651
|
Otero-Viñas M, Falanga V. Mesenchymal Stem Cells in Chronic Wounds: The Spectrum from Basic to Advanced Therapy. Adv Wound Care (New Rochelle) 2016; 5:149-163. [PMID: 27076993 PMCID: PMC4817558 DOI: 10.1089/wound.2015.0627] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/03/2015] [Indexed: 02/06/2023] Open
Abstract
Significance: Almost 7 million Americans have chronic cutaneous wounds and billions of dollars are spent on their treatment. The number of patients with nonhealing wounds keeps increasing worldwide due to an ever-aging population, increasing number of obese and diabetic patients, and cardiovascular disease. Recent Advances: Advanced treatments for difficult wounds are needed. Therapy with mesenchymal stem cells (MSCs) is attractive due to their differentiating potential, their immunomodulating properties, and their paracrine effects. Critical Issues: New technologies (including growth factors and skin substitutes) are now widely used for stimulating wound healing. However, in spite of these advances, the percentage of complete wound closure in most clinical situations is around 50-60%. Moreover, there is a high rate of wound recurrence. Future Directions: Recently, it has been demonstrated that MSCs speed up wound healing by decreasing inflammation, by promoting angiogenesis, and by decreasing scarring. However, there are some potential limitations to successful MSC therapy. These limitations include the need to improve cell delivery methods, cell viability, heterogeneity in MSC preparations, and suboptimal wound bed preparation. Further large, controlled clinical trials are needed to establish the safety of MSCs before widespread clinical application.
Collapse
Affiliation(s)
- Marta Otero-Viñas
- Dermatology Department, Boston University School of Medicine, Boston, Massachusetts
- The Tissue Repair and Regeneration Laboratory, Department of Systems Biology, Universitat de Vic—Universitat Central de Catalunya, Vic, Spain
| | - Vincent Falanga
- Dermatology Department, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
652
|
Mitsialis SA, Kourembanas S. Stem cell-based therapies for the newborn lung and brain: Possibilities and challenges. Semin Perinatol 2016; 40:138-51. [PMID: 26778234 PMCID: PMC4808378 DOI: 10.1053/j.semperi.2015.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There have been substantial advances in neonatal medical care over the past 2 decades that have resulted in the increased survival of very low birth weight infants, survival that in some centers extends to 22 weeks gestational age. Despite these advances, there continues to be significant morbidity associated with extreme preterm birth that includes both short-term and long-term pulmonary and neurologic consequences. No single therapy has proven to be effective in preventing or treating either developmental lung and brain injuries in preterm infants or the hypoxic-ischemic injury that can be inflicted on the full-term brain as a result of in utero or perinatal complications. Stem cell-based therapies are emerging as a potential paradigm-shifting approach for such complex diseases with multifactorial etiologies, but a great deal of work is still required to understand the role of stem/progenitor cells in normal development and in the repair of injured tissue. This review will summarize the biology of the various stem/progenitor cells, their effects on tissue repair in experimental models of lung and brain injury, the recent advances in our understanding of their mechanism of action, and the challenges that remain to be addressed before their eventual application to clinical care.
Collapse
|
653
|
Savukinas UB, Enes SR, Sjöland AA, Westergren-Thorsson G. Concise Review: The Bystander Effect: Mesenchymal Stem Cell-Mediated Lung Repair. Stem Cells 2016; 34:1437-44. [PMID: 26991735 DOI: 10.1002/stem.2357] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/15/2016] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem or stromal cells (MSCs), a heterogeneous subset of adult stem/progenitor cells, have surfaced as potential therapeutic units with significant clinical benefit for a wide spectrum of disease conditions, including those affecting the lung. Although MSCs carry both self-renewal and multilineage differentiation abilities, current dogma holds that MSCs mainly contribute to tissue regeneration and repair by modulating the host tissue via secreted cues. Thus, the therapeutic benefit of MSCs is thought to derive from so called bystander effects. The regenerative mechanisms employed by MSCs in the lung include modulation of the immune system as well as promotion of epithelial and endothelial repair. Apart from secreted factors, a number of recent findings suggest that MSCs engage in mitochondrial transfer and shedding of membrane vesicles as a means to enhance tissue repair following injury. Furthermore, it is becoming increasingly clear that MSCs are an integral component of epithelial lung stem cell niches. As such, MSCs play an important role in coupling information from the environment to stem and progenitor populations, such that homeostasis can be ensured even in the face of injury. It is the aim of this review to outline the major mechanisms by which MSCs contribute to lung regeneration, synthesizing recent preclinical findings with data from clinical trials and potential for future therapy. Stem Cells 2016;34:1437-1444.
Collapse
Affiliation(s)
- Ulrika Blank Savukinas
- Department of Experimental Medical Science, Lung Biology Unit, Lund University, Lund, Sweden
| | - Sara Rolandsson Enes
- Department of Experimental Medical Science, Lung Biology Unit, Lund University, Lund, Sweden
| | | | | |
Collapse
|
654
|
Ringdén O. Mesenchymal stem (stromal) cells for treatment of acute respiratory distress syndrome. THE LANCET RESPIRATORY MEDICINE 2016; 3:e12. [PMID: 25890656 DOI: 10.1016/s2213-2600(15)00047-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Olle Ringdén
- Division of Therapeutic Immunology, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
655
|
Australasian College of Sports Physicians-Position Statement: The Place of Mesenchymal Stem/Stromal Cell Therapies in Sport and Exercise Medicine. Clin J Sport Med 2016; 26:87-95. [PMID: 26784119 DOI: 10.1097/jsm.0000000000000298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
656
|
Vijayavenkataraman S, Lu W, Fuh J. 3D bioprinting – An Ethical, Legal and Social Aspects (ELSA) framework. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.bprint.2016.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
657
|
Shroff G. Human Embryonic Stem Cell Therapy in Crohn's Disease: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2016; 17:124-8. [PMID: 26923312 PMCID: PMC4774574 DOI: 10.12659/ajcr.896512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Patient: Male, 21 Final Diagnosis: Crohn’s disease Symptoms: Intolerance to specific foods • abdominal pain and diarrhea Medication: Human embryonic stem cell therapy Clinical Procedure: Human embryonic stem cell transplantation Specialty: Gastroenterology
Collapse
Affiliation(s)
- Geeta Shroff
- Stem Cell Therapy, Nutech Mediworld, New Delhi, India
| |
Collapse
|
658
|
Chen FM, Gao LN, Tian BM, Zhang XY, Zhang YJ, Dong GY, Lu H, Chu Q, Xu J, Yu Y, Wu RX, Yin Y, Shi S, Jin Y. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res Ther 2016; 7:33. [PMID: 26895633 PMCID: PMC4761216 DOI: 10.1186/s13287-016-0288-1] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/14/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Background Periodontitis, which progressively destroys tooth-supporting structures, is one of the most widespread infectious diseases and the leading cause of tooth loss in adults. Evidence from preclinical trials and small-scale pilot clinical studies indicates that stem cells derived from periodontal ligament tissues are a promising therapy for the regeneration of lost/damaged periodontal tissue. This study assessed the safety and feasibility of using autologous periodontal ligament stem cells (PDLSCs) as an adjuvant to grafting materials in guided tissue regeneration (GTR) to treat periodontal intrabony defects. Our data provide primary clinical evidence for the efficacy of cell transplantation in regenerative dentistry. Methods We conducted a single-center, randomized trial that used autologous PDLSCs in combination with bovine-derived bone mineral materials to treat periodontal intrabony defects. Enrolled patients were randomly assigned to either the Cell group (treatment with GTR and PDLSC sheets in combination with Bio-oss®) or the Control group (treatment with GTR and Bio-oss® without stem cells). During a 12-month follow-up study, we evaluated the frequency and extent of adverse events. For the assessment of treatment efficacy, the primary outcome was based on the magnitude of alveolar bone regeneration following the surgical procedure. Results A total of 30 periodontitis patients aged 18 to 65 years (48 testing teeth with periodontal intrabony defects) who satisfied our inclusion and exclusion criteria were enrolled in the study and randomly assigned to the Cell group or the Control group. A total of 21 teeth were treated in the Control group and 20 teeth were treated in the Cell group. All patients received surgery and a clinical evaluation. No clinical safety problems that could be attributed to the investigational PDLSCs were identified. Each group showed a significant increase in the alveolar bone height (decrease in the bone-defect depth) over time (p < 0.001). However, no statistically significant differences were detected between the Cell group and the Control group (p > 0.05). Conclusions This study demonstrates that using autologous PDLSCs to treat periodontal intrabony defects is safe and does not produce significant adverse effects. The efficacy of cell-based periodontal therapy requires further validation by multicenter, randomized controlled studies with an increased sample size. Trial Registration NCT01357785 Date registered: 18 May 2011. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0288-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi, P. R. China.
| | - Li-Na Gao
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi, P. R. China.,State Key Laboratory of Military Stomatology, Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi, P. R. China
| | - Bei-Min Tian
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi, P. R. China
| | - Xi-Yu Zhang
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi, P. R. China
| | - Yong-Jie Zhang
- State Key Laboratory of Military Stomatology, Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi, P. R. China
| | - Guang-Ying Dong
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi, P. R. China
| | - Hong Lu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi, P. R. China
| | - Qing Chu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi, P. R. China
| | - Jie Xu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi, P. R. China
| | - Yang Yu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi, P. R. China.,State Key Laboratory of Military Stomatology, Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi, P. R. China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi, P. R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi, P. R. China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA, 19104, USA.
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi, P. R. China.
| |
Collapse
|
659
|
Cellular therapy in tuberculosis. Int J Infect Dis 2016; 32:32-8. [PMID: 25809753 DOI: 10.1016/j.ijid.2015.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 01/04/2023] Open
Abstract
Cellular therapy now offer promise of potential adjunct therapeutic options for treatment of drug-resistant tuberculosis (TB). We review here the role of Mesenchymal stromal cells, (MSCs), as well as other immune effector cells in the therapy of infectious diseases with a focus on TB. MSCs represent a population of tissue-resident non-hematopoietic adult progenitor cells which home into injured tissues increase the proliferative potential of broncho-alveolar stem cells and restore lung epithelium. MSCs have been shown to be immune-modulatory and anti-inflammatory mediated via cell-cell contacts as well as soluble factors. We discuss the functional profile of MSCs and their potential use for adjunct cellular therapy of multi-drug resistant TB, with the aim of limiting tissue damage, and to convert unproductive inflammatory responses into effective anti-pathogen directed immune responses. Adjunct cellular therapy could potentially offer salvage therapy options for patients with drug-resistant TB, increase clinically relevant anti-M.tuberculosis directed immune responses and possibly shorten the duration of anti-TB therapy.
Collapse
|
660
|
Blázquez R, Sánchez-Margallo FM, Crisóstomo V, Báez C, Maestre J, Álvarez V, Casado JG. Intrapericardial Delivery of Cardiosphere-Derived Cells: An Immunological Study in a Clinically Relevant Large Animal Model. PLoS One 2016; 11:e0149001. [PMID: 26866919 PMCID: PMC4750976 DOI: 10.1371/journal.pone.0149001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/25/2016] [Indexed: 01/22/2023] Open
Abstract
Introduction The intrapericardial delivery has been defined as an efficient method for pharmacological agent delivery. Here we hypothesize that intrapericardial administration of cardiosphere-derived cells (CDCs) may have an immunomodulatory effect providing an optimal microenvironment for promoting cardiac repair. To our knowledge, this is the first report studying the effects of CDCs for myocardial repair using the intrapericardial delivery route. Material and Methods CDCs lines were isolated, expanded and characterized by flow cytometry and PCR. Their differentiation ability was determined using specific culture media and differential staining. 300,000 CDCs/kg were injected into the pericardial space of a swine myocardial infarcted model. Magnetic resonance imaging, biochemical analysis of pericardial fluid and plasma, cytokine measurements and flow cytometry analysis were performed. Results Our results showed that, phenotype and differentiation behavior of porcine CDCs were equivalent to previously described CDCs. Moreover, the intrapericardial administration of CDCs fulfilled the safety aspects as non-adverse effects were reported. Finally, the phenotypes of resident lymphocytes and TH1 cytokines in the pericardial fluid were significantly altered after CDCs administration. Conclusions The pericardial fluid could be considered as a safe and optimal vehicle for CDCs administration. The observed changes in the studied immunological parameters could exert a modulation in the inflammatory environment of infarcted hearts, indirectly benefiting the endogenous cardiac repair.
Collapse
Affiliation(s)
- Rebeca Blázquez
- Stem Cell Therapy Unit, 'Jesús Usón' Minimally Invasive Surgery Centre, Cáceres, Spain
| | | | - Verónica Crisóstomo
- Endoluminal Therapy and Diagnosis, 'Jesús Usón' Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Claudia Báez
- Endoluminal Therapy and Diagnosis, 'Jesús Usón' Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Juan Maestre
- Endoluminal Therapy and Diagnosis, 'Jesús Usón' Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, 'Jesús Usón' Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, 'Jesús Usón' Minimally Invasive Surgery Centre, Cáceres, Spain
| |
Collapse
|
661
|
Abstract
Kidney transplantation is the best treatment for end-stage renal disease, but its implementation is limited by organ shortage and immune rejection. Side effects of current immunosuppressive drugs, such as nephrotoxicity, opportunistic infection, and tumorigenic potential, influence long-term graft outcomes. In recent years, continued research and subsequent discoveries concerning the properties and potential utilization of mesenchymal stem cells (MSCs) have aroused considerable interest and expectations. Biological characteristics of MSCs, including multi-lineage differentiation, homing potential, paracrine effect and immunomodulation, have opened new horizons for applications in kidney transplantation. However, many studies have shown that the biological activity of MSCs depends on internal inflammatory conditions, and the safety and efficacy of the clinical application of MSCs remain controversial. This review summarizes the findings of a large number of studies and aims to provide an objective viewpoint based on a comprehensive analysis of the presently established benefits and obstacles of implementing MSC-based therapy in kidney transplantation, and to promote its clinical translation.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, PR China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, PR China.
| |
Collapse
|
662
|
Escobar CH, Chaparro O. Xeno-Free Extraction, Culture, and Cryopreservation of Human Adipose-Derived Mesenchymal Stem Cells. Stem Cells Transl Med 2016; 5:358-65. [PMID: 26838269 DOI: 10.5966/sctm.2015-0094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/04/2015] [Indexed: 01/27/2023] Open
Abstract
Molecules of animal or bacterial origin, which pose a risk for zoonoses or immune rejection, are commonly used for extraction, culture, and cryopreservation of mesenchymal stem cells. There is no sequential and orderly protocol for producing human adipose-derived stem cells (hASCs) under xeno-free conditions. After standardizing a human platelet lysate (hPL) production protocol, four human adipose tissue samples were processed through explants with fetal bovine serum (FBS)-supplemented or hPL-supplemented media for extracting the adipose-derived stem cells. The cells were cultivated in cell culture medium + hPL (5%) or FBS (10%). The cellular replication rate, immunophenotype, and differentiation potential were evaluated at fourth passage. Cellular viability was evaluated before and after cryopreservation of the cells, with an hPL-based solution compared with an FBS-based solution. The explants cultured in hPL-supplemented media showed earlier and faster hASC proliferation than did those supplemented with FBS. Likewise, cells grown in hPL-supplemented media showed a greater proliferation rate, without losing the immunophenotype. Osteogenic differentiation of xeno-free hASC was higher than the hASC produced in standard conditions. However, adipogenic differentiation was reduced in xeno-free hASC. Finally, the cells cryopreserved in an hPL-based solution showed a higher cellular viability than the cells cryopreserved in an FBS-based. In conclusion, we have developed a complete xeno-free protocol for extracting, culturing, and cryopreserving hASCs that can be safely implemented in clinical studies.
Collapse
Affiliation(s)
- Carlos Hugo Escobar
- Basic Science Department, Medicine School, Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia Physiology Department, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Orlando Chaparro
- Physiology Department, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
663
|
Kallekleiv M, Larun L, Bruserud Ø, Hatfield KJ. Co-transplantation of multipotent mesenchymal stromal cells in allogeneic hematopoietic stem cell transplantation: A systematic review and meta-analysis. Cytotherapy 2016; 18:172-85. [PMID: 26794711 DOI: 10.1016/j.jcyt.2015.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/23/2015] [Accepted: 11/10/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative treatment option for patients with hematological malignancies. Co-transplantation of multipotent mesenchymal stromal cells (MSCs) during allogeneic HSCT has been explored to enhance engraftment and decrease the risk of graft-versus-host disease (GVHD). We aimed to identify, evaluate and summarize the findings of all relevant controlled clinical studies to determine the potential benefits of MSC infusion during allogeneic HSCT, with regard to the outcomes engraftment, GVHD, post-transplant relapse and survival. METHODS We conducted a systematic search of electronic databases for relevant controlled clinical studies. Studies included patients of all ages with hematological malignancies receiving allogeneic HSCT with or without infusion of MSCs within a 24-h time frame of transplantation. RESULTS Nine studies met our inclusion criteria, including three randomized, one non-randomized and five historically controlled trials, representing a total of 309 patients. Our meta-analyses did not reveal any statistically significant differences in donor engraftment or GVHD. A review of data regarding relapse and overall survival may result in a positive attitude toward intervention with MSCs, but due to heterogeneous reporting, it is difficult to draw any strict conclusions. None of the studies had overall serious risks of bias, but the quality of the evidence is low. CONCLUSIONS Meta-analysis did not reveal any statistically significant effects of MSC co-transplantation, but the results must be interpreted with caution because of the weak study design and small study populations. We discuss further needs to explore the potential effects of MSCs in a HSCT setting.
Collapse
Affiliation(s)
- Merete Kallekleiv
- Department for immunology and transfusion medicine, Section for Cell Therapy, Haukeland University Hospital, Bergen, Norway; Bergen University College, Centre for Evidence Based Practice
| | - Lillebeth Larun
- Norwegian Knowledge Centre for the Health Services, Oslo, Norway
| | - Øystein Bruserud
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | | |
Collapse
|
664
|
Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone 2016; 83:197-209. [PMID: 26608518 PMCID: PMC4911893 DOI: 10.1016/j.bone.2015.11.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods.
Collapse
Affiliation(s)
- Sarah Almubarak
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Hubert Nethercott
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Marie Freeberg
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Caroline Beaudon
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Amit Jha
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Wesley Jackson
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin Healy
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Chelsea Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States.
| |
Collapse
|
665
|
Dulamea AO, Sirbu-Boeti MP, Bleotu C, Dragu D, Moldovan L, Lupescu I, Comi G. Autologous mesenchymal stem cells applied on the pressure ulcers had produced a surprising outcome in a severe case of neuromyelitis optica. Neural Regen Res 2016; 10:1841-5. [PMID: 26807122 PMCID: PMC4705799 DOI: 10.4103/1673-5374.165325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies provided evidence that mesenchymal stem cells (MSCs) have regenerative potential in cutaneous repair and profound immunomodulatory properties making them a candidate for therapy of neuroimmunologic diseases. Neuromyelitis optica (NMO) is an autoimmune, demyelinating central nervous system disorder characterized by a longitudinally extensive spinal cord lesion. A 46-year-old male diagnosed with NMO had relapses with paraplegia despite treatment and developed two stage IV pressure ulcers (PUs) on his legs. The patient consented for local application of autologous MSCs on PUs. MSCs isolated from the patient's bone marrow aspirate were multiplied in vitro during three passages and embedded in a tridimensional collagen-rich matrix which was applied on the PUs. Eight days after MSCs application the patient showed a progressive healing of PUs and improvement of disability. Two months later the patient was able to walk 20 m with bilateral assistance and one year later he started to walk without assistance. For 76 months the patient had no relapse and no adverse event was reported. The original method of local application of autologous BM-MSCs contributed to healing of PUs. For 6 years the patient was free of relapses and showed an improvement of disability. The association of cutaneous repair, sustained remission of NMO and improvement of disability might be explained by a promotion/optimization of recovery mechanisms in the central nervous system even if alternative hypothesis should be considered. Further studies are needed to assess the safety and efficacy of mesenchymal stem cells in NMO treatment.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- U.M.F. Carol Davila, 8 Bulevardul Eroii Sanitari, Bucharest, Sector 2, Romania; Department of Neurology, Fundeni Clinical Institute, 258 Soseaua Fundeni, Bucharest, Sector 5, Romania
| | - Mirela-Patricia Sirbu-Boeti
- U.M.F. Carol Davila, 8 Bulevardul Eroii Sanitari, Bucharest, Sector 2, Romania; Department of Neurology, Fundeni Clinical Institute, 258 Soseaua Fundeni, Bucharest, Sector 5, Romania
| | - Coralia Bleotu
- National Virology Institute Stefan S. Nicolau, 285 Mihai Bravu Avenue, Bucharest, Sector 3, PO 77, PO Box 201, Romania
| | - Denisa Dragu
- National Virology Institute Stefan S. Nicolau, 285 Mihai Bravu Avenue, Bucharest, Sector 3, PO 77, PO Box 201, Romania
| | - Lucia Moldovan
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, Bucharest, Sector 6, PO Box 17-16, Romania
| | - Ioana Lupescu
- U.M.F. Carol Davila, 8 Bulevardul Eroii Sanitari, Bucharest, Sector 2, Romania; Department of Neurology, Fundeni Clinical Institute, 258 Soseaua Fundeni, Bucharest, Sector 5, Romania
| | - Giancarlo Comi
- Universita Vita-Salute San Raffaele, 58 Via Olgettina, Milan, Italy
| |
Collapse
|
666
|
de Witte SFH, Franquesa M, Baan CC, Hoogduijn MJ. Toward Development of iMesenchymal Stem Cells for Immunomodulatory Therapy. Front Immunol 2016; 6:648. [PMID: 26779185 PMCID: PMC4701910 DOI: 10.3389/fimmu.2015.00648] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSC) are under development as an immunomodulatory therapy. The anticipated immunomodulatory effects of MSC are broad, from direct inhibition of lymphocyte proliferation, induction of regulatory T and B cells, to resetting the immune system via a hit-and-run principle. There are endless flavors of MSC. Differences between MSC are originating from donors variation, differences in tissue of origin, the effects of culture conditions, and expansion time. Even standard culture conditions change the properties of MSC dramatically and generate MSC that only remotely resemble their in vivo counterparts. Adjustments in culture protocols can further emphasize properties of interest in MSC, thereby generating cells fitted for specific purposes. Culture improved immunomodulatory MSC can be designed to target particular immune disorders. In this review, we describe the observed and the desired immunomodulatory effects of MSC and propose approaches how MSC with optimal immunomodulatory properties can be developed.
Collapse
Affiliation(s)
- Samantha F H de Witte
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center , Rotterdam , Netherlands
| | - Marcella Franquesa
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center , Rotterdam , Netherlands
| | - Carla C Baan
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center , Rotterdam , Netherlands
| | - Martin J Hoogduijn
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center , Rotterdam , Netherlands
| |
Collapse
|
667
|
Wan Safwani WKZ, Wong CW, Yong KW, Choi JR, Mat Adenan NA, Omar SZ, Wan Abas WAB, Pingguan-Murphy B. The effects of hypoxia and serum-free conditions on the stemness properties of human adipose-derived stem cells. Cytotechnology 2016; 68:1859-72. [PMID: 26728363 DOI: 10.1007/s10616-015-9939-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/17/2015] [Indexed: 12/17/2022] Open
Abstract
The need to have a better and safer culture condition for expansion of human mesenchymal stem cells (MSCs) is crucial particularly to prevent infection and immune rejection. This is normally associated with the use of animal-based serum in the culture media for cell expansion. The aim of this study is to investigate alternative culture conditions which may provide better and safer environment for cell growth. In the present study, human adipose-derived stem cells (ASCs) at passage 3 were subjected to treatment in 4 conditions: (1) 21 % O2 with fetal bovine serum (FBS), (2) 21 % O2 without FBS, (3) 2 % O2 with FBS and (4) 2 % O2 without FBS followed by subsequent analysis of their phenotype, viability and functionality. We observed that ASCs cultured in all conditions present no significant phenotypic changes. It was found that ASCs cultured in 2 % O2 without serum showed an increase in viability and growth to a certain extent when compared to those cultured in 21 % O2 without serum. However, ASCs cultured in 2 % O2 without serum displayed a relatively low adipogenic and osteogenic potential. On the other hand, interestingly, there was a positive enhancement in chondrogenic differentiation of ASCs cultured in 21 % O2 without serum. Our findings suggest that different culture conditions may be suitable for different indications. In summary, ASCs cultured in serum-free condition can still survive, proliferate and undergo subsequent adipogenic, osteogenic and chondrogenic differentiation. Therefore, FBS is feasible to be excluded for culture of ASCs, which avoids clinical complications.
Collapse
Affiliation(s)
- Wan Kamarul Zaman Wan Safwani
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| | - Chin Wei Wong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Noor Azmi Mat Adenan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Siti Zawiah Omar
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
668
|
Kang MI, Park YB. Immunomodulatory Function of Mesenchymal Stem Cells for Rheumatoid Arthritis. JOURNAL OF RHEUMATIC DISEASES 2016. [DOI: 10.4078/jrd.2016.23.5.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mi Il Kang
- Division of Rheumatology, Department of Internal Medicine, Dankook University Medical College, Cheonan, Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunologic Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
669
|
Cai J, Wu Z, Xu X, Liao L, Chen J, Huang L, Wu W, Luo F, Wu C, Pugliese A, Pileggi A, Ricordi C, Tan J. Umbilical Cord Mesenchymal Stromal Cell With Autologous Bone Marrow Cell Transplantation in Established Type 1 Diabetes: A Pilot Randomized Controlled Open-Label Clinical Study to Assess Safety and Impact on Insulin Secretion. Diabetes Care 2016; 39:149-57. [PMID: 26628416 DOI: 10.2337/dc15-0171] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/22/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the safety and effects on insulin secretion of umbilical cord (UC) mesenchymal stromal cells (MSCs) plus autologous bone marrow mononuclear cell (aBM-MNC) stem cell transplantation (SCT) without immunotherapy in established type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS Between January 2009 and December 2010, 42 patients with T1D were randomized (n = 21/group) to either SCT (1.1 × 10(6)/kg UC-MSC, 106.8 × 10(6)/kg aBM-MNC through supraselective pancreatic artery cannulation) or standard care (control). Patients were followed for 1 year at 3-month intervals. The primary end point was C-peptide area under the curve (AUC(C-Pep)) during an oral glucose tolerance test at 1 year. Additional end points were safety and tolerability of the procedure, metabolic control, and quality of life. RESULTS The treatment was well tolerated. At 1 year, metabolic measures improved in treated patients: AUCC-Pep increased 105.7% (6.6 ± 6.1 to 13.6 ± 8.1 pmol/mL/180 min, P = 0.00012) in 20 of 21 responders, whereas it decreased 7.7% in control subjects (8.4 ± 6.8 to 7.7 ± 4.5 pmol/mL/180 min, P = 0.013 vs. SCT); insulin area under the curve increased 49.3% (1,477.8 ± 1,012.8 to 2,205.5 ± 1,194.0 mmol/mL/180 min, P = 0.01), whereas it decreased 5.7% in control subjects (1,517.7 ± 630.2 to 1,431.7 ± 441.6 mmol/mL/180 min, P = 0.027 vs. SCT). HbA1c decreased 12.6% (8.6 ± 0.81% [70.0 ± 7.1 mmol/mol] to 7.5 ± 1.0% [58.0 ± 8.6 mmol/mol], P < 0.01) in the treated group, whereas it increased 1.2% in the control group (8.7 ± 0.9% [72.0 ± 7.5 mmol/mol] to 8.8 ± 0.9% [73 ± 7.5 mmol/mol], P < 0.01 vs. SCT). Fasting glycemia decreased 24.4% (200.0 ± 51.1 to 151.2 ± 22.1 mg/dL, P < 0.002) and 4.3% in control subjects (192.4 ± 35.3 to 184.2 ± 34.3 mg/dL, P < 0.042). Daily insulin requirements decreased 29.2% in only the treated group (0.9 ± 0.2 to 0.6 ± 0.2 IU/day/kg, P = 0.001), with no change found in control subjects (0.9 ± 0.2 to 0.9 ± 0.2 IU/day/kg, P < 0.01 vs. SCT). CONCLUSIONS Transplantation of UC-MSC and aBM-MNC was safe and associated with moderate improvement of metabolic measures in patients with established T1D.
Collapse
Affiliation(s)
- Jinquan Cai
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Zhixian Wu
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Xiumin Xu
- Diabetes Research Institute, Cell Transplant Center, University of Miami, Miami, FL Diabetes Research Institute Federation, Hollywood, FL The Cure Alliance, Miami, FL Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Lianming Liao
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Jin Chen
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Lianghu Huang
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Weizhen Wu
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Fang Luo
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Chenguang Wu
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Alberto Pugliese
- Diabetes Research Institute, Cell Transplant Center, University of Miami, Miami, FL Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Antonello Pileggi
- Diabetes Research Institute, Cell Transplant Center, University of Miami, Miami, FL Diabetes Research Institute Federation, Hollywood, FL The Cure Alliance, Miami, FL Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Camillo Ricordi
- Diabetes Research Institute, Cell Transplant Center, University of Miami, Miami, FL Diabetes Research Institute Federation, Hollywood, FL The Cure Alliance, Miami, FL Department of Surgery, University of Miami Miller School of Medicine, Miami, FL Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Jianming Tan
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China Diabetes Research Institute Federation, Hollywood, FL The Cure Alliance, Miami, FL
| |
Collapse
|
670
|
Marrow-Derived Mesenchymal Stromal Cells in the Treatment of Stroke. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
671
|
Wang F, Eid S, Dennis JE, Cooke KR, Auletta JJ, Lee Z. Route of delivery influences biodistribution of human bone marrow-derived mesenchymal stromal cells following experimental bone marrow transplantation. J Stem Cells Regen Med 2015. [PMID: 27330253 PMCID: PMC4728214 DOI: 10.46582/jsrm.1102007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise as treatment for graft-versus-host disease (GvHD) following allogeneic bone marrow transplantation (alloBMT). Mechanisms mediating in vivo effects of MSCs remain largely unknown, including their biodistribution following infusion. To this end, human bone-marrow derived MSCs (hMSCs) were injected via carotid artery (IA) or tail vein (TV) into allogeneic and syngeneic BMT recipient mice. Following xenogeneic transplantation, MSC biodistribution was measured by bioluminescence imaging (BLI) using hMSCs transduced with a reporter gene system containing luciferase and by scintigraphic imaging using hMSCs labeled with [99mTc]-HMPAO. Although hMSCs initially accumulated in the lungs in both transplant groups, more cells migrated to organs in alloBMT recipient as measured by in vivo BLI and scintigraphy and confirmed by ex vivo BLI imaging, immunohistochemistry and quantitative RT-PCR. IA injection resulted in persistent whole–body hMSC distribution in alloBMT recipients, while hMSCs were rapidly cleared in the syngeneic animals within one week. In contrast, TV-injected hMSCs were mainly seen in the lungs with fewer cells traveling to other organs. Summarily, these results demonstrate the potential use of IA injection to alter hMSC biodistribution in order to more effectively deliver hMSCs to targeted tissues and microenvironments.
Collapse
Affiliation(s)
- Fangjing Wang
- Department of Biomedical Engineering Case Western Reserve University, Cleveland, OH 44106
| | - Saada Eid
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106
| | - James E Dennis
- Orthopedic Surgery Department at the Baylor College of Medicine, Houston, TX 77030
| | - Kenneth R Cooke
- Department of Oncology, Sidney Kimmel Cancer Center, Baltimore, MD 21287
| | - Jeffery J Auletta
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205; Department of Pediatrics, The Ohio State University, Columbus, OH 43205; Department of Pediatrics, The Ohio State University, Columbus, OH 43205
| | - Zhenghong Lee
- Host Defense Program, Hematology/Oncology/Bone Marrow Transplant and Infectious Diseases, Nationwide Children's Hospital, Columbus, OH 43205
| |
Collapse
|
672
|
Yi HG, Yahng SA, Kim I, Lee JH, Min CK, Kim JH, Kim CS, Song SU. Allogeneic clonal mesenchymal stem cell therapy for refractory graft-versus-host disease to standard treatment: a phase I study. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 20:63-7. [PMID: 26807024 PMCID: PMC4722192 DOI: 10.4196/kjpp.2016.20.1.63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/27/2015] [Accepted: 09/11/2015] [Indexed: 01/17/2023]
Abstract
Severe graft-versus-host disease (GVHD) is an often lethal complication of allogeneic hematopoietic stem cell transplantation (HSCT). The safety of clinical-grade mesenchymal stem cells (MSCs) has been validated, but mixed results have been obtained due to heterogeneity of the MSCs. In this phase I study, the safety of bone marrow-derived homogeneous clonal MSCs (cMSCs) isolated by a new subfractionation culturing method was evaluated. cMSCs were produced in a GMP facility and intravenously administered to patients who had refractory GVHD to standard treatment resulting after allogeneic HSCT for hematologic malignancies. After administration of a single dose (1×106 cells/kg), 11 patients were evaluated for cMSC treatment safety and efficacy. During the trial, nine patients had 85 total adverse events and the rate of serious adverse events was 27.3% (3/11 patients). The only one adverse drug reaction related to cMSC administration was grade 2 myalgia in one patient. Treatment response was observed in four patients: one with acute GVHD (partial response) and three with chronic GVHD. The other chronic patients maintained stable disease during the observation period. This study demonstrates single cMSC infusion to have an acceptable safety profile and promising efficacy, suggesting that we can proceed with the next stage of the clinical trial.
Collapse
Affiliation(s)
- Hyeon Gyu Yi
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Korea
| | - Seung-Ah Yahng
- Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon 21431, Korea
| | - Inho Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University School of Medicine, Seoul 03080, Korea
| | - Je-Hwan Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chang-Ki Min
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Jun Hyung Kim
- Translational Research Center, Inha University School of Medicine and SCM Lifescience Co., Ltd., Incheon 22332, Korea
| | - Chul Soo Kim
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Korea
| | - Sun U Song
- Translational Research Center, Inha University School of Medicine and SCM Lifescience Co., Ltd., Incheon 22332, Korea
| |
Collapse
|
673
|
Osborne H, Anderson L, Burt P, Young M, Gerrard D. Australasian College of Sports Physicians—position statement: the place of mesenchymal stem/stromal cell therapies in sport and exercise medicine. Br J Sports Med 2015; 50:1237-1244. [DOI: 10.1136/bjsports-2015-095711] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 12/18/2022]
|
674
|
Freitag J, Ford J, Bates D, Boyd R, Hahne A, Wang Y, Cicuttini F, Huguenin L, Norsworthy C, Shah K. Adipose derived mesenchymal stem cell therapy in the treatment of isolated knee chondral lesions: design of a randomised controlled pilot study comparing arthroscopic microfracture versus arthroscopic microfracture combined with postoperative mesenchymal stem cell injections. BMJ Open 2015; 5:e009332. [PMID: 26685030 PMCID: PMC4691736 DOI: 10.1136/bmjopen-2015-009332] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/25/2015] [Accepted: 10/26/2015] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION The management of intra-articular chondral defects in the knee remains a challenge. Inadequate healing in areas of weight bearing leads to impairment in load transmission and these defects predispose to later development of osteoarthritis. Surgical management of full thickness chondral defects include arthroscopic microfracture and when appropriate autologous chondrocyte implantation. This latter method however is technically challenging, and may not offer significant improvement over microfracture. Preclinical and limited clinical trials have indicated the capacity of mesenchymal stem cells to influence chondral repair. The aim of this paper is to describe the methodology of a pilot randomised controlled trial comparing arthroscopic microfracture alone for isolated knee chondral defects versus arthroscopic microfracture combined with postoperative autologous adipose derived mesenchymal stem cell injections. METHODS AND ANALYSIS A pilot single-centre randomised controlled trial is proposed. 40 participants aged 18-50 years, with isolated femoral condyle chondral defects and awaiting planned arthroscopic microfracture will be randomly allocated to a control group (receiving no additional treatment) or treatment group (receiving postoperative adipose derived mesenchymal stem cell treatment). Primary outcome measures will include MRI assessment of cartilage volume and defects and the Knee Injury and Osteoarthritis Outcome Score. Secondary outcomes will include further MRI assessment of bone marrow lesions, bone area and T2 cartilage mapping, a 0-10 Numerical Pain Rating Scale, a Global Impression of Change score and a treatment satisfaction scale. Adverse events and cointerventions will be recorded. Initial outcome follow-up for publication of results will be at 12 months. Further annual follow-up to assess long-term differences between the two group will occur. ETHICS AND DISSEMINATION This trial has received prospective ethics approval through the Latrobe University Human Research Ethics Committee. Dissemination of outcome data is planned through both national and international conferences and formal publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER Australia and New Zealand Clinical Trials Register (ANZCTR Trial ID: ACTRN12614000812695).
Collapse
Affiliation(s)
- Julien Freitag
- Melbourne Stem Cell Centre, Melbourne, Victoria, Australia
| | - Jon Ford
- Faculty of Health Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Dan Bates
- Melbourne Stem Cell Centre, Melbourne, Victoria, Australia
| | - Richard Boyd
- Monash University, Melbourne, Victoria, Australia
| | - Andrew Hahne
- Faculty of Health Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Yuanyuan Wang
- Department of Epidemiology and Preventative Medicine, Monash Universty, Melbourne, Victoria, Australia
| | - Flavia Cicuttini
- Department of Epidemiology and Preventative Medicine, Monash Universty, Melbourne, Victoria, Australia
| | - Leesa Huguenin
- Melbourne Stem Cell Centre, Melbourne, Victoria, Australia
| | - Cameron Norsworthy
- Department of Orthopaedic Surgeon, OrthoSport Victoria, Melbourne, Victoria, Australia
| | - Kiran Shah
- Magellan Stem Cells, Melbourne, Victoria, Australia
| |
Collapse
|
675
|
Stenger EO, Krishnamurti L, Galipeau J. Mesenchymal stromal cells to modulate immune reconstitution early post-hematopoietic cell transplantation. BMC Immunol 2015; 16:74. [PMID: 26674007 PMCID: PMC4681052 DOI: 10.1186/s12865-015-0135-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/19/2015] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent progenitor cells known to modulate the immune system and to promote hematopoiesis. These dual effects make MSCs attractive for use as cellular therapy in hematopoietic cell transplantation (HCT). MSCs can be used peri-HCT or pre-engraftment to modulate immune reconstitution, promoting hematopoietic stem cell (HSC) engraftment and/or preventing graft-versus-host disease (GVHD). Pre-clinical studies have demonstrated that MSCs can potentiate HSC engraftment and prevent GVHD in a variety of animal models. Clinical trials have been small and largely non-randomized but have established safety and early evidence of efficacy, supporting the need for larger randomized trials.
Collapse
Affiliation(s)
- Elizabeth O Stenger
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, 1405 Clifton Road, Atlanta, GA, 30322, USA.
| | - Lakshmanan Krishnamurti
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, 1405 Clifton Road, Atlanta, GA, 30322, USA.
| | - Jacques Galipeau
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, 1405 Clifton Road, Atlanta, GA, 30322, USA. .,Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
676
|
Exosomes and Their Therapeutic Potentials of Stem Cells. Stem Cells Int 2015; 2016:7653489. [PMID: 26770213 PMCID: PMC4684885 DOI: 10.1155/2016/7653489] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022] Open
Abstract
Exosomes, a group of vesicles originating from the multivesicular bodies (MVBs), are released into the extracellular space when MVBs fuse with the plasma membrane. Numerous studies indicate that exosomes play important roles in cell-to-cell communication, and exosomes from specific cell types and conditions display multiple functions such as exerting positive effects on regeneration in many tissues. It is widely accepted that the therapeutic potential of stem cells may be mediated largely by the paracrine factors, so harnessing the paracrine effects of stem and progenitor cells without affecting these living, replicating, and potentially pluripotent cell populations is an advantage in terms of safety and complexity. Ascending evidence indicated that exosomes might be the main components of paracrine factors; thus, understanding the role of exosomes in each subtype of stem cells is far-reaching. In this review, we discuss the functions of exosomes from different types of stem cells and emphasize the therapeutic potentials of exosomes, providing an alternative way of developing strategies to cure diseases.
Collapse
|
677
|
Akyurekli C, Le Y, Richardson RB, Fergusson D, Tay J, Allan DS. A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Rev Rep 2015; 11:150-60. [PMID: 25091427 DOI: 10.1007/s12015-014-9545-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The therapeutic potential of mesenchymal stromal cells (MSCs) may be largely mediated by paracrine factors contained in microvesicles (MV) released from intracellular endosomes. A systematic review of controlled interventional animal studies was performed to identify models of organ injury where clinical translation of MSC-derived microvesicle therapy appears most promising as regenerative therapy. METHODS A total of 190 published articles were identified in our systematic search of electronic databases (MEDLINE, EMBASE, PUBMED). After screening for eligibility, a total of 17 controlled studies testing MSC-derived MVs as therapeutic interventions in animal models of disease underwent comprehensive review, quality assessment, and data extraction. RESULTS Thirteen studies addressed the regenerative potential following organ injury. Six studies were included on acute kidney injury, 4 on myocardial infarction and reperfusion injury, 1 on hind limb ischemia, 1 on liver injury, and 1 on hypoxic lung injury. Four studies addressed immunological effects of MSC-derived MVs on inhibiting tumor growth. Twelve studies (71%) provided explicit information regarding the number of animals allocated to treatment or control groups. Five studies (29%) randomly assigned animals to treatment or control groups and only 1 study (6%) reported on blinding. Therapeutic intervention involved isolation of exosomes (40-100 nm) in eight studies, while nine studies tested unfractionated microvesicles (<1,000 nm). In studies of tissue regeneration, all 13 reported that treatment with MSC-derived MVs improved at least one major/clinical parameter associated with organ dysfunction. Three of 4 studies evaluating the inhibition of tumor growth reported benefit. CONCLUSIONS In preclinical studies, the use of MSC-derived MVs is strongly associated with improved organ function following injury and may be useful for inhibiting tumor growth. Improved preclinical study quality in terms of treatment allocation reporting, randomization and blinding will accelerate needed progress towards clinical trials that should assess feasibility and safety of this therapeutic approach in humans.
Collapse
Affiliation(s)
- Celine Akyurekli
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | | | | | | | | | | |
Collapse
|
678
|
Srour N, Thébaud B. Mesenchymal Stromal Cells in Animal Bleomycin Pulmonary Fibrosis Models: A Systematic Review. Stem Cells Transl Med 2015; 4:1500-10. [PMID: 26494779 PMCID: PMC4675510 DOI: 10.5966/sctm.2015-0121] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/29/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Idiopathic pulmonary fibrosis is an inexorably progressive lung disease with few available treatments. New therapeutic options are needed. Stem cells have generated much enthusiasm for the treatment of several conditions, including lung diseases. Human trials of mesenchymal stromal cell (MSC) therapy for pulmonary fibrosis are under way. To shed light on the potential usefulness of MSCs for human disease, we aimed to systematically review the preclinical literature to determine if MSCs are beneficial in animal bleomycin pulmonary fibrosis models. The MEDLINE and Embase databases were searched for original studies of stem cell therapy in animal bleomycin models of pulmonary fibrosis. Studies using embryonic stem cells or induced pluripotent stem cells were excluded. Seventeen studies were selected, all of which used MSCs in rodents. MSC therapy led to an improvement in bleomycin-induced lung collagen deposition in animal lungs and in the pulmonary fibrosis Ashcroft score in most studies. MSC therapy improved histopathology in almost all studies in which it was evaluated qualitatively. Furthermore, MSC therapy was found to improve 14-day survival in animals with bleomycin-induced pulmonary fibrosis. Bronchoalveolar lavage total and neutrophil counts, as well as transforming growth factor-β levels, were also reduced by MSCs. MSCs are beneficial in rodent bleomycin pulmonary fibrosis models. Since most studies examined the initial inflammatory phase rather than the chronic fibrotic phase, preclinical data offer better support for human trials of MSCs in acute exacerbations of pulmonary fibrosis rather than the chronic phase of the disease. SIGNIFICANCE There has been increased interest in mesenchymal stromal cell therapy for lung diseases. A few small clinical trials are under way in idiopathic pulmonary fibrosis. Preclinical evidence was assessed in a systematic review, as is often done for clinical studies. The existing studies offer better support for efficacy in the initial inflammatory phase rather than the fibrotic phase that human trials are targeting.
Collapse
Affiliation(s)
- Nadim Srour
- Division of Pulmonology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada Division of Pulmonology, Department of Medicine, Hôpital Charles-LeMoyne, Montreal, Quebec, Canada Department of Medicine, McGill University, Montreal, Quebec, Canada Mount Sinai Hospital Centre, Montreal, Quebec, Canada Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Bernard Thébaud
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada Faculty of Medicine, The University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
679
|
Pierro M, Ciarmoli E, Thébaud B. Bronchopulmonary Dysplasia and Chronic Lung Disease: Stem Cell Therapy. Clin Perinatol 2015; 42:889-910. [PMID: 26593085 DOI: 10.1016/j.clp.2015.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Bronchopulmonary dysplasia (BPD), a major complication of premature birth, still lacks safe and effective treatment. Mesenchymal stem cells (MSCs) have been proven to ameliorate critical aspects of the BPD pathogenesis. MSCs seem to exert therapeutic effects through the paracrine secretion of anti-inflammatory, antioxidant, antiapoptotic, trophic, and proangiogenic factors. Although these findings are promising, understanding the mechanism of action of MSCs and MSC manufacturing is still evolving. Several aspects can affect the efficacy of MSC therapy. Further research is required to optimize this potentially game-changing treatment but the translation of regenerative cell therapies for patients has begun.
Collapse
Affiliation(s)
- Maria Pierro
- Department of Clinical Sciences and Community Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Via della Commenda 12, Milan 20122, Italy; Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, Genova 16148, Italy.
| | - Elena Ciarmoli
- Neonatal Intensive Care Unit, MBBM Foundation, San Gerardo Hospital, Via Pergolesi 33, Monza 20900, Italy
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada; Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, 501 Smyth Road, Ottawa, Ontario K1H8L6, Canada; Department of Cellular and Molecular Medicine, Sinclair Institute of Regenerative Medicine, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
680
|
Abstract
Stem cells offer great promise to help understand the normal mechanisms of tissue renewal, regeneration, and repair, and also for development of cell-based therapies to treat patients after tissue injury. Most adult tissues contain stem cells and progenitor cells that contribute to homeostasis, remodeling, and repair. Multiple stem and progenitor cell populations in bone are found in the marrow, the endosteum, and the periosteum. They contribute to the fracture healing process after injury and are an important component in tissue engineering approaches for bone repair. This review focuses on current concepts in stem cell biology related to fracture healing and bone tissue regeneration, as well as current strategies and limitations for clinical cell-based therapies.
Collapse
|
681
|
Humphreys BD, Cantaluppi V, Portilla D, Singbartl K, Yang L, Rosner MH, Kellum JA, Ronco C. Targeting Endogenous Repair Pathways after AKI. J Am Soc Nephrol 2015; 27:990-8. [PMID: 26582401 DOI: 10.1681/asn.2015030286] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AKI remains a highly prevalent disease associated with poor short- and long-term outcomes and high costs. Although significant advances in our understanding of repair after AKI have been made over the last 5 years, this knowledge has not yet been translated into new AKI therapies. A consensus conference held by the Acute Dialysis Quality Initiative was convened in April of 2014 and reviewed new evidence on successful kidney repair to identify the most promising pathways that could be translated into new treatments. In this paper, we provide a summary of current knowledge regarding successful kidney repair and offer a framework for conceptualizing the therapeutic targeting that may facilitate this process. We outline gaps in knowledge and suggest a research agenda to more efficiently bring new discoveries regarding repair after AKI to the clinic.
Collapse
Affiliation(s)
- Benjamin D Humphreys
- Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Vincenzo Cantaluppi
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Medical Sciences, University of Torino, Azienda Ospedaliera Città della Salute e della Scienza 'Molinette,' Turin, Italy
| | - Didier Portilla
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Kai Singbartl
- Center for Critical Care Nephrology and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Li Yang
- Renal Division, Peking University First Hospital, Beijing, China; and
| | - Mitchell H Rosner
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - John A Kellum
- Center for Critical Care Nephrology and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Claudio Ronco
- Department of Nephrology Dialysis and Transplantation, San Bortolo Hospital and the International Renal Research Institute, Vicenza, Italy
| | | |
Collapse
|
682
|
Mesenchymal stem cells for the prevention and treatment of bronchopulmonary dysplasia in preterm infants. Hippokratia 2015. [DOI: 10.1002/14651858.cd011932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
683
|
Yi T, Kim SN, Lee HJ, Kim J, Cho YK, Shin DH, Tak SJ, Moon SH, Kang JE, Ji IM, Lim HJ, Lee DS, Jeon MS, Song SU. Manufacture of Clinical-Grade Human Clonal Mesenchymal Stem Cell Products from Single Colony Forming Unit-Derived Colonies Based on the Subfractionation Culturing Method. Tissue Eng Part C Methods 2015; 21:1251-62. [PMID: 26421757 DOI: 10.1089/ten.tec.2015.0017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stem cell products derived from mesenchymal stem cells (MSCs) have been widely used in clinical trials, and a few products have been already commercialized. However, the therapeutic effects of clinical-grade MSCs are still controversial owing to mixed results from recent clinical trials. A potential solution to overcome this hurdle may be to use clonal stem cells as the starting cell material to increase the homogeneity of the final stem cell products. We have previously developed an alternative isolation and culture protocol for establishing a population of clonal MSCs (cMSCs) from single colony forming unit (CFU)-derived colonies. In this study, we established a good manufacturing practice (GMP)-compatible procedure for the clinical-grade production of human bone marrow-derived cMSCs based on the subfractionation culturing method. We optimized the culture procedures to expand and obtain a clonal population of final MSC products from single CFU-derived colonies in a GMP facility. The characterization results of the final cMSC products met our preset criteria. Animal toxicity tests were performed in a good laboratory practice facility, and showed no toxicity or tumor formation in vivo. These tests include single injection toxicity, multiple injection toxicity, biodistribution analysis, and tumorigenicity tests in vivo. No chromosomal abnormalities were detected by in situ karyotyping using oligo-fluorescence in situ hydridization (oligo-FISH), providing evidence of genetic stability of the clinical-grade cMSC products. The manufacture and quality control results indicated that our GMP methodology could produce sufficient clonal population of MSC products from a small amount of bone marrow aspirate to treat a number of patients.
Collapse
Affiliation(s)
- TacGhee Yi
- 1 Translational Research Center, Inha University School of Medicine , Incheon, Republic of Korea.,2 Inha Research Institute for Medical Science, Inha University School of Medicine , Incheon, Republic of Korea.,3 SCM Lifescience Co., Ltd. , Incheon, Republic of Korea
| | - Si-na Kim
- 4 Drug Development Program, Department of Biomedical Science, Inha University School of Medicine , Incheon, Republic of Korea
| | - Hyun-Joo Lee
- 4 Drug Development Program, Department of Biomedical Science, Inha University School of Medicine , Incheon, Republic of Korea
| | - Junghee Kim
- 4 Drug Development Program, Department of Biomedical Science, Inha University School of Medicine , Incheon, Republic of Korea
| | - Yun-Kyoung Cho
- 3 SCM Lifescience Co., Ltd. , Incheon, Republic of Korea
| | - Dong-Hee Shin
- 1 Translational Research Center, Inha University School of Medicine , Incheon, Republic of Korea.,2 Inha Research Institute for Medical Science, Inha University School of Medicine , Incheon, Republic of Korea
| | - Sun-Ji Tak
- 1 Translational Research Center, Inha University School of Medicine , Incheon, Republic of Korea
| | - Sun-Hwa Moon
- 3 SCM Lifescience Co., Ltd. , Incheon, Republic of Korea
| | - Ji-Eun Kang
- 3 SCM Lifescience Co., Ltd. , Incheon, Republic of Korea
| | - In-Mi Ji
- 3 SCM Lifescience Co., Ltd. , Incheon, Republic of Korea
| | - Huyn-Ja Lim
- 3 SCM Lifescience Co., Ltd. , Incheon, Republic of Korea
| | - Dong-Soon Lee
- 5 Department of Pathology, Seoul National University School of Medicine , Seoul, Republic of Korea
| | - Myung-Shin Jeon
- 1 Translational Research Center, Inha University School of Medicine , Incheon, Republic of Korea
| | - Sun U Song
- 1 Translational Research Center, Inha University School of Medicine , Incheon, Republic of Korea.,3 SCM Lifescience Co., Ltd. , Incheon, Republic of Korea
| |
Collapse
|
684
|
Adibi A, Sen A, Mitha AP. Cell Therapy for Intracranial Aneurysms: A Review. World Neurosurg 2015; 86:390-8. [PMID: 26547001 DOI: 10.1016/j.wneu.2015.10.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023]
Abstract
One in five patients undergoing endovascular coiling (the current standard of care for treating intracranial aneurysms) experience a recurrence of the aneurysm as a result of improper healing. Recurrence remains the only major drawback of the coiling treatment and has been the focus of many studies over the last two decades. Cell therapy, a novel treatment modality in which therapeutic cells are introduced to the site of the injury to promote tissue regeneration, has opened up new possibilities for treating aneurysms. The healing response that ensues aneurysm embolization includes several cellular processes that can be targeted with cell therapy to prevent the aneurysm from recurring. Ten preclinical studies involving cell therapy to treat aneurysms were published between 1999 and 2014. In this review, we summarize the results of these studies and discuss advances, shortcomings, and the future of cell therapy for intracranial aneurysms.
Collapse
Affiliation(s)
- Amin Adibi
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Alim P Mitha
- Department of Clinical Neurosciences, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
685
|
Feisst V, Meidinger S, Locke MB. From bench to bedside: use of human adipose-derived stem cells. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:149-62. [PMID: 26586955 PMCID: PMC4636091 DOI: 10.2147/sccaa.s64373] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since the discovery of adipose-derived stem cells (ASC) in human adipose tissue nearly 15 years ago, significant advances have been made in progressing this promising cell therapy tool from the laboratory bench to bedside usage. Standardization of nomenclature around the different cell types used is finally being adopted, which facilitates comparison of results between research groups. In vitro studies have assessed the ability of ASC to undergo mesenchymal differentiation as well as differentiation along alternate lineages (transdifferentiation). Recently, focus has shifted to the immune modulatory and paracrine effects of transplanted ASC, with growing interest in the ASC secretome as a source of clinical effect. Bedside use of ASC is advancing alongside basic research. An increasing number of safety-focused Phase I and Phase IIb trials have been published without identifying any significant risks or adverse events in the short term. Phase III trials to assess efficacy are currently underway. In many countries, regulatory frameworks are being developed to monitor their use and assure their safety. As many trials rely on ASC injected at a distant site from the area of clinical need, strategies to improve the homing and efficacy of transplanted cells are also being explored. This review highlights each of these aspects of the bench-to-bedside use of ASC and summarizes their clinical utility across a variety of medical specialties.
Collapse
Affiliation(s)
- Vaughan Feisst
- Dunbar Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Sarah Meidinger
- Dunbar Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Michelle B Locke
- Department of Surgery, Faculty of Medicine and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
686
|
Morrison T, McAuley DF, Krasnodembskaya A. Mesenchymal stromal cells for treatment of the acute respiratory distress syndrome: The beginning of the story. J Intensive Care Soc 2015; 16:320-329. [PMID: 28979439 PMCID: PMC5606462 DOI: 10.1177/1751143715586420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In spite of decades of research, the acute respiratory distress syndrome (ARDS) continues to have an unacceptably high mortality and morbidity. Mesenchymal stromal cells (MSCs) present a promising candidate for the treatment of this condition and have demonstrated benefit in preclinical models. MSCs, which are a topic of growing interest in many inflammatory disorders, have already progressed to early phase clinical trials in ARDS. While a number of their mechanisms of effect have been elucidated, a better understanding of the complex actions of these cells may pave the way for MSC modifications, which might enable more effective translation into clinical practice.
Collapse
|
687
|
Paschos NK. Recent advances and future directions in the management of knee osteoarthritis: Can biological joint reconstruction replace joint arthroplasty and when? World J Orthop 2015; 6:655-659. [PMID: 26495242 PMCID: PMC4610907 DOI: 10.5312/wjo.v6.i9.655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/12/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
In this article, a concise description of the recent advances in the field of osteoarthritis management is presented. The main focus is to highlight the most promising techniques that emerge in both biological joint replacement and artificial joint arthroplasty. A critical view of high quality evidence regarding outcome and safety profile of these techniques is presented. The potential role of kinematically aligned total knee replacement, navigation, and robotic-assisted surgery is outlined. A critical description of both primary and stem cell-based therapies, the cell homing theory, the use of biologic factors and recent advancements in tissue engineering and regenerative medicine is provided. Based on the current evidence, some thoughts on a realistic approach towards answering these questions are attempted.
Collapse
|
688
|
Molendijk I, Bonsing BA, Roelofs H, Peeters KCMJ, Wasser MNJM, Dijkstra G, van der Woude CJ, Duijvestein M, Veenendaal RA, Zwaginga JJ, Verspaget HW, Fibbe WE, van der Meulen-de Jong AE, Hommes DW. Allogeneic Bone Marrow-Derived Mesenchymal Stromal Cells Promote Healing of Refractory Perianal Fistulas in Patients With Crohn's Disease. Gastroenterology 2015; 149:918-27.e6. [PMID: 26116801 DOI: 10.1053/j.gastro.2015.06.014] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/23/2015] [Accepted: 06/17/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Patients with perianal fistulizing Crohn's disease have a poor prognosis because these lesions do not heal well. We evaluated the effects of local administration of bone marrow-derived mesenchymal stromal cells (MSCs) to these patients from healthy donors in a double-blind, placebo-controlled study. METHODS Twenty-one patients with refractory perianal fistulizing Crohn's disease were randomly assigned to groups given injections of 1 × 10(7) (n = 5, group 1), 3 × 10(7) (n = 5, group 2), or 9 × 10(7) (n = 5, group 3) MSCs, or placebo (solution with no cells, n = 6), into the wall of curettaged fistula, around the trimmed and closed internal opening. The primary outcome, fistula healing, was determined by physical examination 6, 12, and 24 weeks later; healing was defined as absence of discharge and <2 cm of fluid collection-the latter determined by magnetic resonance imaging at week 12. All procedures were performed at Leiden University Medical Center, The Netherlands, from June 2012 through July 2014. RESULTS No adverse events were associated with local injection of any dose of MSCs. Healing at week 6 was observed in 3 patients in group 1 (60.0%), 4 patients in group 2 (80.0%), and 1 patient in group 3 (20.0%), vs 1 patient in the placebo group (16.7%) (P = .08 for group 2 vs placebo). At week 12, healing was observed in 2 patients in group 1 (40.0%), 4 patients in group 2 (80.0%), and 1 patient in group 3 (20.0%), vs 2 patients in the placebo group (33.3%); these effects were maintained until week 24 and even increased to 4 (80.0%) in group 1. At week six, 4 of 9 individual fistulas had healed in group 1 (44.4%), 6 of 7 had healed in group 2 (85.7%), and 2 of 7 had healed in group 3 (28.6%) vs 2 of 9 (22.2%) in the placebo group (P = .04 for group 2 vs placebo). At week twelve, 3 of 9 individual fistulas had healed in group 1 (33.3%), 6 of 7 had healed in group 2 (85.7%), 2 of 7 had healed in group 3 (28.6%), and 3 of 9 had healed in the placebo group (33.3%). These effects were stable through week 24 and even increased to 6 of 9 (66.7%) in group 1 (P = .06 group 2 vs placebo, weeks 12 and 24). CONCLUSIONS Local administration of allogeneic MSCs was not associated with severe adverse events in patients with perianal fistulizing Crohn's disease. Injection of 3 × 10(7) MSCs appeared to promote healing of perianal fistulas. ClinicalTrials.gov ID NCT01144962.
Collapse
Affiliation(s)
- Ilse Molendijk
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Helene Roelofs
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen C M J Peeters
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin N J M Wasser
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard Dijkstra
- Department Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - C Janneke van der Woude
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marjolijn Duijvestein
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roeland A Veenendaal
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap-Jan Zwaginga
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; The Jon J van Rood Center for Clinical Transfusion Research, Sanquin-Leiden University Medical Center, Leiden, The Netherlands
| | - Hein W Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem E Fibbe
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Daniel W Hommes
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands; Division of Digestive Diseases, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
689
|
Gennai S, Monsel A, Hao Q, Liu J, Gudapati V, Barbier EL, Lee JW. Cell-based therapy for traumatic brain injury. Br J Anaesth 2015; 115:203-12. [PMID: 26170348 DOI: 10.1093/bja/aev229] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury is a major economic burden to hospitals in terms of emergency department visits, hospitalizations, and utilization of intensive care units. Current guidelines for the management of severe traumatic brain injuries are primarily supportive, with an emphasis on surveillance (i.e. intracranial pressure) and preventive measures to reduce morbidity and mortality. There are no direct effective therapies available. Over the last fifteen years, pre-clinical studies in regenerative medicine utilizing cell-based therapy have generated enthusiasm as a possible treatment option for traumatic brain injury. In these studies, stem cells and progenitor cells were shown to migrate into the injured brain and proliferate, exerting protective effects through possible cell replacement, gene and protein transfer, and release of anti-inflammatory and growth factors. In this work, we reviewed the pathophysiological mechanisms of traumatic brain injury, the biological rationale for using stem cells and progenitor cells, and the results of clinical trials using cell-based therapy for traumatic brain injury. Although the benefits of cell-based therapy have been clearly demonstrated in pre-clinical studies, some questions remain regarding the biological mechanisms of repair and safety, dose, route and timing of cell delivery, which ultimately will determine its optimal clinical use.
Collapse
Affiliation(s)
- S Gennai
- Department of Emergency Medicine, Grenoble University Hospital, La Tronche, France
| | - A Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Q Hao
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| | - J Liu
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| | - V Gudapati
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| | - E L Barbier
- Grenoble Institut des Neurosciences, Unité Inserm U 836, La Tronche, France
| | - J W Lee
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| |
Collapse
|
690
|
Squillaro T, Peluso G, Galderisi U. Clinical Trials With Mesenchymal Stem Cells: An Update. Cell Transplant 2015; 25:829-48. [PMID: 26423725 DOI: 10.3727/096368915x689622] [Citation(s) in RCA: 1013] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the last year, the promising features of mesenchymal stem cells (MSCs), including their regenerative properties and ability to differentiate into diverse cell lineages, have generated great interest among researchers whose work has offered intriguing perspectives on cell-based therapies for various diseases. Currently the most commonly used adult stem cells in regenerative medicine, MSCs, can be isolated from several tissues, exhibit a strong capacity for replication in vitro, and can differentiate into osteoblasts, chondrocytes, and adipocytes. However, heterogeneous procedures for isolating and cultivating MSCs among laboratories have prompted the International Society for Cellular Therapy (ISCT) to issue criteria for identifying unique populations of these cells. Consequently, the isolation of MSCs according to ISCT criteria has produced heterogeneous, nonclonal cultures of stromal cells containing stem cells with different multipotent properties, committed progenitors, and differentiated cells. Though the nature and functions of MSCs remain unclear, nonclonal stromal cultures obtained from bone marrow and other tissues currently serve as sources of putative MSCs for therapeutic purposes, and several findings underscore their effectiveness in treating different diseases. To date, 493 MSC-based clinical trials, either complete or ongoing, appear in the database of the US National Institutes of Health. In the present article, we provide a comprehensive review of MSC-based clinical trials conducted worldwide that scrutinizes biological properties of MSCs, elucidates recent clinical findings and clinical trial phases of investigation, highlights therapeutic effects of MSCs, and identifies principal criticisms of the use of these cells. In particular, we analyze clinical trials using MSCs for representative diseases, including hematological disease, graft-versus-host disease, organ transplantation, diabetes, inflammatory diseases, and diseases in the liver, kidney, and lung, as well as cardiovascular, bone and cartilage, neurological, and autoimmune diseases.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | | | | |
Collapse
|
691
|
Spear RL, Symeonidou A, Skepper JN, Brooks RA, Markaki AE. Fibrin affects short-term in vitro human mesenchymal stromal cell responses to magneto-active fibre networks. BIOMATERIALS AND BIOMECHANICS IN BIOENGINEERING 2015. [DOI: 10.12989/bme.2015.2.3.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
692
|
Auletta JJ, Eid SK, Wuttisarnwattana P, Silva I, Metheny L, Keller MD, Guardia-Wolff R, Liu C, Wang F, Bowen T, Lee Z, Solchaga LA, Ganguly S, Tyler M, Wilson DL, Cooke KR. Human mesenchymal stromal cells attenuate graft-versus-host disease and maintain graft-versus-leukemia activity following experimental allogeneic bone marrow transplantation. Stem Cells 2015; 33:601-14. [PMID: 25336340 DOI: 10.1002/stem.1867] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 12/22/2022]
Abstract
We sought to define the effects and underlying mechanisms of human, marrow-derived mesenchymal stromal cells (hMSCs) on graft-versus-host disease (GvHD) and graft-versus-leukemia (GvL) activity. Irradiated B6D2F1 mice given C57BL/6 BM and splenic T cells and treated with hMSCs had reduced systemic GvHD, donor T-cell expansion, and serum TNFα and IFNγ levels. Bioluminescence imaging demonstrated that hMSCs redistributed from lungs to abdominal organs within 72 hours, and target tissues harvested from hMSC-treated allogeneic BMT (alloBMT) mice had less GvHD than untreated controls. Cryoimaging more precisely revealed that hMSCs preferentially distributed to splenic marginal zones and regulated T-cell expansion in the white pulp. Importantly, hMSCs had no effect on in vitro cytotoxic T-cell activity and preserved potent GvL effects in vivo. Mixed leukocyte cultures containing hMSCs exhibited decreased T-cell proliferation, reduced TNFα, IFNγ, and IL-10 but increased PGE2 levels. Indomethacin and E-prostanoid 2 (EP2) receptor antagonisms both reversed while EP2 agonism restored hMSC-mediated in vitro T-cell suppression, confirming the role for PGE2 . Furthermore, cyclo-oxygenase inhibition following alloBMT abrogated the protective effects of hMSCs. Together, our data show that hMSCs preserve GvL activity and attenuate GvHD and reveal that hMSC biodistribute to secondary lymphoid organs wherein they attenuate alloreactive T-cell proliferation likely through PGE2 induction.
Collapse
Affiliation(s)
- Jeffery J Auletta
- Host Defense Program, Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
693
|
Abstract
Heart failure remains a major cause of death and disability, requiring rapid development of new therapies. Bone marrow-derived mesenchymal stem cell (MSC)-based therapy is an emerging approach for the treatment of both acute and chronic heart failure. Following successful experimental studies in a range of models, more than 40 clinical trials of MSC-based therapy for heart failure have now been registered, and the results of completed clinical trials so far have shown feasibility and safety of this approach with therapeutic potential suggested (though preliminarily). However, there appear to be several critical issues to be solved before this treatment could become a widespread standard therapy for heart failure. In this review, we comprehensively and systemically summarize a total of 73 preclinical studies and 11 clinical trial reports published to date. By analyzing the data in these reports, (1) improvement in the cell delivery method to the heart in order to enhance donor cell engraftment, (2) elucidation of mechanisms underpinning the therapeutic effects of the treatment differentiation and/or treatment secretion, and (3) validation of the utility of allogeneic MSCs which could enhance the efficacy and expand the application/indication of this therapeutic approach are highlighted as future perspectives. These important respects are further discussed in this review article with referencing latest scientific and clinical information.
Collapse
Affiliation(s)
- Takuya Narita
- Cardiothoracic Surgery, National Heart Centre, Singapore, Singapore
| | | |
Collapse
|
694
|
Castrén E, Sillat T, Oja S, Noro A, Laitinen A, Konttinen YT, Lehenkari P, Hukkanen M, Korhonen M. Osteogenic differentiation of mesenchymal stromal cells in two-dimensional and three-dimensional cultures without animal serum. Stem Cell Res Ther 2015; 6:167. [PMID: 26345992 PMCID: PMC4562352 DOI: 10.1186/s13287-015-0162-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 06/15/2015] [Accepted: 08/18/2015] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Bone marrow-derived mesenchymal stromal cells (MSCs) have been intensely studied for the purpose of developing solutions for clinical tissue engineering. Autologous MSCs can potentially be used to replace tissue defects, but the procedure also carries risks such as immunization and xenogeneic infection. Replacement of the commonly used fetal calf serum (FCS) with human platelet lysate and plasma (PLP) to support cell growth may reduce some of these risks. Altered media could, however, influence stem cell differentiation and we address this experimentally. METHODS We examined human MSC differentiation into the osteoblast lineage using in vitro two- and three-dimensional cultures with PLP or FCS as cell culture medium supplements. Differentiation was followed by quantitative polymerase chain reaction, and alkaline phosphatase activity, matrix formation and matrix calcium content were quantified. RESULTS Three-dimensional culture, where human MSCs were grown on collagen sponges, markedly stimulated osteoblast differentiation; a fourfold increase in calcium deposition could be observed in both PLP and FCS groups. PLP-grown cells showed robust osteogenic differentiation both in two- and three-dimensional MSC cultures. The calcium content of the matrix in the two-dimensional PLP group at day 14 was 2.2-fold higher in comparison to the FCS group (p < 0.0001), and at day 21 it was still 1.3-fold higher (p < 0.001), suggesting earlier calcium accumulation to the matrix in the PLP group. This was supported by stronger Alizarin Red staining in the PLP group at day 14. In two-dimesional PLP cultures, cellular proliferation appeared to decrease during later stages of differentiation, while in the FCS group the number of cells increased throughout the experiment. In three-dimensional experiments, the PLP and FCS groups behaved more congruently, except for the alkaline phosphatase activity and mRNA levels which were markedly increased by PLP. CONCLUSIONS Human PLP was at least equal to FCS in supporting osteogenic differentiation of human MSCs in two- and three-dimensional conditions; however, proliferation was inferior. As PLP is free of animal components, and thus represents reduced risk for xenogeneic infection, its use for human MSC-induced bone repair in the clinic by the three-dimensional live implants presented here appears a promising therapy option.
Collapse
Affiliation(s)
- Eeva Castrén
- Institute of Biomedicine, Anatomy, Biomedicum Helsinki, University of Helsinki, PO Box 63, Helsinki, Finland.
| | - Tarvo Sillat
- Institute of Biomedicine, Anatomy, Biomedicum Helsinki, University of Helsinki, PO Box 63, Helsinki, Finland. .,Department of Medicine, Helsinki University Central Hospital, PO 700, 00029 HUS, Helsinki, Finland.
| | - Sofia Oja
- Institute of Biomedicine, Anatomy, Biomedicum Helsinki, University of Helsinki, PO Box 63, Helsinki, Finland. .,Finnish Red Cross Blood service, Kivihaantie 7, 00310, Helsinki, Finland.
| | - Ariel Noro
- Institute of Biomedicine, Anatomy, Biomedicum Helsinki, University of Helsinki, PO Box 63, Helsinki, Finland.
| | - Anita Laitinen
- Finnish Red Cross Blood service, Kivihaantie 7, 00310, Helsinki, Finland.
| | - Yrjö T Konttinen
- Department of Medicine, Helsinki University Central Hospital, PO 700, 00029 HUS, Helsinki, Finland. .,ORTON Orthopaedic Hospital of the Invalid Foundation, PO 29, 00281, Helsinki, Finland.
| | - Petri Lehenkari
- Departments of Anatomy and Surgery, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| | - Mika Hukkanen
- Institute of Biomedicine, Anatomy, Biomedicum Helsinki, University of Helsinki, PO Box 63, Helsinki, Finland.
| | - Matti Korhonen
- Division of Hemato-Oncology and Stem cell Transplantation, Hospital of Children and Adolescents, Helsinki University Central Hospital, Helsinki, Finland. .,Finnish Red Cross Blood service, Kivihaantie 7, 00310, Helsinki, Finland.
| |
Collapse
|
695
|
Stabler CT, Lecht S, Lazarovici P, Lelkes PI. Mesenchymal stem cells for therapeutic applications in pulmonary medicine. Br Med Bull 2015; 115:45-56. [PMID: 26063231 DOI: 10.1093/bmb/ldv026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) of different biological sources are in Phase 1 clinical trials and are being considered for Phase 2 therapy of lung disorders, and lung (progenitor) cells derived from pluripotent stem cells (SCs) are under development in preclinical animal models. SOURCES OF DATA PubMed.gov and ClinicalTrials.gov. AREAS OF AGREEMENT There is consensus about the therapeutic potential of transplanted SCs, mainly MSCs, primarily involves paracrine 'bystander' effects that confer protection of the epithelial and endothelial linings of the lung caused by inflammation and/or fibrosis and lead to increased survival in animal models. Clinical trials of Phase 1 indicate safety and suggest that the efficacy of SC therapy in patients with various lung diseases will require a higher dosage than previously evaluated. AREAS OF CONTROVERSY A growing interest in the re-epithelialization and re-endothelialization of damaged lung tissue involves the putative pulmonary differentiation of exogenous MSCs. Currently, it is not clear whether or not the observed regeneration of distal airways/vasculature is derived from lung-resident and/or transplanted SCs. GROWING POINTS Important topics under investigation include optimization of the cell source with a decrease in cell population heterogeneity characterized by defined markers, route of delivery for effective treatment, potential dose and therapeutic protocol of SC application, development of quantitative assays and biomarkers of lung disease and repair, and the potential use of tissue engineered lung. AREAS TIMELY FOR DEVELOPING RESEARCH Ability of MSCs to differentiate into epithelial cells of the lung, use of autologous induced pluripotent SCs (iPSCs) derived from the patients, complete biochemical characterization of the secretome of SCs used for therapy, and the incorporation of simultaneous and/or subsequent treatment with drugs which also aid in lung repair and regeneration. CAUTIONARY NOTE Although safety of MSC-based cell therapy was proved in Phase 1, efficacy, long-term survival and preservation of lung respiratory function need to be further evaluated, cautioning against hastily translating SCs therapy from animal models of lung injury to clinical trials of patients with lung disorders.
Collapse
Affiliation(s)
- Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Shimon Lecht
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Philip Lazarovici
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA Temple Institute for Regenerative Medicine and Engineering (TIME), Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
696
|
Simonson OE, Mougiakakos D, Heldring N, Bassi G, Johansson HJ, Dalén M, Jitschin R, Rodin S, Corbascio M, El Andaloussi S, Wiklander OPB, Nordin JZ, Skog J, Romain C, Koestler T, Hellgren-Johansson L, Schiller P, Joachimsson PO, Hägglund H, Mattsson M, Lehtiö J, Faridani OR, Sandberg R, Korsgren O, Krampera M, Weiss DJ, Grinnemo KH, Le Blanc K. In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome. Stem Cells Transl Med 2015; 4:1199-213. [PMID: 26285659 DOI: 10.5966/sctm.2015-0021] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/13/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Mesenchymal stromal cells (MSCs) have been investigated as a treatment for various inflammatory diseases because of their immunomodulatory and reparative properties. However, many basic questions concerning their mechanisms of action after systemic infusion remain unanswered. We performed a detailed analysis of the immunomodulatory properties and proteomic profile of MSCs systemically administered to two patients with severe refractory acute respiratory distress syndrome (ARDS) on a compassionate use basis and attempted to correlate these with in vivo anti-inflammatory actions. Both patients received 2×10(6) cells per kilogram, and each subsequently improved with resolution of respiratory, hemodynamic, and multiorgan failure. In parallel, a decrease was seen in multiple pulmonary and systemic markers of inflammation, including epithelial apoptosis, alveolar-capillary fluid leakage, and proinflammatory cytokines, microRNAs, and chemokines. In vitro studies of the MSCs demonstrated a broad anti-inflammatory capacity, including suppression of T-cell responses and induction of regulatory phenotypes in T cells, monocytes, and neutrophils. Some of these in vitro potency assessments correlated with, and were relevant to, the observed in vivo actions. These experiences highlight both the mechanistic information that can be gained from clinical experience and the value of correlating in vitro potency assessments with clinical effects. The findings also suggest, but do not prove, a beneficial effect of lung protective strategies using adoptively transferred MSCs in ARDS. Appropriate randomized clinical trials are required to further assess any potential clinical efficacy and investigate the effects on in vivo inflammation. SIGNIFICANCE This article describes the cases of two patients with severe refractory adult respiratory syndrome (ARDS) who failed to improve after both standard life support measures, including mechanical ventilation, and additional measures, including extracorporeal ventilation (i.e., in a heart-lung machine). Unlike acute forms of ARDS (such in the current NIH-sponsored study of mesenchymal stromal cells in ARDS), recovery does not generally occur in such patients.
Collapse
Affiliation(s)
- Oscar E Simonson
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Dimitrios Mougiakakos
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Nina Heldring
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Giulio Bassi
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Henrik J Johansson
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Magnus Dalén
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Regina Jitschin
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Sergey Rodin
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Matthias Corbascio
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Samir El Andaloussi
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Oscar P B Wiklander
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Joel Z Nordin
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Johan Skog
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Charlotte Romain
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Tina Koestler
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Laila Hellgren-Johansson
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Petter Schiller
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Per-Olof Joachimsson
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Hans Hägglund
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Mattias Mattsson
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Janne Lehtiö
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Omid R Faridani
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Rickard Sandberg
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Olle Korsgren
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Mauro Krampera
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Daniel J Weiss
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Karl-Henrik Grinnemo
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Katarina Le Blanc
- Departments of Molecular Medicine and Surgery, Cardiothoracic Surgery and Anesthesia, and Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Internal Medicine, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany; Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy; Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Department of Medical Biochemistry and Biophysics, and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Center for Diseases of Aging, Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, USA; Exosome Diagnostics Inc., New York, New York, USA; Departments of Cardiothoracic Surgery, Hematology, and Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden; Health Sciences Research Facility, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
697
|
Han KH, Kim AK, Kim MH, Kim DH, Go HN, Kim DI. Enhancement of angiogenic effects by hypoxia-preconditioned human umbilical cord-derived mesenchymal stem cells in a mouse model of hindlimb ischemia. Cell Biol Int 2015. [PMID: 26222206 DOI: 10.1002/cbin.10519] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It has been studied that mesenchymal stem cells (MSCs) have the capability to promote angiogenesis. Furthermore, there is strong evidence that hypoxic conditions can enhance angiogenesis and immune modulation mediated by MSCs, a notion that has been applied in many fields of clinical application. In the present study, we compared the efficacy of hypoxia preconditioned human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and normoxia conditioned hUC-MSCs for the treatment of ischemic injury in hindlimbs of an immunodeficient mouse model. Expression of negative markers for MSC such as CD31, CD34, and CD45 or positive markers such as CD44, CD73, CD90, and CD105 was not significantly changed in hypoxia preconditioned hUC-MSCs compared with hUC-MSCs cultured in normoxic condition. Expression of angiogenesis-related genes such as COX-2, VEGF, Tie-2, and TGF-β1 was increased compared with hUC-MSCs cultured in normoxic conditions. In the in vivo model, CD31 expression as a marker of angiogenesis was significantly increased in the ischemic limbs at 1 month after injection with hypoxic hUC-MSCs. Angiogenesis-related genes such as Ang-1, COX-1, PIGF, and MCP-1 were significantly upregulated in the muscle of ischemic hindlimbs treated with hypoxic hUC-MSCs than normoxic hUC-MSCs. Expression of proinflammatory genes such as IL-1, and IL-20 was reduced, whereas TGF-β1, which has an anti-inflammatory effect, was strongly increased. In conclusion, hypoxic culture conditions could induce expression of angiogenesis related genes in hUC-MSCs, and hypoxia preconditioned hUC-MSCs showed enhancing effects by inducing angiogenesis and low inflammatory immune response compared with normoxic hUC-MSCs in the ischemia injured hindlimb of immunodeficient mice.
Collapse
Affiliation(s)
- Kyu-Hyun Han
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ae-Kyeong Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Hee Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyung Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ha-Nl Go
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
698
|
Martínez-Montiel MP, Casis-Herce B, Gómez-Gómez GJ, Masedo-González A, Yela-San Bernardino C, Piedracoba C, Castellano-Tortajada G. Pharmacologic therapy for inflammatory bowel disease refractory to steroids. Clin Exp Gastroenterol 2015; 8:257-69. [PMID: 26316792 PMCID: PMC4544729 DOI: 10.2147/ceg.s58152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although corticosteroids are an effective treatment for induction of remission in inflammatory bowel disease (IBD), many patients are dependent on or refractory to corticosteroids. This review is based on scrutinizing current literature with emphasis on randomized controlled trials, meta-analyses, and Cochrane reviews on the management of IBD refractory to corticosteroids. Based on this evidence, we propose algorithms and optimization strategies for use of immunomodulator and biologic therapy in IBD refractory to corticosteroids.
Collapse
Affiliation(s)
| | - B Casis-Herce
- Division of Gastroenterology, Hospital 12 de Octubre, Madrid, Spain
| | - G J Gómez-Gómez
- Division of Gastroenterology, Hospital 12 de Octubre, Madrid, Spain
| | | | | | - C Piedracoba
- Division of Gastroenterology, Hospital 12 de Octubre, Madrid, Spain
| | | |
Collapse
|
699
|
Lee SY, Kim W, Lim C, Chung SG. Treatment of Lateral Epicondylosis by Using Allogeneic Adipose-Derived Mesenchymal Stem Cells: A Pilot Study. Stem Cells 2015. [PMID: 26202898 DOI: 10.1002/stem.2110] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cell therapy is a novel regenerative approach for treating tendinopathy. Here, we evaluated the safety and efficacy of allogeneic adipose-derived mesenchymal stem cells (allo-ASC) in treating lateral epicondylosis (LE). Under ultrasound guidance, allo-ASCs mixed with fibrin glue were injected into the hypoechoic common extensor tendon lesions of 12 participants with chronic LE; 6 subjects each were administered 10(6) or 10(7) cells in 1 ml. Safety was evaluated at day 3 and weeks 2, 6, 12, 26, and 52 post-injection. Efficacy was assessed by measuring patients' visual analog scale (VAS) score for elbow pain, modified Mayo clinic performance index for the elbow, and by evaluating longitudinal and transverse ultrasound images of tendon defect areas after 6, 12, 26, and 52 weeks. No significant adverse effects of allo-ASC injection were observed through 52 weeks of follow-up. From baseline through 52 weeks of periodic follow-up, VAS scores progressively decreased from 66.8 ± 14.5 mm to 14.8 ± 13.1 mm and elbow performance scores improved from 64.0 ± 13.5 to 90.6 ± 5.8. Tendon defects also significantly decreased through this period. Allo-ASC therapy was thus safe and effective in improving elbow pain, performance, and structural defects for 52 weeks. This clinical study is the first to reveal therapeutic value of mesenchymal stem cell injection for treating chronic tendinopathy.
Collapse
Affiliation(s)
- Sang Yoon Lee
- Department of Physical Medicine & Rehabilitation, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chaiyoung Lim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sun G Chung
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Aging, Medical Research Center, Seoul National University, Seoul, South Korea.,Rheumatism Research Institute, Medical Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
700
|
Chung E. Stem-cell-based therapy in the field of urology: a review of stem cell basic science, clinical applications and future directions in the treatment of various sexual and urinary conditions. Expert Opin Biol Ther 2015; 15:1623-32. [DOI: 10.1517/14712598.2015.1075504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|