651
|
Dalla Via L, Gia O, Marciani Magno S, Braga A, González-Gómez JC, Pérez-Montoto LG, Uriarte E. Pyridazinopsoralens of wide chemotherapeutic interest. Bioorg Med Chem 2010; 18:5708-14. [PMID: 20615713 DOI: 10.1016/j.bmc.2010.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 11/18/2022]
Abstract
The synthesis of new 6,10-dimethylpyridazino[4,5-h]psoralens, carrying no (4), one (5), or two (6-9) dialkylaminoalkylcarboxamide side chains on the pyridazine ring is reported. All compounds exert a significant photoantiproliferative activity. Moreover, the derivatives characterised by the protonable side chains show a notable cytotoxicity in the dark. The investigation on the mechanism of action demonstrated the capacity to intercalate into DNA base pairs and to inhibit the relaxation activity of topoisomerase II.
Collapse
Affiliation(s)
- Lisa Dalla Via
- Department of Pharmaceutical Sciences, University of Padova, Via F Marzolo 5, I-35131 Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
652
|
Rampakakis E, Gkogkas C, Di Paola D, Zannis-Hadjopoulos M. Replication initiation and DNA topology: The twisted life of the origin. J Cell Biochem 2010; 110:35-43. [PMID: 20213762 DOI: 10.1002/jcb.22557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genomic propagation in both prokaryotes and eukaryotes is tightly regulated at the level of initiation, ensuring that the genome is accurately replicated and equally segregated to the daughter cells. Even though replication origins and the proteins that bind onto them (initiator proteins) have diverged throughout the course of evolution, the mechanism of initiation has been conserved, consisting of origin recognition, multi-protein complex assembly, helicase activation and loading of the replicative machinery. Recruitment of the multiprotein initiation complexes onto the replication origins is constrained by the dense packing of the DNA within the nucleus and unusual structures such as knots and supercoils. In this review, we focus on the DNA topological barriers that the multi-protein complexes have to overcome in order to access the replication origins and how the topological state of the origins changes during origin firing. Recent advances in the available methodologies to study DNA topology and their clinical significance are also discussed.
Collapse
Affiliation(s)
- E Rampakakis
- Goodman Cancer Centre, Department of Biochemistry, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
653
|
Abstract
Knots appear in a wide variety of biophysical systems, ranging from biopolymers, such as DNA and proteins, to macroscopic objects, such as umbilical cords and catheters. Although significant advancements have been made in the mathematical theory of knots and some progress has been made in the statistical mechanics of knots in idealized chains, the mechanisms and dynamics of knotting in biophysical systems remain far from fully understood. We report on recent progress in the biophysics of knotting-the formation, characterization, and dynamics of knots in various biophysical contexts.
Collapse
Affiliation(s)
- Dario Meluzzi
- Department of Nanoengineering, University of California at San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
654
|
Arjmand F, Muddassir M. Design and synthesis of heterobimetallic topoisomerase I and II inhibitor complexes: in vitro DNA binding, interaction with 5'-GMP and 5'-TMP and cleavage studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:37-46. [PMID: 20638859 DOI: 10.1016/j.jphotobiol.2010.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/11/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
New potential cancer chemotherapeutic complexes Cu-Sn(2)/Zn-Sn(2) 3 and 4 were designed and prepared as topoisomerases inhibitors; their in vitro DNA binding studies were carried out which reveal strong electrostatic binding via phosphate backbone of DNA helix, in addition to other binding modes viz. coordinate covalent and partial intercalation. To throw insight to molecular binding event at the target site, UV-vis titrations of 3 and 4 with mononucleotides of interest, viz, 5'-GMP and 5'-TMP were carried out, (in case of 4) by (1)H and (31)P NMR. Cleavage studies employing gel electrophoresis demonstrate both the complexes 3 and 4 are efficient cleavage agents and are specific groove binders (complex 3 binds to both major and minor groove while complex 4 is specifically minor groove binder only). In addition, the complexes show high inhibition activity against topoisomerase I and II. However, complex 4 exhibits significant inhibitory effects on the Topo I activity at a very low concentration approximately 2.5 microM.
Collapse
Affiliation(s)
- Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, India.
| | | |
Collapse
|
655
|
Laulier C, Cheng A, Huang N, Stark JM. Mammalian Fbh1 is important to restore normal mitotic progression following decatenation stress. DNA Repair (Amst) 2010; 9:708-17. [PMID: 20457012 PMCID: PMC2883650 DOI: 10.1016/j.dnarep.2010.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/19/2010] [Accepted: 03/26/2010] [Indexed: 12/31/2022]
Abstract
We have addressed the role of the F-box helicase 1 (Fbh1) protein during genome maintenance in mammalian cells. For this, we generated two mouse embryonic stem cell lines deficient for Fbh1: one with a homozygous deletion of the N-terminal F-box domain (Fbh1(f/f)), and the other with a homozygous disruption (Fbh1(-/-)). Consistent with previous reports of Fbh1-deficiency in vertebrate cells, we found that Fbh1(-/-) cells show a moderate increase in Rad51 localization to DNA damage, but no clear defect in chromosome break repair. In contrast, we found that Fbh1(f/f) cells show a decrease in Rad51 localization to DNA damage and increased cytoplasmic localization of Rad51. However, these Fbh1(f/f) cells show no clear defects in chromosome break repair. Since some Rad51 partners and F-box-associated proteins (Skp1-Cul1) have been implicated in progression through mitosis, we considered whether Fbh1 might play a role in this process. To test this hypothesis, we disrupted mitosis using catalytic topoisomerase II inhibitors (bisdioxopiperazines), which inhibit chromosome decatenation. We found that both Fbh1(f/f) and Fbh1(-/-) cells show hypersensitivity to topoisomerase II catalytic inhibitors, even though the degree of decatenation stress was not affected. Furthermore, following topoisomerase II catalytic inhibition, both Fbh1-deficient cell lines show substantial defects in anaphase separation of chromosomes. These results indicate that Fbh1 is important for restoration of normal mitotic progression following decatenation stress.
Collapse
Affiliation(s)
- Corentin Laulier
- Department of Cancer Biology, Division of Radiation Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010
| | - Anita Cheng
- Department of Cancer Biology, Division of Radiation Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010
| | - Nick Huang
- Department of Cancer Biology, Division of Radiation Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010
| | - Jeremy M. Stark
- Department of Cancer Biology, Division of Radiation Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010
| |
Collapse
|
656
|
Sissi C, Palumbo M. In front of and behind the replication fork: bacterial type IIA topoisomerases. Cell Mol Life Sci 2010; 67:2001-24. [PMID: 20165898 PMCID: PMC11115839 DOI: 10.1007/s00018-010-0299-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 01/26/2010] [Accepted: 02/01/2010] [Indexed: 01/03/2023]
Abstract
Topoisomerases are vital enzymes specialized in controlling DNA topology, in particular supercoiling and decatenation, to properly handle nucleic acid packing and cell dynamics. The type IIA enzymes act by cleaving both strands of a double helix and having another strand from the same or another molecule cross the DNA gate before a re-sealing event completes the catalytic cycle. Here, we will consider the two types of IIA prokaryotic topoisomerases, DNA Gyrase and Topoisomerase IV, as crucial regulators of bacterial cell cycle progression. Their synergistic action allows control of chromosome packing and grants occurrence of functional transcription and replication processes. In addition to displaying a fascinating molecular mechanism of action, which transduces chemical energy into mechanical energy by means of large conformational changes, these enzymes represent attractive pharmacological targets for antibacterial chemotherapy.
Collapse
Affiliation(s)
- Claudia Sissi
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131, Padua, Italy.
| | | |
Collapse
|
657
|
Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. CHEMISTRY & BIOLOGY 2010; 17:421-33. [PMID: 20534341 PMCID: PMC7316379 DOI: 10.1016/j.chembiol.2010.04.012] [Citation(s) in RCA: 1358] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 02/07/2023]
Abstract
DNA topoisomerases are the targets of important anticancer and antibacterial drugs. Camptothecins and novel noncamptothecins in clinical development (indenoisoquinolines and ARC-111) target eukaryotic type IB topoisomerases (Top1), whereas human type IIA topoisomerases (Top2alpha and Top2beta) are the targets of the widely used anticancer agents etoposide, anthracyclines (doxorubicin, daunorubicin), and mitoxantrone. Bacterial type II topoisomerases (gyrase and Topo IV) are the targets of quinolones and aminocoumarin antibiotics. This review focuses on the molecular and biochemical characteristics of topoisomerases and their inhibitors. We also discuss the common mechanism of action of topoisomerase poisons by interfacial inhibition and trapping of topoisomerase cleavage complexes.
Collapse
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA.
| | | | | | | |
Collapse
|
658
|
|
659
|
León LG, Ríos-Luci C, Tejedor D, Pérez-Roth E, Montero JC, Pandiella A, García-Tellado F, Padrón JM. Mitotic Arrest Induced by a Novel Family of DNA Topoisomerase II Inhibitors. J Med Chem 2010; 53:3835-9. [DOI: 10.1021/jm100155y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leticia G. León
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
- Instituto Canario de Investigación del Cáncer (ICIC),
| | - Carla Ríos-Luci
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), C/Astrofísico Francisco Sánchez 3, 38206 La Laguna, Spain
- Instituto Canario de Investigación del Cáncer (ICIC),
| | - Eduardo Pérez-Roth
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Juan C. Montero
- Centro de Investigación del Cáncer, IBMCC/CSIC—Universidad de Salamanca, Salamanca, Spain
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer, IBMCC/CSIC—Universidad de Salamanca, Salamanca, Spain
| | - Fernando García-Tellado
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), C/Astrofísico Francisco Sánchez 3, 38206 La Laguna, Spain
- Instituto Canario de Investigación del Cáncer (ICIC),
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
- Instituto Canario de Investigación del Cáncer (ICIC),
| |
Collapse
|
660
|
Hawtin RE, Stockett DE, Byl JAW, McDowell RS, Nguyen T, Arkin MR, Conroy A, Yang W, Osheroff N, Fox JA. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. PLoS One 2010; 5:e10186. [PMID: 20419121 PMCID: PMC2855444 DOI: 10.1371/journal.pone.0010186] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 03/22/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Topoisomerase II is critical for DNA replication, transcription and chromosome segregation and is a well validated target of anti-neoplastic drugs including the anthracyclines and epipodophyllotoxins. However, these drugs are limited by common tumor resistance mechanisms and side-effect profiles. Novel topoisomerase II-targeting agents may benefit patients who prove resistant to currently available topoisomerase II-targeting drugs or encounter unacceptable toxicities. Voreloxin is an anticancer quinolone derivative, a chemical scaffold not used previously for cancer treatment. Voreloxin is completing Phase 2 clinical trials in acute myeloid leukemia and platinum-resistant ovarian cancer. This study defined voreloxin's anticancer mechanism of action as a critical component of rational clinical development informed by translational research. METHODS/PRINCIPAL FINDINGS Biochemical and cell-based studies established that voreloxin intercalates DNA and poisons topoisomerase II, causing DNA double-strand breaks, G2 arrest, and apoptosis. Voreloxin is differentiated both structurally and mechanistically from other topoisomerase II poisons currently in use as chemotherapeutics. In cell-based studies, voreloxin poisoned topoisomerase II and caused dose-dependent, site-selective DNA fragmentation analogous to that of quinolone antibacterials in prokaryotes; in contrast etoposide, the nonintercalating epipodophyllotoxin topoisomerase II poison, caused extensive DNA fragmentation. Etoposide's activity was highly dependent on topoisomerase II while voreloxin and the intercalating anthracycline topoisomerase II poison, doxorubicin, had comparable dependence on this enzyme for inducing G2 arrest. Mechanistic interrogation with voreloxin analogs revealed that intercalation is required for voreloxin's activity; a nonintercalating analog did not inhibit proliferation or induce G2 arrest, while an analog with enhanced intercalation was 9.5-fold more potent. CONCLUSIONS/SIGNIFICANCE As a first-in-class anticancer quinolone derivative, voreloxin is a toposiomerase II-targeting agent with a unique mechanistic signature. A detailed understanding of voreloxin's molecular mechanism, in combination with its evolving clinical profile, may advance our understanding of structure-activity relationships to develop safer and more effective topoisomerase II-targeted therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Rachael E Hawtin
- Sunesis Pharmaceuticals, Inc., South San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
661
|
Kurasawa Y, Yu-Lee LY. PICH and cotargeted Plk1 coordinately maintain prometaphase chromosome arm architecture. Mol Biol Cell 2010; 21:1188-99. [PMID: 20130082 PMCID: PMC2847523 DOI: 10.1091/mbc.e09-11-0950] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/20/2010] [Accepted: 01/25/2010] [Indexed: 11/11/2022] Open
Abstract
To maintain genomic stability, chromosome architecture needs to be tightly regulated as chromosomes undergo condensation during prophase and separation during anaphase, but the mechanisms remain poorly understood. Here, we show that the Plk1-binding protein PICH and Plk1 kinase coordinately maintain chromosome architecture during prometaphase. PICH knockdown results in a loss of Plk1 from the chromosome arm and an increase in highly disorganized "wavy" chromosomes that exhibit an "open" or "X-shaped" configuration, consistent with a loss of chromosome arm cohesion. Such chromosome disorganization occurs with essentially no change in the localization of condensin or cohesin on chromosomes. Interestingly, the chromosome disorganization could be prevented by treatment with a topoisomerase II inhibitor ICRF-193, suggesting that the PICH-Plk1 complex normally maintains chromosome architecture in a manner that involves topoisomerase II activity. PICH knockdown does not affect initial chromosome compaction at prophase but causes anaphase DNA bridge formation and failed abscission. Our studies suggest that the PICH-Plk1 complex plays a critical role in maintaining prometaphase chromosome architecture.
Collapse
Affiliation(s)
- Yasuhiro Kurasawa
- *Department of Medicine, Section of Immunology Allergy and Rheumatology
| | - Li-yuan Yu-Lee
- *Department of Medicine, Section of Immunology Allergy and Rheumatology
- Department of Molecular and Cellular Biology
- Department of Immunology, and
- Cell and Molecular Biology Program, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
662
|
Leone S, Cornetta T, Basso E, Cozzi R. Resveratrol induces DNA double-strand breaks through human topoisomerase II interaction. Cancer Lett 2010; 295:167-72. [PMID: 20304553 DOI: 10.1016/j.canlet.2010.02.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/22/2010] [Accepted: 02/25/2010] [Indexed: 01/22/2023]
Abstract
Resveratrol, a stilbene found in grapes and wine, is one of the most interesting natural compound due to its role exerted in cancer prevention and therapy. In particular, resveratrol is able to delay cell cycle progression and to induce apoptotic death in several cell lines. Here we report that resveratrol treatment of human glioblastoma cells induces a delay in cell cycle progression during S phase associated with an increase in histone H2AX phosphorylation. Furthermore, with an in vitro assay of topoisomerase IIalpha catalytic activity we show that resveratrol is able to inhibit the ability of recombinant human TOPO IIalpha to decatenate kDNA, so that it could be considered a TOPO II poison.
Collapse
Affiliation(s)
- Stefano Leone
- Dipartimento di Biologia, Università degli Studi Roma Tre, Roma, Italy
| | | | | | | |
Collapse
|
663
|
Abstract
In thymic epithelial cells, the protein Aire (autoimmune regulator) induces the ectopic expression of hundreds of peripheral tissue antigens, thus enlarging the repertoire of antigens available for the induction of central T cell tolerance. By analyzing Aire's interacting partners, Abramson et al. (2010) shed new light on this unorthodox form of gene expression.
Collapse
Affiliation(s)
- Bruno Kyewski
- Division of Developmental Immunology, Tumor Immunology Program, German Cancer Research Center, Heidelberg 69120, Germany.
| | | |
Collapse
|
664
|
Dorier J, Stasiak A. Topological origins of chromosomal territories. Nucleic Acids Res 2009; 37:6316-22. [PMID: 19726582 PMCID: PMC2770668 DOI: 10.1093/nar/gkp702] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/05/2009] [Accepted: 08/09/2009] [Indexed: 01/05/2023] Open
Abstract
Using freely jointed polymer model we compare equilibrium properties of crowded polymer chains whose segments are either permeable or not permeable for other segments to pass through. In particular, we addressed the question whether non-permeability of long chain molecules, in the absence of excluded volume effect, is sufficient to compartmentalize highly crowded polymer chains, similarly to what happens during formation of chromosomal territories in interphase nuclei. Our results indicate that even polymers without excluded volume compartmentalize and show strongly reduced intermingling when they are mutually non-permeable. Judging from the known fact that chromatin fibres originating from different chromosomes show very limited intermingling in interphase nuclei, we propose that regular chromatin fibres during chromosome decondensation can hardly serve as a substrate of cellular type II DNA topoisomerases.
Collapse
Affiliation(s)
| | - Andrzej Stasiak
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Switzerland
| |
Collapse
|
665
|
Dalla Via L, Magno SM, Gia O, Marini AM, Da Settimo F, Salerno S, La Motta C, Simorini F, Taliani S, Lavecchia A, Di Giovanni C, Brancato G, Barone V, Novellino E. Benzothiopyranoindole-based antiproliferative agents: synthesis, cytotoxicity, nucleic acids interaction, and topoisomerases inhibition properties. J Med Chem 2009; 52:5429-41. [PMID: 19725581 DOI: 10.1021/jm900627v] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Novel benzo[3',2':5,6]thiopyrano[3,2-b]indol-10(11H)-ones 1a-v were synthesized and evaluated for their antiproliferative activity in an in vitro assay of human tumor cell lines (HL-60 and HeLa). Compounds 1e-v, substituted at the 11-position with a basic side chain, showed a significant ability to inhibit cell growth with IC(50) values in the low micromolar range. Linear dichroism measurements showed that all 11-dialkylaminoalkyl substituted derivatives 1e-v behave as DNA-intercalating agents. Fluorimetric titrations demonstrated their specificity in binding to A-T rich regions, and molecular modeling studies were performed on the most active derivatives (1e, 1i, 1p) to characterize in detail the complexation mechanism of these benzothiopyranoindoles to DNA. A relaxation assay evidenced a dose-dependent inhibition of topoisomerase II activity that appeared in accordance with the antiproliferative capacity. Finally, for the most cytotoxic derivative, 1e, a topoisomerase II poisoning effect was also demonstrated, along with a weak inhibition of topoisomerase I-mediated relaxation.
Collapse
Affiliation(s)
- Lisa Dalla Via
- Dipartimento di Scienze Farmaceutiche, Università di Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
666
|
Bendsen S, Oestergaard VH, Skouboe C, Brinch M, Knudsen BR, Andersen AH. The QTK loop is essential for the communication between the N-terminal atpase domain and the central cleavage--ligation region in human topoisomerase IIalpha. Biochemistry 2009; 48:6508-15. [PMID: 19485418 DOI: 10.1021/bi9005978] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have characterized a human topoisomerase IIalpha enzyme with a deletion of the conserved QTK loop, which extends from the transducer domain to the ATP-binding pocket in the GHKL domain. The loop has been suggested to play a role for interdomain communication in type II topoisomerases. The mutant enzyme performs only very low levels of strand passage, although it is able to cleave and ligate DNA as well as close the N-terminal clamp. Cleavage is nearly unaffected by ATP and ATP analogues relative to the wild-type enzyme. Although the enzyme is able to close the clamp, the clamp has altered characteristics, allowing trapping of DNA also in the absence of an ATP analogue. The enzyme furthermore retains intrinsic levels of ATPase activity, but the activity is not stimulated by DNA. Our observations demonstrate that the QTK loop is an important player for the interdomain communication in human topoisomerase IIalpha. First, the loop seems to play a role in keeping the N-terminal clamp in an open conformation when no nucleotide is present. Once the nucleotide binds, it facilitates clamp closure, although it is not essential for this event. The QTK loop, in contrast, is essential for the DNA-stimulated ATPase activity of human topoisomerase IIalpha.
Collapse
Affiliation(s)
- Simon Bendsen
- Department of Molecular Biology, C. F. Moellers Alle, Building 1130, University of Aarhus, 8000 Arhus C, Denmark
| | | | | | | | | | | |
Collapse
|
667
|
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA.
| |
Collapse
|