651
|
Ansari AW, Temblay JN, Alyahya SH, Ashton-Rickardt PG. Serine protease inhibitor 6 protects iNKT cells from self-inflicted damage. THE JOURNAL OF IMMUNOLOGY 2010; 185:877-83. [PMID: 20543105 DOI: 10.4049/jimmunol.1000651] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role played by apoptosis in the homeostasis of effector cells of the innate immune system is unclear. Serine protease inhibitor 6 (Spi6) is an inhibitor of granzyme B (GrB) that protects cytotoxic T lymphocytes of the adaptive immune system from apoptosis. To determine whether Spi6 also protects cells of the innate immune system from self-inflicted damage we have examined invariant NKT (iNKT) cells. Spi6-deficient iNKT cells harbored increased levels of GrB after TCR stimulation with the PBS-57 glycolipid Ag and were susceptible to apoptosis. The increased apoptosis of Spi6 knock-out (KO) iNKT cells lead to a complete loss in the production of IL-4 and IFN-gamma by Spi6 KO iNKT cells after PBS-57 challenge. The increased activation-induced apoptosis resulted in impaired survival and a decreased clonal burst size of Spi6 KO iNKT cells, which could be corrected by GrB deficiency. However, the clonal burst of Spi6 KO iNKT cells after TCR-independent activation with lymphocytic choriomeningitis virus was not affected. Our findings demonstrate that Spi6 protects cytotoxic cells of the innate immune system from GrB-mediated self-inflicted triggered by the recognition of Ag.
Collapse
Affiliation(s)
- A Wahid Ansari
- Section of Immunobiology, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | | | | | | |
Collapse
|
652
|
Teige A, Bockermann R, Hasan M, Olofsson KE, Liu Y, Issazadeh-Navikas S. CD1d-Dependent NKT Cells Play a Protective Role in Acute and Chronic Arthritis Models by Ameliorating Antigen-Specific Th1 Responses. THE JOURNAL OF IMMUNOLOGY 2010; 185:345-56. [DOI: 10.4049/jimmunol.0901693] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
653
|
Adoptive transfer of IL-10-secreting CD4+CD49b+ regulatory T cells suppresses ongoing arthritis. J Autoimmun 2010; 34:390-9. [DOI: 10.1016/j.jaut.2009.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/02/2009] [Accepted: 10/09/2009] [Indexed: 12/24/2022]
|
654
|
Veerapen N, Reddington F, Bricard G, Porcelli SA, Besra GS. Synthesis and biological activity of alpha-L-fucosyl ceramides, analogues of the potent agonist, alpha-D-galactosyl ceramide KRN7000. Bioorg Med Chem Lett 2010; 20:3223-6. [PMID: 20462758 PMCID: PMC2957807 DOI: 10.1016/j.bmcl.2010.04.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 12/02/2022]
Abstract
Several L-fucoglycolipids are associated with diseases such as cancer, cystic fibrosis and rheumatoid arthritis. Activation of iNKT cells is known to lead to the production of cytokines that can help alleviate or exacerbate these conditions. alpha-Galactosyl ceramide (alpha-GalCer) is a known agonist of iNKT cells and it is believed that its fucosyl counterpart might have similar immunogenic properties. We herein report the synthesis of alpha-L-fucosyl ceramide derivatives and describe their biological evaluation. The key challenge in the synthesis of the target molecules involved the stereoselective synthesis of the alpha-glycosidic linkage. Of the methods examined, the per-TMS-protected glycosyl iodide donor was completely alpha-selective, and could be scaled up to provide gram quantities of the azide precursor 11, from which a range of N-acylated alpha-L-fucosyl ceramides were readily obtained and evaluated for ex vivo expansion of human iNKT cells.
Collapse
Affiliation(s)
- Natacha Veerapen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Faye Reddington
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gabriel Bricard
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
655
|
Brandl C, Ortler S, Herrmann T, Cardell S, Lutz MB, Wiendl H. B7-H1-deficiency enhances the potential of tolerogenic dendritic cells by activating CD1d-restricted type II NKT cells. PLoS One 2010; 5:e10800. [PMID: 20520738 PMCID: PMC2875405 DOI: 10.1371/journal.pone.0010800] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 04/30/2010] [Indexed: 11/20/2022] Open
Abstract
Background Dendritic cells (DC) can act tolerogenic at a semi-mature stage by induction of protective CD4+ T cell and NKT cell responses. Methodology/Principal Findings Here we studied the role of the co-inhibitory molecule B7-H1 (PD-L1, CD274) on semi-mature DC that were generated from bone marrow (BM) cells of B7-H1−/− mice and applied to the model of Experimental Autoimmune Encephalomyelitis (EAE). Injections of B7-H1-deficient DC showed increased EAE protection as compared to wild type (WT)-DC. Injections of B7-H1−/− TNF-DC induced higher release of peptide-specific IL-10 and IL-13 after restimulation in vitro together with elevated serum cytokines IL-4 and IL-13 produced by NKT cells, and reduced IL-17 and IFN-γ production in the CNS. Experiments in CD1d−/− and Jα281−/− mice as well as with type I and II NKT cell lines indicated that only type II NKT cells but not type I NKT cells (invariant NKT cells) could be stimulated by an endogenous CD1d-ligand on DC and were responsible for the increased serum cytokine production in the absence of B7-H1. Conclusions/Significance Together, our data indicate that BM-DC express an endogenous CD1d ligand and B7-H1 to ihibit type II but not type I NKT cells. In the absence of B7-H1 on these DC their tolerogenic potential to stimulate tolerogenic CD4+ and NKT cell responses is enhanced.
Collapse
Affiliation(s)
- Carolin Brandl
- Institute of Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Sonja Ortler
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
| | - Thomas Herrmann
- Institute of Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Susanna Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, Goteborg University, Goteborg, Sweden
| | - Manfred B. Lutz
- Institute of Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| | - Heinz Wiendl
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
656
|
Yuling H, Ruijing X, Xiang J, Li L, Lang C, Jie X, Wei X, Yujuan W, Lijun Z, Rui Z, Xinti T, Yongyi B, Yan-Ping J, Youxin J, Jinquan T. EBV promotes human CD8 NKT cell development. PLoS Pathog 2010; 6:e1000915. [PMID: 20502687 PMCID: PMC2873918 DOI: 10.1371/journal.ppat.1000915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 04/20/2010] [Indexed: 12/01/2022] Open
Abstract
The reports on the origin of human CD8+ Vα24+ T-cell receptor (TCR) natural killer T (NKT) cells are controversial. The underlying mechanism that controls human CD4 versus CD8 NKT cell development is not well-characterized. In the present study, we have studied total 177 eligible patients and subjects including 128 healthy latent Epstein-Barr-virus(EBV)-infected subjects, 17 newly-onset acute infectious mononucleosis patients, 16 newly-diagnosed EBV-associated Hodgkin lymphoma patients, and 16 EBV-negative normal control subjects. We have established human-thymus/liver-SCID chimera, reaggregated thymic organ culture, and fetal thymic organ culture. We here show that the average frequency of total and CD8+ NKT cells in PBMCs from 128 healthy latent EBV-infected subjects is significantly higher than in 17 acute EBV infectious mononucleosis patients, 16 EBV-associated Hodgkin lymphoma patients, and 16 EBV-negative normal control subjects. However, the frequency of total and CD8+ NKT cells is remarkably increased in the acute EBV infectious mononucleosis patients at year 1 post-onset. EBV-challenge promotes CD8+ NKT cell development in the thymus of human-thymus/liver-SCID chimeras. The frequency of total (3% of thymic cells) and CD8+ NKT cells (∼25% of NKT cells) is significantly increased in EBV-challenged chimeras, compared to those in the unchallenged chimeras (<0.01% of thymic cells, CD8+ NKT cells undetectable, respectively). The EBV-induced increase in thymic NKT cells is also reflected in the periphery, where there is an increase in total and CD8+ NKT cells in liver and peripheral blood in EBV-challenged chimeras. EBV-induced thymic CD8+ NKT cells display an activated memory phenotype (CD69+CD45ROhiCD161+CD62Llo). After EBV-challenge, a proportion of NKT precursors diverges from DP thymocytes, develops and differentiates into mature CD8+ NKT cells in thymus in EBV-challenged human-thymus/liver-SCID chimeras or reaggregated thymic organ cultures. Thymic antigen-presenting EBV-infected dendritic cells are required for this process. IL-7, produced mainly by thymic dendritic cells, is a major and essential factor for CD8+ NKT cell differentiation in EBV-challenged human-thymus/liver-SCID chimeras and fetal thymic organ cultures. Additionally, these EBV-induced CD8+ NKT cells produce remarkably more perforin than that in counterpart CD4+ NKT cells, and predominately express CD8αα homodimer in their co-receptor. Thus, upon interaction with certain viruses, CD8 lineage-specific NKT cells are developed, differentiated and matured intrathymically, a finding with potential therapeutic importance against viral infections and tumors. We show that the average frequency of total and CD8+ NKT cells in PBMCs from 128 healthy latent EBV-infected subjects is significantly higher than in 17 patients with acute lytic EBV infection, 16 EBV-associated HL patients, and 16 EBV-negative normal subjects. The frequency of total and CD8+ NKT cells is remarkably increased in the lytic EBV-infected patients at year 1 post-onset. EBV-challenge promotes total and CD8+ NKT cell development in the thymus and liver of human-thymus/liver-SCID chimeras, compared to those in the unchallenged chimeras. After EBV-challenge, a proportion of NKT precursors diverges from DP thymocytes, develops and differentiates into mature CD8+ NKT cells in thymus in EBV-challenged human-thymus/liver-SCID chimeras or reaggregated thymic organ cultures. Thymic EBV-infected dendritic cells are required for this process. IL-7 is an essential factor for CD8+ NKT cell differentiation. EBV-induced CD8+ NKT cells produce remarkably more perforin, and predominately express CD8αα homodimer. CD8 lineage-specific NKT cells are developed and differentiated intrathymically upon EBV-exposure, a finding with potential therapeutic importance against viral infections and tumors.
Collapse
Affiliation(s)
- He Yuling
- Department of Immunology, Wuhan University School of Medicine, Wuhan, People's Republic of China
- * E-mail: (HY); (TJ)
| | - Xiao Ruijing
- Department of Immunology, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Ji Xiang
- Department of Immunology, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Li Li
- Department of Immunology, Wuhan University School of Medicine, Wuhan, People's Republic of China
- Laboratory of Allergy and Clinical Immunology, Institute of Allergy and Immune-related Diseases, Centre for Medical Research, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Chen Lang
- Department of Immunology, Wuhan University School of Medicine, Wuhan, People's Republic of China
- Laboratory of Allergy and Clinical Immunology, Institute of Allergy and Immune-related Diseases, Centre for Medical Research, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Xiong Jie
- Department of Immunology, Wuhan University School of Medicine, Wuhan, People's Republic of China
- Section of Geriatrics, Departments of Internal Medicine, The Renmin University Hospital, Wuhan University, Wuhan, People's Republic of China
| | - Xiao Wei
- Department of Immunology, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Wang Yujuan
- Department of Immunology, Wuhan University School of Medicine, Wuhan, People's Republic of China
- Laboratory of Allergy and Clinical Immunology, Institute of Allergy and Immune-related Diseases, Centre for Medical Research, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Zhang Lijun
- Section of Geriatrics, Departments of Internal Medicine, The Renmin University Hospital, Wuhan University, Wuhan, People's Republic of China
| | - Zhou Rui
- Department of Immunology, Wuhan University School of Medicine, Wuhan, People's Republic of China
- Laboratory of Allergy and Clinical Immunology, Institute of Allergy and Immune-related Diseases, Centre for Medical Research, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Tan Xinti
- Department of Immunology, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Bi Yongyi
- Wuhan University School of Public Health, Wuhan, People's Republic of China
| | - Jiang Yan-Ping
- Department of Immunology, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Jin Youxin
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, People's Republic of China
| | - Tan Jinquan
- Department of Immunology, Wuhan University School of Medicine, Wuhan, People's Republic of China
- Laboratory of Allergy and Clinical Immunology, Institute of Allergy and Immune-related Diseases, Centre for Medical Research, Wuhan University School of Medicine, Wuhan, People's Republic of China
- * E-mail: (HY); (TJ)
| |
Collapse
|
657
|
Chan AC, Berzins SP, Godfrey DI. Transcriptional regulation of lymphocyte development. Developing NKT cells need their (E) protein. Immunol Cell Biol 2010; 88:507-9. [PMID: 20479777 DOI: 10.1038/icb.2010.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
658
|
Amu S, Saunders SP, Kronenberg M, Mangan NE, Atzberger A, Fallon PG. Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. J Allergy Clin Immunol 2010; 125:1114-1124.e8. [PMID: 20304473 DOI: 10.1016/j.jaci.2010.01.018] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/23/2009] [Accepted: 01/09/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Parasitic helminth infections of humans have been shown to suppress the immune response to allergens. Experimentally, infection of mice with the helminth Schistosoma mansoni prevents allergic airway inflammation and anaphylaxis via IL-10 and B cells. OBJECTIVE To identify and characterize the specific helminth-induced regulatory B-cell subpopulation and determine the mechanism by which these regulatory B cells suppress allergic airway inflammation. METHODS IL-10-producing B cells from the spleens of helminth-infected mice were phenotyped, isolated, and transferred to ovalbumin-sensitized mice, and their ability to modulate allergic airway inflammation was analyzed. RESULTS S mansoni infection induced IL-10-producing CD1d(high) regulatory B cells that could prevent ovalbumin-induced allergic airway inflammation following passive transfer to ovalbumin-sensitized recipients. The capacity of regulatory B cells to suppress allergic airway inflammation was dependent on the expression of CD1d, and they functioned via an IL-10-mediated mechanism. Regulatory B cells induced pulmonary infiltration of CD4(+)CD25(+) forkhead box protein 3(+) regulatory T cells, independent of TGF-beta, thereby suppressing allergic airway inflammation. Regulatory B cells that were generated ex vivo also suppressed the development of allergic airway inflammation. Furthermore, the transfer of regulatory B cells reversed established airway inflammation in ovalbumin-sensitized mice. CONCLUSION We have generated in vivo and ex vivo a regulatory B cell that can prevent or reverse allergen-induced airway inflammation via regulatory T cells.
Collapse
Affiliation(s)
- Sylvie Amu
- Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
659
|
Paquet P, Piérard GE. New insights in toxic epidermal necrolysis (Lyell's syndrome): clinical considerations, pathobiology and targeted treatments revisited. Drug Saf 2010; 33:189-212. [PMID: 20158284 DOI: 10.2165/11532540-000000000-00000] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Drug-induced toxic epidermal necrolysis (TEN), also known as Lyell's syndrome, is a life-threatening drug reaction characterized by extensive destruction of the epidermis and mucosal epithelia. The eyes are typically involved in TEN. At present, the disease has a high mortality rate. Conceptually, TEN and the Stevens-Johnson syndrome are closely related, although their severity and outcome are different. Distinguishing TEN from severe forms of erythema multiforme relies on consideration of aetiological, clinical and histological characteristics. The current understanding of the pathomechanism of TEN suggests that keratinocytes are key initiator cells. It is probable that the combined deleterious effects on keratinocytes of both the cytokine tumour necrosis factor (TNF)-alpha and oxidative stress induce a combination of apoptotic and necrotic events. As yet, there is no evidence indicating the superiority of monotherapy with corticosteroids, ciclosporin (cyclosporine) or intravenous immunoglobulins over supportive care only for patients with TEN. However, the current theory of TEN pathogenesis supports the administration of a combination of antiapoptotic/antinecrotic drugs (e.g. anti-TNF-alpha antibodies plus N-acetylcysteine) targeting different levels of the keratinocyte failure machinery.
Collapse
Affiliation(s)
- Philippe Paquet
- Department of Dermatopathology, University Hospital of Liège, CHU Sart Tilman, Liège, Belgium.
| | | |
Collapse
|
660
|
Tefit JN, Davies G, Serra V. NKT cell responses to glycolipid activation. Methods Mol Biol 2010; 626:149-67. [PMID: 20099127 DOI: 10.1007/978-1-60761-585-9_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NKT cells are a distinct lineage of T lymphocytes that are usually identified by the co-expression of the semi-invariant CD1d-restricted alphabeta TCR and the NK1.1 allelic marker of NK lineage receptors in the C57BL/6 mice and related strains. NKT cells can be subdivided based on CD4/CD8 expression and on tissue of origin. NKT cells express significantly the TCR gene products Valpha24 JalphaQ in humans, the homolog of mouse Valpha14 Jalpha18, paired with Vbeta11, the homolog of mouse Vbeta8.2. NKT cells are most frequent in liver (up to 30% of T cells in mice and approximately 4% of hepatic T cells in human), bone marrow, and thymus and represent a smaller proportion of T cells in other tissues including spleen, lymph nodes, blood, and lung. NKT cells recognize a broad array of glycolipids in the context of CD1d presentation, and many studies have characterized a cascade of functions following in vitro and in vivo stimulation by alpha-GalCer, including production of high levels of immune-regulatory cytokines and bystander activation of several cell types including NK, B, T, and dendritic cells. Both in vitro and in vivo methods have been developed for the study of NKT responses to glycolipid presentation by CD1d. In practice, CD1d-glycolipid-loaded tetramers would most reliably identify these cells. In vitro, splenocytes can be used to monitor cytokine release as this population contains all the cells necessary for sequestering, loading onto CD1d molecules, and presentation of glycolipids to NKT cells. Another system involves the use of NKT cell hybridoma and CD1d coated onto plastic plates to measure responses limited to NKT cells more precisely. In vivo, responses are typically measured by injecting the glycolipid into mice and monitoring plasma cytokine levels or DC maturation in the spleen. This chapter describes methods that can be used to identify NKT cells and to asses in vitro and in vivo their activation and expansion.
Collapse
|
661
|
Efficient isolation of mouse liver NKT cells by perfusion. PLoS One 2010; 5:e10288. [PMID: 20422018 PMCID: PMC2858210 DOI: 10.1371/journal.pone.0010288] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 03/29/2010] [Indexed: 11/19/2022] Open
Abstract
Background NKT cell is a population of unconventional T cells that mediate both innate and adaptive T cell responses. Since NKT cells are most abundant in the liver, much of NKT biology has been learnt from studies of NKT cells isolated from liver. This is a cumbersome procedure with variations in cell yield. Results Based on recent evidence that NKT cells reside in liver vascular compartment, we developed a simple method to isolate NKT cells by perfusion with PBS-containing 10 mM of EDTA. The number and cell surface phenotype of liver NKT cells recovered by perfusion and by the traditional method were comparable. The yield of other lymphocytes was also comparable. Conclusion/Significance Our data demonstrated that liver lymphocytes can be efficiently isolated by simple perfusion. These data provide a convenient method to isolate liver lymphocyte while preserving liver tissue for other analysis.
Collapse
|
662
|
Veerapen N, Leadbetter EA, Brenner MB, Cox LR, Besra GS. Synthesis of a novel alpha-galactosyl ceramide haptenated-lipid antigen, a useful tool in demonstrating the involvement of iNKT cells in the production of antilipid antibodies. Bioconjug Chem 2010; 21:741-7. [PMID: 20345125 PMCID: PMC3833054 DOI: 10.1021/bc9005255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new haptenated derivative of alpha-galactosyl ceramide (alpha-GalCer) has been synthesized to assist in the study of the mechanism of T cell help for the production of B cell antibodies. Our synthetic route provides access to an amine intermediate which can easily be extended to generate an array of compounds, useful in various ongoing studies. Herein, we also describe the biological evaluation of the nitrophenyl (NP) haptenated alpha-GalCer and demonstrate its importance in such mechanistic studies. For instance, in vitro studies showed that NP-alpha-GalCer stimulates both T and B cell proliferation while in vivo studies in immunized mice showed the production of IgG anti-NP antibodies after exposure to NP-alpha-GalCer. The interpretation of these results helps toward a better understanding of T cell help for the production of antibodies.
Collapse
Affiliation(s)
- Natacha Veerapen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Elizabeth A. Leadbetter
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115, USA
| | - Michael B. Brenner
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115, USA
| | - Liam R. Cox
- School of Chemistry, University of Birmingham, Edgbaston, Edgbaston, Birmingham, B15 2TT, UK
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
663
|
Engel I, Hammond K, Sullivan BA, He X, Taniuchi I, Kappes D, Kronenberg M. Co-receptor choice by V alpha14i NKT cells is driven by Th-POK expression rather than avoidance of CD8-mediated negative selection. ACTA ACUST UNITED AC 2010; 207:1015-29. [PMID: 20404101 PMCID: PMC2867285 DOI: 10.1084/jem.20090557] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mouse natural killer T (NKT) cells with an invariant Vα14-Jα18 rearrangement (Vα14 invariant [Vα14i] NKT cells) are either CD4+CD8− or CD4−CD8−. Because transgenic mice with forced CD8 expression in all T cells exhibited a profound NKT cell deficit, the absence of CD8 has been attributed to negative selection. We now present evidence that CD8 does not serve as a coreceptor for CD1d recognition and that the defect in development in CD8 transgene homozygous mice is the result of a reduction in secondary T cell receptor α rearrangements. Thymocytes from mice hemizygous for the CD8 transgene have a less severe rearrangement defect and have functional CD8+ Vα14i NKT cells. Furthermore, we demonstrate that the transcription factor Th, Poxviruses and Zinc finger, and Krüppel family (Th-POK) is expressed by Vα14i NKT cells throughout their differentiation and is necessary both to silence CD8 expression and for the functional maturity of Vα14i NKT cells. We therefore suggest that Th-POK expression is required for the normal development of Vα14i NKT cells and that the absence of CD8 expression by these cells is a by-product of such expression, as opposed to the result of negative selection of CD8-expressing Vα14i NKT cells.
Collapse
Affiliation(s)
- Isaac Engel
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
664
|
De Libero G, Mori L. How the immune system detects lipid antigens. Prog Lipid Res 2010; 49:120-7. [DOI: 10.1016/j.plipres.2009.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
|
665
|
Abstract
Following stimulation through their T cell receptor, invariant natural killer T (iNKT) cells function as innate effector cells by rapidly releasing large amounts of effector cytokines and chemokines and therefore have an important role in modulating the ensuing immune response. iNKT cells recognize, and are activated by, diverse glycolipid antigens, many of which are found in microorganisms. However, iNKT cells also show some reactivity to 'self'. Here, I outline our current understanding of iNKT cell autoreactivity and propose that several self lipids are probably involved in the positive selection and autoreactivity of iNKT cells.
Collapse
Affiliation(s)
- Laurent Gapin
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, 80206, USA.
| |
Collapse
|
666
|
Fujii S, Motohashi S, Shimizu K, Nakayama T, Yoshiga Y, Taniguchi M. Adjuvant activity mediated by iNKT cells. Semin Immunol 2010; 22:97-102. [DOI: 10.1016/j.smim.2009.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 10/26/2009] [Indexed: 11/26/2022]
|
667
|
Lee H, Hong C, Shin J, Oh S, Jung S, Park YK, Hong S, Lee GR, Park SH. The presence of CD8+ invariant NKT cells in mice. Exp Mol Med 2010; 41:866-72. [PMID: 19745607 DOI: 10.3858/emm.2009.41.12.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Invariant natural killer T (iNKT) cells develop in the thymus upon recognition of CD1d expressed on developing thymocytes. Although CD4 and CD8 coreceptors are not directly involved in the interaction between CD1d and the T cell receptors (TCRs) of iNKT cells, a conspicuous lack of CD8(+) iNKT cells in mice raised the question of whether CD8(+) iNKT cells are excluded due to negative selection during their thymic development, or if there is no lineage commitment for the development of murine CD8(+) iNKT cells. To address this question, we analyzed iNKT cell-specific TCR V alpha 14(+) transgenic mice, where the V alpha 14 transgene forces the generation of iNKT cells. This allows detailed study of the iNKT cell repertoire. We were able to identify CD8(+) iNKT cells which respond to the NKT cell-specific glycolipid ligand alpha-galactosylceramide. Unlike conventional iNKT cells, CD8(+) iNKT cells produce predominantly IFN-gamma but not IL-4 upon antigen stimulation. We also confirmed the presence of CD8(+) iNKT cells in wild type mice. Our results suggest that CD8(+) NKT cells do exist in mice, although their population size is quite small. Their Th1-skewed phenotype might explain why the population size of this subtype needs to be controlled tightly.
Collapse
Affiliation(s)
- Hyunji Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
668
|
Gardner TR, Chen Q, Jin Y, Ajuebor MN. Toll-like receptor 3 ligand dampens liver inflammation by stimulating Valpha 14 invariant natural killer T cells to negatively regulate gammadeltaT cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1779-89. [PMID: 20167870 DOI: 10.2353/ajpath.2010.090738] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Valpha14 invariant natural killer T (Valpha14iNKT) cells are at the interface between the innate and adaptive immune responses and are thus critical for providing full engagement of host defense. We investigated the role of polyriboinosinic:polycytidylic acid (poly I:C), a replication-competent viral double-stranded RNA mimic and a specific agonist that recognizes the cellular sensor Toll-like receptor 3 (TLR3), in regulating Valpha14iNKT cell activation. We established for the first time that hepatic Valpha14iNKT cells up-regulate TLR3 extracellularly after poly I:C treatment. Notably, activation of TLR3-expressing hepatic Valpha14iNKT cells by a TLR3 ligand was suppressed by TLR3 deficiency. Our studies also revealed that Valpha14iNKT cell activation in response to poly I:C administration uniquely suppressed the accumulation and activation of intrahepatic gammadeltaT cells (but not natural killer cells) by inducing apoptosis. Furthermore, we established that activated hepatic Valpha14iNKT cells (via cytokines and possibly reactive oxygen species) influenced the frequency and absolute number of intrahepatic gammadeltaT cells, as evidenced by increased hepatic gammadeltaT cell accumulation in Valpha14iNKT cell-deficient mice after poly I:C treatment relative to wild-type mice. Thus, hepatic Valpha14iNKT cells and intrahepatic gammadeltaT cells are functionally linked on application of TLR3 agonist. Overall, our results demonstrate a novel and previously unrecognized anti-inflammatory role for activated hepatic Valpha14iNKT cells in negatively regulating intrahepatic gammadeltaT cell accumulation (probably through TLR3 signaling) and thereby preventing potentially harmful activation of intrahepatic gammadeltaT cells.
Collapse
Affiliation(s)
- Tommy R Gardner
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
669
|
Abstract
Natural killer T cells (NKT cells) are CD1d-restricted, lipid antigen-reactive, immunoregulatory T lymphocytes that can promote cell-mediated immunity to tumors and infectious organisms, including bacteria and viruses, yet paradoxically they can also suppress the cell-mediated immunity associated with autoimmune disease and allograft rejection. Furthermore, in some diseases, such as atherosclerosis and allergy, NKT cell activity can be deleterious to the host. Although the precise means by which these cells carry out such contrasting functions is unclear, recent studies have highlighted the existence of many functionally distinct NKT cell subsets. Because their frequency and number vary widely between individuals, it is important to understand the mechanisms that regulate the development and maintenance of NKT cells and subsets thereof, which is the subject of this review.
Collapse
|
670
|
|
671
|
Chaplin DD. Overview of the immune response. J Allergy Clin Immunol 2010; 125:S3-23. [PMID: 20176265 PMCID: PMC2923430 DOI: 10.1016/j.jaci.2009.12.980] [Citation(s) in RCA: 1175] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 12/12/2022]
Abstract
The immune system has evolved to protect the host from a universe of pathogenic microbes that are themselves constantly evolving. The immune system also helps the host eliminate toxic or allergenic substances that enter through mucosal surfaces. Central to the immune system's ability to mobilize a response to an invading pathogen, toxin, or allergen is its ability to distinguish self from nonself. The host uses both innate and adaptive mechanisms to detect and eliminate pathogenic microbes, and both of these mechanisms include self-nonself discrimination. This overview identifies key mechanisms used by the immune system to respond to invading microbes and other exogenous threats and identifies settings in which disturbed immune function exacerbates tissue injury.
Collapse
Affiliation(s)
- David D Chaplin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
672
|
Joyee AG, Uzonna J, Yang X. Invariant NKT Cells Preferentially Modulate the Function of CD8α+ Dendritic Cell Subset in Inducing Type 1 Immunity against Infection. THE JOURNAL OF IMMUNOLOGY 2010; 184:2095-106. [DOI: 10.4049/jimmunol.0901348] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
673
|
Qian G, Qin X, Zang YQ, Ge B, Guo TB, Wan B, Fang L, Zhang JZ. High doses of alpha-galactosylceramide potentiate experimental autoimmune encephalomyelitis by directly enhancing Th17 response. Cell Res 2010; 20:480-91. [PMID: 20084083 DOI: 10.1038/cr.2010.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Alpha-galactosylceramide (alpha-GC) is widely known to activate invariant natural killer T (iNKT) cells to suppress myelin antigen-specific Th1 responses, protecting susceptible mice against experimental autoimmune encephalomyelitis (EAE). Here, we demonstrate an unexpected finding that high doses of alpha-GC exacerbated, rather than ameliorated, EAE. Similar results were observed when MOG(35-55)-specific T cells treated with high-dose alpha-GC were transferred into naïve syngeneic recipient mice. Further study showed that high doses of alpha-GC directly enhance the Th17 and Th1 response by activation of CD4(+)CD44(+) memory T cells through phosphorylation of STAT3 and activation of NF-kappaB. Unlike the activation of iNKT cells by low doses of alpha-GC, high doses of alpha-GC directly interacted with CD1d expressed on T cells and activated Th17 and Th1 cells. Furthermore, antigen-presenting cells (APCs) predominantly express CD1d1, whereas the majority of CD4(+) T cells express CD1d2. Knockdown of CD1d1 or CD1d2 gene expression by RNAi interfered with the activation of iNKT or Th17/Th1 cells, respectively. Therefore, alpha-GC treatment could improve or worsen EAE by engaging either APCs or Th17/Th1 cells depending on the dose used.
Collapse
Affiliation(s)
- Gaochao Qian
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chong Qing Road, Shanghai 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
674
|
Chan AC, Neeson P, Leeansyah E, Tainton K, Quach H, Prince HM, Godfrey DI, Ritchie D, Berzins SP. Testing the NKT cell hypothesis in lenalidomide-treated myelodysplastic syndrome patients. Leukemia 2010; 24:592-600. [PMID: 20072154 DOI: 10.1038/leu.2009.279] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myelodysplastic syndrome (MDS) comprises a group of clonal bone marrow disorders characterized by ineffective hematopoiesis and increased predisposition to acute myeloid leukemia. The causes of MDS remain poorly defined, but several studies have reported the NKT cell compartment of patients with MDS is deficient in number and functionally defective. In support of a central role for NKT cells, a pilot clinical study reported that lenalidomide (an approved treatment for MDS) increased NKT cell numbers in patients with MDS, and several in vitro studies showed lenalidomide specifically promoted NKT cell proliferation and cytokine production. We tested this in a much larger study and confirm a moderate in vitro augmentation of some NKT cell functions by lenalidomide, but find no impact on the NKT cell compartment of patients treated with lenalidomide, despite a consistently positive clinical response. We further show that the frequency and cytokine production of NKT cells is normal in patients with MDS before treatment and remains stable throughout 10 months of lenalidomide therapy. Collectively, our data challenge the concept that NKT cell defects contribute to the development of MDS, and show that a clinical response to lenalidomide is not dependent on modulation of NKT cell frequency or function.
Collapse
Affiliation(s)
- A C Chan
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
675
|
Abstract
Saposins or sphingolipid activator proteins (SAPs) are small, nonenzymatic glycoproteins that are ubiquitously present in lysosomes. SAPs comprise the five molecules saposins A-D and the GM2 activator protein. Saposins are essential for sphingolipid degradation and membrane digestion. On the one hand, they bind the respective hydrolases required to catabolize sphingolipid molecules; on the other hand, saposins can interact with intralysosomal membrane structures to render lipids accessible to their degrading enzymes. Thus, saposins bridge the physicochemical gap between lipid substrate and hydrophilic hydrolases. Accordingly, defects in saposin function can lead to lysosomal lipid accumulation. In addition to their specific functions in sphingolipid metabolism, saposins have membrane-perturbing properties. At the low pH of lysosomes, saposins get protonated and exhibit a high binding affinity for anionic phospholipids. Based on their universal principle to interact with membrane bilayers, we present the immunological functions of saposins with regard to lipid antigen presentation to CD1-restricted T cells, processing of apoptotic bodies for antigen delivery and cross-priming, as well as their potential antimicrobial impact.
Collapse
Affiliation(s)
- Alexandre Darmoise
- Program in Cellular and Molecular Medicine at Children's Hospital, Immune Disease Institute, Department of Pathology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
676
|
Rubin B, Gairin JE. Concepts and ways to amplify the antitumor immune response. Curr Top Microbiol Immunol 2010; 344:97-128. [PMID: 20680804 DOI: 10.1007/82_2010_89] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this chapter, a detailed description of how the innate and adaptive immune responses interact with malignant cells is presented. In addition, we discuss how developing tumors establish themselves, and how they benefit on one hand and organize their defense against the immune system on the other hand. New data from three tumor model systems in mice are discussed; in particular, the intricate interactions between the immune cells and the tumor cells are highlighted. With the present data and knowledge, we conclude that a first prerequisite for the combat against tumors is the activation of the innate immune system via external danger signals or damage signals and internal danger signals. The second prerequisite for efficient tumor cell eradication is combined therapeutic approaches of physical, chemical, pharmacological, and immunological origin. Finally, we propose new ways for further investigation of the relationship linking tumor cells and our defense system. It appears mandatory to understand how the malignant cells render the adaptive immune cells tolerant instead of turning them into aggressive effectors and memory cells. Perhaps, the most important thing, for immunologists and clinicians, to understand is that tumor cells must not be viewed just as antigens but much more.
Collapse
Affiliation(s)
- Bent Rubin
- UMR 2587 CNRS-Pierre Fabre, Institut de Sciences et Technologies du Médicament de Toulouse, 3, rue des Satellites, 31400, Toulouse, France
| | | |
Collapse
|
677
|
Bhogal RH, Afford SC. Immune Cell Communication and Signaling Systems in Liver Disease. SIGNALING PATHWAYS IN LIVER DISEASES 2010:117-146. [DOI: 10.1007/978-3-642-00150-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
678
|
Jang GC. Natural killer T cell and pathophysiology of asthma. KOREAN JOURNAL OF PEDIATRICS 2010. [DOI: 10.3345/kjp.2010.53.2.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
679
|
Kremer M, Thomas E, Milton RJ, Perry AW, van Rooijen N, Wheeler MD, Zacks S, Fried M, Rippe RA, Hines IN. Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis. Hepatology 2010; 51:130-41. [PMID: 20034047 PMCID: PMC3761962 DOI: 10.1002/hep.23292] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Hepatosteatosis is associated with increased expression of tumor necrosis factor alpha (TNF-alpha) and interleukin (IL)-12, major T helper (Th) 1 cytokines, and reduced hepatic natural killer T (NKT) cell numbers. The relationship between lipid accumulation, cytokine expression, and hepatic NKT cells is not known. This study was conducted to assess the role of IL-12 in the development of hepatic steatosis and its potential impact on liver NKT cells. Male C57Bl/6 wildtype (WT) and IL-12-deficient (IL-12(-/-)) mice were fed a choline-deficient diet (CDD) for 0, 10, or 20 weeks. CDD led to marked hepatosteatosis, reduced hepatic but not splenic NKT cell numbers and function, and increased hepatic expression of the T(h)1-type cytokines IL-12, interferon gamma (IFN-gamma), and TNF-alpha in WT mice. The absence of IL-12 resulted in similar CDD-induced hepatosteatosis, but preserved hepatic NKT cells and significantly reduced hepatic IFN-gamma and TNF-alpha expression. Treatment of CDD-fed mice with lipopolysaccharide led to a significant increase in hepatic IL-12 expression, and Kupffer cell (KC) depletion reduced liver IL-12 expression and restored NKT cells in CDD-induced fatty liver. Interestingly, KCs from CDD-fed mice failed to produce increased quantities of IL-12 upon activation in vitro when compared to similarly treated KCs from control fed mice, suggesting that secondary factors in vivo promote heightened IL-12 production. Finally, human livers with severe steatosis showed a substantial decrease in NKT cells. CONCLUSION Hepatosteatosis reduces the numbers of hepatic NKT cells in a KC-and IL-12-dependent manner. Our results suggest a pivotal and multifunctional role of KC-derived IL-12 in the altered immune response in steatotic liver, a process that is likely active within human nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Michael Kremer
- Center for Alcohol Sudies, University of North Carolina at Chapel Hill, NC 27599
,Department of Surgery, University of Heidelberg, Germany
| | - Emmanuel Thomas
- Department of Medicine, University of North Carolina at Chapel Hill, NC 27599
| | - Richard J. Milton
- Center for Alcohol Sudies, University of North Carolina at Chapel Hill, NC 27599
| | - Ashley W. Perry
- Center for Alcohol Sudies, University of North Carolina at Chapel Hill, NC 27599
| | - Nico van Rooijen
- Department of Cell Biology, Free University, Amsterdam, Netherlands
| | - Michael D. Wheeler
- Center for Alcohol Sudies, University of North Carolina at Chapel Hill, NC 27599
| | - Steven Zacks
- Department of Medicine, University of North Carolina at Chapel Hill, NC 27599
| | | | - Richard A. Rippe
- Department of Medicine, University of North Carolina at Chapel Hill, NC 27599
| | - Ian N. Hines
- Center for Alcohol Sudies, University of North Carolina at Chapel Hill, NC 27599
,Department of Medicine, University of North Carolina at Chapel Hill, NC 27599
| |
Collapse
|
680
|
Ly D, Tohn R, Rubin B, Blumenfeld H, Besra GS, Veerapen N, Porcelli SA, Delovitch TL. An alpha-galactosylceramide C20:2 N-acyl variant enhances anti-inflammatory and regulatory T cell-independent responses that prevent type 1 diabetes. Clin Exp Immunol 2009; 160:185-98. [PMID: 20015094 DOI: 10.1111/j.1365-2249.2009.04074.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protection from type 1 diabetes (T1D), a T helper type 1 (Th1)-mediated disease, is achievable in non-obese diabetic (NOD) mice by treatment with alpha-galactosylceramide (alpha-GalCer) glycolipids that stimulate CD1d-restricted invariant natural killer T (iNK T) cells. While we have reported previously that the C20:2 N-acyl variant of alpha-GalCer elicits a Th2-biased cytokine response and protects NOD mice from T1D more effectively than a form of alpha-GalCer that induces mixed Th1 and Th2 responses, it remained to determine whether this protection is accompanied by heightened anti-inflammatory responses. We show that treatment of NOD mice with C20:2 diminished the activation of 'inflammatory' interleukin (IL)-12 producing CD11c(high)CD8+ myeloid dendritic cells (mDCs) and augmented the function of 'tolerogenic' DCs more effectively than treatment with the prototypical iNKT cell activator KRN7000 (alpha-GalCer C26:0) that induces Th1- and Th2-type responses. These findings correlate with a reduced capacity of C20:2 to sustain the early transactivation of T, B and NK cells. They may also explain our observation that C20:2 activated iNK T cells depend less than KRN7000 activated iNK T cells upon regulation by regulatory T cells for cytokine secretion and protection from T1D. The enhanced anti-inflammatory properties of C20:2 relative to KRN7000 suggest that C20:2 should be evaluated further as a drug to induce iNK T cell-mediated protection from T1D in humans.
Collapse
Affiliation(s)
- D Ly
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
681
|
A double-edged sword: the role of NKT cells in malaria and HIV infection and immunity. Semin Immunol 2009; 22:87-96. [PMID: 19962909 DOI: 10.1016/j.smim.2009.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/02/2009] [Accepted: 11/09/2009] [Indexed: 02/08/2023]
Abstract
NKT cells are known to play a role against certain microbial infections, including malaria and HIV, two major global infectious diseases. NKT cells exhibit either protective or pathogenic role against malaria. They are depleted by HIV infection and have a direct pathogenic role against many opportunistic infections common in end-stage AIDS. This review discusses the various features of the interaction between NKT cells and malaria parasites and HIV, and the potential to harness this interaction for therapeutic and vaccine strategies.
Collapse
|
682
|
Dimitrov S, Lange T, Born J. Selective mobilization of cytotoxic leukocytes by epinephrine. THE JOURNAL OF IMMUNOLOGY 2009; 184:503-11. [PMID: 19949113 DOI: 10.4049/jimmunol.0902189] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is well-known that acute stress, presumably as a first defense against pathogens, enhances PBMC counts by mobilizing these beta2-adrenoceptor positive cells from the marginal pool. Yet, only select leukocyte subsets participate in this phenomenon of adrenergic leukocytosis and underlying mechanisms are obscure. In this study, we analyzed in human blood adhesion molecule and chemokine receptor profiles in 14 leukocyte subsets, and responsiveness of subsets to epinephrine in vivo and in vitro. Five subsets, namely, CCR7(-)CD45RA(+)CD8(+) effector T cells, CD4(-)CD8(-) gamma/delta T cells, CD3(+)CD56(+) NKT-like cells, CD16(+)CD56(dim) cytotoxic NK cells, and CD14(dim)CD16(+) proinflammatory monocytes showed a rapid and transient increase after infusion of epinephrine at physiological concentrations. These cells were characterized by a CD62L(-)CD11a(bright)CX3CR(bright) phenotype, whereby expression of both CD11a and CX3CR1 was strongly correlated with adrenergic leukocytosis in vivo (r = 0.86 and 0.78, p < 0.005). The same subsets showed highest adherence to activated endothelium in vitro, which (except for proinflammatory monocytes) was reversed by epinephrine. We conclude that these five cytotoxic effector leukocyte subsets comprise the marginal pool by a CD11a/CX3CR1-mediated attachment to the endothelium. Epinephrine rapidly attenuates this attachment to allow demargination and release of the cells into the circulation that, because of their cytotoxic effector function, provide immediate protection from invading pathogens.
Collapse
Affiliation(s)
- Stoyan Dimitrov
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany
| | | | | |
Collapse
|
683
|
Yue SC, Nowak M, Shaulov-Kask A, Wang R, Yue D, Balk SP, Exley MA. Direct CD1d-mediated stimulation of APC IL-12 production and protective immune response to virus infection in vivo. THE JOURNAL OF IMMUNOLOGY 2009; 184:268-76. [PMID: 19949077 DOI: 10.4049/jimmunol.0800924] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD1d-restricted NKT cells rapidly stimulate innate and adaptive immunity through production of Th1 and/or Th2 cytokines and induction of CD1d(+) APC maturation. However, therapeutic exploitation of NKT cells has been hampered by their paucity and defects in human disease. NKT cell-APC interactions can be modeled by direct stimulation of human APCs through CD1d in vitro. We have now found that direct ligation with multiple CD1d mAbs also stimulated bioactive IL-12 release from CD1d(+) but not CD1d knockout murine splenocytes in vitro. Moreover, all of the CD1d mAbs tested also induced IL-12 as well as both IFN-gamma and IFN-alpha in vivo from CD1d(+) but not CD1d-deficient recipients. Unlike IFN-gamma, CD1d-induced IFN-alpha was at least partially dependent on invariant NKT cells. Optimal resistance to infection with picornavirus encephalomyocarditis virus is known to require CD1d-dependent APC IL-12-induced IFN-gamma as well as IFN-alpha. CD1d ligation in vivo enhanced systemic IL-12, IFN-gamma, and IFN-alpha and was protective against infection by encephalomyocarditis virus, suggesting an alternative interpretation for previous results involving CD1d "blocking" in other systems. Such protective responses, including elevations in Th1 cytokines, were also seen with CD1d F(ab')(2)s in vivo, whereas an IgM mAb (with presumably minimal tissue penetration) was comparably effective at protection in vivo as well as cytokine induction both in vivo and in vitro. Although presumably acting immediately "downstream," CD1d mAbs were protective later during infection than the invariant NKT cell agonist alpha-galactosylceramide. These data indicate that NKT cells can be bypassed with CD1d-mediated induction of robust Th1 immunity, which may have therapeutic potential both directly and as an adjuvant.
Collapse
Affiliation(s)
- Simon C Yue
- Cancer Biology Program, Division of Hematology and Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
684
|
How invariant natural killer T cells respond to infection by recognizing microbial or endogenous lipid antigens. Semin Immunol 2009; 22:79-86. [PMID: 19948416 DOI: 10.1016/j.smim.2009.10.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/26/2009] [Indexed: 12/12/2022]
Abstract
Invariant natural killer T (iNKT) cells have evolved to recognize CD1d-presented lipid antigens and are known to play important roles during infection with bacterial, viral, protozoan, and fungal pathogens. The limited antigen specificity and reactivity to self- and foreign antigens distinguish iNKT cells from MHC-restricted T cells and bear similarity to innate-like lymphocytes, such as NK cells, gammadelta T cells, MZB and B1-B cells. This review summarizes how direct recognition of microbial lipids or synergistic stimulation by self-lipids and pro-inflammatory cytokines results in activation of these innate-like iNKT cell during infection. iNKT cell activation in the absence of foreign antigen recognition is unique for cells bearing TCRs and underscores that not only the function but also the activation mechanism of iNKT cells is innate-like, and distinct from adaptive T cells. The different pathways of activation endow iNKT cells with the ability to respond rapidly to a wide variety of infectious agents and to contribute effectively to the early immune response during infection.
Collapse
|
685
|
Antigen recognition by CD1d-restricted NKT T cell receptors. Semin Immunol 2009; 22:61-7. [PMID: 19945889 DOI: 10.1016/j.smim.2009.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 10/26/2009] [Indexed: 12/31/2022]
Abstract
alphabeta T cell receptors (TCRs) have traditionally been viewed as receptors for peptide antigens presented by either Major Histocompatibility Complex (MHC) class I (for CD8 T cells) or MHC class II (for CD4 T cells) antigen-presenting molecules. However, it is now clear that some T cell lineages express TCRs that are specialized for recognition of lipid-based antigens presented by the MHC class I-like CD1 family. Recently, the molecular basis for the TCR recognition of glycolipid antigens presented by CD1d has revealed an evolutionarily conserved-docking mode that is distinct from that of peptide-based recognition. T cells carrying these receptors follow a unique developmental pathway that results not only in unconventional antigen specificity, but also seemingly exaggerated functional capabilities, which makes these cells and their antigens highly attractive targets for immunotherapeutic manipulation.
Collapse
|
686
|
Venkataswamy MM, Porcelli SA. Lipid and glycolipid antigens of CD1d-restricted natural killer T cells. Semin Immunol 2009; 22:68-78. [PMID: 19945296 DOI: 10.1016/j.smim.2009.10.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 10/26/2009] [Indexed: 12/17/2022]
Abstract
In spite of their relatively limited antigen receptor repertoire, CD1d-restricted NKT cells recognize a surprisingly diverse range of lipid and glycolipid antigens. Recent studies of natural and synthetic CD1d-presented antigens provide an increasingly detailed picture of how the specific structural features of these lipids and glycolipids influence their ability to be presented to NKT cells and stimulate their diverse immunologic functions. Particularly for synthetic analogues of alpha-galactosylceramides which have been the focus of intense recent investigation, it is becoming clear that the design of glycolipid antigens with the ability to precisely control the specific immunologic activities of NKT cells is likely to be feasible. The emerging details of the mechanisms underlying the structure-activity relationship of NKT cell antigens will assist greatly in the design and production of immunomodulatory agents for the precise manipulation of NKT cells and the many other components of the immune system that they influence.
Collapse
Affiliation(s)
- Manjunatha M Venkataswamy
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
687
|
Ohmura K, Ishimori N, Ohmura Y, Tokuhara S, Nozawa A, Horii S, Andoh Y, Fujii S, Iwabuchi K, Onoé K, Tsutsui H. Natural killer T cells are involved in adipose tissues inflammation and glucose intolerance in diet-induced obese mice. Arterioscler Thromb Vasc Biol 2009; 30:193-9. [PMID: 19910631 DOI: 10.1161/atvbaha.109.198614] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Macrophage and lymphocyte infiltration in adipose tissue may contribute to the pathogenesis of obesity-mediated metabolic disorders. Natural killer T (NKT) cells, which integrate proinflammatory cytokines, have been demonstrated in the atherosclerotic lesions and in visceral adipose tissue. OBJECTIVE To determine whether NKT cells are involved in glucose intolerance and adipose tissue inflammation in diet-induced obese mice. METHODS AND RESULTS Male beta(2)-microglobulin knockout (KO) mice lacking NKT cells and C57BL/6J (wild-type) mice were fed with a high-fat diet (HFD) for 13 weeks [corrected]. Body weight and visceral obesity were comparable between wild-type and KO mice. However, macrophage infiltration was reduced in adipose tissue and glucose intolerance was significantly ameliorated in KO mice. To further confirm that NKT cells are involved in these abnormalities, alpha-galactosylceramide, 0.1 microg/g body weight, which specifically activates NKT cells, was administered after 13 weeks of HFD feeding. alpha-Galactosylceramide significantly exacerbated glucose intolerance and macrophage infiltration as well as cytokine gene expression in adipose tissue. CONCLUSIONS NKT cells play a crucial role in the development of adipose tissue inflammation and glucose intolerance in diet-induced obesity.
Collapse
Affiliation(s)
- Kazue Ohmura
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
688
|
Inverse association of peripheral blood CD4(+) invariant natural killer T cells with atopy in human asthma. Hum Immunol 2009; 71:186-91. [PMID: 19879910 DOI: 10.1016/j.humimm.2009.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/05/2009] [Accepted: 10/22/2009] [Indexed: 11/20/2022]
Abstract
Invariant natural killer T (iNKT) cells have been reported to play a role in the pathogenesis of murine asthma. However, the role for iNKT cells in the pathogenesis of human asthma is not defined. In this study we aimed to determined how blood iNKT cells are associated with atopy in asthmatic individuals. Peripheral blood mononuclear cells were isolated from 45 asthmatic subjects. iNKT cells were stained with 6B11 mAb, anti-TCRvalpha24 mAb, or alpha-galactosylceramide (GalCer)-loaded CD1d- tetramer and analyzed with flow-cytometric assays. Increased serum total IgE or one or more positive skin reactions to common allergens were used as atopic indexes. Asthmatic subjects with IgE > 500 IU/ml showed lower frequency of CD4(+) 6B11(+) iNKT cells (p < 0.01) or CD4(+) Valpha24(+) iNKT cells (p < 0.01) compared with subjects with IgE < or = 500 IU/ml. Asthmatic subjects with atopy on skin tests had lower frequency of CD4(+) alpha-GalCer-loaded CD1d- tetramer(+) iNKT cells compared with those without atopy (p < 0.05). The frequency of CD4(+) Valpha24(+) iNKT cells was negatively correlated with total IgE in asthmatic subjects (r = -0.33, p < 0.05). In summary, blood CD4(+) iNKT cells were inversely associated with atopic indexes in asthmatic individuals. We hypothesize that blood CD4(+) iNKT cells might behave like T(h)1-like iNKT cells in human asthma.
Collapse
|
689
|
Cao Y, Song Y, An N, Zeng S, Wang D, Yu L, Zhu T, Zhang T, Cui J, Zhou C, Deng X. The effects of telocinobufagin isolated from Chan Su on the activation and cytokine secretion of immunocytes in vitro. Fundam Clin Pharmacol 2009; 23:457-64. [PMID: 19709323 DOI: 10.1111/j.1472-8206.2009.00696.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many traditional Chinese medicines have been used as immunomodulators that act as either immunosuppressants or immunostimulators. Recently, our lab successfully isolated a monomer telocinobufagin (TCB) from the chloroform extract of Chan Su (Venenum Bufonis). In the present paper, we evaluated the immunomodulatory effects of this compound in vitro. We found that TCB significantly stimulates splenocyte proliferation when administered alone or in combination with polyclonal T-cell mitogens concanavalin A (Con A) and lipopolysaccharide. Telocinobufagin markedly enhances natural killer cell and peritoneal macrophage activation. Telocinobufagin increases the percentage of CD4, CD8 positive cells within a population of splenocytes. Moreover, we found that the level of several Th1 cytokines, including interleukin-2 (IL-2), interleukin-12 (IL-12), interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha), are significantly increased after TCB treatment, while the level of the Th2 cytokine interleukin-4 (IL-4) is significantly decreased. As a result, the ratio of Th1/Th2 is significantly increased. Taken together, these results indicate that TCB has potential immune system regulatory effects and suggest that this compound could be developed as a novel immunotherapeutic agent to treat cancer and other immune-mediated diseases, and it may become a new immunomodulatory agent in many regions.
Collapse
Affiliation(s)
- Yongguo Cao
- Department of Veterinary Pharmacology, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
690
|
Podbielska M, Hogan EL. Molecular and immunogenic features of myelin lipids: incitants or modulators of multiple sclerosis? Mult Scler 2009; 15:1011-29. [PMID: 19692432 DOI: 10.1177/1352458509106708] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myelin lipids have long been thought to play intriguing roles in the pathogenesis of multiple sclerosis (MS). This review summarizes current understanding of the molecular basis of MS with emphasis on the: (i.) physico-chemical properties, organization and accessibility of the lipids and their distribution within the myelin multilayer; (ii.) characterization of myelin lipid structures, and structure-function relationships relevant to MS mechanisms, and; (iii.) immunogenic and other features of lipids in MS including molecular mimicry, lipid enzyme genetic knockouts, glycolipid-reactive NKT cells, and monoclonal antibody-induced remyelination. New findings associate anti-lipid antibodies with pathophysiological biomarkers and suggest clinical utility. The structure of CD1d-lipid complexed with the lipophilic invariant T cell receptor (iTCR) may be crucial to understanding MS pathogenesis, and design of lipid antigen-specific therapeutics. Novel immuno-modulatory tools for treatment of autoimmune diseases including MS in which there is both constraint of inflammation and stimulation of remyelination are now emerging.
Collapse
Affiliation(s)
- M Podbielska
- Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, USA
| | | |
Collapse
|
691
|
Gabriel L, Morley BJ, Rogers NJ. The role of iNKT cells in the immunopathology of systemic lupus erythematosus. Ann N Y Acad Sci 2009; 1173:435-41. [PMID: 19758183 DOI: 10.1111/j.1749-6632.2009.04743.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An increasing body of evidence suggests that CD1d-restricted invariant natural killer T (iNKT) cells play an important immunoregulatory role in a variety of autoimmune diseases in both humans and mouse models. Their role in systemic lupus erythematosus (SLE), however, is not fully determined, as SLE mouse models have yielded conflicting results demonstrating both a protective function and a pathogenic role. The reduced frequency of iNKT cells in peripheral blood of lupus patients supports the idea of a protective role for these cells in the immunopathology of SLE. Therapeutic approaches using glycolipids provide a promising tool to correct numerical iNKT cell deficiencies and to modulate their function. This review highlights the potential role of iNKT cells in lupus immunopathology and summarizes recent studies concerning iNKT cells in SLE patients, lupus-prone murine models and glycolipid therapy.
Collapse
Affiliation(s)
- Luisa Gabriel
- Department of Immunology, Faculty of Medicine, Imperial College London, London, United Kingdom.
| | | | | |
Collapse
|
692
|
Yuling H, Ruijing X, Li L, Xiang J, Rui Z, Yujuan W, Lijun Z, Chunxian D, Xinti T, Wei X, Lang C, Yanping J, Tao X, Mengjun W, Jie X, Youxin J, Jinquan T. EBV-induced human CD8+ NKT cells suppress tumorigenesis by EBV-associated malignancies. Cancer Res 2009; 69:7935-44. [PMID: 19808969 DOI: 10.1158/0008-5472.can-09-0828] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The underlying mechanism of the protective and suppressive role of NKT cells in human tumor immunosurveillance remains to be fully elucidated. We show that the frequencies of CD8(+) NKT cells in patients with EBV-associated Hodgkin's lymphoma or nasopharyngeal carcinoma are significantly lower than those in healthy EBV carriers. These CD8(+) NKT cells in tumor patients are also functionally impaired. In human-thymus-severe combined immunodeficient (hu-thym-SCID) chimeras, EBV challenge efficiently promotes the generation of IFN-gamma-biased CD8(+) NKT cells. These cells are strongly cytotoxic, drive syngeneic T cells into a Th1 bias, and enhance T-cell cytotoxicity to EBV-associated tumor cells. Interleukin-4-biased CD4(+) NKT cells are predominately generated in unchallenged chimeras. These cells are noncytotoxic, drive syngeneic T cells into a Th2 bias, and do not affect T-cell cytotoxicity. In humanized xenogeneic tumor-transplanted hu-thym-SCID chimeras, adoptive transfer with EBV-induced CD8(+) NKT cells significantly suppresses tumorigenesis by EBV-associated malignancies. EBV-induced CD8(+) NKT cells are necessary and sufficient to enhance the T-cell immunity to EBV-associated malignancies in the hu-thym-SCID chimeras. CD4(+) NKT cells are synergetic with CD8(+) NKT cells, leading to a more pronounced T-cell antitumor response in the chimeras cotransferred with CD4(+) and CD8(+) NKT cells. Thus, immune reconstitution with EBV-induced CD8(+) NKT cells could be a useful strategy in management of EBV-associated malignancies.
Collapse
Affiliation(s)
- He Yuling
- Department of Immunology, and Laboratory of Allergy and Clinical Immunology, Institute of Allergy and Immune-related Diseases, Center for Medical Research, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
693
|
Regnault B, Osorio Y Fortea J, Miao D, Eisenbarth G, Melanitou E. Early over expression of messenger RNA for multiple genes, including insulin, in the Pancreatic Lymph Nodes of NOD mice is associated with Islet Autoimmunity. BMC Med Genomics 2009; 2:63. [PMID: 19799787 PMCID: PMC2763872 DOI: 10.1186/1755-8794-2-63] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 10/02/2009] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Autoimmune diabetes (T1D) onset is preceded by a long inflammatory process directed against the insulin-secreting beta cells of the pancreas. Deciphering the early autoimmune mechanisms represents a challenge due to the absence of clinical signs at early disease stages. The aim of this study was to identify genes implicated in the early steps of the autoimmune process, prior to inflammation, in T1D. We have previously established that insulin autoantibodies (E-IAA) predict early diabetes onset delineating an early phenotypic check point (window 1) in disease pathogenesis. We used this sub-phenotype and applied differential gene expression analysis in the pancreatic lymph nodes (PLN) of 5 weeks old Non Obese Diabetic (NOD) mice differing solely upon the presence or absence of E-IAA. Analysis of gene expression profiles has the potential to provide a global understanding of the disease and to generate novel hypothesis concerning the initiation of the autoimmune process. METHODS Animals have been screened weekly for the presence of E-IAA between 3 and 5 weeks of age. E-IAA positive or negative NOD mice at least twice were selected and RNAs isolated from the PLN were used for microarray analysis. Comparison of transcriptional profiles between positive and negative animals and functional annotations of the resulting differentially expressed genes, using software together with manual literature data mining, have been performed. RESULTS The expression of 165 genes was modulated between E-IAA positive and negative PLN. In particular, genes coding for insulin and for proteins known to be implicated in tissue remodelling and Th1 immunity have been found to be highly differentially expressed. Forty one genes showed over 5 fold differences between the two sets of samples and 30 code for extracellular proteins. This class of proteins represents potential diagnostic markers and drug targets for T1D. CONCLUSION Our data strongly suggest that the immune related mechanisms taking place at this early age in the PLN, correlate with homeostatic changes influencing tissue integrity of the adjacent pancreatic tissue. Functional analysis of the identified genes suggested that similar mechanisms might be operating during pre-inflammatory processes deployed in tissues i) hosting parasitic microorganisms and ii) experiencing unrestricted invasion by tumour cells.
Collapse
Affiliation(s)
- Béatrice Regnault
- Immunophysiology and Intracellular Parasitism Unit, Department of Parasitology and Mycology, 75015 Paris, France.
| | | | | | | | | |
Collapse
|
694
|
Ilan Y. Alpha versus beta: are we on the way to resolve the mystery as to which is the endogenous ligand for natural killer T cells? Clin Exp Immunol 2009; 158:300-7. [PMID: 19793337 DOI: 10.1111/j.1365-2249.2009.04030.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Natural killer T (NKT) lymphocytes are a unique subset of cells that play a role in regulating the immune system. For the past decade, studies have focused upon attempts to define these cells and to determine the ligand(s) that are required for their development and peripheral activation. Many research groups have focused upon determining the mechanisms for activating or inhibiting NKT cells in an attempt to control immune-mediated disorders as well as infectious and malignant conditions by using different ligand structures. Alpha-anomeric glycolipids and phospholipids derived from mammalian, bacterial, protozoan and plant species have been suggested as potential ligands for these lymphocytes. Some of these ligands were structured in forms that can bind to CD1d molecules. The lack of alpha-anomeric glycosphingolipids in mammals and the modest effect of these ligands in human studies, along with recent data from animal models and humans on the NKT-dependent immunomodulatory effect of beta-glycosphingolipids, suggest that the beta-anomeric ligands have the potential to be the endogenous NKT ligand.
Collapse
Affiliation(s)
- Y Ilan
- Department of Medicine, Hebrew University - Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
695
|
Yang J, Gao L, Liu Y, Ren Y, Xie R, Fan H, Qian K. Adoptive therapy by transfusing expanded donor murine natural killer T cells can suppress acute graft-versus-host disease in allogeneic bone marrow transplantation. Transfusion 2009; 50:407-17. [PMID: 19788510 DOI: 10.1111/j.1537-2995.2009.02395.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Invariant natural killer T cells (iNKT cells) may suppress graft-versus-host disease (GVHD) after allogeneic transplantation. The purpose of this study was to investigate the therapeutic potential of iNKT cells from major histocompatibility complex (MHC)-mismatched donors for preventing GVHD after allogeneic bone marrow transplantation (BMT). STUDY DESIGN AND METHODS In vitro, mouse iNKT cells were expanded with alpha-galactosylceramide and interleukin (IL)-2 treatment. In the NKT-treated group, lethally irradiated DBA/2(H-2K(d)) mice were adoptively transferred with expanded iNKT, bone marrow (BM), and spleen cells (SCs) from C57BL/6 (H-2K(b)) mice. Recipients in the control group were transferred only BM and SCs. The two groups were compared in survival, weight, histopathologic specimens, and serum cytokine analysis. RESULTS In the iNKT-treated group, 80% of mice survived past Day 60 after BMT, but all died within 38 days in the control group. The mice treated with iNKT did not exhibit signs of GVHD after Day 42 except for a change in fur color. There were higher IL-4 levels by Day 7 in serum of mice that received iNKT compared to those without iNKT treatment, while the interferon-gamma levels showed no significant difference between two groups. Levels of IL-2 and IL-5 increased by Day 21 only in iNKT-treated mice. CONCLUSION The results suggest that donor iNKT cells could alleviate GVHD symptoms and prolong survival after MHC-mismatched allogeneic BMT, which may be associated with the maintenance in IL-4 levels. These findings indicate that the therapy based on iNKT cells from MHC-mismatched donors has great potential in protection against GVHD after allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Jie Yang
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
696
|
Urban EM, Li H, Armstrong C, Focaccetti C, Cairo C, Pauza CD. Control of CD56 expression and tumor cell cytotoxicity in human Vgamma2Vdelta2 T cells. BMC Immunol 2009; 10:50. [PMID: 19772585 PMCID: PMC2761874 DOI: 10.1186/1471-2172-10-50] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 09/21/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In lymphocyte subsets, expression of CD56 (neural cell adhesion molecule-1) correlates with cytotoxic effector activity. For cells bearing the Vgamma2Vdelta2 T cell receptor, isoprenoid pyrophosphate stimulation leads to uniform activation and proliferation, but only a fraction of cells express CD56 and display potent cytotoxic activity against tumor cells. Our goal was to show whether CD56 expression was regulated stochastically, similar to conventional activation antigens, or whether CD56 defined a lineage of cells committed to the cytotoxic phenotype. RESULTS Tracking individual cell clones defined by their Vgamma2 chain CDR3 region sequences, we found that CD56 was expressed on precursor cytotoxic T cells already present in the population irrespective of their capacity to proliferate after antigen stimulation. Public T cell receptor sequences found in the CD56+ subset from one individual might appear in the CD56- subset of another donor. The commitment of individual clones to CD56+ or CD56- lineages was stable for each donor over a 1 year interval. CONCLUSION The ability to express CD56 was not predicted by TCR sequence or by the strength of signal received by the TCR. For gammadelta T cells, cytotoxic effector function is acquired when cytotoxic precursors within the population are stimulated to proliferate and express CD56. Expression of CD56 defines a committed lineage to the cytotoxic phenotype.
Collapse
Affiliation(s)
- Elizabeth M Urban
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
697
|
Blomqvist M, Rhost S, Teneberg S, Löfbom L, Osterbye T, Brigl M, Månsson JE, Cardell SL. Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells. Eur J Immunol 2009; 39:1726-35. [PMID: 19582739 DOI: 10.1002/eji.200839001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The glycosphingolipid sulfatide (SO(3)-3Galbeta1Cer) is a demonstrated ligand for a subset of CD1d-restricted NKT cells, which could regulate experimental autoimmune encephalomyelitis, a murine model for multiple sclerosis, as well as tumor immunity and experimental hepatitis. Native sulfatide is a mixture of sulfatide isoforms, i.e. sulfatide molecules with different long-chain bases and fatty acid chain lengths and saturation. Here, we demonstrate that sulfatide-specific CD1d-restricted murine NKT hybridomas recognized several different sulfatide isoforms. These included the physiologically relevant isoforms C24:1 and C24:0, major constituents of the myelin sheet of the nervous system, and C16:0, prominent in the pancreatic islet beta-cells. The most potent sulfatide isoform was lysosulfatide (lacking a fatty acid). Shortened fatty acid chain length (C24:1 versus C18:1), or saturation of the long fatty acid (C24:0), resulted in reduced stimulatory capacity, and fatty acid hydroxylation abolished the response. Moreover, sulfatide was not responsible for the natural autoreactivity toward splenocytes by XV19 T hybridoma cells. Our results reveal a promiscuity in the recognition of sulfatide isoforms by a CD1d-restricted NKT-cell clone, and suggest that sulfatide, a major component of the myelin sheet and pancreatic beta-cells, is one of several natural ligands for type II CD1d-restricted NKT cells.
Collapse
Affiliation(s)
- Maria Blomqvist
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
698
|
Williams PJ, Searle RF, Robson SC, Innes BA, Bulmer JN. Decidual leucocyte populations in early to late gestation normal human pregnancy. J Reprod Immunol 2009; 82:24-31. [PMID: 19732959 DOI: 10.1016/j.jri.2009.08.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/07/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
Abstract
Most research on human decidual leucocytes to date has focused on the predominant CD56+ uterine natural killer (uNK) cell population in early pregnancy. Few reports have documented decidual leucocyte populations after 13 weeks gestation and in late pregnancy. Placental bed (decidua basalis) and non-placental bed (decidua parietalis) biopsies from normal pregnancies were taken from women undergoing termination of pregnancy in the 1st and 2nd trimesters and following Caesarean section in the 3rd trimester. Immunohistochemistry was used to quantify the numbers of decidual cells expressing CD56, CD3, CD8, CD94, NKG2A and CD14 and double labelled CD161+CD3+ NKT-like cells. Although a significant reduction in CD56+ uNK cells was found in 3rd trimester samples compared with 1st and 2nd trimester decidua, a substantial residual CD56+ leucocyte population was identified in 3rd trimester decidua. Expression of the KIR CD94/NKG2A mirrored that of CD56 at all gestational ages, providing an explanation for the absence of cytotoxic responses at the fetal-maternal interface. There was no difference in leucocyte populations between decidua basalis and decidua parietalis. Double immunohistochemical labelling revealed small numbers of decidual CD3+CD56+ and CD8+CD56+ cells, which decreased in number at term, and CD161+CD3+ cells, which increased in number at term. No differences in leucocyte populations were detected between decidua parietalis and decidua basalis. In contrast to previous reports, a substantial residual CD56+ cell population was demonstrated in 3rd trimester decidua. Decidual cytotoxic T-lymphocytes did not alter in number during gestation, while in contrast CD14+ macrophages decreased at term, representing the smallest decidual population assessed.
Collapse
Affiliation(s)
- P J Williams
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | | | | | | | | |
Collapse
|
699
|
Abstract
The gastrointestinal tract allows the residence of an almost enumerable number of bacteria. To maintain homeostasis, the mucosal immune system must remain tolerant to the commensal microbiota and eradicate pathogenic bacteria. Aberrant interactions between the mucosal immune cells and the microbiota have been implicated in the pathogenesis of inflammatory disorders, such as inflammatory bowel disease (IBD). In this review, we discuss the role of natural killer T cells (NKT cells) in intestinal immunology. NKT cells are a subset of non-conventional T cells recognizing endogenous and/or exogenous glycolipid antigens when presented by the major histocompatibility complex (MHC) class I-like antigen-presenting molecules CD1d and MR1. Upon T-cell receptor (TCR) engagement, NKT cells can rapidly produce various cytokines that have important roles in mucosal immunity. Our understanding of NKT-cell-mediated pathways including the identification of specific antigens is expanding. This knowledge will facilitate the development of NKT cell-based interventions and immune therapies for human intestinal diseases.
Collapse
Affiliation(s)
- S Middendorp
- Department of Pediatric Gastroenterology and Laboratory of Pediatrics, Erasmus MC Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.
| | | |
Collapse
|
700
|
Uemura Y, Liu TY, Narita Y, Suzuki M, Nakatsuka R, Araki T, Matsumoto M, Iwai LK, Hirosawa N, Matsuoka Y, Murakami M, Kimura T, Hase M, Kohno H, Sasaki Y, Ichihara Y, Ishihara O, Kikuchi H, Sakamoto Y, Jiao SC, Senju S, Sonoda Y. Cytokine-dependent modification of IL-12p70 and IL-23 balance in dendritic cells by ligand activation of Valpha24 invariant NKT cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:201-8. [PMID: 19542431 DOI: 10.4049/jimmunol.0900873] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD1d-restricted invariant NKT (iNKT) cells play crucial roles in various types of immune responses, including autoimmune diseases, infectious diseases and tumor surveillance. The mechanisms underlying their adjuvant functions are well understood. Nevertheless, although IL-4 and IL-10 production characterize iNKT cells able to prevent or ameliorate some autoimmune diseases and inflammatory conditions, the precise mechanisms by which iNKT cells exert immune regulatory function remain elusive. This study demonstrates that the activation of human iNKT cells by their specific ligand alpha-galactosylceramide enhances IL-12p70 while inhibiting the IL-23 production by monocyte-derived dendritic cells, and in turn down-regulating the IL-17 production by memory CD4(+) Th cells. The ability of the iNKT cells to regulate the differential production of IL-12p70/IL-23 is mainly mediated by a remarkable hallmark of their function to produce both Th1 and Th2 cytokines. In particular, the down-regulation of IL-23 is markedly associated with a production of IL-4 and IL-10 from iNKT cells. Moreover, Th2 cytokines, such as IL-4 and IL-13 play a crucial role in defining the biased production of IL-12p70/IL-23 by enhancement of IL-12p70 in synergy with IFN-gamma, whereas inhibition of the IFN-gamma-promoted IL-23 production. Collectively, the results suggest that iNKT cells modify the IL-12p70/IL-23 balance to enhance the IL-12p70-induced cell-mediated immunity and suppress the IL-23-dependent inflammatory pathologies. These results may account for the long-appreciated contrasting beneficial and adverse consequence of ligand activation of iNKT cells.
Collapse
Affiliation(s)
- Yasushi Uemura
- Department of Stem Cell Biology and Regenerative Medicine, Kansai Medical University, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|