRT1 potentiate VDR signaling. 1,25D exerts actions against neural excitotoxicity and induces serotonin mood elevation to support cognitive function and prosocial behavior. Together, 1,25D and klotho maintain the molecular signaling systems that promote growth (p21), development (Wnt), antioxidation (Nrf2/FOXO), and homeostasis (FGF23) in tissues crucial for normal physiology, while simultaneously guarding against malignancy and degeneration. Therefore, liganded-VDR modulates the expression of a "fountain of youth" array of genes, with the klotho target emerging as a major player in the facilitation of health span by delaying the chronic diseases of aging.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA.
| | - G Kerr Whitfield
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Carol A Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Marya S Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Zainab Khan
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Ruby Sandoval
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Peter W Jurutka
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA; School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| |
Collapse
|
659
|
Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C, Clapham P, Fitzgerald S, Gil L, Girón CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Johnson N, Juettemann T, Keenan S, Lavidas I, Martin FJ, Maurel T, McLaren W, Murphy DN, Nag R, Nuhn M, Parker A, Patricio M, Pignatelli M, Rahtz M, Riat HS, Sheppard D, Taylor K, Thormann A, Vullo A, Wilder SP, Zadissa A, Birney E, Harrow J, Muffato M, Perry E, Ruffier M, Spudich G, Trevanion SJ, Cunningham F, Aken BL, Zerbino DR, Flicek P. Ensembl 2016. Nucleic Acids Res 2016; 44:D710-6. [PMID: 26687719 PMCID: PMC4702834 DOI: 10.1093/nar/gkv1157] [Citation(s) in RCA: 1072] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 01/17/2023] Open
Abstract
The Ensembl project (http://www.ensembl.org) is a system for genome annotation, analysis, storage and dissemination designed to facilitate the access of genomic annotation from chordates and key model organisms. It provides access to data from 87 species across our main and early access Pre! websites. This year we introduced three newly annotated species and released numerous updates across our supported species with a concentration on data for the latest genome assemblies of human, mouse, zebrafish and rat. We also provided two data updates for the previous human assembly, GRCh37, through a dedicated website (http://grch37.ensembl.org). Our tools, in particular the VEP, have been improved significantly through integration of additional third party data. REST is now capable of larger-scale analysis and our regulatory data BioMart can deliver faster results. The website is now capable of displaying long-range interactions such as those found in cis-regulated datasets. Finally we have launched a website optimized for mobile devices providing views of genes, variants and phenotypes. Our data is made available without restriction and all code is available from our GitHub organization site (http://github.com/Ensembl) under an Apache 2.0 license.
Collapse
Affiliation(s)
- Andrew Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Wasiu Akanni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - M Ridwan Amode
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Daniel Barrell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Denise Carvalho-Silva
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carla Cummins
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Peter Clapham
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Stephen Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Laurent Gil
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carlos García Girón
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Leo Gordon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sophie H Janacek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Nathan Johnson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Thomas Juettemann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Stephen Keenan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ilias Lavidas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Thomas Maurel
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - William McLaren
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Daniel N Murphy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Rishi Nag
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Michael Nuhn
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Anne Parker
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mateus Patricio
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Miguel Pignatelli
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matthew Rahtz
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Harpreet Singh Riat
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Daniel Sheppard
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kieron Taylor
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Anja Thormann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Alessandro Vullo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Steven P Wilder
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Amonida Zadissa
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jennifer Harrow
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Emily Perry
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Magali Ruffier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Giulietta Spudich
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Stephen J Trevanion
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Bronwen L Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Daniel R Zerbino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
660
|
Sive JI, Basilico S, Hannah R, Kinston SJ, Calero-Nieto FJ, Göttgens B. Genome-scale definition of the transcriptional programme associated with compromised PU.1 activity in acute myeloid leukaemia. Leukemia 2016; 30:14-23. [PMID: 26126967 PMCID: PMC4705427 DOI: 10.1038/leu.2015.172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/15/2015] [Accepted: 06/15/2015] [Indexed: 11/09/2022]
Abstract
Transcriptional dysregulation is associated with haematological malignancy. Although mutations of the key haematopoietic transcription factor PU.1 are rare in human acute myeloid leukaemia (AML), they are common in murine models of radiation-induced AML, and PU.1 downregulation and/or dysfunction has been described in human AML patients carrying the fusion oncogenes RUNX1-ETO and PML-RARA. To study the transcriptional programmes associated with compromised PU.1 activity, we adapted a Pu.1-mutated murine AML cell line with an inducible wild-type PU.1. PU.1 induction caused transition from leukaemia phenotype to monocytic differentiation. Global binding maps for PU.1, CEBPA and the histone mark H3K27Ac with and without PU.1 induction showed that mutant PU.1 retains DNA-binding ability, but the induction of wild-type protein dramatically increases both the number and the height of PU.1-binding peaks. Correlating chromatin immunoprecipitation (ChIP) Seq with gene expression data, we found that PU.1 recruitment coupled with increased histone acetylation induces gene expression and activates a monocyte/macrophage transcriptional programme. PU.1 induction also caused the reorganisation of a subgroup of CEBPA binding peaks. Finally, we show that the PU.1 target gene set defined in our model allows the stratification of primary human AML samples, shedding light on both known and novel AML subtypes that may be driven by PU.1 dysfunction.
Collapse
Affiliation(s)
- J I Sive
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - S Basilico
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - R Hannah
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - S J Kinston
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - F J Calero-Nieto
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - B Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
661
|
Three-dimensional Genomic Organization of Genes’ Function in Eukaryotes. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
662
|
Barr CL, Misener VL. Decoding the non-coding genome: elucidating genetic risk outside the coding genome. GENES, BRAIN, AND BEHAVIOR 2016; 15:187-204. [PMID: 26515765 PMCID: PMC4833497 DOI: 10.1111/gbb.12269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Current evidence emerging from genome-wide association studies indicates that the genetic underpinnings of complex traits are likely attributable to genetic variation that changes gene expression, rather than (or in combination with) variation that changes protein-coding sequences. This is particularly compelling with respect to psychiatric disorders, as genetic changes in regulatory regions may result in differential transcriptional responses to developmental cues and environmental/psychosocial stressors. Until recently, however, the link between transcriptional regulation and psychiatric genetic risk has been understudied. Multiple obstacles have contributed to the paucity of research in this area, including challenges in identifying the positions of remote (distal from the promoter) regulatory elements (e.g. enhancers) and their target genes and the underrepresentation of neural cell types and brain tissues in epigenome projects - the availability of high-quality brain tissues for epigenetic and transcriptome profiling, particularly for the adolescent and developing brain, has been limited. Further challenges have arisen in the prediction and testing of the functional impact of DNA variation with respect to multiple aspects of transcriptional control, including regulatory-element interaction (e.g. between enhancers and promoters), transcription factor binding and DNA methylation. Further, the brain has uncommon DNA-methylation marks with unique genomic distributions not found in other tissues - current evidence suggests the involvement of non-CG methylation and 5-hydroxymethylation in neurodevelopmental processes but much remains unknown. We review here knowledge gaps as well as both technological and resource obstacles that will need to be overcome in order to elucidate the involvement of brain-relevant gene-regulatory variants in genetic risk for psychiatric disorders.
Collapse
Affiliation(s)
- C. L. Barr
- Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - V. L. Misener
- Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
663
|
Martin P, McGovern A, Orozco G, Duffus K, Yarwood A, Schoenfelder S, Cooper NJ, Barton A, Wallace C, Fraser P, Worthington J, Eyre S. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat Commun 2015; 6:10069. [PMID: 26616563 PMCID: PMC4674669 DOI: 10.1038/ncomms10069] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/28/2015] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies have been tremendously successful in identifying genetic variants associated with complex diseases. The majority of association signals are intergenic and evidence is accumulating that a high proportion of signals lie in enhancer regions. We use Capture Hi-C to investigate, for the first time, the interactions between associated variants for four autoimmune diseases and their functional targets in B- and T-cell lines. Here we report numerous looping interactions and provide evidence that only a minority of interactions are common to both B- and T-cell lines, suggesting interactions may be highly cell-type specific; some disease-associated SNPs do not interact with the nearest gene but with more compelling candidate genes (for example, FOXO1, AZI2) often situated several megabases away; and finally, regions associated with different autoimmune diseases interact with each other and the same promoter suggesting common autoimmune gene targets (for example, PTPRC, DEXI and ZFP36L1). There is evidence that a proportion of the polymorphisms identified by genome-wide association studies lie in enchancer regions. Here the authors use Capture Hi-C to investigate the interaction with targets in autoimmune disease, showing interactions can be long range and cell-type specific.
Collapse
Affiliation(s)
- Paul Martin
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Amanda McGovern
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Gisela Orozco
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Kate Duffus
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Annie Yarwood
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | - Nicholas J Cooper
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Anne Barton
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9WL, UK
| | - Chris Wallace
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.,MRC Biostatistics Unit, Cambridge Institute of Public Health, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Jane Worthington
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9WL, UK
| | - Steve Eyre
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
664
|
Wingett S, Ewels P, Furlan-Magaril M, Nagano T, Schoenfelder S, Fraser P, Andrews S. HiCUP: pipeline for mapping and processing Hi-C data. F1000Res 2015; 4:1310. [PMID: 26835000 PMCID: PMC4706059 DOI: 10.12688/f1000research.7334.1] [Citation(s) in RCA: 394] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2015] [Indexed: 12/23/2022] Open
Abstract
HiCUP is a pipeline for processing sequence data generated by Hi-C and Capture Hi-C (CHi-C) experiments, which are techniques used to investigate three-dimensional genomic organisation. The pipeline maps data to a specified reference genome and removes artefacts that would otherwise hinder subsequent analysis. HiCUP also produces an easy-to-interpret yet detailed quality control (QC) report that assists in refining experimental protocols for future studies. The software is freely available and has already been used for processing Hi-C and CHi-C data in several recently published peer-reviewed studies.
Collapse
Affiliation(s)
- Steven Wingett
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Philip Ewels
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Takashi Nagano
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
| |
Collapse
|
665
|
Mora A, Sandve GK, Gabrielsen OS, Eskeland R. In the loop: promoter-enhancer interactions and bioinformatics. Brief Bioinform 2015; 17:980-995. [PMID: 26586731 PMCID: PMC5142009 DOI: 10.1093/bib/bbv097] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/26/2015] [Indexed: 12/17/2022] Open
Abstract
Enhancer-promoter regulation is a fundamental mechanism underlying differential transcriptional regulation. Spatial chromatin organization brings remote enhancers in contact with target promoters in cis to regulate gene expression. There is considerable evidence for promoter-enhancer interactions (PEIs). In the recent years, genome-wide analyses have identified signatures and mapped novel enhancers; however, being able to precisely identify their target gene(s) requires massive biological and bioinformatics efforts. In this review, we give a short overview of the chromatin landscape and transcriptional regulation. We discuss some key concepts and problems related to chromatin interaction detection technologies, and emerging knowledge from genome-wide chromatin interaction data sets. Then, we critically review different types of bioinformatics analysis methods and tools related to representation and visualization of PEI data, raw data processing and PEI prediction. Lastly, we provide specific examples of how PEIs have been used to elucidate a functional role of non-coding single-nucleotide polymorphisms. The topic is at the forefront of epigenetic research, and by highlighting some future bioinformatics challenges in the field, this review provides a comprehensive background for future PEI studies.
Collapse
|
666
|
Remeseiro S, Hörnblad A, Spitz F. Gene regulation during development in the light of topologically associating domains. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:169-85. [PMID: 26558551 DOI: 10.1002/wdev.218] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/31/2015] [Accepted: 09/15/2015] [Indexed: 01/20/2023]
Abstract
During embryonic development, complex transcriptional programs govern the precision of gene expression. Many key developmental genes are regulated via cis-regulatory elements that are located far away in the linear genome. How sequences located hundreds of kilobases away from a promoter can influence its activity has been the subject of numerous speculations, which all underline the importance of the 3D-organization of the genome. The recent advent of chromosome conformation capture techniques has put into focus the subdivision of the genome into topologically associating domains (TADs). TADs may influence regulatory activities on multiple levels. The relative invariance of TAD limits across cell types suggests that they may form fixed structural domains that could facilitate and/or confine long-range regulatory interactions. However, most recent studies suggest that interactions within TADs are more variable and dynamic than initially described. Hence, different models are emerging regarding how TADs shape the complex 3D conformations, and thereafter influence the networks of cis-interactions that govern gene expression during development. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Silvia Remeseiro
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas Hörnblad
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
667
|
Yao L, Berman BP, Farnham PJ. Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes. Crit Rev Biochem Mol Biol 2015; 50:550-73. [PMID: 26446758 PMCID: PMC4666684 DOI: 10.3109/10409238.2015.1087961] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Enhancers are short regulatory sequences bound by sequence-specific transcription factors and play a major role in the spatiotemporal specificity of gene expression patterns in development and disease. While it is now possible to identify enhancer regions genomewide in both cultured cells and primary tissues using epigenomic approaches, it has been more challenging to develop methods to understand the function of individual enhancers because enhancers are located far from the gene(s) that they regulate. However, it is essential to identify target genes of enhancers not only so that we can understand the role of enhancers in disease but also because this information will assist in the development of future therapeutic options. After reviewing models of enhancer function, we discuss recent methods for identifying target genes of enhancers. First, we describe chromatin structure-based approaches for directly mapping interactions between enhancers and promoters. Second, we describe the use of correlation-based approaches to link enhancer state with the activity of nearby promoters and/or gene expression. Third, we describe how to test the function of specific enhancers experimentally by perturbing enhancer–target relationships using high-throughput reporter assays and genome editing. Finally, we conclude by discussing as yet unanswered questions concerning how enhancers function, how target genes can be identified, and how to distinguish direct from indirect changes in gene expression mediated by individual enhancers.
Collapse
Affiliation(s)
- Lijing Yao
- a Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles , CA , USA and
| | - Benjamin P Berman
- b Department of Biomedical Sciences , Bioinformatics and Computational Biology Research Center, Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Peggy J Farnham
- a Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles , CA , USA and
| |
Collapse
|
668
|
Mayes MB, Morgan T, Winston J, Buxton DS, Kamat MA, Smith D, Williams M, Martin RL, Kleinjan DA, Cooper DN, Upadhyaya M, Chuzhanova N. Remotely acting SMCHD1 gene regulatory elements: in silico prediction and identification of potential regulatory variants in patients with FSHD. Hum Genomics 2015; 9:25. [PMID: 26446085 PMCID: PMC4597391 DOI: 10.1186/s40246-015-0047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/01/2015] [Indexed: 12/03/2022] Open
Abstract
Background Facioscapulohumeral dystrophy (FSHD) is commonly associated with contraction of the D4Z4 macro-satellite repeat on chromosome 4q35 (FSHD1) or mutations in the SMCHD1 gene (FSHD2). Recent studies have shown that the clinical manifestation of FSHD1 can be modified by mutations in the SMCHD1 gene within a given family. The absence of either D4Z4 contraction or SMCHD1 mutations in a small cohort of patients suggests that the disease could also be due to disruption of gene regulation. In this study, we postulated that mutations responsible for exerting a modifier effect on FSHD might reside within remotely acting regulatory elements that have the potential to interact at a distance with their cognate gene promoter via chromatin looping. To explore this postulate, genome-wide Hi-C data were used to identify genomic fragments displaying the strongest interaction with the SMCHD1 gene. These fragments were then narrowed down to shorter regions using ENCODE and FANTOM data on transcription factor binding sites and epigenetic marks characteristic of promoters, enhancers and silencers. Results We identified two regions, located respectively ~14 and ~85 kb upstream of the SMCHD1 gene, which were then sequenced in 229 FSHD/FSHD-like patients (200 with D4Z4 repeat units <11). Three heterozygous sequence variants were found ~14 kb upstream of the SMCHD1 gene. One of these variants was found to be of potential functional significance based on DNA methylation analysis. Further functional ascertainment will be required in order to establish the clinical/functional significance of the variants found. Conclusions In this study, we propose an improved approach to predict the possible locations of remotely acting regulatory elements that might influence the transcriptional regulation of their associated gene(s). It represents a new way to screen for disease-relevant mutations beyond the immediate vicinity of the specific disease gene. It promises to be useful for investigating disorders in which mutations could occur in remotely acting regulatory elements. Electronic supplementary material The online version of this article (doi:10.1186/s40246-015-0047-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary B Mayes
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Taniesha Morgan
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Jincy Winston
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Daniel S Buxton
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Mihir Anant Kamat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.,Present address: Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Debbie Smith
- Blood Sciences Department and Bristol Genetics Laboratory, Southmead Hospital, Westbury-on-Trym, Bristol, BS10 5NB, UK
| | - Maggie Williams
- Blood Sciences Department and Bristol Genetics Laboratory, Southmead Hospital, Westbury-on-Trym, Bristol, BS10 5NB, UK
| | - Rebecca L Martin
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Dirk A Kleinjan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Meena Upadhyaya
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Nadia Chuzhanova
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
669
|
Schoenfelder S, Sugar R, Dimond A, Javierre BM, Armstrong H, Mifsud B, Dimitrova E, Matheson L, Tavares-Cadete F, Furlan-Magaril M, Segonds-Pichon A, Jurkowski W, Wingett SW, Tabbada K, Andrews S, Herman B, LeProust E, Osborne CS, Koseki H, Fraser P, Luscombe NM, Elderkin S. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat Genet 2015; 47:1179-1186. [PMID: 26323060 PMCID: PMC4847639 DOI: 10.1038/ng.3393] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 08/05/2015] [Indexed: 02/08/2023]
Abstract
The Polycomb repressive complexes PRC1 and PRC2 maintain embryonic stem cell (ESC) pluripotency by silencing lineage-specifying developmental regulator genes. Emerging evidence suggests that Polycomb complexes act through controlling spatial genome organization. We show that PRC1 functions as a master regulator of mouse ESC genome architecture by organizing genes in three-dimensional interaction networks. The strongest spatial network is composed of the four Hox gene clusters and early developmental transcription factor genes, the majority of which contact poised enhancers. Removal of Polycomb repression leads to disruption of promoter-promoter contacts in the Hox gene network. In contrast, promoter-enhancer contacts are maintained in the absence of Polycomb repression, with accompanying widespread acquisition of active chromatin signatures at network enhancers and pronounced transcriptional upregulation of network genes. Thus, PRC1 physically constrains developmental transcription factor genes and their enhancers in a silenced but poised spatial network. We propose that the selective release of genes from this spatial network underlies cell fate specification during early embryonic development.
Collapse
Affiliation(s)
| | - Robert Sugar
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Andrew Dimond
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | | | - Harry Armstrong
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Borbala Mifsud
- Cancer Research UK London Research Institute, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Emilia Dimitrova
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
- Department of Biochemistry, Oxford University, Oxford, UK
| | - Louise Matheson
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Filipe Tavares-Cadete
- Cancer Research UK London Research Institute, London, UK
- present address: Okinawa Institute for Science and Technology Graduate University, Okinawa, Japan
| | | | | | - Wiktor Jurkowski
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Steven W Wingett
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
- Bioinformatics, The Babraham Institute, Cambridge, UK
| | - Kristina Tabbada
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Simon Andrews
- Bioinformatics, The Babraham Institute, Cambridge, UK
| | - Bram Herman
- Agilent Technologies Inc., Santa Clara, California, USA
| | | | | | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Nicholas M Luscombe
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Cancer Research UK London Research Institute, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
- Okinawa Institute for Science and Technology Graduate University, Okinawa, Japan
| | - Sarah Elderkin
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| |
Collapse
|
670
|
|
671
|
Wong KC, Li Y, Peng C. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells. Bioinformatics 2015; 32:321-4. [PMID: 26411866 DOI: 10.1093/bioinformatics/btv555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/15/2015] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The protein-DNA interactions between transcription factors (TFs) and transcription factor binding sites (TFBSs, also known as DNA motifs) are critical activities in gene transcription. The identification of the DNA motifs is a vital task for downstream analysis. Unfortunately, the long-range coupling information between different DNA motifs is still lacking. To fill the void, as the first-of-its-kind study, we have identified the coupling DNA motif pairs on long-range chromatin interactions in human. RESULTS The coupling DNA motif pairs exhibit substantially higher DNase accessibility than the background sequences. Half of the DNA motifs involved are matched to the existing motif databases, although nearly all of them are enriched with at least one gene ontology term. Their motif instances are also found statistically enriched on the promoter and enhancer regions. Especially, we introduce a novel measurement called motif pairing multiplicity which is defined as the number of motifs that are paired with a given motif on chromatin interactions. Interestingly, we observe that motif pairing multiplicity is linked to several characteristics such as regulatory region type, motif sequence degeneracy, DNase accessibility and pairing genomic distance. Taken into account together, we believe the coupling DNA motif pairs identified in this study can shed lights on the gene transcription mechanism under long-range chromatin interactions. AVAILABILITY AND IMPLEMENTATION The identified motif pair data is compressed and available in the supplementary materials associated with this manuscript. CONTACT kc.w@cityu.edu.hk SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yue Li
- CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA and
| | - Chengbin Peng
- CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
672
|
González AJ, Setty M, Leslie CS. Early enhancer establishment and regulatory locus complexity shape transcriptional programs in hematopoietic differentiation. Nat Genet 2015; 47:1249-59. [PMID: 26390058 PMCID: PMC4626279 DOI: 10.1038/ng.3402] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022]
Abstract
We carried out an integrative analysis of enhancer landscape and gene expression dynamics during hematopoietic differentiation using DNase-seq, histone mark ChIP-seq and RNA sequencing to model how the early establishment of enhancers and regulatory locus complexity govern gene expression changes at cell state transitions. We found that high-complexity genes-those with a large total number of DNase-mapped enhancers across the lineage-differ architecturally and functionally from low-complexity genes, achieve larger expression changes and are enriched for both cell type-specific and transition enhancers, which are established in hematopoietic stem and progenitor cells and maintained in one differentiated cell fate but lost in others. We then developed a quantitative model to accurately predict gene expression changes from the DNA sequence content and lineage history of active enhancers. Our method suggests a new mechanistic role for PU.1 at transition peaks during B cell specification and can be used to correct assignments of enhancers to genes.
Collapse
Affiliation(s)
- Alvaro J González
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Manu Setty
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
673
|
Higgins GA, Allyn-Feuer A, Handelman S, Sadee W, Athey BD. The epigenome, 4D nucleome and next-generation neuropsychiatric pharmacogenomics. Pharmacogenomics 2015; 16:1649-69. [DOI: 10.2217/pgs.15.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The 4D nucleome has the potential to render challenges in neuropsychiatric pharmacogenomics more tractable. The epigenome roadmap consortium has demonstrated the critical role that noncoding regions of the human genome play in determination of human phenotype. Chromosome conformation capture methods have revealed the 4D organization of the nucleus, bringing interactions between distant regulatory elements into close spatial proximity in a periodic manner. These functional interactions have the potential to elucidate mechanisms of CNS drug response and side effects that previously have been unrecognized. This perspective assesses recent advances likely to reveal novel pharmacodynamic regulatory pathways in human brain, charting a future new avenue of pharmacogenomics research, using the spatial and temporal architecture of the human epigenome as its foundation.
Collapse
Affiliation(s)
- Gerald A Higgins
- Pharmacogenomic Science, Assurex Health Inc., 6030 Mason Montgomery Road, Mason, OH 45040, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Ari Allyn-Feuer
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Samuel Handelman
- Department of Pharmacology, OSU Program in Pharmacogenomics, The Ohio State University College of Medicine, 333 W 10th Avenue, Columbus, OH 43210, USA
| | - Wolfgang Sadee
- Department of Pharmacology, OSU Program in Pharmacogenomics, The Ohio State University College of Medicine, 333 W 10th Avenue, Columbus, OH 43210, USA
| | - Brian D Athey
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Department of Psychiatry, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
674
|
Gilbert DM, Fraser P. Three Dimensional Organization of the Nucleus: adding DNA sequences to the big picture. Genome Biol 2015; 16:181. [PMID: 26319739 PMCID: PMC4553008 DOI: 10.1186/s13059-015-0751-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306-4295, USA. .,Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL, 32306-4295, USA.
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
| |
Collapse
|
675
|
Genome-wide mapping of promoter-anchored interactions with close to single-enhancer resolution. Genome Biol 2015; 16:156. [PMID: 26313521 PMCID: PMC4557751 DOI: 10.1186/s13059-015-0727-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/17/2015] [Indexed: 12/22/2022] Open
Abstract
Although the locations of promoters and enhancers have been identified in several cell types, we still have limited information on their connectivity. We developed HiCap, which combines a 4-cutter restriction enzyme Hi-C with sequence capture of promoter regions. Applying the method to mouse embryonic stem cells, we identified promoter-anchored interactions involving 15,905 promoters and 71,984 distal regions. The distal regions were enriched for enhancer marks and transcription, and had a mean fragment size of only 699 bp — close to single-enhancer resolution. High-resolution maps of promoter-anchored interactions with HiCap will be important for detailed characterizations of chromatin interaction landscapes.
Collapse
|
676
|
Cattoni DI, Valeri A, Le Gall A, Nollmann M. A matter of scale: how emerging technologies are redefining our view of chromosome architecture. Trends Genet 2015; 31:454-64. [PMID: 26113398 DOI: 10.1016/j.tig.2015.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022]
Abstract
The 3D folding of the genome and its relation to fundamental processes such as gene regulation, replication, and segregation remains one of the most puzzling and exciting questions in genetics. In this review, we describe how the use of new technologies is starting to revolutionize the field of chromosome organization, and to shed light on the mechanisms of transcription, replication, and repair. In particular, we concentrate on recent studies using genome-wide methods, single-molecule technologies, and super-resolution microscopy (SRM). We summarize some of the main concerns when employing these techniques, and discuss potential new and exciting perspectives that illuminate the connection between 3D genomic organization and gene regulation.
Collapse
Affiliation(s)
- Diego I Cattoni
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Alessandro Valeri
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Antoine Le Gall
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|