7301
|
Piszcz J, Lemancewicz D, Dudzik D, Ciborowski M. Differences and similarities between LC-MS derived serum fingerprints of patients with B-cell malignancies. Electrophoresis 2013. [DOI: 10.1002/elps.201200606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jaroslaw Piszcz
- Department of Haematology; Medical University of Bialystok; Bialystok; Poland
| | | | | | - Michal Ciborowski
- Department of Physical Chemistry; Medical University of Bialystok; Bialystok; Poland
| |
Collapse
|
7302
|
Didonna A. Prion protein and its role in signal transduction. Cell Mol Biol Lett 2013; 18:209-30. [PMID: 23479001 PMCID: PMC6275729 DOI: 10.2478/s11658-013-0085-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/18/2013] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are a class of fatal neurodegenerative disorders that can be sporadic, genetic or iatrogenic. They are characterized by the unique nature of their etiologic agent: prions (PrP(Sc)). A prion is an infectious protein with the ability to convert the host-encoded cellular prion protein (PrP(C)) into new prion molecules by acting as a template. Since Stanley B. Prusiner proposed the "protein-only" hypothesis for the first time, considerable effort has been put into defining the role played by PrP(C) in neurons. However, its physiological function remains unclear. This review summarizes the major findings that support the involvement of PrP(C) in signal transduction.
Collapse
Affiliation(s)
- Alessandro Didonna
- Davee Department of Neurology, Feinberg School of Medicine Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
7303
|
Gomez-Muñoz A, Gangoiti P, Arana L, Ouro A, Rivera IG, Ordoñez M, Trueba M. New insights on the role of ceramide 1-phosphate in inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1060-6. [DOI: 10.1016/j.bbalip.2013.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 01/29/2013] [Accepted: 02/05/2013] [Indexed: 01/08/2023]
|
7304
|
Thaler F, Varasi M, Abate A, Carenzi G, Colombo A, Bigogno C, Boggio R, Zuffo RD, Rapetti D, Resconi A, Regalia N, Vultaggio S, Dondio G, Gagliardi S, Minucci S, Mercurio C. Synthesis and biological characterization of spiro[2H-(1,3)-benzoxazine-2,4′-piperidine] based histone deacetylase inhibitors. Eur J Med Chem 2013; 64:273-84. [DOI: 10.1016/j.ejmech.2013.03.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 11/28/2022]
|
7305
|
Histone deacetylase 2 cell autonomously suppresses excitatory and enhances inhibitory synaptic function in CA1 pyramidal neurons. J Neurosci 2013; 33:5924-9. [PMID: 23554474 DOI: 10.1523/jneurosci.3162-12.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Histone deacetylase 2 (HDAC2) negatively regulates excitatory synapse number and memory performance. However, whether HDAC2 regulation of excitatory synapses occurs in a cell-autonomous manner and whether HDAC2 regulates inhibitory synaptic functions are not well understood. To examine these aspects of HDAC2 function, we used sparse transfection of rat hippocampal slice cultures and whole-cell recordings in pyramidal neurons. HDAC2 knockdown (KD) in single postsynaptic pyramidal neurons enhanced, whereas HDAC2 overexpression (OE) reduced, excitatory synaptic transmission. Postsynaptic KD of HDAC2 also facilitated expression of long-term potentiation induced by subthreshold induction stimuli, without altering long-term depression. In contrast, HDAC2 KD reduced, whereas HDAC2 OE enhanced, inhibitory synaptic transmission. Alterations of postsynaptic GABA(A) receptors (GABA(A)Rs) likely underlie the impact of HDAC2 on inhibitory transmission. Consistent with this, we observed reduced transcript and protein levels of the GABA(A)R γ2 subunit and reduced surface expression of the α2 subunit after HDAC2 KD. Furthermore, we observed a reduction in synaptic but not tonic GABA(A)R currents by HDAC2 KD, suggesting that HDAC2 selectively affects synaptic abundance of functional GABA(A)Rs. Immunostaining for postsynaptic GABA(A)Rs confirmed that HDAC2 KD and OE can regulate the synaptic abundance of these receptors. Together, these results highlight a role for HDAC2 in suppressing synaptic excitation and enhancing synaptic inhibition of hippocampal neurons. Therefore, a shift in the balance of synaptic excitation versus inhibition favoring excitation could contribute to the beneficial effects of reducing HDAC2 function in wild-type mice or of inhibiting HDACs in models of cognitive impairment.
Collapse
|
7306
|
Hafiane A, Genest J. HDL, Atherosclerosis, and Emerging Therapies. CHOLESTEROL 2013; 2013:891403. [PMID: 23781332 PMCID: PMC3678415 DOI: 10.1155/2013/891403] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/22/2013] [Accepted: 04/30/2013] [Indexed: 12/21/2022]
Abstract
This review aims to provide an overview on the properties of high-density lipoproteins (HDLs) and their cardioprotective effects. Emergent HDL therapies will be presented in the context of the current understanding of HDL function, metabolism, and protective antiatherosclerotic properties. The epidemiological association between levels of HDL-C or its major apolipoprotein (apoA-I) is strong, graded, and coherent across populations. HDL particles mediate cellular cholesterol efflux, have antioxidant properties, and modulate vascular inflammation and vasomotor function and thrombosis. A link of causality has been cast into doubt with Mendelian randomization data suggesting that genes causing HDL-C deficiency are not associated with increased cardiovascular risk, nor are genes associated with increased HDL-C, with a protective effect. Despite encouraging data from small studies, drugs that increase HDL-C levels have not shown an effect on major cardiovascular end-points in large-scale clinical trials. It is likely that the cholesterol mass within HDL particles is a poor biomarker of therapeutic efficacy. In the present review, we will focus on novel therapeutic avenues and potential biomarkers of HDL function. A better understanding of HDL antiatherogenic functions including reverse cholesterol transport, vascular protective and antioxidation effects will allow novel insight on novel, emergent therapies for cardiovascular prevention.
Collapse
Affiliation(s)
| | - Jacques Genest
- Faculty of Medicine, Center for Innovative Medicine, McGill University Health Center, Royal Victoria Hospital, McGill University, 687 Pine Avenue West, Montreal, QC, Canada H3A 1A1
| |
Collapse
|
7307
|
Zhao T, Miao Z, Wang Z, Xu Y, Wu J, Liu X, You Y, Li J. CARMA3 overexpression accelerates cell proliferation and inhibits paclitaxel-induced apoptosis through NF-κB regulation in breast cancer cells. Tumour Biol 2013; 34:3041-7. [PMID: 23708960 DOI: 10.1007/s13277-013-0869-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/14/2013] [Indexed: 11/24/2022] Open
Abstract
CARMA3 was recently reported to be overexpressed in several cancers and associated with malignant behavior of cancer cells. However, the expression pattern and biological roles of CARMA3 in breast cancer have not been reported. In the present study, we found that CARMA3 was overexpressed in 41.9 % of breast cancer specimens. Significant association was observed between CARMA3 overexpression and TNM stage (p = 0.0223), tumor size (p = 0.0227), and ErbB-2 status (p = 0.0049). Furthermore, knockdown of CARMA3 expression in MDA-MB-435 cells with high endogenous expression decreased cell proliferation and sensitized cell to paclitaxel-induced apoptosis, while overexpression of CARMA3 in MDA-MB-231 cell line promoted cell proliferation and inhibited apoptosis. Further analysis showed that CARMA3 depletion downregulated, and its overexpression upregulated cyclin D1, Bcl-2, and p-IκB levels. In conclusion, our study demonstrated that CARMA3 is overexpressed in breast cancers. CARMA3 facilitates proliferation and inhibits apoptosis through nuclear factor-kappaB signaling.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Surgical Oncology and General Surgery, First Affiliated Hospital, China Medical University, 155 North Nanjing Street, Heping District, Shenyang City, 110001, China
| | | | | | | | | | | | | | | |
Collapse
|
7308
|
Abstract
The need for drugs with fewer side effects cannot be overemphasized. Today, most drugs modify the actions of enzymes, receptors, transporters and other molecules by directly binding to their active (orthosteric) sites. However, orthosteric site configuration is similar in several proteins performing related functions and this leads to a lower specificity of a drug for the desired protein. Consequently, such drugs may have adverse side effects. A new basis of drug discovery is emerging based on the binding of the drug molecules to sites away (allosteric) from the orthosteric sites. It is possible to find allosteric sites which are unique and hence more specific as targets for drug discovery. Of many available examples, two are highlighted here. The first is caloxins - a new class of highly specific inhibitors of plasma membrane Ca²⁺ pumps. The second concerns the modulation of receptors for the neurotransmitter acetylcholine, which binds to 12 types of receptors. Exploitation of allosteric sites has led to the discovery of drugs which can selectively modulate the activation of only 1 (M1 muscarinic) out of the 12 different types of acetylcholine receptors. These drugs are being tested for schizophrenia treatment. It is anticipated that the drug discovery exploiting allosteric sites will lead to more effective therapeutic agents with fewer side effects.
Collapse
Affiliation(s)
- Ashok Kumar Grover
- Departments of Medicine and Biology, McMaster University, Hamilton, Ont., Canada
| |
Collapse
|
7309
|
Roy S, Nag TC, Upadhyay AD, Mathur R, Jain S. Repetitive auditory stimulation at a critical prenatal period modulates the postnatal functional development of the auditory as well as visual system in chicks (Gallus domesticus). Dev Neurobiol 2013; 73:688-701. [PMID: 23696545 DOI: 10.1002/dneu.22091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/26/2013] [Accepted: 05/13/2013] [Indexed: 11/11/2022]
Abstract
The extrinsic sensory stimulation plays a crucial role in the formation and integration of sensory modalities during development. Postnatal behavior is thereby influenced by the type and timing of presentation of prenatal sensory stimuli. In this study, fertilized eggs of white Leghorn chickens during incubation were exposed to either species-specific calls or no sound. To find the prenatal critical period when auditory stimulation can modulate visual system development, the former group was divided into three subgroups: in subgroup A (SGA), the stimulus was provided during embryonic day (E)10 to E16, in SGB E17- hatching, and in SGC E10-hatching. The auditory and visual perceptual learning was recorded at posthatch day (PH) 1-3, whereas synaptic plasticity (evident from synaptophysin and PSD-95 expression), was observed at E19, E20, and PH 1-3. An increased number of responders were observed in both auditory and visual preference tests at PH 1 following stimulation. Although a decrease in latency of entry and an increase in total time spent were observed in all stimulated groups, it was most significant in SGC in auditory preference and in SGB and SGC in visual preference test. The auditory cortex of SGC and visual Wulst of SGB and SGC revealed higher expression of synaptic proteins, compared to control and SGA. A significant inter-hemispheric and gender-based difference in expression was also found in all groups. These results indicate facilitation of postnatal behaviour and synaptogenesis in both auditory and visual systems following prenatal repetitive auditory stimulation, only when given during prenatal critical period of development.
Collapse
Affiliation(s)
- Saborni Roy
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
7310
|
Guo SQ, Zhang YZ. Histone deacetylase inhibition: an important mechanism in the treatment of lymphoma. Cancer Biol Med 2013; 9:85-9. [PMID: 23691460 PMCID: PMC3643654 DOI: 10.3969/j.issn.2095-3941.2012.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/13/2012] [Indexed: 12/16/2022] Open
Abstract
Lymphomas encompass a group of malignancies that originate in the lymph nodes or other lymphoid tissues. Epigenetic modification, especially by histone deacetylase (HDACs), plays a key role during the occurrence and development of lymphomas. Consequently, HDAC inhibitors (HDACIs), a class of gene expression-modulating drugs, have emerged as promising mechanism-based agents for the treatment of lymphomas. This review presents the rationale of HDAC inhibition, describes the epigenetic-based mechanisms of action of HDACIs, discusses their clinical efficiency, and summarizes the current and future developments in this field.
Collapse
Affiliation(s)
- Shan-Qi Guo
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, China
| | | |
Collapse
|
7311
|
Deng X, Zhang F, Rui W, Long F, Wang L, Feng Z, Chen D, Ding W. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol In Vitro 2013; 27:1762-70. [PMID: 23685237 DOI: 10.1016/j.tiv.2013.05.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/28/2013] [Accepted: 05/07/2013] [Indexed: 11/29/2022]
Abstract
Exposure to higher levels of air pollution particulate matter (PM) with an aerodynamic diameter of less than 2.5 μm (PM2.5) links with an increased risk of cardiovascular and respiratory deaths and hospital admission as well as lung cancer. Although the mechanism underlying the correlation between PM2.5 exposure and adverse effects has not fully elucidated, PM2.5-induced oxidative stress has been considered as an important molecular mechanism of PM2.5-mediated toxicity. In this work, human lung epithelial A549 cells were used to further investigate the biological effects of PM2.5 on autophagy. The cell viability showed both time- and concentration-dependent decrease when exposure to PM2.5, which can be attributed to increase of the levels of extracellular lactate dehydrogenase (LDH) release and intracellular reactive oxygen species (ROS) generation in A549 cells. Moreover, PM2.5-induced oxidative damage in A549 cells was observed through the alteration of superoxide dismutase (SOD) and catalase (CAT) activities compared to the unexposed control cells. PM2.5-induced autophagy was indicated by an increase in microtubule-associated protein light chain-3 (LC3) puncta, and accumulation of LC3 in both time- and concentration-dependent manner. PM2.5-induced mRNA expression of autophagy-related protein Atg5 and Beclin1 was also observed compared with those of the unexposed control cells. These results suggest the possibility that PM2.5-induced oxidative stress probably plays a key role in autophagy in A549 cells, which may contribute to PM2.5-induced impairment of pulmonary function.
Collapse
Affiliation(s)
- Xiaobei Deng
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | | | | | | | | | | | | | | |
Collapse
|
7312
|
Lee NCO, Kononenko AV, Lee HS, Tolkunova EN, Liskovykh MA, Masumoto H, Earnshaw WC, Tomilin AN, Larionov V, Kouprina N. Protecting a transgene expression from the HAC-based vector by different chromatin insulators. Cell Mol Life Sci 2013; 70:3723-37. [PMID: 23677492 PMCID: PMC3771377 DOI: 10.1007/s00018-013-1362-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 01/07/2023]
Abstract
Human artificial chromosomes (HACs) are vectors that offer advantages of capacity and stability for gene delivery and expression. Several studies have even demonstrated their use for gene complementation in gene-deficient recipient cell lines and animal transgenesis. Recently, we constructed an advance HAC-based vector, alphoidtetO-HAC, with a conditional centromere. In this HAC, a gene-loading site was inserted into a centrochromatin domain critical for kinetochore assembly and maintenance. While by definition this domain is permissive for transcription, there have been no long-term studies on transgene expression within centrochromatin. In this study, we compared the effects of three chromatin insulators, cHS4, gamma-satellite DNA, and tDNA, on the expression of an EGFP transgene inserted into the alphoidtetO-HAC vector. Insulator function was essential for stable expression of the transgene in centrochromatin. In two analyzed host cell lines, a tDNA insulator composed of two functional copies of tRNA genes showed the highest barrier activity. We infer that proximity to centrochromatin does not protect genes lacking chromatin insulators from epigenetic silencing. Barrier elements that prevent gene silencing in centrochromatin would thus help to optimize transgenesis using HAC vectors.
Collapse
Affiliation(s)
- Nicholas C O Lee
- Laboratories of Molecular Pharmacology, National Cancer Institute, Bethesda, MD, 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7313
|
MA TAI, LI YUANYUAN, ZHU JIE, FAN LULU, DU WEIDONG, WU CHANGHAO, SUN GUOPING, LI JIABIN. Enhanced autophagic flux by endoplasmic reticulum stress in human hepatocellular carcinoma cells contributes to the maintenance of cell viability. Oncol Rep 2013; 30:433-40. [DOI: 10.3892/or.2013.2474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/26/2013] [Indexed: 11/05/2022] Open
|
7314
|
Nakayama I, Shibazaki M, Yashima-Abo A, Miura F, Sugiyama T, Masuda T, Maesawa C. Loss of HOXD10 expression induced by upregulation of miR-10b accelerates the migration and invasion activities of ovarian cancer cells. Int J Oncol 2013; 43:63-71. [PMID: 23670532 DOI: 10.3892/ijo.2013.1935] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/05/2013] [Indexed: 11/05/2022] Open
Abstract
Small and large non-coding RNAs (ncRNAs) contribute to the acquisition of aggressive tumor behavior in diverse human malignancies. Two types of ncRNAs, miRNA‑10b (miR-10b) and homemobox (HOX) transcript antisense RNA (HOTAIR), can suppress the translation of the HOXD10 gene, an mRNA encoding a transcriptional repressor that inhibits the expression of cell migration/invasion-associated genes. Using epithelial ovarian cancer cell lines and primary tumors, we investigated whether miR‑10b and/or HOTAIR can regulate the expression of HOXD10, and whether it permits gain of pro‑metastatic gene products, matrix metallopeptidase 14 (MMP14) and ras homolog family member C (RHOC). Overexpression of miR-10b induced a decrease in HOXD10 protein expression, and upregulated the migration and invasion abilities in ovarian cancer cell lines (P<0.05). In these cells, a significant increase of MMP14 and RHOC protein was observed. No significant upregulation of the HOXD10 protein was observed in cells with the treatment of HOTAIR-siRNA. Positive signals for HOXD10 and MMP14 proteins were observed in 47 (69%) and 25 (37%) of 68 patients with epithelial ovarian cancers. An inverse correlation between HOXD10 and MMP14 immunoreactivities was observed (P<0.05), and miR-10b expression was also inversely correlated with HOXD10 protein expression (P<0.05). These results suggested that downregulation of HOXD10 expression by miR-10b overexpression may induce an increase of pro-metastatic gene products, such as MMP14 and RHOC, and contribute to the acquisition of metastatic phenotypes in epithelial ovarian cancer cells.
Collapse
Affiliation(s)
- Ikue Nakayama
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan
| | | | | | | | | | | | | |
Collapse
|
7315
|
He Y, Zhou X, Zheng X, Jiang X. Exogenous high-mobility group box 1 protein prevents postinfarction adverse myocardial remodeling through TGF-β/Smad signaling pathway. J Cell Biochem 2013; 114:1634-41. [PMID: 23355476 DOI: 10.1002/jcb.24505] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 01/10/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Yiyu He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | | | | | | |
Collapse
|
7316
|
Usatyuk PV, Burns M, Mohan V, Pendyala S, He D, Ebenezer DL, Harijith A, Fu P, Huang LS, Bear JE, Garcia JGN, Natarajan V. Coronin 1B regulates S1P-induced human lung endothelial cell chemotaxis: role of PLD2, protein kinase C and Rac1 signal transduction. PLoS One 2013; 8:e63007. [PMID: 23667561 PMCID: PMC3648575 DOI: 10.1371/journal.pone.0063007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 03/27/2013] [Indexed: 11/18/2022] Open
Abstract
Coronins are a highly conserved family of actin binding proteins that regulate actin-dependent processes such as cell motility and endocytosis. We found that treatment of human pulmonary artery endothelial cells (HPAECs) with the bioactive lipid, sphingosine-1-phosphate (S1P) rapidly stimulates coronin 1B translocation to lamellipodia at the cell leading edge, which is required for S1P-induced chemotaxis. Further, S1P-induced chemotaxis of HPAECs was attenuated by pretreatment with small interfering RNA (siRNA) targeting coronin 1B (∼36%), PLD2 (∼45%) or Rac1 (∼50%) compared to scrambled siRNA controls. Down regulation PLD2 expression by siRNA also attenuated S1P-induced coronin 1B translocation to the leading edge of the cell periphery while PLD1 silencing had no effect. Also, S1P-induced coronin 1B redistribution to cell periphery and chemotaxis was attenuated by inhibition of Rac1 and over-expression of dominant negative PKC δ, ε and ζ isoforms in HPAECs. These results demonstrate that S1P activation of PLD2, PKC and Rac1 is part of the signaling cascade that regulates coronin 1B translocation to the cell periphery and the ensuing cell chemotaxis.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Institute for Personalized Respiratory Medicine, University of Illinois, Chicago, Illinois, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7317
|
Neuritogenic and neuroprotective effects of polar steroids from the Far East starfishes Patiria pectinifera and Distolasterias nipon. Mar Drugs 2013; 11:1440-55. [PMID: 23644925 PMCID: PMC3707153 DOI: 10.3390/md11051440] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 01/19/2023] Open
Abstract
The neuritogenic and neuroprotective activities of six starfish polar steroids, asterosaponin Р1, (25S)-5α-cholestane-3β,4β,6α,7α,8,15α,16β,26-octaol, and (25S)-5α-cholestane-3β,6α,7α,8,15α,16β,26-heptaol (1–3) from the starfish Patiria pectinifera and distolasterosides D1–D3 (4–6) from the starfish Distolasterias nipon were analyzed using the mouse neuroblastoma (NB) C-1300 cell line and an organotypic rat hippocampal slice culture (OHSC). All of these compounds enhanced neurite outgrowth in NB cells. Dose-dependent responses to compounds 1–3 were observed within the concentration range of 10–100 nM, and dose-dependent responses to glycosides 4–6 were observed at concentrations of 1–50 nM. All the tested substances exhibited notable synergistic effects with trace amounts of nerve growth factor (NGF, 1 ng/mL) or brain-derived neurotrophic factor (BDNF, 0.1 ng/mL). Using NB cells and OHSCs, it was shown for the first time that starfish steroids 1–6 act as neuroprotectors against oxygen-glucose deprivation (OGD) by increasing the number of surviving cells. Altogether, these results suggest that neurotrophin-like neuritogenic and neuroprotective activities are most likely common properties of starfish polyhydroxysteroids and the related glycosides, although the magnitude of the effect depended on the particular compound structure.
Collapse
|
7318
|
Zheng Z, Zeng Y, Wu J. Increased neuroplasticity may protect against cardiovascular disease. Int J Neurosci 2013; 123:599-608. [PMID: 23510138 DOI: 10.3109/00207454.2013.785949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuroplasticity refers to the capacity of the nervous system to modify its organization such that the brain can be shaped by environmental input. Individuals exhibit different degrees of neuroplasticity because of their different courses of growth. Neuroplasticity may thus play a role in individual differences in the treatment of neuropsychiatric diseases. The nervous system monitors and coordinates internal organ function. Thus neuroplasticity may also be associated with the pathogenesis and the treatment of some other diseases besides neuropsychiatric diseases. The cardiovascular system is controlled by the nervous system, mainly by the autonomic nervous system. Stress may lead to depression and cardiovascular disease (CVD). CVD is associated with depression, which is a disorder of decreased neuroplasticity. And the mechanisms of depression and CVD are related. So we conclude that decreased neuroplasticity causes the coexistence of depression with CVD, and increased neuroplasticity may be beneficial against the development of CVD. This theory provides another angle that can explain some of the reported phenomena related to CVD and neuropsychiatry and provide a potential treatment to protect against CVD.
Collapse
Affiliation(s)
- Zhihua Zheng
- Guangdong Province Pharmaceutical Association, Guangzhou, China.
| | | | | |
Collapse
|
7319
|
Biological Insights into Therapeutic Protein Modifications throughout Trafficking and Their Biopharmaceutical Applications. Int J Cell Biol 2013; 2013:273086. [PMID: 23690780 PMCID: PMC3652174 DOI: 10.1155/2013/273086] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/20/2013] [Indexed: 12/16/2022] Open
Abstract
Over the lifespan of therapeutic proteins, from the point of biosynthesis to the complete clearance from tested subjects, they undergo various biological modifications. Therapeutic influences and molecular mechanisms of these modifications have been well appreciated for some while remained less understood for many. This paper has classified these modifications into multiple categories, according to their processing locations and enzymatic involvement during the trafficking events. It also focuses on the underlying mechanisms and structural-functional relationship between modifications and therapeutic properties. In addition, recent advances in protein engineering, cell line engineering, and process engineering, by exploring these complex cellular processes, are discussed and summarized, for improving functional characteristics and attributes of protein-based biopharmaceutical products.
Collapse
|
7320
|
Imbalance of p75(NTR)/TrkB protein expression in Huntington's disease: implication for neuroprotective therapies. Cell Death Dis 2013; 4:e595. [PMID: 23598407 PMCID: PMC3641339 DOI: 10.1038/cddis.2013.116] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuroprotective therapies based on brain-derived neurotrophic factor (BDNF) administration have been proposed for Huntington's disease (HD) treatment. However, our group has recently reported reduced levels of TrkB in HD mouse models and HD human brain suggesting that besides a decrease on BDNF levels a reduction of TrkB expression could also contribute to diminished neurotrophic support in HD. BDNF can also bind to p75 neurotrophin receptor (p75NTR) modulating TrkB signaling. Therefore, in this study we have analyzed the levels of p75NTR in several HD models, as well as in HD human brain. Our data demonstrates a p75NTR/TrkB imbalance in the striatum of two different HD mouse models, HdhQ111/111 homozygous knockin mice and R6/1 mice that was also manifested in the putamen of HD patients. The imbalance between TrkB and p75NTR levels in a HD cellular model did not affect BDNF-mediated TrkB activation of prosurvival pathways but induced activation of apoptotic cascades as demonstrated by increased JNK phosphorylation. Moreover, BDNF failed to protect mutant huntingtin striatal cells transfected with p75NTR against NMDA-mediated excitotoxicity, which was associated with decreased Akt phosphorylation. Interestingly, lack of Akt activation following BDNF and NMDA treatment correlated with increased PP1 levels. Accordingly, pharmacological inhibition of PP1 by okadaic acid (OA) prevented mutant huntingtin striatal cell death induced by NMDA and BDNF. Altogether, our findings demonstrate that the p75NTR/TrkB imbalance induced by mutant huntingtin in striatal cells associated with the aberrant activity of PP1 disturbs BDNF neuroprotection likely contributing to increasing striatal vulnerability in HD. On the basis of this data we hypothesize that normalization of p75NTR and/or TrkB expression or their signaling will improve BDNF neuroprotective therapies in HD.
Collapse
|
7321
|
The brain-derived neurotrophic factor Val66Met polymorphism moderates early deprivation effects on attention problems. Dev Psychopathol 2013; 24:1215-23. [PMID: 23062292 DOI: 10.1017/s095457941200065x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adverse early care is associated with attention regulatory problems, but not all so exposed develop attention problems. In a sample of 612 youth (girls = 432, M = 11.82 years, SD = 1.5) adopted from institutions (e.g., orphanages) in 25 countries, we examined whether the Val66Met polymorphism of the brain-derived neurotrophic factor gene moderates attention problems associated with the duration of institutional care. Parent-reported attention problem symptoms were collected using the MacArthur Health and Behavior Questionnaire. DNA was genotyped for the brain-derived neurotrophic factor Val66Met (rs6265) single nucleotide polymorphism. Among youth from Southeast (SE) Asia, the predominant genotype was valine/methionine (Val/Met), whereas among youth from Russia/Europe and Caribbean/South America, the predominant genotype was Val/Val. For analysis, youth were grouped as carrying Val/Val or Met/Met alleles. Being female, being from SE Asia, and being younger when adopted were associated with fewer attention regulatory problem symptoms. Youth carrying at least one copy of the Met allele were more sensitive to the duration of deprivation, yielding an interaction that followed a differential susceptibility pattern. Thus, youth with Val/Met or Met/Met genotypes exhibited fewer symptoms than Val/Val genotypes when adoption was very early and more symptoms when adoption occurred later in development. Similar patterns were observed when SE Asian youth and youth from other parts of the world were analyzed separately.
Collapse
|
7322
|
Zymography methods for visualizing hydrolytic enzymes. Nat Methods 2013; 10:211-20. [PMID: 23443633 DOI: 10.1038/nmeth.2371] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/11/2013] [Indexed: 12/12/2022]
Abstract
Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful, but often misinterpreted, tool yielding information on potential hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tissue sections with in situ zymography. In vivo zymography can pinpoint proteolytic activity to sites in an intact organism. Future development of novel substrate probes and improvement in detection and imaging methods will increase the applicability of zymography for (reverse) degradomics studies.
Collapse
|
7323
|
Swami R, Shahiwala A. Impact of physiochemical properties on pharmacokinetics of protein therapeutics. Eur J Drug Metab Pharmacokinet 2013; 38:231-9. [PMID: 23584976 DOI: 10.1007/s13318-013-0126-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 03/20/2013] [Indexed: 01/15/2023]
Abstract
Physicochemical properties, such as molecular weight, size, partition coefficient, acid dissociation constant and solubility have a great impact on pharmacokinetics of traditional small molecule drugs and substantially used in development of small drugs. However, predicting pharmacokinetic fate (absorption, distribution, metabolism and elimination) of protein therapeutics from their physicochemical parameters is extremely difficult due to the macromolecular nature of therapeutic proteins and peptides. Their structural complexity and immunogenicity are other contributing factors that determine their biological fate. Therefore, to develop generalized strategies concerning development of therapeutic proteins and peptides are highly challenging. However, reviewing the literature, authors found that physiochemical properties, such as molecular weight, charge and structural modification are having great impact on pharmacokinetics of protein therapeutics and an attempt is made to provide the major findings in this manuscript. This manuscript will serve to provide some bases for developing protein therapeutics with desired pharmacokinetic profile.
Collapse
Affiliation(s)
- Rajan Swami
- , House no. 1089, Sector 20 B, Chandigarh, 160020, India,
| | | |
Collapse
|
7324
|
Dubois C, Vanden Abeele F, Prevarskaya N. Targeting apoptosis by the remodelling of calcium-transporting proteins in cancerogenesis. FEBS J 2013; 280:5500-10. [DOI: 10.1111/febs.12246] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/18/2013] [Accepted: 03/12/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Charlotte Dubois
- Inserm; U-1003, Equipe labellisée par la Ligue Nationale contre le cancer. Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille (USTL); Villeneuve d'Ascq France
| | - Fabien Vanden Abeele
- Inserm; U-1003, Equipe labellisée par la Ligue Nationale contre le cancer. Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille (USTL); Villeneuve d'Ascq France
| | - Natacha Prevarskaya
- Inserm; U-1003, Equipe labellisée par la Ligue Nationale contre le cancer. Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille (USTL); Villeneuve d'Ascq France
| |
Collapse
|
7325
|
Mass spectrometry-based quantitative metabolomics revealed a distinct lipid profile in breast cancer patients. Int J Mol Sci 2013; 14:8047-61. [PMID: 23584023 PMCID: PMC3645730 DOI: 10.3390/ijms14048047] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/30/2013] [Accepted: 04/01/2013] [Indexed: 11/16/2022] Open
Abstract
Breast cancer accounts for the largest number of newly diagnosed cases in female cancer patients. Although mammography is a powerful screening tool, about 20% of breast cancer cases cannot be detected by this method. New diagnostic biomarkers for breast cancer are necessary. Here, we used a mass spectrometry-based quantitative metabolomics method to analyze plasma samples from 55 breast cancer patients and 25 healthy controls. A number of 30 patients and 20 age-matched healthy controls were used as a training dataset to establish a diagnostic model and to identify potential biomarkers. The remaining samples were used as a validation dataset to evaluate the predictive accuracy for the established model. Distinct separation was obtained from an orthogonal partial least squares-discriminant analysis (OPLS-DA) model with good prediction accuracy. Based on this analysis, 39 differentiating metabolites were identified, including significantly lower levels of lysophosphatidylcholines and higher levels of sphingomyelins in the plasma samples obtained from breast cancer patients compared with healthy controls. Using logical regression, a diagnostic equation based on three metabolites (lysoPC a C16:0, PC ae C42:5 and PC aa C34:2) successfully differentiated breast cancer patients from healthy controls, with a sensitivity of 98.1% and a specificity of 96.0%.
Collapse
|
7326
|
Aberrant lipid metabolism: an emerging diagnostic and therapeutic target in ovarian cancer. Int J Mol Sci 2013; 14:7742-56. [PMID: 23574936 PMCID: PMC3645713 DOI: 10.3390/ijms14047742] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer remains the most lethal gynaecological cancer. A better understanding of the molecular pathogenesis of ovarian cancer is of critical importance to develop early detection tests and identify new therapeutic targets that would increase survival. Cancer cells depend on de novo lipid synthesis for the generation of fatty acids to meet the energy requirements for increased tumour growth. There is increasing evidence that lipid metabolism is deregulated in cancers, including ovarian cancer. The increased expression and activity of lipogenic enzymes is largely responsible for increased lipid synthesis, which is regulated by metabolic and oncogenic signalling pathways. This article reviews the latest knowledge on lipid metabolism and the alterations in the expression of lipogenic enzymes and downstream signalling pathways in ovarian cancer. Current developments for exploiting lipids as biomarkers for the detection of early stage ovarian cancer and therapeutic targets are discussed. Current research targeting lipogenic enzymes and lipids to increase the cytotoxicity of chemotherapy drugs is also highlighted.
Collapse
|
7327
|
Li X, Lang W, Ye H, Yu F, Li H, Chen J, Cai L, Chen W, Lin R, Huang Y, Liu X. Tougu Xiaotong capsule inhibits the tidemark replication and cartilage degradation of papain-induced osteoarthritis by the regulation of chondrocyte autophagy. Int J Mol Med 2013; 31:1349-56. [PMID: 23589102 DOI: 10.3892/ijmm.2013.1341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 03/26/2013] [Indexed: 11/05/2022] Open
Abstract
The tidemark is located between calcified and non-calcified cartilage matrices. Tidemark replication plays an important role in the pathogenesis of osteoarthrosis (OA). Autophagy, or cellular self-digestion, is an essential cellular homeostasis mechanism that was found to be deficient in osteoarthritic cartilage. This study evaluated the effects of Tougu Xiaotong capsule (TXC) on the tidemark replication and cartilage degradation, and also investigated LC3 I/II, which executes autophagy, the potential role of ULK1, an inducer of autophagy, and Beclin1, a regulator of autophagy, in the development of a papain-induced OA in rat knee joints. Using a papain-injected knee rat model, standard histological methods were used to validate our model as well as treatment with TXC or glucosamine (GlcN). After 12 weeks of treatment, the changes of cartilage structure were observed by digital radiography (DR), optical microscopy, scanning electron microscopy and transmission electron microscopy, and the LC3 I/II, ULK1 and Beclin1 levels were measured by western blotting. Cartilage degradation was evaluated by the Mankin score on paraffin-embedded sections stained with Safranin O-fast green. TXC was found to improve the arrangement of subchondral bone collagen fibers and calcium phosphate crystals, inhibit the tidemark replication and delay the cartilage degradation in the papain-induced OA. Our results also showed that LC3 I/II, ULK1 and Beclin1 levels in both the TXC+OA and GlcN+OA groups were significantly increased compared to those in the OA group. The results indicate that TXC could inhibit the tidemark replication and cartilage degradation by the regulation of chondrocyte autophagy.
Collapse
Affiliation(s)
- Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7328
|
Montalbano R, Waldegger P, Quint K, Jabari S, Neureiter D, Illig R, Ocker M, Di Fazio P. Endoplasmic reticulum stress plays a pivotal role in cell death mediated by the pan-deacetylase inhibitor panobinostat in human hepatocellular cancer cells. Transl Oncol 2013; 6:143-157. [PMID: 23544167 PMCID: PMC3610545 DOI: 10.1593/tlo.12271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 02/07/2023] Open
Abstract
Panobinostat, a pan-deacetylase inhibitor, represents a novel therapeutic option for cancer diseases. Besides its ability to block histone deacetylases (HDACs) by promoting histone hyperacetylation, panobinostat interferes with several cell death pathways providing a potential efficacy against tumors. We have previously demonstrated that panobinostat has a potent apoptotic activity in vitro and causes a significant growth delay of hepatocellular carcinoma (HCC) tumor xenografts in nude mice models. Here, we show that treatment with panobinostat is able to induce noncanonical apoptotic cell death in HepG2 and in Hep3B cells, involving the endoplasmic reticulum (ER) stress by up-regulation of the molecular chaperone binding immunoglobulin protein/glucose-regulated protein 78, activation of eukaryotic initiation factor 2α-activating transcription factor 4 (tax-responsive enhancer element B67) and inositol requiring 1α-X-box binding protein 1 factors, strong increase and nuclear translocation of the transcription factor C/EBP homologous protein/growth arrest and DNA damage-inducible gene 153, and involvement of c-Jun N-terminal kinase. These signaling cascades culminate into the activation of the ER-located caspase-4/12 and of executioner caspases, which finally lead to cell demise. Our results clearly show that panobinostat induces an alternative ER stress-mediated cell death pathway in HCC cells, independent of the p53 status.
Collapse
Affiliation(s)
- Roberta Montalbano
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| | - Petra Waldegger
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| | - Karl Quint
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| | - Samir Jabari
- Institute for Anatomy I, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Private Medical University, Salzburg, Austria
| | - Romana Illig
- Institute of Pathology, Paracelsus Private Medical University, Salzburg, Austria
| | - Matthias Ocker
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| | - Pietro Di Fazio
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
7329
|
Zhang C, He H, Zhang H, Yu D, Zhao W, Chen Y, Shao R. The blockage of Ras/ERK pathway augments the sensitivity of SphK1 inhibitor SKI II in human hepatoma HepG2 cells. Biochem Biophys Res Commun 2013; 434:35-41. [PMID: 23545258 DOI: 10.1016/j.bbrc.2013.03.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 03/17/2013] [Indexed: 02/06/2023]
Abstract
The treatment of hepatocellular carcinoma (HCC) remains a challenge and the future of cancer therapy will incorporate rational combinations directed to molecular targets that cooperate to drive critical pro-survival signaling. Sphingosine kinase 1 (SphK1) has been shown to regulate various processes important for cancer progression. Given the up-regulated expression of SphK1 in response to the silence of N-ras and other interactions between Ras/ERK and SphK1, it was speculated that combined inhibition of Ras/ERK and SphK1 would create enhanced antitumor effects. Experimental results showed that dual blockage of N-ras/ERK and SphK1 resulted in enhanced growth inhibitions in human hepatoma cells. Similarly, MEK1/2 Inhibitor U0126 potentiated SKI II-induced apoptosis in hepatoma HepG2 cells, consistently with the further attenuation of Akt/ERK/NF-κB signaling pathway. It was also shown that the combination of SKI II and U0126 further attenuated the migration of hepatoma HepG2 cells via FAK/MLC-2 signaling pathway. Taken together, the dual inhibition of SphK1 and Ras/ERK pathway resulted in enhanced effects, which might be an effective therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Caixia Zhang
- Department of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Tiantan Xili, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
7330
|
Benítez J, Correia I, Becco L, Fernández M, Garat B, Gallardo H, Conte G, Kuznetsov ML, Neves A, Moreno V, Costa Pessoa J, Gambino D. Searching for Vanadium-Based Prospective Agents againstTrypanosoma cruzi: Oxidovanadium(IV) Compounds with Phenanthroline Derivatives as Ligands. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7331
|
MICAL, the flavoenzyme participating in cytoskeleton dynamics. Int J Mol Sci 2013; 14:6920-59. [PMID: 23535333 PMCID: PMC3645671 DOI: 10.3390/ijms14046920] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/02/2013] [Accepted: 03/11/2013] [Indexed: 01/01/2023] Open
Abstract
MICAL (from the Molecule Interacting with CasL) indicates a family of recently discovered cytosolic, multidomain proteins, which uniquely couple an N-terminal FAD-containing monooxygenase-like domain to typical calponine homology, LIM and coiled-coil protein-interaction modules. Genetic and cell biology approaches have demonstrated an essential role of the catalytic activity of the monooxygenase-like domain in transducing the signal initiated by semaphorins interaction with their plexin receptors, which results in local actin cytoskeleton disassembly as part of fundamental processes that include differentiation, migration and cell-cell contacts in neuronal and non-neuronal cell types. This review focuses on the structure-function relations of the MICAL monooxygenase-like domain as they are emerging from the available in vitro studies on mouse, human and Drosophila MICAL forms that demonstrated a NADPH-dependent actin depolymerizing activity of MICAL. With Drosophila MICAL forms, actin depolymerization was demonstrated to be associated to conversion of Met44 to methionine sulfone through a postulated hydroxylating reaction. Arguments supporting the concept that MICAL effect on F-actin may be reversible will be discussed.
Collapse
|
7332
|
Moens U, Kostenko S, Sveinbjørnsson B. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation. Genes (Basel) 2013; 4:101-33. [PMID: 24705157 PMCID: PMC3899974 DOI: 10.3390/genes4020101] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/18/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are implicated in several cellular processes including proliferation, differentiation, apoptosis, cell survival, cell motility, metabolism, stress response and inflammation. MAPK pathways transmit and convert a plethora of extracellular signals by three consecutive phosphorylation events involving a MAPK kinase kinase, a MAPK kinase, and a MAPK. In turn MAPKs phosphorylate substrates, including other protein kinases referred to as MAPK-activated protein kinases (MAPKAPKs). Eleven mammalian MAPKAPKs have been identified: ribosomal-S6-kinases (RSK1-4), mitogen- and stress-activated kinases (MSK1-2), MAPK-interacting kinases (MNK1-2), MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and MAPKAPK-5 (MK5). The role of these MAPKAPKs in inflammation will be reviewed.
Collapse
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, NO-9037 Tromsø, Norway.
| | - Sergiy Kostenko
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, NO-9037 Tromsø, Norway.
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, NO-9037 Tromsø, Norway.
| |
Collapse
|
7333
|
Hu L, Hansen RJ. Issues, challenges, and opportunities in model-based drug development for monoclonal antibodies. J Pharm Sci 2013; 102:2898-908. [PMID: 23508847 DOI: 10.1002/jps.23504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/04/2013] [Accepted: 02/20/2013] [Indexed: 12/13/2022]
Abstract
Over the last two decades, there has been a simultaneous explosion in the levels of activity and capability in both monoclonal antibody (mAb) drug development and in the use of quantitative pharmacologic models to facilitate drug development. Both of these topics are currently areas of great interest to academia, the pharmaceutical and biotechnology industries, and to regulatory authorities. In this article, we summarize convergence of these two areas and discuss some of the current and historical applications of the use of mathematical-model-based techniques to facilitate the discovery and development of mAb therapeutics. We also consider some of the current issues and limitations in model-based antibody discovery/development and highlight areas of further opportunity.
Collapse
Affiliation(s)
- Leijun Hu
- Eli Lilly and Company, Drug Disposition and PK/PD, Indianapolis, Indiana
| | | |
Collapse
|
7334
|
Aravalli RN. Development of MicroRNA Therapeutics for Hepatocellular Carcinoma. Diagnostics (Basel) 2013; 3:170-91. [PMID: 26835673 PMCID: PMC4665582 DOI: 10.3390/diagnostics3010170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer and is the third leading cause of cancer-related deaths worldwide. Treatment options for HCC are very limited, as it is often diagnosed at a late stage. Recent studies have demonstrated that microRNAs (miRNAs), a class of non-coding RNAs, are aberrantly expressed in HCC. Some of these were shown to be functionally involved in carcinogenesis and tumor progression, suggesting that miRNAs can serve as novel molecular targets for HCC therapy. Several promising studies have recently demonstrated the therapeutic potential of miRNAs in animal models and in reducing the viral load in hepatitis C patients. In this review, these advances and strategies for modulating miRNAs for in vivo therapeutic delivery and replacement therapy are discussed.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Radiology, University of Minnesota Medical School, MMC 292 Mayo Memorial Building, 420 Delaware Street S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
7335
|
Wang YF, Gu YT, Qin GH, Zhong L, Meng YN. Curcumin ameliorates the permeability of the blood-brain barrier during hypoxia by upregulating heme oxygenase-1 expression in brain microvascular endothelial cells. J Mol Neurosci 2013; 51:344-51. [PMID: 23494637 DOI: 10.1007/s12031-013-9989-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/26/2013] [Indexed: 12/31/2022]
Abstract
Curcumin (Cur) is a major active component of the food flavor turmeric isolated from the powdered dry rhizome of Curcuma longa Linn., which has been used in traditional Chinese medicine to ameliorate intracerebral ischemic damage and reduce brain edema. However, the effects of Cur on the disruption of the blood-brain barrier (BBB) induced by brain ischemia are still unclear. The effects of Cur on the disruption of BBB and changes of tight junction (TJ) proteins induced by oxygen glucose deprivation (OGD) were studied in BBB in vitro. The transendothelial electrical resistance and the flux of horseradish peroxidase in BBB in vitro were measured. The expression and localization of the TJ proteins occludin and zonula occludens-1 (ZO-1) were evaluated by Western blots and immunofluorescence microscopy. The protein levels of heme oxygenase-1 (HO-1) were also analyzed via Western blots. Cur attenuated OGD-induced disruption of paracellular permeability and increased the expression of HO-1 protein in rat brain microvascular endothelial cells (RBMECs). After administration of OGD, the expression of occludin and ZO-1 proteins was restored by Cur, and this effect was blocked by a HO-1 inhibitor, zinc protoporphyrin (ZnPP). Cur protects RBMECs against OGD-induced disruption of TJ and barrier dysfunction via the HO-1 pathway. We propose that Cur is capable of improving the barrier function of BBB under ischemic conditions and this beneficial effect might be reversed by a HO-1 inhibitor, ZnPP.
Collapse
Affiliation(s)
- Yan-feng Wang
- Department of Orthopaedics, The First Affiliated Hospital, China Medical University, Beier Road No. 92, HePing District, Shenyang, 110001, Liaoning Province, People's Republic of China,
| | | | | | | | | |
Collapse
|
7336
|
Maurya PK, Prakash S. Decreased Activity of Ca++-ATPase and Na+/K+-ATPase during Aging in Humans. Appl Biochem Biotechnol 2013; 170:131-7. [DOI: 10.1007/s12010-013-0172-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/28/2013] [Indexed: 02/08/2023]
|
7337
|
Brandtzaeg P. Secretory immunity with special reference to the oral cavity. J Oral Microbiol 2013; 5:20401. [PMID: 23487566 PMCID: PMC3595421 DOI: 10.3402/jom.v5i0.20401] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 01/29/2013] [Accepted: 02/15/2013] [Indexed: 11/14/2022] Open
Abstract
The two principal antibody classes present in saliva are secretory IgA (SIgA) and IgG; the former is produced as dimeric IgA by local plasma cells (PCs) in the stroma of salivary glands and is transported through secretory epithelia by the polymeric Ig receptor (pIgR), also named membrane secretory component (SC). Most IgG in saliva is derived from the blood circulation by passive leakage mainly via gingival crevicular epithelium, although some may be locally produced in the gingiva or salivary glands. Gut-associated lymphoid tissue (GALT) and nasopharynx-associated lymphoid tissue (NALT) do not contribute equally to the pool of memory/effector B cells differentiating to mucosal PCs throughout the body. Thus, enteric immunostimulation may not be the best way to activate the production of salivary IgA antibodies although the level of specific SIgA in saliva may still reflect an intestinal immune response after enteric immunization. It remains unknown whether the IgA response in submandibular/sublingual glands is better related to B-cell induction in GALT than the parotid response. Such disparity is suggested by the levels of IgA in submandibular secretions of AIDS patients, paralleling their highly upregulated intestinal IgA system, while the parotid IgA level is decreased. Parotid SIgA could more consistently be linked to immune induction in palatine tonsils/adenoids (human NALT) and cervical lymph nodes, as supported by the homing molecule profile observed after immune induction at these sites. Several other variables influence the levels of antibodies in salivary secretions. These include difficulties with reproducibility and standardization of immunoassays, the impact of flow rate, acute or chronic stress, protein loss during sample handling, and uncontrolled admixture of serum-derived IgG and monomeric IgA. Despite these problems, saliva is an easily accessible biological fluid with interesting scientific and clinical potentials.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Per Brandtzaeg, Department of Pathology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Oslo, NO-0424 Norway. Tel: +47-23072743, Fax: 47-23071511.
| |
Collapse
|
7338
|
Brini M, Calì T, Ottolini D, Carafoli E. The plasma membrane calcium pump in health and disease. FEBS J 2013; 280:5385-97. [PMID: 23413890 DOI: 10.1111/febs.12193] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 12/12/2022]
Abstract
The Ca(2+) ATPases of the plasma membrane (PMCA pumps) export Ca(2+) from all eukaryotic cells. In mammals they are the products of four separate genes. PMCA types 1 and 4 are distributed ubiquitously; PMCA types 2 and 3 are restricted to some tissues, the most important being the nervous system. Alternative splicing at two sites greatly increases the number of pump isoforms. The two ubiquitous isoforms are no longer considered as only housekeeping pumps as they also perform tissue-specific functions. The PMCAs are classical P-type pumps, their reaction cycle repeating that of all other pumps of the family. Their 3D structure has not been solved, but molecular modeling on SERCA pump templates shows the essential structural pattern of the latter. PMCAs are regulated by calmodulin, which interacts with high affinity with their cytosolic C-terminal tail. A second calmodulin-binding domain with lower affinity is present in some splicing variants of the pump. The PMCAs are essential to the regulation of cellular Ca(2+), but the all-important Ca(2+) signal is ambivalent: defects in its control generate various pathologies, the most thoroughly studied being those of genetic origin. Genetic defects of PMCA function produce disease phenotypes: the best characterized is a form of deafness in mice and in humans linked to PMCA2 mutations. A cerebellar X-linked human ataxia has recently been found to be caused by a mutation in the calmodulin-binding domain of PMCA3.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | | | | | | |
Collapse
|
7339
|
Mota-Miranda ACA, Barreto FK, Amarante MFC, Batista E, Monteiro-Cunha JP, Farre L, Galvão-Castro B, Alcantara LCJ. Molecular characterization of HTLV-1 gp46 glycoprotein from health carriers and HAM/TSP infected individuals. Virol J 2013; 10:75. [PMID: 23510700 PMCID: PMC3599561 DOI: 10.1186/1743-422x-10-75] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/27/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Human T-cell Leukemia Virus type 1 (HTLV-1) is the etiological agent of tropical spastic paraparesis/HTLV-associated myelopathy (HAM/TSP) that can be identified in around 0.25%-3.8% of the infected population. Disease progression can be monitored by the proviral load and may depend on genetic factors, however, it is not well understood why some HTLV-1 infected people develop the disease while others do not. The present study attempts to assess the molecular diversity of gp46 glycoprotein in HAM/TSP patients and Health Carrier (HC) individuals. METHODS Blood samples were collected from 10 individuals, and DNA was extracted from PBMCs to measure the HTLV-1 proviral load. The gp46 coding sequences were amplified PCR, cloned and sequenced. The molecular characterization was performed using bioinformatics tools. RESULTS The median HTLV-1 proviral load of HC (n = 5) and HAM/TSP (n = 5) patients was similar (average 316,227 copies/106 PBMCs). The gp46 molecular characterization of 146 clones (70 HC and 76 HAM/TSP) revealed an overall diversity, within HC and HAM/TSP clones, of 0.4% and 0.6%, respectively. Five frequent mutations were detected among groups (HAM/TSP and HC clone sequences). A single amino acid (aa) substitution (S35L) was exclusive for the HC group, and three gp46 substitutions (F14S, N42H, G72S) were exclusive for the HAM/TSP group. The remaining frequent mutation (V247I) was present in both groups (p = 0.0014). The in silico protein analysis revealed that the mutated alleles F14S and N42H represent more hydrophilic and flexible protein domains that are likely to be less antigenic. The Receptor Binding Domain is quite variable in the HAM/TSP group. Two other domains (aa 53-75 and 175-209) that contain multiple linear T-cell epitopes showed genetic diversity in both HAM/TSP and HC groups. Further analysis revealed 27 and 13 T-cell epitopes for class I HLA alleles and class II HLA alleles, when analyzing the entire gp46. CONCLUSIONS The most common gp46 mutations were not associated clinical status because they were found in only one individual, except for the V247I mutation, that was found at viral clones from HAM/TSP ad HC individuals. Because of this, we cannot associate any of the gp46 found mutations with the clinical profile.
Collapse
Affiliation(s)
- Aline C A Mota-Miranda
- Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz, CPqGM/FIOCRUZ, Rua Waldemar Falcão 121, Brotas, Salvador, Bahia, 40295-001, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
7340
|
Mal SS, Tröppner O, Ivanović-Burmazović I, Burger P. Tetraalkylphosphonium Decavanadates: Synthesis, Structures, and Solution Properties. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201201447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7341
|
Regulation of NKG2D-ligand cell surface expression by intracellular calcium after HDAC-inhibitor treatment. Mol Immunol 2013; 53:255-64. [DOI: 10.1016/j.molimm.2012.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 01/05/2023]
|
7342
|
Abstract
Preclinical studies have always been a critical component in the development program of a biopharmaceutical. With the advent of biosimilars the traditional preclinical program has changed to a new paradigm that integrates the concept of comparability with existing knowledge of the biopharmaceutical reference drug. Recently, the recommended preclinical program espoused by the European Medicines Agency has been modified to an abbreviated one that now emphasizes in vitro studies in lieu of in vivo for monoclonal antibody biosimilars. Likewise, the US FDA guidance on biosimilars suggests a flexible approach rather than the 28day comparative toxicology studies that have historically been conducted for worldwide marketing. For now, structure and function studies will continue to be the foundation of the overall analytical assessment of biosimilarity. Traditional, comparative animal safety assessments will have limited value in determination of biosimilarity and in an abbreviated design they may have most value in providing assurance of safety in first-in-human trials when structural attributes are not indistinguishable. Unless this value can be proven, particularly as analytical technology improves in sensitivity, accuracy and precision, the need for these animal safety studies will diminish. Thus, the future lies in the ever evolving and sophisticated analytical studies that will replace the current in vivo studies for biosimilar products.
Collapse
|
7343
|
Microarray gene expression profiling analysis combined with bioinformatics in multiple sclerosis. Mol Biol Rep 2013; 40:3731-7. [DOI: 10.1007/s11033-012-2449-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022]
|
7344
|
Datta-Mannan A, Yaden B, Krishnan V, Jones BE, Croy JE. An engineered human follistatin variant: insights into the pharmacokinetic and pharmocodynamic relationships of a novel molecule with broad therapeutic potential. J Pharmacol Exp Ther 2013; 344:616-23. [PMID: 23249626 DOI: 10.1124/jpet.112.201491] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human follistatin is a regulatory glycoprotein with widespread biologic functions, including antiinflammatory activities, wound-healing properties, and muscle-stimulating effects. The role of follistatin in a wide range of biologic activities shows promise for potential clinical application, which has prompted considerable interest in the investigation of the protein as a potential disease-modifying agent. In spite of this potential, the development of follistatin as a broad use biotherapeutic has been severely hindered by a poor understanding and characterization of its pharmacokinetic/pharmacodynamic (PK/PD) relationships. Therefore, to better define these relationships, we performed in-depth analyses of the PK/PD relationships of native follistatin-315 (FST315). Our data indicate that the intrinsic PK/PD properties of native FST315 are poorly suited for acting as a parentally administered biotherapeutic with broad systemic effects. Here, we leveraged protein engineering to modify the PK characteristics of the native molecule by fusing FST315 to a murine IgG(1) Fc and removing the intrinsic heparan sulfate-binding activity of follistatin. The engineered variant molecule had ~100- and ~1600-fold improvements in terminal half-life and exposure, respectively. In contrast to the native FST315, the variant showed a robust, dose-dependent pharmacological effect when administered subcutaneously on a weekly basis in mouse models of muscle atrophy and degeneration. These studies highlight the underappreciated and critical relationship between optimizing multiple physical and chemical properties of follistatin on its overall PK/PD profile. Moreover, our findings provide the first documented strategy toward the development of a follistatin therapeutic with potential use in patients affected with skeletal muscle diseases.
Collapse
Affiliation(s)
- Amita Datta-Mannan
- Department of Drug Disposition Development/Commercialization, Lilly Research Laboratories, Indianapolis, IN 46285, USA
| | | | | | | | | |
Collapse
|
7345
|
Lavorgna A, Harhaj EW. Is there a role for ubiquitin or SUMO in human T-cell leukemia virus type 2 Tax-induced NF-κB activation? Future Virol 2013; 8:223-227. [PMID: 23730325 DOI: 10.2217/fvl.13.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is well established that the human T-cell leukemia virus type 1-encoded oncoprotein Tax (Tax1) undergoes polyubiquitination as part of its mechanism to persistently activate NF-κB. However, it remains unclear whether Tax2 encoded by the closely related human T-cell leukemia virus type 2 utilizes any post-translational mechanisms to activate NF-κB. This study examines the role of ubiquitination and SUMOylation in Tax2 activation of NF-κB. The authors have demonstrated that, in contrast to Tax1, Tax2 is not conjugated by ubiquitin or SUMO proteins. Overexpression of the E2 ubiquitin-conjugating enzyme Ubc13 specifically enhances Tax1, but not Tax2, ubiquitination and NF-κB activation. Furthermore, a Tax2 lysineless mutant that is unable to be ubiquitinated, SUMOylated or acetylated retains NEMO/IKKγ interactions and activation of the NF-κB pathway. Together, these results provide evidence that Tax1 and Tax2 utilize distinct mechanisms to activate NF-κB.
Collapse
Affiliation(s)
- Alfonso Lavorgna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
7346
|
Dings RPM, Kumar N, Miller MC, Loren M, Rangwala H, Hoye TR, Mayo KH. Structure-based optimization of angiostatic agent 6DBF7, an allosteric antagonist of galectin-1. J Pharmacol Exp Ther 2013; 344:589-99. [PMID: 23232447 PMCID: PMC3583509 DOI: 10.1124/jpet.112.199646] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/10/2012] [Indexed: 11/22/2022] Open
Abstract
Galectin-1 (gal-1), which binds β-galactoside groups on various cell surface receptors, is crucial to cell adhesion and migration, and is found to be elevated in several cancers. Previously, we reported on 6DBF7, a dibenzofuran (DBF)-based peptidomimetic of the gal-1 antagonist anginex. In the present study, we used a structure-based approach to optimize 6DBF7. Initial NMR studies showed that 6DBF7 binds to gal-1 on one side of the β-sandwich away from the lectin's carbohydrate binding site. Although an alanine scan of 6DBF7 showed that the two cationic groups (lysines) in the partial peptide are crucial to its angiostatic activity, it is the hydrophobic face of the amphipath that appears to interact directly with the surface of gal-1. Based on this structural information, we designed and tested additional DBF analogs. In particular, substitution of the C-terminal Asp for alanine and branched alkyl side chains (Val, Leu, Ile) for linear ones (Nle, Nva) rendered the greatest improvements in activity. Flow cytometry with gal-1(-/-) splenocytes showed that 6DBF7 and two of its more potent analogs (DB16 and DB21) can fully inhibit fluorescein isothiocyanate-gal-1 binding. Moreover, heteronuclear single-quantum coherence NMR titrations showed that the presence of DB16 decreases gal-1 affinity for lactose, indicating that the peptidomimetic targets gal-1 as a noncompetitive, allosteric inhibitor of glycan binding. Using tumor mouse models (B16F10 melanoma, LS174 lung, and MA148 ovarian), we found that DB21 inhibits tumor angiogenesis and tumor growth significantly better than 6DBF7, DB16, or anginex. DB21 is currently being developed further and holds promise for the management of human cancer in the clinic.
Collapse
Affiliation(s)
- Ruud P M Dings
- Department of Biochemistry, University of Minnesota, 321 Church Street, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
7347
|
Sahley TL, Hammonds MD, Musiek FE. Endogenous dynorphins, glutamate and N-methyl-d-aspartate (NMDA) receptors may participate in a stress-mediated Type-I auditory neural exacerbation of tinnitus. Brain Res 2013; 1499:80-108. [DOI: 10.1016/j.brainres.2013.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 12/12/2022]
|
7348
|
Sampei Z, Igawa T, Soeda T, Okuyama-Nishida Y, Moriyama C, Wakabayashi T, Tanaka E, Muto A, Kojima T, Kitazawa T, Yoshihashi K, Harada A, Funaki M, Haraya K, Tachibana T, Suzuki S, Esaki K, Nabuchi Y, Hattori K. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLoS One 2013; 8:e57479. [PMID: 23468998 PMCID: PMC3585358 DOI: 10.1371/journal.pone.0057479] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
In hemophilia A, routine prophylaxis with exogenous factor VIII (FVIII) requires frequent intravenous injections and can lead to the development of anti-FVIII alloantibodies (FVIII inhibitors). To overcome these drawbacks, we screened asymmetric bispecific IgG antibodies to factor IXa (FIXa) and factor X (FX), mimicking the FVIII cofactor function. Since the therapeutic potential of the lead bispecific antibody was marginal, FVIII-mimetic activity was improved by modifying its binding properties to FIXa and FX, and the pharmacokinetics was improved by engineering the charge properties of the variable region. Difficulties in manufacturing the bispecific antibody were overcome by identifying a common light chain for the anti-FIXa and anti-FX heavy chains through framework/complementarity determining region shuffling, and by pI engineering of the two heavy chains to facilitate ion exchange chromatographic purification of the bispecific antibody from the mixture of byproducts. Engineering to overcome low solubility and deamidation was also performed. The multidimensionally optimized bispecific antibody hBS910 exhibited potent FVIII-mimetic activity in human FVIII-deficient plasma, and had a half-life of 3 weeks and high subcutaneous bioavailability in cynomolgus monkeys. Importantly, the activity of hBS910 was not affected by FVIII inhibitors, while anti-hBS910 antibodies did not inhibit FVIII activity, allowing the use of hBS910 without considering the development or presence of FVIII inhibitors. Furthermore, hBS910 could be purified on a large manufacturing scale and formulated into a subcutaneously injectable liquid formulation for clinical use. These features of hBS910 enable routine prophylaxis by subcutaneous delivery at a long dosing interval without considering the development or presence of FVIII inhibitors. We expect that hBS910 (investigational drug name: ACE910) will provide significant benefit for severe hemophilia A patients.
Collapse
Affiliation(s)
- Zenjiro Sampei
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Tomoyuki Igawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
- * E-mail:
| | - Tetsuhiro Soeda
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | | | - Chifumi Moriyama
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Tetsuya Wakabayashi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Eriko Tanaka
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Atsushi Muto
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Tetsuo Kojima
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Takehisa Kitazawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Kazutaka Yoshihashi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Aya Harada
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Miho Funaki
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Kenta Haraya
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Tatsuhiko Tachibana
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Sachiyo Suzuki
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Keiko Esaki
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Yoshiaki Nabuchi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Kunihiro Hattori
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| |
Collapse
|
7349
|
Ververis K, Hiong A, Karagiannis TC, Licciardi PV. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics 2013; 7:47-60. [PMID: 23459471 PMCID: PMC3584656 DOI: 10.2147/btt.s29965] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while discussing the safety and efficacy of these compounds in clinical studies to date.
Collapse
Affiliation(s)
- Katherine Ververis
- Epigenomic Medicine, Alfred Medical Research and Education Precinct, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
7350
|
Itamochi H, Kato M, Nishimura M, Oumi N, Oishi T, Shimada M, Sato S, Naniwa J, Sato S, Nonaka M, Kudoh A, Terakawa N, Kigawa J, Harada T. Establishment and characterization of a novel ovarian clear cell adenocarcinoma cell line, TU-OC-1, with a mutation in the PIK3CA gene. Hum Cell 2013; 26:121-7. [PMID: 23430509 DOI: 10.1007/s13577-013-0062-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 01/25/2013] [Indexed: 12/01/2022]
Abstract
A new cell line of human ovarian clear cell adenocarcinoma (CCC), TU-OC-1, was established and characterized. The cells showed a polygonal-shaped morphology and grew in monolayers without contact inhibition and were arranged like a jigsaw puzzle. The chromosome numbers ranged from 64 to 90. A low rate of proliferation was observed, similar to other CCC cell lines tested (OVTOKO, RMG-I, and OVAS), and the doubling time was 38.4 h. The respective IC50 values of cisplatin and paclitaxel were 12.2 μM and 58.3 nM. Mutational analysis revealed that TU-OC-1 cells harbored a PIK3CA mutation at codon 542 (E542K) in exon 9, which is a mutation hot spot on this gene. We observed that phosphorylated Akt protein was overexpressed in TU-OC-1 cells by western blot analysis. Heterotransplantation to nude mice produced tumors that reflected the original. This cell line may be useful to study the chemoresistant mechanisms of CCC and contribute to novel treatment strategies.
Collapse
Affiliation(s)
- Hiroaki Itamochi
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, 36-1 Nishicho, Yonago, 683-8504, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|