701
|
Imhof A. Histone modifications--marks for gene expression? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 544:169-80. [PMID: 14713227 DOI: 10.1007/978-1-4419-9072-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Axel Imhof
- Adolf-Butenandt Institut, University of Munich, Schillerstr. 44, 80336 Muenchen, Germany.
| |
Collapse
|
702
|
Cheung P. Generation and Characterization of Antibodies Directed Against Di-Modified Histones, and Comments on Antibody and Epitope Recognition. Methods Enzymol 2003; 376:221-34. [PMID: 14975309 DOI: 10.1016/s0076-6879(03)76015-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Peter Cheung
- Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Canada
| |
Collapse
|
703
|
Girod PA, Mermod N. Use of scaffold/matrix-attachment regions for protein production. GENE TRANSFER AND EXPRESSION IN MAMMALIAN CELLS 2003. [DOI: 10.1016/s0167-7306(03)38022-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
704
|
Lo WS, Henry KW, Schwartz MF, Berger SL. Histone Modification Patterns During Gene Activation. Methods Enzymol 2003; 377:130-53. [PMID: 14979022 DOI: 10.1016/s0076-6879(03)77007-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Wan-Sheng Lo
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
705
|
Labrador M, Corces VG. Phosphorylation of histone H3 during transcriptional activation depends on promoter structure. Genes Dev 2003; 17:43-8. [PMID: 12514098 PMCID: PMC195963 DOI: 10.1101/gad.1021403] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Accepted: 10/31/2002] [Indexed: 11/24/2022]
Abstract
Covalent modifications of histone N-terminal tails are required for the proper assembly and activation of the general transcription factors at promoters. Here, we analyze histone acetylation and phosphorylation in Drosophila transgenes activated by the yeast Gal4 transcriptional activator in the context of different promoters. We show that, independent of the promoter, transcription does not correlate with acetylation of either H3-Lys 14 or H4-Lys 8. Histone H3 associated with the DNA of Gal4-induced transcribing transgenes driven by the Drosophila Hsp70 promoter is hyperphosphorylated at Ser 10 during transcription. Surprisingly, histone H3 at Gal4-induced transgenes driven by the P element Transposase promoter is not hyperphosphorylated. The data suggest that transcription occurs without acetylated H4 and H3 in both transgenes in Drosophila polytene chromosomes. Instead, phosphorylation of H3 is linked to transcription and can be modulated by the structure of the promoter.
Collapse
Affiliation(s)
- Mariano Labrador
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
706
|
Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D, Osada H, Komatsu Y, Nishino N, Khochbin S, Horinouchi S, Yoshida M. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 2002; 21:6820-31. [PMID: 12486003 PMCID: PMC139102 DOI: 10.1093/emboj/cdf682] [Citation(s) in RCA: 556] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Revised: 10/18/2002] [Accepted: 10/29/2002] [Indexed: 11/14/2022] Open
Abstract
Trichostatin A (TSA) inhibits all histone deacetylases (HDACs) of both class I and II, whereas trapoxin (TPX) cannot inhibit HDAC6, a cytoplasmic member of class II HDACs. We took advantage of this differential sensitivity of HDAC6 to TSA and TPX to identify its substrates. Using this approach, alpha-tubulin was identified as an HDAC6 substrate. HDAC6 deacetylated alpha-tubulin both in vivo and in vitro. Our investigations suggest that HDAC6 controls the stability of a dynamic pool of microtubules. Indeed, we found that highly acetylated microtubules observed after TSA treatment exhibited delayed drug-induced depolymerization and that HDAC6 overexpression prompted their induced depolymerization. Depolymerized tubulin was rapidly deacetylated in vivo, whereas tubulin acetylation occurred only after polymerization. We therefore suggest that acetylation and deacetylation are coupled to the microtubule turnover and that HDAC6 plays a key regulatory role in the stability of the dynamic microtubules.
Collapse
Affiliation(s)
- Akihisa Matsuyama
- Chemical Genetics Laboratory, Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, CREST Research Project, Japan Science and Technology Corporation, Saitama 332-0012, Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan and Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation-INSERM U309, Equipe, Chromatine et Expression des Gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, France Corresponding author e-mail:
| | - Tadahiro Shimazu
- Chemical Genetics Laboratory, Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, CREST Research Project, Japan Science and Technology Corporation, Saitama 332-0012, Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan and Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation-INSERM U309, Equipe, Chromatine et Expression des Gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, France Corresponding author e-mail:
| | - Yuko Sumida
- Chemical Genetics Laboratory, Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, CREST Research Project, Japan Science and Technology Corporation, Saitama 332-0012, Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan and Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation-INSERM U309, Equipe, Chromatine et Expression des Gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, France Corresponding author e-mail:
| | - Akiko Saito
- Chemical Genetics Laboratory, Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, CREST Research Project, Japan Science and Technology Corporation, Saitama 332-0012, Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan and Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation-INSERM U309, Equipe, Chromatine et Expression des Gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, France Corresponding author e-mail:
| | - Yasuhiro Yoshimatsu
- Chemical Genetics Laboratory, Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, CREST Research Project, Japan Science and Technology Corporation, Saitama 332-0012, Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan and Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation-INSERM U309, Equipe, Chromatine et Expression des Gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, France Corresponding author e-mail:
| | - Daphné Seigneurin-Berny
- Chemical Genetics Laboratory, Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, CREST Research Project, Japan Science and Technology Corporation, Saitama 332-0012, Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan and Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation-INSERM U309, Equipe, Chromatine et Expression des Gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, France Corresponding author e-mail:
| | - Hiroyuki Osada
- Chemical Genetics Laboratory, Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, CREST Research Project, Japan Science and Technology Corporation, Saitama 332-0012, Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan and Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation-INSERM U309, Equipe, Chromatine et Expression des Gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, France Corresponding author e-mail:
| | - Yasuhiko Komatsu
- Chemical Genetics Laboratory, Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, CREST Research Project, Japan Science and Technology Corporation, Saitama 332-0012, Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan and Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation-INSERM U309, Equipe, Chromatine et Expression des Gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, France Corresponding author e-mail:
| | - Norikazu Nishino
- Chemical Genetics Laboratory, Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, CREST Research Project, Japan Science and Technology Corporation, Saitama 332-0012, Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan and Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation-INSERM U309, Equipe, Chromatine et Expression des Gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, France Corresponding author e-mail:
| | - Saadi Khochbin
- Chemical Genetics Laboratory, Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, CREST Research Project, Japan Science and Technology Corporation, Saitama 332-0012, Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan and Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation-INSERM U309, Equipe, Chromatine et Expression des Gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, France Corresponding author e-mail:
| | - Sueharu Horinouchi
- Chemical Genetics Laboratory, Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, CREST Research Project, Japan Science and Technology Corporation, Saitama 332-0012, Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan and Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation-INSERM U309, Equipe, Chromatine et Expression des Gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, France Corresponding author e-mail:
| | - Minoru Yoshida
- Chemical Genetics Laboratory, Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, CREST Research Project, Japan Science and Technology Corporation, Saitama 332-0012, Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan and Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation-INSERM U309, Equipe, Chromatine et Expression des Gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, France Corresponding author e-mail:
| |
Collapse
|
707
|
Goday C, Ruiz MF. Differential acetylation of histones H3 and H4 in paternal and maternal germline chromosomes during development of sciarid flies. J Cell Sci 2002; 115:4765-75. [PMID: 12432065 DOI: 10.1242/jcs.00172] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A classic example of chromosome elimination and genomic imprinting is found in sciarid flies (Diptera. Sciaridae), where whole chromosomes of exclusively paternal origin are discarded from the genome at different developmental stages. Two types of chromosome elimination event occur in the germline. In embryos of both sexes, the extrusion of a single paternal X chromosome occurs in early germ nuclei and in male meiotic cells the whole paternal complement is discarded. In sciarids, early germ nuclei remain undivided for a long time and exhibit a high degree of chromatin compaction, so that chromosomes are cytologically individualized. We investigated chromatin differences between parental chromosomes in Sciara ocellaris and S. coprophila by analyzing histone acetylation modifications in early germ nuclei. We examined germ nuclei from early embryonic stages to premeiotic larval stages, male meiotic cell and early somatic nuclei following fertilization. In early germ cells, only half of the regular chromosome complement is highly acetylated for histones H4 and H3. The chromosomes that are highly acetylated are paternally derived. An exception is the paternal X chromosome that is eliminated from germ nuclei. At later stages preceding the initiation of mitotic gonial divisions, all chromosomes of the germline complement show similar high levels of histone H4/H3 acetylation. In male meiosis, maternal chromosomes are highly acetylated for histones H4 and H3, whereas the entire paternal chromosome set undergoing elimination appears under-acetylated. The results suggest that histone acetylation contributes towards specifying the imprinted behavior of germline chromosomes in sciarids.
Collapse
Affiliation(s)
- Clara Goday
- Departamento de Biología Celular y del Desarrollo, Centro de Investigaciones Biológicas, CSIC, 28006 Madrid, Spain.
| | | |
Collapse
|
708
|
Abstract
We suggest that common principles underlie both cellular signaling networks and chromatin. To exemplify similarities, we focus on signaling complexes that form at membrane receptors and on nucleosomes. Multiple signal-transducing modifications on side chain residues of receptor tyrosine kinases (RTKs) and histone proteins are used to create docking sites that facilitate proximal relations of enzymes and their substrates. We argue that multiple histone modifications, like RTK modifications, promote switch-like behavior and ensure robustness of the signal, and we compare this interpretation with the histone code hypothesis. This view provides insight into chromatin function and epigenetic inheritance.
Collapse
Affiliation(s)
- Stuart L Schreiber
- Department of Chemistry and Chemical Biology and Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
709
|
Smith CM, Haimberger ZW, Johnson CO, Wolf AJ, Gafken PR, Zhang Z, Parthun MR, Gottschling DE. Heritable chromatin structure: mapping "memory" in histones H3 and H4. Proc Natl Acad Sci U S A 2002; 99 Suppl 4:16454-61. [PMID: 12196632 PMCID: PMC139908 DOI: 10.1073/pnas.182424999] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomeric position effect in Saccharomyces cerevisiae is a chromatin-mediated phenomenon in which telomere proximal genes are repressed (silenced) in a heritable, but reversible, fashion. Once a transcriptional state (active or silenced) is established, however, there is a strong tendency for that state to be propagated. Twenty-five years ago, H. Weintraub and colleagues suggested that such heritability could be mediated by posttranslational modification of chromatin [Weintraub, H., Flint, S. J., Leffak, I. M., Groudine, M. & Grainger, R. M. (1977) Cold Spring Harbor Symp. Quant. Biol. 42, 401-407]. To identify potential sites within the chromatin that might act as sources of "memory" for the heritable transmission, we performed a genetic screen to isolate mutant alleles of the histones H3 and H4 genes that would "lock" telomeric marker genes into a silenced state. We identified mutations in the NH(2)-terminal tail and core of both histones; most of the amino acid changes mapped adjacent to lysines that are known sites of acetylation or methylation. We developed a method using MS to quantify the level of acetylation at each lysine within the histone H4 NH(2)-terminal tail in these mutants. We discovered that each of these mutants had a dramatic reduction in the level of acetylation at lysine 12 within the histone H4 tail. We propose that this lysine serves as a "memory mark" for propagating the expression state of a telomeric gene: when it is unacetylated, silent chromatin will be inherited; when it is acetylated an active state will be inherited.
Collapse
Affiliation(s)
- Christine M Smith
- Division of Basic Sciences and Proteomics Facility, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
710
|
Noma KI, Grewal SIS. Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast. Proc Natl Acad Sci U S A 2002; 99 Suppl 4:16438-45. [PMID: 12193658 PMCID: PMC139906 DOI: 10.1073/pnas.182436399] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methylation of histone H3 at lysine 4 (H3 Lys-4) or lysine 9 (H3 Lys-9) is known to define active and silent chromosomal domains respectively from fission yeast to humans. However, in budding yeast, H3 Lys-4 methylation is also necessary for silent chromatin assembly at telomeres and ribosomal DNA. Here we demonstrate that deletion of set1, which encodes a protein containing an RNA recognition motif at its amino terminus and a SET domain at the carboxy terminus, abolishes H3 Lys-4 methylation in fission yeast. Unlike in budding yeast, Set1-mediated H3 Lys-4 methylation is not required for heterochromatin assembly at the silent mating-type region and centromeres in fission yeast. Our analysis suggests that H3 Lys-4 methylation is a stable histone modification present throughout the cell cycle, including mitosis. The loss of H3 Lys-4 methylation in set1Delta cells is correlated with a decrease in histone H3 acetylation levels, suggesting a mechanistic link between H3 Lys-4 methylation and acetylation of the H3 tail. We suggest that methylation of H3 Lys-4 primarily acts in the maintenance of transcriptionally poised euchromatic domains, and that this modification is dispensable for heterochromatin formation in fission yeast, which instead utilizes H3 Lys-9 methylation.
Collapse
Affiliation(s)
- Ken-ichi Noma
- Cold Spring Harbor Laboratory, P.O. Box 100, NY 11724, USA
| | | |
Collapse
|
711
|
von Sternberg R. On the roles of repetitive DNA elements in the context of a unified genomic-epigenetic system. Ann N Y Acad Sci 2002; 981:154-88. [PMID: 12547679 DOI: 10.1111/j.1749-6632.2002.tb04917.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Repetitive DNA sequences comprise a substantial portion of most eukaryotic and some prokaryotic chromosomes. Despite nearly forty years of research, the functions of various sequence families as a whole and their monomer units remain largely unknown. The inability to map specific functional roles onto many repetitive DNA elements (REs), coupled with the taxon-specificity of sequence families, have led many to speculate that these genomic components are "selfish" replicators generating genomic "junk." The purpose of this paper is to critically examine the selfishness, evolutionary effects, and functionality of REs. First, a brief overview of the range of ideas pertaining to RE function is presented. Second, the argument is presented that the selfish DNA "hypothesis" is actually a narrative scheme, that it serves to protect neo-Darwinian assumptions from criticism, and that this story is untestable and therefore not a hypothesis. Third, attempts to synthesize the selfish DNA concept with complex systems models of the genome and RE functionality are critiqued. Fourth, the supposed connection between RE-induced mutations and macroevolutionary events are stated to be at variance with empirical evidence and theoretical considerations. Hypotheses that base phylogenetic transitions in repetitive sequence changes thus remain speculative. Fifth and finally, the case is made for viewing REs as integrally functional components of chromosomes, genomes, and cells. It is argued throughout that a new conceptual framework is needed for understanding the roles of repetitive DNA in genomic/epigenetic systems, and that neo-Darwinian "narratives" have been the primary obstacle to elucidating the effects of these enigmatic components of chromosomes.
Collapse
Affiliation(s)
- Richard von Sternberg
- Department of Systematic Biology, NHB-163, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.
| |
Collapse
|
712
|
Abstract
Recent studies in yeast, animals and plants have provided major breakthroughs in unraveling the molecular mechanism of higher-order gene regulation. In conjunction with the DNA code, proteins that are involved in chromatin remodeling, histone modification and epigenetic imprinting form a large network of interactions that control the nuclear programming of cell identity. New insight into how chromatin conformations are regulated in plants sheds light on the relationships between chromosome function, cell differentiation and developmental patterns.
Collapse
Affiliation(s)
- Paul F Fransz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM, Amsterdam, The Netherlands.
| | | |
Collapse
|
713
|
Rombouts K, Knittel T, Machesky L, Braet F, Wielant A, Hellemans K, De Bleser P, Gelman I, Ramadori G, Geerts A. Actin filament formation, reorganization and migration are impaired in hepatic stellate cells under influence of trichostatin A, a histone deacetylase inhibitor. J Hepatol 2002; 37:788-96. [PMID: 12445420 DOI: 10.1016/s0168-8278(02)00275-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Previously, trichostatin A (TSA), a histone deacetylase inhibitor, has been shown to exhibit strong antifibrotic characteristics in hepatic stellate cells (HSC), which are known to play a central role in chronic liver diseases. TSA retained a more quiescent phenotype in spite of culture conditions that favor transdifferentiation into activated HSC. METHODS To identify TSA-sensitive genes, differential mRNA display, Northern and Western blot analysis were used and genes were functionally validated by using contraction and motility assays. RESULTS TSA prevented new actin filament formation by down-regulation of two nucleating proteins, actin related protein 2 (Arp2) and Arp3, and by up-regulation of adducin like protein 70 (ADDL70) and gelsolin, two capping proteins. RhoA, a key mediator in the development of the actin cytoskeleton, decreased following TSA exposure. Expression of proteins of Class III intermediate filaments was affected by TSA. Furthermore, F-actin and G-actin were expressed heterogeneously under influence of TSA. Functionally, TSA treatment abrogated migration of quiescent HSC, while migration was reduced in transitional HSC. The endothelin-1-induced contractility properties of HSC was not affected by TSA. CONCLUSIONS These data indicate that TSA affects the development of the actin cytoskeleton in quiescent HSC and thereby abrogates the process of HSC transdifferentiation.
Collapse
Affiliation(s)
- Krista Rombouts
- Laboratory for Molecular Liver Cell Biology, Faculty of Medicine and Pharmacy, Free University of Brussels (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
714
|
Chioda M, Eskeland R, Thompson EM. Histone gene complement, variant expression, and mRNA processing in a urochordate Oikopleura dioica that undergoes extensive polyploidization. Mol Biol Evol 2002; 19:2247-60. [PMID: 12446815 DOI: 10.1093/oxfordjournals.molbev.a004048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Considerable data exist on coding sequences of histones in a wide variety of organisms. Much more restricted information is available on total histone gene complement, gene organization, transcriptional regulation, and histone mRNA processing. In particular, there is a significant phylogenetic gap in information for the urochordates, a subphylum near the invertebrate-vertebrate transition. In this study, we show that the appendicularian Oikopleura dioica has a histone gene complement that is similar to that of humans, though its genome size is 40- to 50-fold smaller. At a total length of 3.5 kb, the H3, H4, H1, H2A, and H2B quintet cluster is the most compact described thus far, but despite very rapid early developmental cleavage cycles, no extensive tandem repeats of the cluster were present. The high degree of variation within each of the complements of O. dioica H2A and H2B subtypes resembled that found in plants as opposed to more closely related vertebrate and invertebrate species, and developmental stage-specific expression of different subtypes was observed. The linker histone H1 was present in relatively few copies per haploid genome and contained short N- and C-terminal tails, a feature similar to that of copepods but different from many standard model organisms. The 3'UTRs of the histone genes contained both the consensus stem-loop sequence and the polyadenylation signals but lacked the consensus histone downstream element that is involved in the processing of histone mRNAs in echinoderms and vertebrates. Two types of transcripts were found, i.e., those containing both the stem-loop and a polyA tail as well as those cleaved at the normal site just 3' of the stem-loop. The O. dioica data are an important addition to the limited number of eukaryotes for which sufficiently extensive information on histone gene complements is available. Increasingly, it appears that understanding the evolution of histone gene organization, transcriptional regulation, and mRNA processing will depend at least as much on comparative analysis of constraints imposed by certain life history features and cell biological characteristics as on projections based on simple phylogenetic relationships.
Collapse
Affiliation(s)
- Mariacristina Chioda
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | | | |
Collapse
|
715
|
Kelly WK, O'Connor OA, Marks PA. Histone deacetylase inhibitors: from target to clinical trials. Expert Opin Investig Drugs 2002; 11:1695-713. [PMID: 12457432 DOI: 10.1517/13543784.11.12.1695] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transformed cells, characterised by inappropriate cell proliferation, do not necessarily lose the capacity to undergo growth arrest under certain stimuli. DNA, genetic information, is packaged in chromatin proteins, for example, histones. The structure of chromatin may be altered by post-translational modifications (e.g., acetylation, phosphorylation, methylation and ubiquitylation) which play a role in regulating gene expression. Two groups of enzymes, histone deacetylases (HDACs) and acetyl transferases, determine the acetylation status of histones. This review focuses on compounds that inhibit HDAC activity. These agents have been shown to be active in vitro and in vivo in causing cancer cell growth arrest, differentiation and/or apoptosis. Several HDAC inhibitors are currently in clinical trials as anticancer agents and, in particular, hydroxamic acid-based HDAC inhibitors have shown activity against cancers at well-tolerated doses.
Collapse
Affiliation(s)
- William K Kelly
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
716
|
Takechi S, Adachi M, Nakayama T. Chicken HDAC2 down-regulates IgM light chain gene promoter activity. Biochem Biophys Res Commun 2002; 299:263-7. [PMID: 12437980 DOI: 10.1016/s0006-291x(02)02630-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a chicken B cell line, DT40, the disruption of HDAC2 (chHDAC2) gene causes an alteration of several gene expressions including chicken IgM light chain (chIgM-L) gene by 2D-PAGE analysis. To investigate the transcriptional function of chHDAC2, we employed the chIgM-L promoter reporter plasmid. We found that chHDAC2 represses activated chIgM-L promoter activity. In transient expression experiments in NIH 3T3 cell, the specific histone deacetylase inhibitor tricostatin A (TSA) increased transactivation of chIgM-L promoter activity mediated by chicken Oct-1 and OBF-1 proteins. In transient coexpression of the three class I chicken histone deacetylases (chHDAC1-3) tested, only chHDAC2 repressed the activated chIgM-L promoter activity. These findings suggest that chHDAC2 might be recruited to the chIgM-L promoter and specifically repress chIgM-L transcription.
Collapse
Affiliation(s)
- Shinji Takechi
- Department of Biochemistry, Miyazaki Medical College, Kihara, Kiyotake, 889-1692, Miyazaki, Japan.
| | | | | |
Collapse
|
717
|
Reyes JC, Hennig L, Gruissem W. Chromatin-remodeling and memory factors. New regulators of plant development. PLANT PHYSIOLOGY 2002; 130:1090-101. [PMID: 12427976 PMCID: PMC1540260 DOI: 10.1104/pp.006791] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- José C Reyes
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Isla de la Cartuja, Avenida Américo Vespucio s/n, 41092 Sevilla, Spain
| | | | | |
Collapse
|
718
|
Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R, Dubois G, Mazo A, Croce CM, Canaani E. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 2002; 10:1119-28. [PMID: 12453419 DOI: 10.1016/s1097-2765(02)00740-2] [Citation(s) in RCA: 568] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ALL-1 is a member of the human trithorax/Polycomb gene family and is also involved in acute leukemia. ALL-1 is present within a stable, very large multiprotein supercomplex composed of > or =29 proteins. The majority of the latter are components of the human transcription complexes TFIID (including TBP), SWI/SNF, NuRD, hSNF2H, and Sin3A. Other components are involved in RNA processing or in histone methylation. The complex remodels, acetylates, deacetylates, and methylates nucleosomes and/or free histones. The complex's H3-K4 methylation activity is conferred by the ALL-1 SET domain. Chromatin immunoprecipitations show that ALL-1 and other complex components examined are bound at the promoter of an active ALL-1-dependent Hox a9 gene. In parallel, H3-K4 is methylated, and histones H3 and H4 are acetylated at this promoter.
Collapse
Affiliation(s)
- Tatsuya Nakamura
- Kimmel Cancer Center and Department of Microbiology, Jefferson Medical College, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
719
|
Hauser C, Schuettengruber B, Bartl S, Lagger G, Seiser C. Activation of the mouse histone deacetylase 1 gene by cooperative histone phosphorylation and acetylation. Mol Cell Biol 2002; 22:7820-30. [PMID: 12391151 PMCID: PMC134744 DOI: 10.1128/mcb.22.22.7820-7830.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone deacetylase 1 (HDAC1) is a major regulator of chromatin structure and gene expression. Tight control of HDAC1 expression is essential for normal cell cycle progression of mammalian cells. HDAC1 mRNA levels are regulated by growth factors and by changes in intracellular deacetylase activity levels. Stimulation of the mitogen-activated protein kinase cascade by anisomycin or growth factors, together with inhibition of deacetylases by trichostatin A (TSA), leads to stable histone H3 phosphoacetylation and strongly induced HDAC1 expression. In contrast, activation of the nucleosomal response by anisomycin alone results only in transient phosphoacetylation of histone H3 without affecting HDAC1 mRNA levels. The transcriptional induction of the HDAC1 gene by anisomycin and TSA is efficiently blocked by H89, an inhibitor of the nucleosomal response. Detailed studies of the kinetics of histone acetylation and phosphorylation show that the two modifications are synergistic and essential for induced HDAC1 transcription. Activation of the HDAC1 gene by anisomycin together with TSA or by growth factors is accompanied by phosphoacetylation of HDAC1 promoter-associated histone H3. Our results present evidence for a precise regulatory mechanism which allows induction of the HDAC1 gene in response to proliferation signals and modulation of HDAC1 expression dependent on intracellular deacetylase levels.
Collapse
Affiliation(s)
- Christoph Hauser
- Institute of Medical Biochemistry, Department of Molecular Biology, University of Vienna, Vienna Biocenter, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
720
|
Abstract
We report the results of experiments designed to test the histone code hypothesis. We found that only a small subset of lysines in histones H4 and H3 are acetylated in vivo by the GCN5 acetyltransferase during activation of the IFN-beta gene. Reconstitution of recombinant nucleosomes bearing mutations in these lysine residues revealed the cascade of gene activation via a point-by-point interpretation of the histone code through the ordered recruitment of bromodomain-containing transcription complexes. Acetylation of histone H4 K8 mediates recruitment of the SWI/SNF complex whereas acetylation of K9 and K14 in histone H3 is critical for the recruitment of TFIID. Thus, the information contained in the DNA address of the enhancer is transferred to the histone N termini by generating novel adhesive surfaces required for the recruitment of transcription complexes.
Collapse
Affiliation(s)
- Theodora Agalioti
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
721
|
Beisel C, Imhof A, Greene J, Kremmer E, Sauer F. Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 2002; 419:857-62. [PMID: 12397363 DOI: 10.1038/nature01126] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Accepted: 09/16/2002] [Indexed: 11/09/2022]
Abstract
The establishment and maintenance of mitotic and meiotic stable (epigenetic) transcription patterns is fundamental for cell determination and function. Epigenetic regulation of transcription is mediated by epigenetic activators and repressors, and may require the establishment, 'spreading' and maintenance of epigenetic signals. Although these signals remain unclear, it has been proposed that chromatin structure and consequently post-translational modification of histones may have an important role in epigenetic gene expression. Here we show that the epigenetic activator Ash1 (ref. 5) is a multi-catalytic histone methyl-transferase (HMTase) that methylates lysine residues 4 and 9 in H3 and 20 in H4. Transcriptional activation by Ash1 coincides with methylation of these three lysine residues at the promoter of Ash1 target genes. The methylation pattern placed by Ash1 may serve as a binding surface for a chromatin remodelling complex containing the epigenetic activator Brahma (Brm), an ATPase, and inhibits the interaction of epigenetic repressors with chromatin. Chromatin immunoprecipitation indicates that epigenetic activation of Ultrabithorax transcription in Drosophila coincides with trivalent methylation by Ash1 and recruitment of Brm. Thus, histone methylation by Ash1 may provide a specific signal for the establishment of epigenetic, active transcription patterns.
Collapse
Affiliation(s)
- Christian Beisel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
722
|
Sarg B, Koutzamani E, Helliger W, Rundquist I, Lindner HH. Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem 2002; 277:39195-201. [PMID: 12154089 DOI: 10.1074/jbc.m205166200] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation of the N-terminal region of histones was first described more than 35 years ago, but its biological significance has remained unclear. Proposed functions range from transcriptional regulation to the higher order packing of chromatin in progress of mitotic condensation. Primarily because of the recent discovery of the SET domain-depending H3-specific histone methyltransferases SUV39H1 and Suv39h1, which selectively methylate lysine 9 of the H3 N terminus, this posttranslational modification has regained scientific interest. In the past, investigations concerning the biological significance of histone methylation were largely limited because of a lack of simple and sensitive analytical procedures for detecting this modification. The present work investigated the methylation pattern of histone H4 both in different mammalian organs of various ages and in cell lines by applying mass spectrometric analysis and a newly developed hydrophilic-interaction liquid chromatographic method enabling the simultaneous separation of methylated and acetylated forms, which obviates the need to work with radioactive materials. In rat kidney and liver the dimethylated lysine 20 was found to be the main methylation product, whereas the monomethyl derivative was present in much smaller amounts. In addition, for the first time a trimethylated form of lysine 20 of H4 was found in mammalian tissue. A significant increase in this trimethylated histone H4 was detected in organs of animals older than 30 days, whereas the amounts of mono- and dimethylated forms did not essentially change in organs from young (10 days old) or old animals (30 and 450 days old). Trimethylated H4 was also detected in transformed cells; although it was present in only trace amounts in logarithmically growing cells, we found an increase in trimethylated lysine 20 in cells in the stationary phase.
Collapse
Affiliation(s)
- Bettina Sarg
- Department of Medical Chemistry and Biochemistry, University of Innsbruck, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
723
|
Abstract
Human immunodeficiency virus, type 1-encoded transactivator protein Tat is known to be a substrate of and to interact with several nuclear histone acetyltransferases (HATs). Here we show that Tat is a general inhibitor of histone acetylation by cellular HATs and that for at least one of them, the CREB-binding protein (CBP), it induces a substrate selectivity. Indeed, in the presence of Tat, the acetylation of histones by CBP was severely inhibited, while that of p53 and MyoD remained unaffected. The C-terminal domain of Tat, dispensable for the activation of viral transcription, was found to be necessary and sufficient to interfere with histone acetylation. These results demonstrate that Tat is able to selectively modulate cellular protein acetylation by nuclear HATs and therefore to take over this specific signaling system in cells.
Collapse
Affiliation(s)
- Edwige Col
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation-INSERM U309, Equipe Chromatine et Expression des Gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, 38706 La Tronche Cedex, France
| | | | | | | |
Collapse
|
724
|
Wilson JR, Jing C, Walker PA, Martin SR, Howell SA, Blackburn GM, Gamblin SJ, Xiao B. Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell 2002; 111:105-15. [PMID: 12372304 DOI: 10.1016/s0092-8674(02)00964-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Methylation of lysine residues in the N-terminal tails of histones is thought to represent an important component of the mechanism that regulates chromatin structure. The evolutionarily conserved SET domain occurs in most proteins known to possess histone lysine methyltransferase activity. We present here the crystal structure of a large fragment of human SET7/9 that contains a N-terminal beta-sheet domain as well as the conserved SET domain. Mutagenesis identifies two residues in the C terminus of the protein that appear essential for catalytic activity toward lysine-4 of histone H3. Furthermore, we show how the cofactor AdoMet binds to this domain and present biochemical data supporting the role of invariant residues in catalysis, binding of AdoMet, and interactions with the peptide substrate.
Collapse
Affiliation(s)
- Jonathan R Wilson
- Structural Biology Group, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
725
|
Kristjuhan A, Walker J, Suka N, Grunstein M, Roberts D, Cairns BR, Svejstrup JQ. Transcriptional inhibition of genes with severe histone h3 hypoacetylation in the coding region. Mol Cell 2002; 10:925-33. [PMID: 12419235 PMCID: PMC9035295 DOI: 10.1016/s1097-2765(02)00647-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Changes in histone acetylation at promoters correlate with transcriptional activation and repression, but whether acetylation of histones in the coding region of genes is important for transcription is less clear. Here, we show that cells lacking the histone acetyltransferases Gcn5 and Elp3 have widespread and severe histone H3 hypoacetylation in chromatin. Surprisingly, severe hypoacetylation in the promoter does not invariably affect the ability of TBP to bind the TATA element, or transcription of the gene. By contrast, similar hypoacetylation of the coding region correlates with inhibition of transcription, and inhibition correlates better with the overall charge of the histone H3 tail than with hypoacetylation of specific lysine residues. These data provide insights into the effects of histone H3 hypoacetylation in vivo and underscore the importance of the overall charge of the histone tail for transcription.
Collapse
Affiliation(s)
- Arnold Kristjuhan
- Mechanisms of Transcription Laboratory Cancer Research UK London Research Institute Clare Hall Laboratories South Mimms Hertfordshire, EN6 3LD United Kingdom
| | - Jane Walker
- Mechanisms of Transcription Laboratory Cancer Research UK London Research Institute Clare Hall Laboratories South Mimms Hertfordshire, EN6 3LD United Kingdom
| | - Noriyuki Suka
- Department of Biological Chemistry UCLA School of Medicine and The Molecular Biology Institute University of California, Los Angeles Los Angeles, California 90095
| | - Michael Grunstein
- Department of Biological Chemistry UCLA School of Medicine and The Molecular Biology Institute University of California, Los Angeles Los Angeles, California 90095
| | - Douglas Roberts
- Howard Hughes Medical Institute and Department of Oncological Science Huntsman Cancer Institute University of Utah Salt Lake City, Utah 84112
| | - Bradley R. Cairns
- Howard Hughes Medical Institute and Department of Oncological Science Huntsman Cancer Institute University of Utah Salt Lake City, Utah 84112
| | - Jesper Q. Svejstrup
- Mechanisms of Transcription Laboratory Cancer Research UK London Research Institute Clare Hall Laboratories South Mimms Hertfordshire, EN6 3LD United Kingdom
- Correspondence:
| |
Collapse
|
726
|
Bharadwaj S, Prasad GL. Tropomyosin-1, a novel suppressor of cellular transformation is downregulated by promoter methylation in cancer cells. Cancer Lett 2002; 183:205-13. [PMID: 12065096 DOI: 10.1016/s0304-3835(02)00119-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tropomyosins (TMs) are a family of microfilament binding proteins, which are suppressed in the transformed cells. We have investigated the mechanism of suppression of TMs, in particular that of tropomyosin-1 (TM1), in breast cancer cells. Inhibition of DNA methyl transferase with 5-aza-2'-deoxycytidine (AZA) alone did not induce TM1 expression. However, combined treatment of trichostatin A (TSA) and AZA resulted in readily detectable expression of TM1, but not that of other TM isoforms. Upregulation of TM1 expression paralleled with the reemergence of TM1 containing microfilaments, and in abolition of anchorage-independent growth. The synergistic action of AZA and TSA in reactivation of TM1 gene was also evident in ras-transformed fibroblasts. These data, for the first time, show that hypermethylation of TM1 gene and chromatin remodeling are the predominant mechanisms by which TM1 expression is downregulated in breast cancer cells.
Collapse
Affiliation(s)
- Shantaram Bharadwaj
- Department of General Surgery, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
727
|
Zhou Y, Santoro R, Grummt I. The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J 2002; 21:4632-40. [PMID: 12198165 PMCID: PMC126197 DOI: 10.1093/emboj/cdf460] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mammalian chromatin remodeling complexes are involved in both activation and repression of transcription. Here, we show that NoRC, a SNF2h- containing nucleolar chromatin remodeling complex, represses ribosomal gene transcription. NoRC-mediated rDNA silencing was alleviated by trichostatin A, indicating that histone deacetylation is causally involved in silencing. Chromatin immunoprecipitation experiments demonstrate that overexpression of TIP5, the large subunit of NoRC, mediates deacetylation of nucleosomes in the vicinity of the rDNA promoter. Protein-protein interaction assays reveal association of TIP5 with the histone deacetylase HDAC1 in vivo and in vitro. Deletion of the C-terminal PHD finger and bromodomain abolishes the interaction of TIP5 and HDAC1, and abrogates transcriptional repression. The results suggest that NoRC silences the rDNA locus by targeting the SIN3 corepressor complex to the rDNA promoter, thereby establishing a repressed chromatin structure.
Collapse
Affiliation(s)
| | | | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
Corresponding author e-mail:
| |
Collapse
|
728
|
Rice JC, Nishioka K, Sarma K, Steward R, Reinberg D, Allis CD. Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev 2002; 16:2225-30. [PMID: 12208845 PMCID: PMC186671 DOI: 10.1101/gad.1014902] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We describe distinct patterns of histone methylation during human cell cycle progression. Histone H4 methyltransferase activity was found to be cell cycle-regulated, consistent with increased H4 Lys 20 methylation at mitosis. This increase closely followed the cell cycle-regulated expression of the H4 Lys 20 methyltransferase, PR-Set7. Localization of PR-Set7 to mitotic chromosomes and subsequent increase in H4 Lys 20 methylation were inversely correlated to transient H4 Lys 16 acetylation in early S-phase. These data suggest that H4 Lys 20 methylation by PR-Set7 during mitosis acts to antagonize H4 Lys 16 acetylation and to establish a mechanism by which this mark is epigenetically transmitted.
Collapse
Affiliation(s)
- Judd C Rice
- Department of Biochemistry & Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908-0733, USA
| | | | | | | | | | | |
Collapse
|
729
|
|
730
|
Affiliation(s)
- Hugh T Spotswood
- Chromatin and Gene Expression Group, Anatomy Department, University of Birmingham Medical School, Birmingham, United Kingdom
| | | |
Collapse
|
731
|
Fass E, Shahar S, Zhao J, Zemach A, Avivi Y, Grafi G. Phosphorylation of histone h3 at serine 10 cannot account directly for the detachment of human heterochromatin protein 1gamma from mitotic chromosomes in plant cells. J Biol Chem 2002; 277:30921-7. [PMID: 12060650 DOI: 10.1074/jbc.m112250200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterochromatin protein 1 (HP1) controls heterochromatin formation in animal cells, at least partly through interaction with lysine 9 (Lys-9)-methylated histone H3. We aimed to determine whether a structurally conserved human HP1 protein exhibits conserved heterochromatin localization in plant cells and studied its relation to modified histone H3. We generated transgenic tobacco plants and cycling cells expressing the human HP1gamma fused to green fluorescent protein (GFP) and followed its association with chromatin. Plants expressing GFP-HP1gamma showed no phenotypic perturbations. We found that GFP-HP1gamma is preferentially associated with the transcriptionally "inactive" heterochromatin fraction, a fraction enriched in Lys-9-methylated histone H3. During mitosis GFP-HP1gamma is detached from chromosomes concomitantly with phosphorylation of histone H3 at serine 10 and reassembles as cells exit mitosis. However, this phosphorylation cannot directly account for the dissociation of GFP-HP1gamma from mitotic chromosomes inasmuch as phosphorylation does not interfere with binding to HP1gamma. It is, therefore, possible that phosphorylation at serine 10 creates a "code" that is read by as yet an unknown factor(s), eventually leading to detachment of GFP-HP1gamma from mitotic chromosomes. Together, our results suggest that chromatin organization in plants and animals is conserved, being controlled at least partly by the association of HP1 proteins with methylated histone H3.
Collapse
Affiliation(s)
- Ephraim Fass
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100 Israel
| | | | | | | | | | | |
Collapse
|
732
|
Fu XH, Liu DP, Liang CC. Chromatin structure and transcriptional regulation of the beta-globin locus. Exp Cell Res 2002; 278:1-11. [PMID: 12126952 DOI: 10.1006/excr.2002.5555] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromatin structure plays a critical role in eukaryotic gene transcriptional regulation. The beta-globin locus provides an ideal system within which to study the interplay between chromatin structure and transcriptional regulation. The process of beta-globin locus activation is remarkably intricate and involves at least two distinct events: chromatin opening and gene activation. Great progress has been made in recent years in understanding how locus control regions confer high-level expression to linked genes. Current interest focuses on some special events, including formation of locus control region hypersensitivity sites, ATP-dependent chromatin remodeling, localized H3 hyperacetylation, and intergenic transcription, which link chromatin and beta-globin locus regulation. These events, and their possible molecular bases, are summarized together with speculations concerning their connections.
Collapse
Affiliation(s)
- Xiang Hui Fu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, P.R. China
| | | | | |
Collapse
|
733
|
Sewalt RGAB, Lachner M, Vargas M, Hamer KM, den Blaauwen JL, Hendrix T, Melcher M, Schweizer D, Jenuwein T, Otte AP. Selective interactions between vertebrate polycomb homologs and the SUV39H1 histone lysine methyltransferase suggest that histone H3-K9 methylation contributes to chromosomal targeting of Polycomb group proteins. Mol Cell Biol 2002; 22:5539-53. [PMID: 12101246 PMCID: PMC133945 DOI: 10.1128/mcb.22.15.5539-5553.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Polycomb group (PcG) proteins form multimeric chromatin-associated protein complexes that are involved in heritable repression of gene activity. Two distinct human PcG complexes have been characterized. The EED/EZH2 PcG complex utilizes histone deacetylation to repress gene activity. The HPC/HPH PcG complex contains the HPH, RING1, BMI1, and HPC proteins. Here we show that vertebrate Polycomb homologs HPC2 and XPc2, but not M33/MPc1, interact with the histone lysine methyltransferase (HMTase) SUV39H1 both in vitro and in vivo. We further find that overexpression of SUV39H1 induces selective nuclear relocalization of HPC/HPH PcG proteins but not of the EED/EZH2 PcG proteins. This SUV39H1-dependent relocalization concentrates the HPC/HPH PcG proteins to the large pericentromeric heterochromatin domains (1q12) on human chromosome 1. Within these PcG domains we observe increased H3-K9 methylation. Finally, we show that H3-K9 HMTase activity is associated with endogenous HPC2. Our findings suggest a role for the SUV39H1 HMTase and histone H3-K9 methylation in the targeting of human HPC/HPH PcG proteins to modified chromatin structures.
Collapse
Affiliation(s)
- Richard G A B Sewalt
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
734
|
Sun ZW, Allis CD. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 2002; 418:104-8. [PMID: 12077605 DOI: 10.1038/nature00883] [Citation(s) in RCA: 814] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotes, the DNA of the genome is packaged with histone proteins to form nucleosomal filaments, which are, in turn, folded into a series of less well understood chromatin structures. Post-translational modifications of histone tail domains modulate chromatin structure and gene expression. Of these, histone ubiquitination is poorly understood. Here we show that the ubiquitin-conjugating enzyme Rad6 (Ubc2) mediates methylation of histone H3 at lysine 4 (Lys 4) through ubiquitination of H2B at Lys 123 in yeast (Saccharomyces cerevisiae). Moreover, H3 (Lys 4) methylation is abolished in the H2B-K123R mutant, whereas H3-K4R retains H2B (Lys 123) ubiquitination. These data indicate a unidirectional regulatory pathway in which ubiquitination of H2B (Lys 123) is a prerequisite for H3 (Lys 4) methylation. We also show that an H2B-K123R mutation perturbs silencing at the telomere, providing functional links between Rad6-mediated H2B (Lys 123) ubiquitination, Set1-mediated H3 (Lys 4) methylation, and transcriptional silencing. Thus, these data reveal a pathway leading to gene regulation through concerted histone modifications on distinct histone tails. We refer to this as 'trans-tail' regulation of histone modification, a stated prediction of the histone code hypothesis.
Collapse
Affiliation(s)
- Zu-Wen Sun
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908-0733, USA
| | | |
Collapse
|
735
|
Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, Kouzarides T, Schreiber SL. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A 2002; 99:8695-700. [PMID: 12060701 PMCID: PMC124361 DOI: 10.1073/pnas.082249499] [Citation(s) in RCA: 551] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Posttranslational modifications of histone tails regulate chromatin structure and transcription. Here we present global analyses of histone acetylation and histone H3 Lys 4 methylation patterns in yeast. We observe a significant correlation between acetylation of histones H3 and H4 in promoter regions and transcriptional activity. In contrast, we find that dimethylation of histone H3 Lys 4 in coding regions correlates with transcriptional activity. The histone methyltransferase Set1 is required to maintain expression of these active, promoter-acetylated, and coding region-methylated genes. Global comparisons reveal that genomic regions deacetylated by the yeast enzymes Rpd3 and Hda1 overlap extensively with Lys 4 hypo- but not hypermethylated regions. In the context of recent studies showing that Lys 4 methylation precludes histone deacetylase recruitment, we conclude that Set1 facilitates transcription, in part, by protecting active coding regions from deacetylation.
Collapse
Affiliation(s)
- Bradley E Bernstein
- Department of Chemistry and Chemical Biology and The Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | |
Collapse
|
736
|
Abstract
Most of our knowledge of transcriptional regulation comes from studies in somatic cells. However, increasing evidence reveals that gene regulation mechanisms are different in haploid germ cells. A number of highly specialized strategies operate during spermatogenesis. These include a unique chromatin reorganization program and the use of distinct promoter elements and specific transcription factors. Deciphering the rules governing transcriptional control during spermatogenesis will provide valuable insights of biomedical importance.
Collapse
Affiliation(s)
- Paolo Sassone-Corsi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, B. P. 10142, 67404 Illkirch, Strasbourg, France.
| |
Collapse
|
737
|
Terranova R, Pujol N, Fasano L, Djabali M. Characterisation of set-1, a conserved PR/SET domain gene in Caenorhabditis elegans. Gene 2002; 292:33-41. [PMID: 12119097 DOI: 10.1016/s0378-1119(02)00671-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The SET domain is a highly conserved domain shared between proteins of the antagonistic trithorax and Polycomb groups. It has been shown to play an important role in the assembly of either transcriptional activating or repressing protein complexes, and possesses a histone methyl-transferase activity. We report here the characterisation of the Caenorhabditis elegans gene, set-1, encoding a conserved SET-domain protein. We have analysed the developmental expression pattern of set-1 and show that maximal expression is observed early in development when set-1 is ubiquitously expressed. Its expression is more and more restricted as development progress. Gene inactivation by RNA interference shows that set-1 is an essential gene. Functional analysis of set-1 may contribute to the understanding of the molecular role of the SET domain.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/growth & development
- Caenorhabditis elegans Proteins/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Developmental/drug effects
- Genes, Helminth/genetics
- Green Fluorescent Proteins
- Histone-Lysine N-Methyltransferase
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Methyltransferases/genetics
- Microscopy, Confocal
- Molecular Sequence Data
- Phylogeny
- RNA, Double-Stranded/administration & dosage
- RNA, Double-Stranded/genetics
- RNA, Helminth/genetics
- RNA, Helminth/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Rémi Terranova
- Lymphocyte Development Group, MRC Clinical Sciences Centre, RPMS and Hammersmith Hospital, Du Cane Road, London W12 ONN, UK.
| | | | | | | |
Collapse
|
738
|
Lagger G, O'Carroll D, Rembold M, Khier H, Tischler J, Weitzer G, Schuettengruber B, Hauser C, Brunmeir R, Jenuwein T, Seiser C. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 2002; 21:2672-81. [PMID: 12032080 PMCID: PMC126040 DOI: 10.1093/emboj/21.11.2672] [Citation(s) in RCA: 602] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Histone deacetylases (HDACs) modulate chromatin structure and transcription, but little is known about their function in mammalian development. HDAC1 was implicated previously in the repression of genes required for cell proliferation and differentiation. Here we show that targeted disruption of both HDAC1 alleles results in embryonic lethality before E10.5 due to severe proliferation defects and retardation in development. HDAC1-deficient embryonic stem cells show reduced proliferation rates, which correlate with decreased cyclin-associated kinase activities and elevated levels of the cyclin-dependent kinase inhibitors p21(WAF1/CIP1) and p27(KIP1). Similarly, expression of p21 and p27 is up-regulated in HDAC1-null embryos. In addition, loss of HDAC1 leads to significantly reduced overall deacetylase activity, hyperacetylation of a subset of histones H3 and H4 and concomitant changes in other histone modifications. The expression of HDAC2 and HDAC3 is induced in HDAC1-deficient cells, but cannot compensate for loss of the enzyme, suggesting a unique function for HDAC1. Our study provides the first evidence that a histone deacetylase is essential for unrestricted cell proliferation by repressing the expression of selective cell cycle inhibitors.
Collapse
Affiliation(s)
- Gerda Lagger
- Institute of Medical Biochemistry, Division of Molecular Biology, University of Vienna, Vienna Biocenter, Dr Bohr-Gasse 9/2, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
739
|
Abstract
Diverse post-translational modifications of histone amino termini represent an important epigenetic mechanism for the organisation of chromatin structure and the regulation of gene activity. Within the past two years, great progress has been made in understanding the functional implications of histone methylation; in particular through the characterisation of histone methyltransferases that direct the site-specific methylation of, for example, lysine 9 and lysine 4 positions in the histone H3 amino terminus. All known histone methyltransferases of this type contain the evolutionarily conserved SET domain and appear to be able to stimulate either gene repression or gene activation. Methylation of H3 Lys9 and Lys4 has been visualised in native chromatin, indicating opposite roles in structuring repressive or accessible chromatin domains. For example, at the mating-type loci in Schizosaccharomyces pombe, at pericentric heterochromatin and at the inactive X chromosome in mammals, striking differences between these distinct marks have been observed. H3 Lys9 methylation is also important to direct additional epigenetic signals such as DNA methylation--for example, in Neurospora crassa and in Arabidopsis thaliana. Together, the available data strongly establish histone lysine methylation as a central modification for the epigenetic organisation of eukaryotic genomes.
Collapse
Affiliation(s)
- Monika Lachner
- Research Institute of Molecular Pathology, The Vienna Biocenter, Dr Bohrgasse 7, A-1030 Vienna, Austria
| | | |
Collapse
|
740
|
Bouazoune K, Mitterweger A, Längst G, Imhof A, Akhtar A, Becker PB, Brehm A. The dMi-2 chromodomains are DNA binding modules important for ATP-dependent nucleosome mobilization. EMBO J 2002; 21:2430-40. [PMID: 12006495 PMCID: PMC125999 DOI: 10.1093/emboj/21.10.2430] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drosophila Mi-2 (dMi-2) is the ATPase subunit of a complex combining ATP-dependent nucleosome remodelling and histone deacetylase activities. dMi-2 contains an HMG box-like region, two PHD fingers, two chromodomains and a SNF2-type ATPase domain. It is not known which of these domains contribute to nucleosome remodelling. We have tested a panel of dMi-2 deletion mutants in ATPase, nucleosome mobilization and nucleosome binding assays. Deletion of the chromodomains impairs all three activities. A dMi-2 mutant lacking the chromodomains is incorporated into a functional histone deacetylase complex in vivo but has lost nucleosome-stimulated ATPase activity. In contrast to dHP1, dMi-2 does not bind methylated histone H3 tails and does not require histone tails for nucleosome binding. Instead, the dMi-2 chromodomains display DNA binding activity that is not shared by other chromodomains. Our results suggest that the chromodomains act at an early step of the remodelling process to bind the nucleosome substrate predominantly via protein-DNA interactions. Furthermore, we identify DNA binding as a novel chromodomain-associated activity.
Collapse
Affiliation(s)
| | | | | | | | - Asifa Akhtar
- Adolf-Butenandt-Institut, Molekularbiologie, Ludwig-Maximilians-Universität, Schillerstrasse 44, D-80336 München, Germany
Present address: EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail:
| | | | - Alexander Brehm
- Adolf-Butenandt-Institut, Molekularbiologie, Ludwig-Maximilians-Universität, Schillerstrasse 44, D-80336 München, Germany
Present address: EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail:
| |
Collapse
|
741
|
Dillon N, Festenstein R. Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet 2002; 18:252-8. [PMID: 12047950 DOI: 10.1016/s0168-9525(02)02648-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Heterochromatin mediates many diverse functions in the cell nucleus, including centromere function, gene silencing and nuclear organization. The condensed structure of pericentromeric heterochromatin is associated with the presence of a regular arrangement of nucleosomes, which might be due in part to the underlying sequence of the satellite repeats. Recent studies identified methylation of the histone H3 tail as an epigenetic mark that affects acetylation and phosphorylation of histone tail residues and also acts as a recognition signal for binding of heterochromatin protein 1 (HP1). The decision to silence or activate heterochromatic genes appears to be the result of a balance between negative factors that promote the formation of condensed higher-order chromatin structure, and positively acting transcription factors that bind to regulatory sequences and activate gene expression.
Collapse
Affiliation(s)
- Niall Dillon
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London, UK W12 0NN.
| | | |
Collapse
|
742
|
He G, Margolis DM. Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol Cell Biol 2002; 22:2965-73. [PMID: 11940654 PMCID: PMC133763 DOI: 10.1128/mcb.22.9.2965-2973.2002] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Revised: 11/30/2001] [Accepted: 01/21/2002] [Indexed: 12/11/2022] Open
Abstract
Repression of human immunodeficiency virus type 1 (HIV-1) transcription may contribute to the establishment or maintenance of proviral quiescence in infected CD4(+) cells. The host factors YY1 and LSF cooperatively recruit histone deacetylase 1 (HDAC1) to the HIV-1 long terminal repeat (LTR) and inhibit transcription. We demonstrate here regulation of occupancy of HDAC1 at a positioned nucleosome (nuc 1) near the transcription start site of integrated LTR. We find that expression of YY1 increases occupancy by HDAC1, decreases acetylation at nuc 1, and downregulates LTR expression. HDAC1 recruitment and histone hypoacetylation were also seen when Tat activation was inhibited by the overexpression of YY1. A YY1 mutant without an HDAC1 interaction domain and incompetent to inhibit LTR activation fails to recruit HDAC1 to LTR or decrease nuc 1 acetylation. Further, expression of a dominant-negative mutant of LSF (dnLSF), which inhibits LSF occupancy and LTR repression, results in acetylation and decreased HDAC1 occupancy at nuc 1. Conversely, exposure of cells to the histone deacetylase inhibitor trichostatin A or activation of LTR expression by HIV-1 Tat results in the displacement of HDAC1 from nuc 1, in association with increased acetylation of histone H4. Recruitment of HDAC1 to the LTR nuc 1 can counteract Tat activation and repress LTR expression. Significantly, when repression is overcome, LTR activation is associated with decreased HDAC1 occupancy. Since the persistence of integrated HIV-1 genomes despite potent suppression of viral replication is a major obstacle for current antiretroviral therapy, strategies to selectively disrupt the quiescence of chromosomal provirus may play a role in the future treatment of AIDS.
Collapse
Affiliation(s)
- Guocheng He
- Department of Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | |
Collapse
|
743
|
Grienenberger A, Miotto B, Sagnier T, Cavalli G, Schramke V, Geli V, Mariol MC, Berenger H, Graba Y, Pradel J. The MYST domain acetyltransferase Chameau functions in epigenetic mechanisms of transcriptional repression. Curr Biol 2002; 12:762-6. [PMID: 12007422 DOI: 10.1016/s0960-9822(02)00814-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reversible acetylation of histone tails plays an important role in chromatin remodelling and regulation of gene activity. While modification by histone acetyltransferase (HAT) is usually linked to transcriptional activation, we provide here evidence for HAT function in several types of epigenetic repression. Chameau (Chm), a new Drosophila member of the MYST HAT family, dominantly suppresses position effect variegation (PEV), is required for the maintenance of Hox gene silencing by Polycomb group (PcG) proteins, and can partially substitute for the MYST Sas2 HAT in yeast telomeric position effect (TPE). Finally, we provide in vivo evidence that the acetyltransferase activity of Chm is required in these processes, since a variant protein mutated in the catalytic domain no longer rescues PEV modification, telomeric silencing of SAS2-deficient yeast cells, nor lethality of chm mutant flies. These findings emphasize the role of an acetyltransferase in gene silencing, which supports, according to the histone code hypothesis, that transcription at a particular locus is determined by a precise combination of histone tail modifications rather than by overall acetylation levels.
Collapse
Affiliation(s)
- Aurélie Grienenberger
- Laboratoire de Génétique et Physiologie du Développement, Institut de Biologie du Développement de Marseille, CNRS/INSERM/Université de la Méditerranée, Parc Scientifique de Luminy, Case 907, 13288 Marseille Cedex 9, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
744
|
Legube G, Linares LK, Lemercier C, Scheffner M, Khochbin S, Trouche D. Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation. EMBO J 2002; 21:1704-12. [PMID: 11927554 PMCID: PMC125958 DOI: 10.1093/emboj/21.7.1704] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acetylation is a prominent post-translational modification of nucleosomal histone N-terminal tails, which regulates chromatin accessibility. Accordingly, histone acetyltransferases (HATs) play major roles in processes such as transcription. Here, we show that the HAT Tip60, which is involved in DNA repair and apoptosis following gamma irradiation, is subjected to proteasome-dependent proteolysis. Furthermore, we provide evidence that Mdm2, the ubiquitin ligase of the p53 tumour suppressor, interacts physically with Tip60 and induces its ubiquitylation and proteasome-dependent degradation. Moreover, a ubiquitin ligase-defective mutant of Mdm2 had no effect on Tip60 stability. Our results indicate that Mdm2 targets both p53 and Tip60, suggesting that these two proteins could be co-regulated with respect to protein stability. Consistent with this hypothesis, Tip60 levels increased significantly upon UV irradiation of Jurkat cells. Collectively, our results suggest that degradation of Tip60 could be part of the mechanism leading to cell transformation by Mdm2.
Collapse
Affiliation(s)
| | - Laetitia K. Linares
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS UMR 5099, 118 Route de Narbonne, Université Paul Sabatier, 31062 Toulouse, France,
Institut für Biochemie, Universität zu Köln, D-50931 Köln, Germany and INSERM U309, Institut Albert Bonniot, 38706 La Tronche Cedex, France Corresponding author e-mail:
| | - Claudie Lemercier
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS UMR 5099, 118 Route de Narbonne, Université Paul Sabatier, 31062 Toulouse, France,
Institut für Biochemie, Universität zu Köln, D-50931 Köln, Germany and INSERM U309, Institut Albert Bonniot, 38706 La Tronche Cedex, France Corresponding author e-mail:
| | - Martin Scheffner
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS UMR 5099, 118 Route de Narbonne, Université Paul Sabatier, 31062 Toulouse, France,
Institut für Biochemie, Universität zu Köln, D-50931 Köln, Germany and INSERM U309, Institut Albert Bonniot, 38706 La Tronche Cedex, France Corresponding author e-mail:
| | - Saadi Khochbin
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS UMR 5099, 118 Route de Narbonne, Université Paul Sabatier, 31062 Toulouse, France,
Institut für Biochemie, Universität zu Köln, D-50931 Köln, Germany and INSERM U309, Institut Albert Bonniot, 38706 La Tronche Cedex, France Corresponding author e-mail:
| | - Didier Trouche
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS UMR 5099, 118 Route de Narbonne, Université Paul Sabatier, 31062 Toulouse, France,
Institut für Biochemie, Universität zu Köln, D-50931 Köln, Germany and INSERM U309, Institut Albert Bonniot, 38706 La Tronche Cedex, France Corresponding author e-mail:
| |
Collapse
|
745
|
Huang Y. Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res 2002; 30:1465-82. [PMID: 11917007 PMCID: PMC101825 DOI: 10.1093/nar/30.7.1465] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcriptional silencing is a heritable form of gene inactivation that involves the assembly of large regions of DNA into a specialized chromatin structure that inhibits transcription. This phenomenon is responsible for inhibiting transcription at silent mating-type loci, telomeres and rDNA repeats in both budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe, as well as at centromeres in fission yeast. Although transcriptional silencing in both S.cerevisiae and S.pombe involves modification of chromatin, no apparent amino acid sequence similarities have been reported between the proteins involved in establishment and maintenance of silent chromatin in these two distantly related yeasts. Silencing in S.cerevisiae is mediated by Sir2p-containing complexes, whereas silencing in S.pombe is mediated primarily by Swi6-containing complexes. The Swi6 complexes of S.pombe contain proteins closely related to their counterparts in higher eukaryotes, but have no apparent orthologs in S.cerevisiae. Silencing proteins from both yeasts are also actively involved in other chromosome-related nuclear functions, including DNA repair and the regulation of chromatin structure.
Collapse
|
746
|
Simon JA, Tamkun JW. Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. Curr Opin Genet Dev 2002; 12:210-8. [PMID: 11893495 DOI: 10.1016/s0959-437x(02)00288-5] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polycomb and trithorax group proteins are evolutionarily conserved chromatin components that maintain stable states of gene expression. Recent studies have identified and characterized several multiprotein complexes containing these transcriptional regulators. Advances in understanding molecular activities of these complexes in vitro, and functional domains present in their subunits, suggest that they control transcription through multistep mechanisms that involve nucleosome modification, chromatin remodeling, and interaction with general transcription factors.
Collapse
Affiliation(s)
- Jeffrey A Simon
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church St., Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
747
|
Abstract
Covalent modifications of the amino termini of the core histones in nucleosomes have important roles in gene regulation. Research in the past two years reveals these modifications to consist of phosphorylation, methylation and ubiquitination, in addition to the better-characterized acetylation. This multiplicity of modifications, and their occurrence in patterns and dependent sequences, argues persuasively for the existence of a histone code.
Collapse
Affiliation(s)
- Shelley L Berger
- The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
748
|
Kalkhoven E, Teunissen H, Houweling A, Verrijzer CP, Zantema A. The PHD type zinc finger is an integral part of the CBP acetyltransferase domain. Mol Cell Biol 2002; 22:1961-70. [PMID: 11884585 PMCID: PMC133676 DOI: 10.1128/mcb.22.7.1961-1970.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone acetyltransferases (HATs) such as CBP and p300 are regarded as key regulators of RNA polymerase II-mediated transcription, but the critical structural features of their HAT modules remain ill defined. The HAT domains of CBP and p300 are characterized by the presence of a highly conserved putative plant homeodomain (PHD) (C4HC3) type zinc finger, which is part of the functionally uncharacterized cysteine-histidine-rich region 2 (CH2). Here we show that this region conforms to the PHD type zinc finger consensus and that it is essential for in vitro acetylation of core histones and the basal transcription factor TFIIE34 as well as for CBP autoacetylation. PHD finger mutations also reduced the transcriptional activity of the full-length CBP protein when tested on transfected reporter genes. Importantly, similar results were obtained on integrated reporters, which reflect a more natural chromatinized state. Taken together, our results indicate that the PHD finger forms an integral part of the enzymatic core of the HAT domain of CBP.
Collapse
Affiliation(s)
- Eric Kalkhoven
- Department of Molecular Cell Biology, MGC Center for Biomedical Genetics, Leiden University Medical Center, 2300 RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
749
|
Johnson CA, White DA, Lavender JS, O'Neill LP, Turner BM. Human class I histone deacetylase complexes show enhanced catalytic activity in the presence of ATP and co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. J Biol Chem 2002; 277:9590-7. [PMID: 11777905 DOI: 10.1074/jbc.m107942200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibodies to histone deacetylases (HDACs) have been used to immuno-isolate deacetylase complexes from HeLa cell extracts. Complexes shown to contain HDAC1, HDAC3, HDAC6, and HDAC1+2 as their catalytic subunits have been used in an antibody-based assay that detects deacetylation of whole histones at defined lysines. The class II deacetylase HDAC6 was inactive in this assay, but the three class I enzymes deacetylated all histone lysines tested, although with varying efficiency. In comparison to HDAC1, HDAC3 preferentially deacetylated lysines 5 and 12 of H4 and lysine 5 of H2A. H4 tails in purified mononucleosomes were refractory to deacetylation by both HDAC1 and HDAC3, unless ATP was added to the reaction mix. Surprisingly, ATP also consistently enhanced cleavage of free, non-nucleosomal histones, but not small peptides, by both enzyme complexes. We found no evidence that ATP operates by phosphorylation of components of the HDAC complex, but have shown that HDACs 1, 2, and 3 all co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. Another common ATP-dependent chaperone, Hsp90, was absent from all HDAC complexes tested, whereas Hsp60 associated with HDAC1 only. We suggest that Hsp chaperone proteins enhance the deacetylase activity of HDAC complexes by ATP-dependent manipulation of protein substrates.
Collapse
Affiliation(s)
- Colin A Johnson
- Chromatin and Gene Expression Group, Department of Anatomy, University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
750
|
Eberharter A, Becker PB. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 2002; 3:224-9. [PMID: 11882541 PMCID: PMC1084017 DOI: 10.1093/embo-reports/kvf053] [Citation(s) in RCA: 677] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The organization of eukaryotic chromatin has a major impact on all nuclear processes involving DNA substrates. Gene expression is affected by the positioning of individual nucleosomes relative to regulatory sequence elements, by the folding of the nucleosomal fiber into higher-order structures and by the compartmentalization of functional domains within the nucleus. Because site-specific acetylation of nucleosomal histones influences all three aspects of chromatin organization, it is central to the switch between permissive and repressive chromatin structure. The targeting of enzymes that modulate the histone acetylation status of chromatin, in synergy with the effects mediated by other chromatin remodeling factors, is central to gene regulation.
Collapse
Affiliation(s)
- Anton Eberharter
- Adolf-Butenandt-Institut, Molekularbiologie, Ludwig-Maximilians-Universität, Schillerstrasse 44, D-80336 München, Germany
| | | |
Collapse
|