651
|
Alpermann T, Rüdel K, Rüger R, Steiniger F, Nietzsche S, Filiz V, Förster S, Fahr A, Weigand W. Polymersomes containing iron sulfide (FeS) as primordial cell model : for the investigation of energy providing redox reactions. ORIGINS LIFE EVOL B 2011; 41:103-19. [PMID: 20697814 DOI: 10.1007/s11084-010-9223-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/03/2010] [Indexed: 10/19/2022]
Abstract
According to Wächtershäuser's "Iron-Sulfur-World" one major requirement for the development of life on the prebiotic Earth is compartmentalization. Vesicles spontaneously formed from amphiphilic components containing a specific set of molecules including sulfide minerals may have lead to the first autotrophic prebiotic units. The iron sulfide minerals may have been formed by geological conversions in the environment of deep-sea volcanos (black smokers), which can be observed even today. Wächtershäuser postulated the evolution of chemical pathways as fundamentals of the origin of life on earth. In contrast to the classical Miller-Urey experiment, depending on external energy sources, the "Iron-Sulfur-World" is based on the catalytic and energy reproducing redox system FeS+H2S-->FeS2+H2. The energy release out of this redox reaction (∆RG°=-38 kJ/mol, pH 0) could be the cause for the subsequent synthesis of complex organic molecules and the precondition for the development of more complex units similar to cells known today. Here we show the possibility for precipitating iron sulfide inside vesicles composed of amphiphilic block-copolymers as a model system for a first prebiotic unit. Our findings could be an indication for a chemoautotrophic FeS based origin of life.
Collapse
Affiliation(s)
- Theodor Alpermann
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Straße 2, 07743, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
652
|
Kundell FA. A suggested pioneer organism for the Wächtershäuser origin of life hypothesis. ORIGINS LIFE EVOL B 2011; 41:175-98. [PMID: 20559733 DOI: 10.1007/s11084-010-9217-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 05/18/2010] [Indexed: 11/27/2022]
Abstract
A suggested pioneer organism for the Wächtershäuser origin of life hypothesis is presented. In this scenario, a cubic pyrite crystal edge serves as a catalytic surface for the production of a proto-nucleic acid. Computational analysis demonstrates how the vacant cubic pyrite edge could be populated by iron(II) and hydrogen phosphate, capped with a distorted iron pentacarbonyl. A bridging iron sulfide then forms blocking one side of the edge. The carbonyl on the other side of the edge can then react with either existing uracil or cytosine, to produce a nitrogen-iron carbonyl intermediate. This intermediate serves as a free radical initiator for a polymerization of carbon monoxide and molecular hydrogen. After the fourth carbon is added to the chain, the polymerization is terminated by ring formation yielding a condensed ribose. The resultant product is a proto-nucleic acid, a pioneer organism.
Collapse
Affiliation(s)
- Frederick A Kundell
- Department of Chemistry, Henson School of Science and Technology, Salisbury University, Salisbury, MD, USA.
| |
Collapse
|
653
|
Kurakin A. The self-organizing fractal theory as a universal discovery method: the phenomenon of life. Theor Biol Med Model 2011; 8:4. [PMID: 21447162 PMCID: PMC3080324 DOI: 10.1186/1742-4682-8-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/29/2011] [Indexed: 12/15/2022] Open
Abstract
A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy.An application of the new discovery method to life sciences reveals that moving electrons represent a keystone physical force (flux) that powers, animates, informs, and binds all living structures-processes into a planetary-wide, multiscale system of electron flow/circulation, and that all living organisms and their larger-scale organizations emerge to function as electron transport networks that are supported by and, at the same time, support the flow of electrons down the Earth's redox gradient maintained along the core-mantle-crust-ocean-atmosphere axis of the planet. The presented findings lead to a radically new perspective on the nature and origin of life, suggesting that living matter is an organizational state/phase of nonliving matter and a natural consequence of the evolution and self-organization of nonliving matter.The presented paradigm opens doors for explosive advances in many disciplines, by uniting them within a single conceptual framework and providing a discovery method that allows for the systematic generation of knowledge through comparison and complementation of empirical data across different sciences and disciplines.
Collapse
Affiliation(s)
- Alexei Kurakin
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
654
|
Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 2011; 77:1925-36. [PMID: 21216907 PMCID: PMC3067309 DOI: 10.1128/aem.02473-10] [Citation(s) in RCA: 452] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autotrophic CO(2) fixation represents the most important biosynthetic process in biology. Besides the well-known Calvin-Benson cycle, five other totally different autotrophic mechanisms are known today. This minireview discusses the factors determining their distribution. As will be made clear, the observed diversity reflects the variety of the organisms and the ecological niches existing in nature.
Collapse
Affiliation(s)
- Ivan A Berg
- Mikrobiologie, Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
655
|
Summons RE, Amend JP, Bish D, Buick R, Cody GD, Des Marais DJ, Dromart G, Eigenbrode JL, Knoll AH, Sumner DY. Preservation of martian organic and environmental records: final report of the Mars biosignature working group. ASTROBIOLOGY 2011; 11:157-81. [PMID: 21417945 DOI: 10.1089/ast.2010.0506] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The Mars Science Laboratory (MSL) has an instrument package capable of making measurements of past and present environmental conditions. The data generated may tell us if Mars is, or ever was, able to support life. However, the knowledge of Mars' past history and the geological processes most likely to preserve a record of that history remain sparse and, in some instances, ambiguous. Physical, chemical, and geological processes relevant to biosignature preservation on Earth, especially under conditions early in its history when microbial life predominated, are also imperfectly known. Here, we present the report of a working group chartered by the Co-Chairs of NASA's MSL Project Science Group, John P. Grotzinger and Michael A. Meyer, to review and evaluate potential for biosignature formation and preservation on Mars. Orbital images confirm that layered rocks achieved kilometer-scale thicknesses in some regions of ancient Mars. Clearly, interplays of sedimentation and erosional processes govern present-day exposures, and our understanding of these processes is incomplete. MSL can document and evaluate patterns of stratigraphic development as well as the sources of layered materials and their subsequent diagenesis. It can also document other potential biosignature repositories such as hydrothermal environments. These capabilities offer an unprecedented opportunity to decipher key aspects of the environmental evolution of Mars' early surface and aspects of the diagenetic processes that have operated since that time. Considering the MSL instrument payload package, we identified the following classes of biosignatures as within the MSL detection window: organism morphologies (cells, body fossils, casts), biofabrics (including microbial mats), diagnostic organic molecules, isotopic signatures, evidence of biomineralization and bioalteration, spatial patterns in chemistry, and biogenic gases. Of these, biogenic organic molecules and biogenic atmospheric gases are considered the most definitive and most readily detectable by MSL.
Collapse
Affiliation(s)
- Roger E Summons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
656
|
Roszol L, Steinbock O. Controlling the wall thickness and composition of hollow precipitation tubes. Phys Chem Chem Phys 2011; 13:20100-3. [DOI: 10.1039/c1cp22556a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
657
|
|
658
|
Hügler M, Sievert SM. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. ANNUAL REVIEW OF MARINE SCIENCE 2011; 3:261-89. [PMID: 21329206 DOI: 10.1146/annurev-marine-120709-142712] [Citation(s) in RCA: 353] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Organisms capable of autotrophic metabolism assimilate inorganic carbon into organic carbon. They form an integral part of ecosystems by making an otherwise unavailable form of carbon available to other organisms, a central component of the global carbon cycle. For many years, the doctrine prevailed that the Calvin-Benson-Bassham (CBB) cycle is the only biochemical autotrophic CO2 fixation pathway of significance in the ocean. However, ecological, biochemical, and genomic studies carried out over the last decade have not only elucidated new pathways but also shown that autotrophic carbon fixation via pathways other than the CBB cycle can be significant. This has ramifications for our understanding of the carbon cycle and energy flow in the ocean. Here, we review the recent discoveries in the field of autotrophic carbon fixation, including the biochemistry and evolution of the different pathways, as well as their ecological relevance in various oceanic ecosystems.
Collapse
Affiliation(s)
- Michael Hügler
- Microbiology Department, Water Technology Center, 76139 Karlsruhe, Germany.
| | | |
Collapse
|
659
|
Abstract
For life to have emerged from CO₂, rocks, and water on the early Earth, a sustained source of chemically transducible energy was essential. The serpentinization process is emerging as an increasingly likely source of that energy. Serpentinization of ultramafic crust would have continuously supplied hydrogen, methane, minor formate, and ammonia, as well as calcium and traces of acetate, molybdenum and tungsten, to off-ridge alkaline hydrothermal springs that interfaced with the metal-rich carbonic Hadean Ocean. Silica and bisulfide were also delivered to these springs where cherts and sulfides were intersected by the alkaline solutions. The proton and redox gradients so generated represent a rich source of naturally produced chemiosmotic energy, stemming from geochemistry that merely had to be tapped, rather than induced, by the earliest biochemical systems. Hydrothermal mounds accumulating at similar sites in today's oceans offer conceptual and experimental models for the chemistry germane to the emergence of life, although the ubiquity of microbial communities at such sites in addition to our oxygenated atmosphere preclude an exact analogy.
Collapse
Affiliation(s)
- M J Russell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| | | | | |
Collapse
|
660
|
Chyba CF. The Hazy Details of Early Earth's Atmosphere—Response. Science 2010. [DOI: 10.1126/science.330.6005.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Christopher F. Chyba
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
661
|
Mielke RE, Russell MJ, Wilson PR, McGlynn SE, Coleman M, Kidd R, Kanik I. Design, fabrication, and test of a hydrothermal reactor for origin-of-life experiments. ASTROBIOLOGY 2010; 10:799-810. [PMID: 21087160 DOI: 10.1089/ast.2009.0456] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We describe a continuous high-pressure flow reactor designed to simulate the unforced convective interaction of hydrothermal solutions and ocean waters with submarine crust on early Earth-conditions appropriate to those that may have led to the onset of life. The experimental operating conditions are appropriate for investigating kinetic hydrothermal processes in the early history of any sizable wet, rocky planet. Beyond the description of the fabrication, we report an initial experiment that tested the design and investigated the feasibility of sulfide and silica dissolution in alkaline solution from iron sulfide and basaltic rock, and their possible subsequent transport as HS(-) and H(2)SiO(2-)(4) in hot alkaline solutions. Delivery of hydrogen sulfide and dihydrogen silicate ions would have led to the precipitation of ferrous hydroxide, hydroxysilicates, and iron sulfides as integral mineral components of an off-ridge compartmentalized hydrothermal mound in the Hadean. Such a mound could, we contend, have acted as a natural chemical and electrochemical reactor and, ultimately, as the source of all biochemistry on our planet. In the event, we show that an average of ∼1 mM/kg of both sulfide and silica were released throughout, though over 10 mM/kg of HS(-) was recorded for ∼100 minutes in the early stages of the experiment. This alkaline effluent from the reactor was injected into a reservoir of a simulacrum of ferrous iron-bearing "Hadean Ocean" water in an experiment that demonstrated the capacity of such fluids to generate hydrothermal chimneys and a variety of contiguous inorganic microgeode precipitates bearing disseminations of discrete metal sulfides. Comparable natural composite structures may have acted as hatcheries for emergent life in the Hadean.
Collapse
Affiliation(s)
- Randall E Mielke
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099, USA
| | | | | | | | | | | | | |
Collapse
|
662
|
Nakamura R, Takashima T, Kato S, Takai K, Yamamoto M, Hashimoto K. Electrical Current Generation across a Black Smoker Chimney. Angew Chem Int Ed Engl 2010; 49:7692-4. [DOI: 10.1002/anie.201003311] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
663
|
|
664
|
Dagan T, Roettger M, Bryant D, Martin W. Genome networks root the tree of life between prokaryotic domains. Genome Biol Evol 2010; 2:379-92. [PMID: 20624742 PMCID: PMC2997548 DOI: 10.1093/gbe/evq025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Eukaryotes arose from prokaryotes, hence the root in the tree of life resides among the prokaryotic domains. The position of the root is still debated, although pinpointing it would aid our understanding of the early evolution of life. Because prokaryote evolution was long viewed as a tree-like process of lineage bifurcations, efforts to identify the most ancient microbial lineage split have traditionally focused on positioning a root on a phylogenetic tree constructed from one or several genes. Such studies have delivered widely conflicting results on the position of the root, this being mainly due to methodological problems inherent to deep gene phylogeny and the workings of lateral gene transfer among prokaryotes over evolutionary time. Here, we report the position of the root determined with whole genome data using network-based procedures that take into account both gene presence or absence and the level of sequence similarity among all individual gene families that are shared across genomes. On the basis of 562,321 protein-coding gene families distributed across 191 genomes, we find that the deepest divide in the prokaryotic world is interdomain, that is, separating the archaebacteria from the eubacteria. This result resonates with some older views but conflicts with the results of most studies over the last decade that have addressed the issue. In particular, several studies have suggested that the molecular distinctness of archaebacteria is not evidence for their antiquity relative to eubacteria but instead stems from some kind of inherently elevated rate of archaebacterial sequence change. Here, we specifically test for such a rate elevation across all prokaryotic lineages through the analysis of all possible quartets among eight genes duplicated in all prokaryotes, hence the last common ancestor thereof. The results show that neither the archaebacteria as a group nor the eubacteria as a group harbor evidence for elevated evolutionary rates in the sampled genes, either in the recent evolutionary past or in their common ancestor. The interdomain prokaryotic position of the root is thus not attributable to lineage-specific rate variation.
Collapse
Affiliation(s)
- Tal Dagan
- Institute of Botany III, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
665
|
Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology. SUSTAINABILITY 2010. [DOI: 10.3390/su2061602] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
666
|
Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G. Autotrophic carbon fixation in archaea. Nat Rev Microbiol 2010; 8:447-60. [DOI: 10.1038/nrmicro2365] [Citation(s) in RCA: 467] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
667
|
Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 2010; 464:1077-81. [PMID: 20348906 DOI: 10.1038/nature08884] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 02/05/2010] [Indexed: 11/08/2022]
Abstract
Most archaeal groups and deeply branching bacterial lineages harbour thermophilic organisms with a chemolithoautotrophic metabolism. They live at high temperatures in volcanic habitats at the expense of inorganic substances, often under anoxic conditions. These autotrophic organisms use diverse carbon dioxide fixation mechanisms generating acetyl-coenzyme A, from which gluconeogenesis must start. Here we show that virtually all archaeal groups as well as the deeply branching bacterial lineages contain a bifunctional fructose 1,6-bisphosphate (FBP) aldolase/phosphatase with both FBP aldolase and FBP phosphatase activity. This enzyme is missing in most other Bacteria and in Eukaryota, and is heat-stabile even in mesophilic marine Crenarchaeota. Its bifunctionality ensures that heat-labile triosephosphates are quickly removed and trapped in stabile fructose 6-phosphate, rendering gluconeogenesis unidirectional. We propose that this highly conserved, heat-stabile and bifunctional FBP aldolase/phosphatase represents the pace-making ancestral gluconeogenic enzyme, and that in evolution gluconeogenesis preceded glycolysis.
Collapse
|
668
|
Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys. Proc Natl Acad Sci U S A 2010; 107:1612-7. [PMID: 20080654 DOI: 10.1073/pnas.0905369107] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Lost City Hydrothermal Field, an ultramafic-hosted system located 15 km west of the Mid-Atlantic Ridge, has experienced at least 30,000 years of hydrothermal activity. Previous studies have shown that its carbonate chimneys form by mixing of approximately 90 degrees C, pH 9-11 hydrothermal fluids and cold seawater. Flow of methane and hydrogen-rich hydrothermal fluids in the porous interior chimney walls supports archaeal biofilm communities dominated by a single phylotype of Methanosarcinales. In this study, we have extensively sampled the carbonate-hosted archaeal and bacterial communities by obtaining sequences of >200,000 amplicons of the 16S rRNA V6 region and correlated the results with isotopic ((230)Th) ages of the chimneys over a 1,200-year period. Rare sequences in young chimneys were commonly more abundant in older chimneys, indicating that members of the rare biosphere can become dominant members of the ecosystem when environmental conditions change. These results suggest that a long history of selection over many cycles of chimney growth has resulted in numerous closely related species at Lost City, each of which is preadapted to a particular set of reoccurring environmental conditions. Because of the unique characteristics of the Lost City Hydrothermal Field, these data offer an unprecedented opportunity to study the dynamics of a microbial ecosystem's rare biosphere over a thousand-year time scale.
Collapse
|
669
|
Dagan T, Martin W. Getting a better picture of microbial evolution en route to a network of genomes. Philos Trans R Soc Lond B Biol Sci 2009; 364:2187-96. [PMID: 19571239 DOI: 10.1098/rstb.2009.0040] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Most current thinking about evolution is couched in the concept of trees. The notion of a tree with recursively bifurcating branches representing recurrent divergence events is a plausible metaphor to describe the evolution of multicellular organisms like vertebrates or land plants. But if we try to force the tree metaphor onto the whole of the evolutionary process, things go badly awry, because the more closely we inspect microbial genomes through the looking glass of gene and genome sequence comparisons, the smaller the amount of the data that fits the concept of a bifurcating tree becomes. That is mainly because among microbes, endosymbiosis and lateral gene transfer are important, two mechanisms of natural variation that differ from the kind of natural variation that Darwin had in mind. For such reasons, when it comes to discussing the relationships among all living things, that is, including the microbes and all of their genes rather than just one or a select few, many biologists are now beginning to talk about networks rather than trees in the context of evolutionary relationships among microbial chromosomes. But talk is not enough. If we were to actually construct networks instead of trees to describe the evolutionary process, what would they look like? Here we consider endosymbiosis and an example of a network of genomes involving 181 sequenced prokaryotes and how that squares off with some ideas about early cell evolution.
Collapse
Affiliation(s)
- Tal Dagan
- Institute of Botany, University of Düsseldorf, Düsseldorf, Germany.
| | | |
Collapse
|
670
|
Valas RE, Bourne PE. Structural analysis of polarizing indels: an emerging consensus on the root of the tree of life. Biol Direct 2009; 4:30. [PMID: 19706177 PMCID: PMC3224940 DOI: 10.1186/1745-6150-4-30] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/25/2009] [Indexed: 11/18/2022] Open
Abstract
Background The root of the tree of life has been a holy grail ever since Darwin first used the tree as a metaphor for evolution. New methods seek to narrow down the location of the root by excluding it from branches of the tree of life. This is done by finding traits that must be derived, and excluding the root from the taxa those traits cover. However the two most comprehensive attempts at this strategy, performed by Cavalier-Smith and Lake et al., have excluded each other's rootings. Results The indel polarizations of Lake et al. rely on high quality alignments between paralogs that diverged before the last universal common ancestor (LUCA). Therefore, sequence alignment artifacts may skew their conclusions. We have reviewed their data using protein structure information where available. Several of the conclusions are quite different when viewed in the light of structure which is conserved over longer evolutionary time scales than sequence. We argue there is no polarization that excludes the root from all Gram-negatives, and that polarizations robustly exclude the root from the Archaea. Conclusion We conclude that there is no contradiction between the polarization datasets. The combination of these datasets excludes the root from every possible position except near the Chloroflexi. Reviewers This article was reviewed by Greg Fournier (nominated by J. Peter Gogarten), Purificación López-García, and Eugene Koonin.
Collapse
Affiliation(s)
- Ruben E Valas
- Bioinformatics Program, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | |
Collapse
|
671
|
Mulkidjanian AY, Galperin MY. On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol Direct 2009; 4:27. [PMID: 19703275 PMCID: PMC2749021 DOI: 10.1186/1745-6150-4-27] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 08/24/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The accompanying article (A.Y. Mulkidjanian, Biology Direct 4:26) puts forward a detailed hypothesis on the role of zinc sulfide (ZnS) in the origin of life on Earth. The hypothesis suggests that life emerged within compartmentalized, photosynthesizing ZnS formations of hydrothermal origin (the Zn world), assembled in sub-aerial settings on the surface of the primeval Earth. RESULTS If life started within photosynthesizing ZnS compartments, it should have been able to evolve under the conditions of elevated levels of Zn2+ ions, byproducts of the ZnS-mediated photosynthesis. Therefore, the Zn world hypothesis leads to a set of testable predictions regarding the specific roles of Zn2+ ions in modern organisms, particularly in RNA and protein structures related to the procession of RNA and the "evolutionarily old" cellular functions. We checked these predictions using publicly available data and obtained evidence suggesting that the development of the primeval life forms up to the stage of the Last Universal Common Ancestor proceeded in zinc-rich settings. Testing of the hypothesis has revealed the possible supportive role of manganese sulfide in the primeval photosynthesis. In addition, we demonstrate the explanatory power of the Zn world concept by elucidating several points that so far remained without acceptable rationalization. In particular, this concept implies a new scenario for the separation of Bacteria and Archaea and the origin of Eukarya. CONCLUSION The ability of the Zn world hypothesis to generate non-trivial veritable predictions and explain previously obscure items gives credence to its key postulate that the development of the first life forms started within zinc-rich formations of hydrothermal origin and was driven by solar UV irradiation. This concept implies that the geochemical conditions conducive to the origin of life may have persisted only as long as the atmospheric CO2 pressure remained above ca. 10 bar. This work envisions the first Earth biotopes as photosynthesizing and habitable areas of porous ZnS and MnS precipitates around primeval hot springs. Further work will be needed to provide details on the life within these communities and to elucidate the primordial (bio)chemical reactions. REVIEWERS This article was reviewed by Arcady Mushegian, Eugene Koonin, and Patrick Forterre. For the full reviews, please go to the Reviewers' reports section.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- School of Physics, Universität Osnabrück, D-49069 Osnabrück, Germany
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
672
|
Mulkidjanian AY. On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biol Direct 2009; 4:26. [PMID: 19703272 PMCID: PMC3152778 DOI: 10.1186/1745-6150-4-26] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 08/24/2009] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The complexity of the problem of the origin of life has spawned a large number of possible evolutionary scenarios. Their number, however, can be dramatically reduced by the simultaneous consideration of various bioenergetic, physical, and geological constraints. RESULTS This work puts forward an evolutionary scenario that satisfies the known constraints by proposing that life on Earth emerged, powered by UV-rich solar radiation, at photosynthetically active porous edifices made of precipitated zinc sulfide (ZnS) similar to those found around modern deep-sea hydrothermal vents. Under the high pressure of the primeval, carbon dioxide-dominated atmosphere ZnS could precipitate at the surface of the first continents, within reach of solar light. It is suggested that the ZnS surfaces (1) used the solar radiation to drive carbon dioxide reduction, yielding the building blocks for the first biopolymers, (2) served as templates for the synthesis of longer biopolymers from simpler building blocks, and (3) prevented the first biopolymers from photo-dissociation, by absorbing from them the excess radiation. In addition, the UV light may have favoured the selective enrichment of photostable, RNA-like polymers. Falsification tests of this hypothesis are described in the accompanying article (A.Y. Mulkidjanian, M.Y. Galperin, Biology Direct 2009, 4:27). CONCLUSION The suggested "Zn world" scenario identifies the geological conditions under which photosynthesizing ZnS edifices of hydrothermal origin could emerge and persist on primordial Earth, includes a mechanism of the transient storage and utilization of solar light for the production of diverse organic compounds, and identifies the driving forces and selective factors that could have promoted the transition from the first simple, photostable polymers to more complex living organisms.
Collapse
|
673
|
Brazelton WJ, Baross JA. Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME JOURNAL 2009; 3:1420-4. [PMID: 19571895 DOI: 10.1038/ismej.2009.79] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The carbonate chimneys of the Lost City Hydrothermal Field on the Mid-Atlantic Ridge are coated in thick microbial biofilms consisting of just a few dominant species. We report a preliminary analysis of a biofilm metagenome that revealed a remarkable abundance and diversity of genes potentially involved in lateral gene transfer (LGT). More than 8% of all metagenomic reads showed significant sequence similarity to transposases; all available metagenomic data sets from other environments contained at least an order of magnitude fewer transposases. Furthermore, the sequence diversity of transposase genes in the biofilm was much greater than that of 16S rRNA genes. The small size and high sequencing coverage of contigs containing transposases indicate that they are located on small but abundant extragenomic molecules. These results suggest that rampant LGT among members of the Lost City biofilm may serve as a generator of phenotypic diversity in a community with very low organismal diversity.
Collapse
Affiliation(s)
- William J Brazelton
- School of Oceanography and Center for Astrobiology and Early Evolution, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
674
|
The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life's emergence. Microbiol Mol Biol Rev 2009; 73:371-88. [PMID: 19487732 DOI: 10.1128/mmbr.00010-09] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a general scenario of prebiotic physicochemical evolution during the Earth's Hadean eon and reviewed the relevant literature. We suggest that prebiotic chemical evolution started in microspaces with membranous walls, where external temperature and osmotic gradients were coupled to free-energy gradients of potential chemical reactions. The key feature of this scenario is the onset of an emergent evolutionary transition within the microspaces that is described by the model of complex vectorial chemistry. This transition occurs at average macromolecular crowding of 20 to 30% of the cell volume, when the ranges of action of stabilizing colloidal forces (screened electrostatic forces, hydration, and excluded volume forces) become commensurate. Under these conditions, the macromolecules divide the interior of microspaces into dynamically crowded macromolecular regions and topologically complementary electrolyte pools. Small ions and ionic metabolites are transported vectorially between the electrolyte pools and through the (semiconducting) electrolyte pathways of the crowded macromolecular regions from their high electrochemical potential (where they are biochemically produced) to their lower electrochemical potential (where they are consumed). We suggest a sequence of tentative transitions between major evolutionary periods during the Hadean eon as follows: (i) the early water world, (ii) the appearance of land masses, (iii) the pre-RNA world, (iv) the onset of complex vectorial chemistry, and (v) the RNA world and evolution toward Darwinian thresholds. We stress the importance of high ionic strength of the Hadean ocean (short Debye's lengths) and screened electrostatic interactions that enabled the onset of the vectorial structure of the cytoplasm and the possibility of life's emergence.
Collapse
|