701
|
Cao R, Bhattacharya D, Adhikari B, Li J, Cheng J. Massive integration of diverse protein quality assessment methods to improve template based modeling in CASP11. Proteins 2015; 84 Suppl 1:247-59. [PMID: 26369671 DOI: 10.1002/prot.24924] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/21/2015] [Accepted: 09/10/2015] [Indexed: 12/28/2022]
Abstract
Model evaluation and selection is an important step and a big challenge in template-based protein structure prediction. Individual model quality assessment methods designed for recognizing some specific properties of protein structures often fail to consistently select good models from a model pool because of their limitations. Therefore, combining multiple complimentary quality assessment methods is useful for improving model ranking and consequently tertiary structure prediction. Here, we report the performance and analysis of our human tertiary structure predictor (MULTICOM) based on the massive integration of 14 diverse complementary quality assessment methods that was successfully benchmarked in the 11th Critical Assessment of Techniques of Protein Structure prediction (CASP11). The predictions of MULTICOM for 39 template-based domains were rigorously assessed by six scoring metrics covering global topology of Cα trace, local all-atom fitness, side chain quality, and physical reasonableness of the model. The results show that the massive integration of complementary, diverse single-model and multi-model quality assessment methods can effectively leverage the strength of single-model methods in distinguishing quality variation among similar good models and the advantage of multi-model quality assessment methods of identifying reasonable average-quality models. The overall excellent performance of the MULTICOM predictor demonstrates that integrating a large number of model quality assessment methods in conjunction with model clustering is a useful approach to improve the accuracy, diversity, and consequently robustness of template-based protein structure prediction. Proteins 2016; 84(Suppl 1):247-259. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Renzhi Cao
- Department of Computer Science, University of Missouri, Columbia, Missouri, 65211
| | | | - Badri Adhikari
- Department of Computer Science, University of Missouri, Columbia, Missouri, 65211
| | - Jilong Li
- Department of Computer Science, University of Missouri, Columbia, Missouri, 65211
| | - Jianlin Cheng
- Department of Computer Science, University of Missouri, Columbia, Missouri, 65211. .,Informatics Institute, University of Missouri, Columbia, Missouri, 65211.
| |
Collapse
|
702
|
Popov P, Grudinin S. Knowledge of Native Protein–Protein Interfaces Is Sufficient To Construct Predictive Models for the Selection of Binding Candidates. J Chem Inf Model 2015; 55:2242-55. [DOI: 10.1021/acs.jcim.5b00372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Petr Popov
- Université Grenoble Alpes, Laboratoire Jean Kuntzmann (LJK), F-38000 Grenoble, France
- CNRS, LJK, F-38000 Grenoble, France
- Inria, F-38000 Grenoble, France
- Moscow Institute
of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Sergei Grudinin
- Université Grenoble Alpes, Laboratoire Jean Kuntzmann (LJK), F-38000 Grenoble, France
- CNRS, LJK, F-38000 Grenoble, France
- Inria, F-38000 Grenoble, France
| |
Collapse
|
703
|
ElFessi-Magouri R, Peigneur S, Othman H, Srairi-Abid N, ElAyeb M, Tytgat J, Kharrat R. Characterization of Kbot21 Reveals Novel Side Chain Interactions of Scorpion Toxins Inhibiting Voltage-Gated Potassium Channels. PLoS One 2015; 10:e0137611. [PMID: 26398235 PMCID: PMC4580410 DOI: 10.1371/journal.pone.0137611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide called Kbot21 has been purified to homogeneity from the venom of Buthus occitanus tunetanus scorpion. Kbot21 is structurally related to BmBKTx1 from the venom of the Asian scorpion Buthus martensii Karsch. These two toxins differ by only two residues at position 13 (R /V) and 24 (D/N).Despite their very similar sequences, Kbot21 and BmBKTx1 differ in their electrophysiological activities. Kbot21 targets KV channel subtypes whereas BmBKTx1 is active on both big conductance (BK) and small conductance (SK) Ca2+-activated K+ channel subtypes, but has no effects on Kv channel subtypes. The docking model of Kbot21 with the Kv1.2 channel shows that the D24 and R13 side-chain of Kbot21 are critical for its interaction with KV channels.
Collapse
Affiliation(s)
- Rym ElFessi-Magouri
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Steve Peigneur
- Laboratory of Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000, Leuven, Belgium
| | - Houcemeddine Othman
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Najet Srairi-Abid
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Mohamed ElAyeb
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Jan Tytgat
- Laboratory of Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000, Leuven, Belgium
| | - Riadh Kharrat
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
- * E-mail:
| |
Collapse
|
704
|
Cressiot B, Braselmann E, Oukhaled A, Elcock AH, Pelta J, Clark PL. Dynamics and Energy Contributions for Transport of Unfolded Pertactin through a Protein Nanopore. ACS NANO 2015; 9:9050-61. [PMID: 26302243 PMCID: PMC4835817 DOI: 10.1021/acsnano.5b03053] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To evaluate the physical parameters governing translocation of an unfolded protein across a lipid bilayer, we studied protein transport through aerolysin, a passive protein channel, at the single-molecule level. The protein model used was the passenger domain of pertactin, an autotransporter virulence protein. Transport of pertactin through the aerolysin nanopore was detected as transient partial current blockades as the unfolded protein partially occluded the aerolysin channel. We compared the dynamics of entry and transport for unfolded pertactin and a covalent end-to-end dimer of the same protein. For both the monomer and the dimer, the event frequency of current blockades increased exponentially with the applied voltage, while the duration of each event decreased exponentially as a function of the electrical potential. The blockade time was twice as long for the dimer as for the monomer. The calculated activation free energy includes a main enthalpic component that we attribute to electrostatic interactions between pertactin and the aerolysin nanopore (despite the low Debye length), plus an entropic component due to confinement of the unfolded chain within the narrow pore. Comparing our experimental results to previous studies and theory suggests that unfolded proteins cross the membrane by passing through the nanopore in a somewhat compact conformation according to the "blob" model of Daoud and de Gennes.
Collapse
Affiliation(s)
- Benjamin Cressiot
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Esther Braselmann
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | | | - Adrian H. Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Juan Pelta
- LAMBE UMR 8587 CNRS, University of Évry-Val-d'Essonne, Évry, France
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
705
|
He J, Dai J, Li J, Peng X, Niemi AJ. Aspects of structural landscape of human islet amyloid polypeptide. J Chem Phys 2015; 142:045102. [PMID: 25638009 DOI: 10.1063/1.4905586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The human islet amyloid polypeptide (hIAPP) co-operates with insulin to maintain glycemic balance. It also constitutes the amyloid plaques that aggregate in the pancreas of type-II diabetic patients. We have performed extensive in silico investigations to analyse the structural landscape of monomeric hIAPP, which is presumed to be intrinsically disordered. For this, we construct from first principles a highly predictive energy function that describes a monomeric hIAPP observed in a nuclear magnetic resonance experiment, as a local energy minimum. We subject our theoretical model of hIAPP to repeated heating and cooling simulations, back and forth between a high temperature regime where the conformation resembles a random walker and a low temperature limit where no thermal motions prevail. We find that the final low temperature conformations display a high level of degeneracy, in a manner which is fully in line with the presumed intrinsically disordered character of hIAPP. In particular, we identify an isolated family of α-helical conformations that might cause the transition to amyloidosis, by nucleation.
Collapse
Affiliation(s)
- Jianfeng He
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jin Dai
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jing Li
- Institute of Biopharmaceutical Research, Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd, Beijing 102206, China
| | - Xubiao Peng
- Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala, Sweden
| | - Antti J Niemi
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
706
|
Yang J, Zhang W, He B, Walker SE, Zhang H, Govindarajoo B, Virtanen J, Xue Z, Shen HB, Zhang Y. Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade. Proteins 2015; 84 Suppl 1:233-46. [PMID: 26343917 DOI: 10.1002/prot.24918] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/13/2015] [Accepted: 08/31/2015] [Indexed: 01/26/2023]
Abstract
We report the structure prediction results of a new composite pipeline for template-based modeling (TBM) in the 11th CASP experiment. Starting from multiple structure templates identified by LOMETS based meta-threading programs, the QUARK ab initio folding program is extended to generate initial full-length models under strong constraints from template alignments. The final atomic models are then constructed by I-TASSER based fragment reassembly simulations, followed by the fragment-guided molecular dynamic simulation and the MQAP-based model selection. It was found that the inclusion of QUARK-TBM simulations as an intermediate modeling step could help improve the quality of the I-TASSER models for both Easy and Hard TBM targets. Overall, the average TM-score of the first I-TASSER model is 12% higher than that of the best LOMETS templates, with the RMSD in the same threading-aligned regions reduced from 5.8 to 4.7 Å. Nevertheless, there are nearly 18% of TBM domains with the templates deteriorated by the structure assembly pipeline, which may be attributed to the errors of secondary structure and domain orientation predictions that propagate through and degrade the procedures of template identification and final model selections. To examine the record of progress, we made a retrospective report of the I-TASSER pipeline in the last five CASP experiments (CASP7-11). The data show no clear progress of the LOMETS threading programs over PSI-BLAST; but obvious progress on structural improvement relative to threading templates was witnessed in recent CASP experiments, which is probably attributed to the integration of the extended ab initio folding simulation with the threading assembly pipeline and the introduction of atomic-level structure refinements following the reduced modeling simulations. Proteins 2016; 84(Suppl 1):233-246. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jianyi Yang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Wenxuan Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Baoji He
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Sara Elizabeth Walker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Hongjiu Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Brandon Govindarajoo
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Jouko Virtanen
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Zhidong Xue
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Hong-Bin Shen
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109.
| |
Collapse
|
707
|
Joo K, Joung I, Lee SY, Kim JY, Cheng Q, Manavalan B, Joung JY, Heo S, Lee J, Nam M, Lee IH, Lee SJ, Lee J. Template based protein structure modeling by global optimization in CASP11. Proteins 2015; 84 Suppl 1:221-32. [PMID: 26329522 DOI: 10.1002/prot.24917] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/04/2015] [Accepted: 08/21/2015] [Indexed: 11/11/2022]
Abstract
For the template-based modeling (TBM) of CASP11 targets, we have developed three new protein modeling protocols (nns for server prediction and LEE and LEER for human prediction) by improving upon our previous CASP protocols (CASP7 through CASP10). We applied the powerful global optimization method of conformational space annealing to three stages of optimization, including multiple sequence-structure alignment, three-dimensional (3D) chain building, and side-chain remodeling. For more successful fold recognition, a new alignment method called CRFalign was developed. It can incorporate sensitive positional and environmental dependence in alignment scores as well as strong nonlinear correlations among various features. Modifications and adjustments were made to the form of the energy function and weight parameters pertaining to the chain building procedure. For the side-chain remodeling step, residue-type dependence was introduced to the cutoff value that determines the entry of a rotamer to the side-chain modeling library. The improved performance of the nns server method is attributed to successful fold recognition achieved by combining several methods including CRFalign and to the current modeling formulation that can incorporate native-like structural aspects present in multiple templates. The LEE protocol is identical to the nns one except that CASP11-released server models are used as templates. The success of LEE in utilizing CASP11 server models indicates that proper template screening and template clustering assisted by appropriate cluster ranking promises a new direction to enhance protein 3D modeling. Proteins 2016; 84(Suppl 1):221-232. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Keehyoung Joo
- Center for in Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea.,Center for Advanced Computation, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - InSuk Joung
- Center for in Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - Sun Young Lee
- Center for in Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - Jong Yun Kim
- Center for in Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - Qianyi Cheng
- Center for in Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - Balachandran Manavalan
- Center for in Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - Jong Young Joung
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - Seungryong Heo
- Center for in Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - Juyong Lee
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20852
| | - Mikyung Nam
- Center for in Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - In-Ho Lee
- Center for in Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea.,Korea Research Institute of Standards and Science (KRISS), Seoul, 305-600, Korea
| | - Sung Jong Lee
- Center for in Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea.,Department of Physics, University of Suwon, Hwaseong-Si, Gyeonggi-Do, 445-743, Korea
| | - Jooyoung Lee
- Center for in Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea. .,Center for Advanced Computation, Korea Institute for Advanced Study, Seoul, 130-722, Korea. .,School of Computational Sciences, Korea Institute for Advanced Study, Seoul, 130-722, Korea.
| |
Collapse
|
708
|
NMR structure and dynamics of the agonist dynorphin peptide bound to the human kappa opioid receptor. Proc Natl Acad Sci U S A 2015; 112:11852-7. [PMID: 26372966 DOI: 10.1073/pnas.1510117112] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of the dynorphin (1-13) peptide (dynorphin) bound to the human kappa opioid receptor (KOR) has been determined by liquid-state NMR spectroscopy. (1)H and (15)N chemical shift variations indicated that free and bound peptide is in fast exchange in solutions containing 1 mM dynorphin and 0.01 mM KOR. Radioligand binding indicated an intermediate-affinity interaction, with a Kd of ∼200 nM. Transferred nuclear Overhauser enhancement spectroscopy was used to determine the structure of bound dynorphin. The N-terminal opioid signature, YGGF, was observed to be flexibly disordered, the central part of the peptide from L5 to R9 to form a helical turn, and the C-terminal segment from P10 to K13 to be flexibly disordered in this intermediate-affinity bound state. Combining molecular modeling with NMR provided an initial framework for understanding multistep activation of a G protein-coupled receptor by its cognate peptide ligand.
Collapse
|
709
|
Lehmann A, Wixted JHF, Shapovalov MV, Roder H, Dunbrack RL, Robinson MK. Stability engineering of anti-EGFR scFv antibodies by rational design of a lambda-to-kappa swap of the VL framework using a structure-guided approach. MAbs 2015; 7:1058-71. [PMID: 26337947 DOI: 10.1080/19420862.2015.1088618] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Phage-display technology facilitates rapid selection of antigen-specific single-chain variable fragment (scFv) antibodies from large recombinant libraries. ScFv antibodies, composed of a VH and VL domain, are readily engineered into multimeric formats for the development of diagnostics and targeted therapies. However, the recombinant nature of the selection strategy can result in VH and VL domains with sub-optimal biophysical properties, such as reduced thermodynamic stability and enhanced aggregation propensity, which lead to poor production and limited application. We found that the C10 anti-epidermal growth factor receptor (EGFR) scFv, and its affinity mutant, P2224, exhibit weak production from E. coli. Interestingly, these scFv contain a fusion of lambda3 and lambda1 V-region (LV3 and LV1) genes, most likely the result of a PCR aberration during library construction. To enhance the biophysical properties of these scFvs, we utilized a structure-based approach to replace and redesign the pre-existing framework of the VL domain to one that best pairs with the existing VH. We describe a method to exchange lambda sequences with a more stable kappa3 framework (KV3) within the VL domain that incorporates the original lambda DE-loop. The resulting scFvs, C10KV3_LV1DE and P2224KV3_LV1DE, are more thermodynamically stable and easier to produce from bacterial culture. Additionally, C10KV3_LV1DE and P2224KV3_LV1DE retain binding affinity to EGFR, suggesting that such a dramatic framework swap does not significantly affect scFv binding. We provide here a novel strategy for redesigning the light chain of problematic scFvs to enhance their stability and therapeutic applicability.
Collapse
Affiliation(s)
- Andreas Lehmann
- a Molecular Therapeutics Program, Fox Chase Cancer Center , Philadelphia , PA.,b Current address: Biogen , Cambridge MA
| | | | - Maxim V Shapovalov
- a Molecular Therapeutics Program, Fox Chase Cancer Center , Philadelphia , PA
| | - Heinrich Roder
- a Molecular Therapeutics Program, Fox Chase Cancer Center , Philadelphia , PA
| | - Roland L Dunbrack
- a Molecular Therapeutics Program, Fox Chase Cancer Center , Philadelphia , PA
| | - Matthew K Robinson
- a Molecular Therapeutics Program, Fox Chase Cancer Center , Philadelphia , PA
| |
Collapse
|
710
|
Guo F, Li SC, Wei Z, Zhu D, Shen C, Wang L. Structural neighboring property for identifying protein-protein binding sites. BMC SYSTEMS BIOLOGY 2015; 9 Suppl 5:S3. [PMID: 26356630 PMCID: PMC4565107 DOI: 10.1186/1752-0509-9-s5-s3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background The protein-protein interaction plays a key role in the control of many biological functions, such as drug design and functional analysis. Determination of binding sites is widely applied in molecular biology research. Therefore, many efficient methods have been developed for identifying binding sites. In this paper, we calculate structural neighboring property through Voronoi diagram. Using 6,438 complexes, we study local biases of structural neighboring property on interface. Results We propose a novel statistical method to extract interacting residues, and interacting patches can be clustered as predicted interface residues. In addition, structural neighboring property can be adopted to construct a new energy function, for evaluating docking solutions. It includes new statistical property as well as existing energy items. Comparing to existing methods, our approach improves overall Fnat value by at least 3%. On Benchmark v4.0, our method has average Irmsd value of 3.31Å and overall Fnat value of 63%, which improves upon Irmsd of 3.89 Å and Fnat of 49% for ZRANK, and Irmsd of 3.99Å and Fnat of 46% for ClusPro. On the CAPRI targets, our method has average Irmsd value of 3.46 Å and overall Fnat value of 45%, which improves upon Irmsd of 4.18 Å and Fnat of 40% for ZRANK, and Irmsd of 5.12 Å and Fnat of 32% for ClusPro. Conclusions Experiments show that our method achieves better results than some state-of-the-art methods for identifying protein-protein binding sites, with the prediction quality improved in terms of CAPRI evaluation criteria.
Collapse
|
711
|
Choudhury AR, Sikorska E, van den Boom J, Bayer P, Popenda Ł, Szutkowski K, Jurga S, Bonomi M, Sali A, Zhukov I, Passamonti S, Novič M. Structural Model of the Bilitranslocase Transmembrane Domain Supported by NMR and FRET Data. PLoS One 2015; 10:e0135455. [PMID: 26291722 PMCID: PMC4546402 DOI: 10.1371/journal.pone.0135455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/22/2015] [Indexed: 11/19/2022] Open
Abstract
We present a 3D model of the four transmembrane (TM) helical regions of bilitranslocase (BTL), a structurally uncharacterized protein that transports organic anions across the cell membrane. The model was computed by considering helix-helix interactions as primary constraints, using Monte Carlo simulations. The interactions between the TM2 and TM3 segments have been confirmed by Förster resonance energy transfer (FRET) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy, increasing our confidence in the model. Several insights into the BTL transport mechanism were obtained by analyzing the model. For example, the observed cis-trans Leu-Pro peptide bond isomerization in the TM3 fragment may indicate a key conformational change during anion transport by BTL. Our structural model of BTL may facilitate further studies, including drug discovery.
Collapse
Affiliation(s)
| | | | - Johannes van den Boom
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Peter Bayer
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Łukasz Popenda
- NanoBioMedical Center, Adam Mickiewicz University, Poznań, Poland
| | - Kosma Szutkowski
- NanoBioMedical Center, Adam Mickiewicz University, Poznań, Poland
- Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Stefan Jurga
- NanoBioMedical Center, Adam Mickiewicz University, Poznań, Poland
- Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Massimiliano Bonomi
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California, San Francisco, California, United States of America
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California, San Francisco, California, United States of America
| | - Igor Zhukov
- NanoBioMedical Center, Adam Mickiewicz University, Poznań, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (MN); (SP); (IZ)
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, Trieste, Italy
- * E-mail: (MN); (SP); (IZ)
| | - Marjana Novič
- National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
- * E-mail: (MN); (SP); (IZ)
| |
Collapse
|
712
|
Choi Y, Hua C, Sentman CL, Ackerman ME, Bailey-Kellogg C. Antibody humanization by structure-based computational protein design. MAbs 2015; 7:1045-57. [PMID: 26252731 PMCID: PMC5045135 DOI: 10.1080/19420862.2015.1076600] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/06/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022] Open
Abstract
Antibodies derived from non-human sources must be modified for therapeutic use so as to mitigate undesirable immune responses. While complementarity-determining region (CDR) grafting-based humanization techniques have been successfully applied in many cases, it remains challenging to maintain the desired stability and antigen binding affinity upon grafting. We developed an alternative humanization approach called CoDAH ("Computationally-Driven Antibody Humanization") in which computational protein design methods directly select sets of amino acids to incorporate from human germline sequences to increase humanness while maintaining structural stability. Retrospective studies show that CoDAH is able to identify variants deemed beneficial according to both humanness and structural stability criteria, even for targets lacking crystal structures. Prospective application to TZ47, a murine anti-human B7H6 antibody, demonstrates the approach. Four diverse humanized variants were designed, and all possible unique VH/VL combinations were produced as full-length IgG1 antibodies. Soluble and cell surface expressed antigen binding assays showed that 75% (6 of 8) of the computationally designed VH/VL variants were successfully expressed and competed with the murine TZ47 for binding to B7H6 antigen. Furthermore, 4 of the 6 bound with an estimated KD within an order of magnitude of the original TZ47 antibody. In contrast, a traditional CDR-grafted variant could not be expressed. These results suggest that the computational protein design approach described here can be used to efficiently generate functional humanized antibodies and provide humanized templates for further affinity maturation.
Collapse
Affiliation(s)
- Yoonjoo Choi
- Department of Computer Science; Dartmouth College; Hanover, NH USA
| | - Casey Hua
- Thayer School of Engineering; Dartmouth College; Hanover, NH USA
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Lebanon, NH USA
| | - Charles L Sentman
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Lebanon, NH USA
| | - Margaret E Ackerman
- Thayer School of Engineering; Dartmouth College; Hanover, NH USA
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Lebanon, NH USA
| | | |
Collapse
|
713
|
Nazmi F, Moosavi MA, Rahmati M, Hoessinpour-Feizi MA. Modeling and structural analysis of human Guanine nucleotide-binding protein-like 3,nucleostemin. Bioinformation 2015; 11:353-8. [PMID: 26339152 PMCID: PMC4546995 DOI: 10.6026/97320630011353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 11/25/2022] Open
Abstract
Human GNL3 (nucleostemin) is a recently discovered nucleolar protein with pivotal functions in maintaining genomic integrity
and determining cell fates of various normal and cancerous stem cells. Recent reports suggest that targeting this GTP-binding
protein may have therapeutic value in cancer. Although, sequence analyzing revealed that nucleostemin (NS) comprises 5
permuted GTP-binding motifs, a crystal structure for this protein is missing at Protein Data Bank (PDB). Obviously, any attempt
for predicting of NS structure can further our knowledge on its functional sites and subsequently designing molecular inhibitors.
Herein, we used bioinformatics tools and could model 262 amino acids of NS (132-393 aa). Initial models were built by
MODELLER, refined with Scwrl4 program, and validated with ProsA and Jcsc databases as well as PSVS software. Then, the best
quality model was chosen for motif and domain analyzing by Pfam, PROSITE and PRINTS. The final model was visualized by
vmd program. This predicted model may pave the way for next studies regarding ligand binding states and interaction sites as
well as screening of databases for potential inhibitors.
Collapse
Affiliation(s)
- Farinaz Nazmi
- Department of Molecular Medicine, Institute of Medical biotechnology, National Institute for genetic Engineering and biotechnology, Tehran, Iran ; Department of Zoology, Faculty of Natural Science, The University of Tabriz, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical biotechnology, National Institute for genetic Engineering and biotechnology, Tehran, Iran ; Hematology and Oncology Research Center, Tabriz University of medical Science, Tabriz, Iran
| | - Marveh Rahmati
- Hematology and Oncology Research Center, Tabriz University of medical Science, Tabriz, Iran
| | | |
Collapse
|
714
|
Oh MH, Bender KW, Kim SY, Wu X, Lee S, Nou IS, Zielinski RE, Clouse SD, Huber SC. Functional analysis of the BRI1 receptor kinase by Thr-for-Ser substitution in a regulatory autophosphorylation site. FRONTIERS IN PLANT SCIENCE 2015; 6:562. [PMID: 26284086 PMCID: PMC4519688 DOI: 10.3389/fpls.2015.00562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/08/2015] [Indexed: 05/30/2023]
Abstract
BRI1 becomes highly phosphorylated in vivo upon perception of the ligand, brassinolide, as a result of autophosphorylation and transphosphorylation by its co-receptor kinase, BAK1. Important autophosphorylation sites include those involved in activation of kinase activity and those that are inhibitory, such as Ser-891. The inhibitory sites are autophosphorylated after kinase activation has been achieved and are postulated to contribute to deactivation of the kinase. The function of phosphosites is usually tested by substituting a non-phosphorylatable residue or an acidic residue that can act as a phosphomimetic. What has typically not been examined is substitution of a Thr for a Ser phosphosite (or vice versa) but given that Thr and Ser are not equivalent amino acids this type of substitution may represent a new approach to engineer regulatory phosphorylation. In the present study with BRI1, we substituted Thr at the Ser-891 phosphosite to generate the S891T directed mutant. The recombinant Flag-BRI1 (S891T) cytoplasmic domain protein (the S891T protein) was catalytically active and phosphorylation occurred at the engineered Thr-891 site. However, the S891T recombinant protein autophosphorylated more slowly than the wild-type protein during expression in E. coli. As a result, activation of peptide kinase activity (measured in vitro) was delayed as was transphosphorylation of bacterial proteins in situ. Stable transgenic expression of BRI1 (S891T)-Flag in Arabidopsis bri1-5 plants did not fully rescue the brassinosteroid (BR) phenotype indicating that BR signaling was constrained. Our working model is that restricted signaling in the S891T plants occurs as a result of the reduced rate of activation of the mutant BRI1 kinase by autophosphorylation. These results provide the platform for future studies to critically test this new model in vivo and establish Ser-Thr substitutions at phosphosites as an interesting approach to consider with other protein kinases.
Collapse
Affiliation(s)
- Man-Ho Oh
- Plant Developmental Genetics, Department of Biological Science, College of Biological Sciences and Biotechnology, Chungnam National UniversityDaejeon, South Korea
- Protein Biochemistry, Department of Plant Biology, University of IllinoisUrbana, IL, USA
| | - Kyle W. Bender
- Protein Biochemistry, Department of Plant Biology, University of IllinoisUrbana, IL, USA
| | - Sang Y. Kim
- Protein Biochemistry, Department of Plant Biology, University of IllinoisUrbana, IL, USA
- U.S. Department of Agriculture, Agricultural Research ServiceUrbana, IL, USA
| | - Xia Wu
- Department of Genome Sciences, University of WashingtonSeattle, WA, USA
| | - Seulki Lee
- Plant Developmental Genetics, Department of Biological Science, College of Biological Sciences and Biotechnology, Chungnam National UniversityDaejeon, South Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National UniversitySunchon, South Korea
| | - Raymond E. Zielinski
- Protein Biochemistry, Department of Plant Biology, University of IllinoisUrbana, IL, USA
| | - Steven D. Clouse
- Department of Horticultural Science, NC State UniversityRaleigh, NC, USA
| | - Steven C. Huber
- Protein Biochemistry, Department of Plant Biology, University of IllinoisUrbana, IL, USA
- U.S. Department of Agriculture, Agricultural Research ServiceUrbana, IL, USA
| |
Collapse
|
715
|
Genome-wide Screening of Human Papillomavirus-Specific CTL Epitopes Presented by HLA-A Alleles in Cervical Cancer. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
716
|
Lee GR, Heo L, Seok C. Effective protein model structure refinement by loop modeling and overall relaxation. Proteins 2015; 84 Suppl 1:293-301. [PMID: 26172288 DOI: 10.1002/prot.24858] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022]
Abstract
Protein structures predicted by state-of-the-art template-based methods may still have errors when the template proteins are not similar enough to the target protein. Overall target structure may deviate from the template structures owing to differences in sequences. Structural information for some local regions such as loops may not be available when there are sequence insertions or deletions. Those structural aspects that originate from deviations from templates can be dealt with by ab initio structure refinement methods to further improve model accuracy. In the CASP11 refinement experiment, we tested three different refinement methods that utilize overall structure relaxation, loop modeling, and quality assessment of multiple initial structures. From this experiment, we conclude that the overall relaxation method can consistently improve model quality. Loop modeling is the most useful when the initial model structure is high quality, with GDT-HA >60. The method that used multiple initial structures further refined the already refined models; the minor improvements with this method raise the issue of problem with the current energy function. Future research directions are also discussed. Proteins 2016; 84(Suppl 1):293-301. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gyu Rie Lee
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Lim Heo
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea.
| |
Collapse
|
717
|
Rathi PC, Jaeger KE, Gohlke H. Structural Rigidity and Protein Thermostability in Variants of Lipase A from Bacillus subtilis. PLoS One 2015; 10:e0130289. [PMID: 26147762 PMCID: PMC4493141 DOI: 10.1371/journal.pone.0130289] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 05/18/2015] [Indexed: 11/24/2022] Open
Abstract
Understanding the origin of thermostability is of fundamental importance in protein biochemistry. Opposing views on increased or decreased structural rigidity of the folded state have been put forward in this context. They have been related to differences in the temporal resolution of experiments and computations that probe atomic mobility. Here, we find a significant (p = 0.004) and fair (R2 = 0.46) correlation between the structural rigidity of a well-characterized set of 16 mutants of lipase A from Bacillus subtilis (BsLipA) and their thermodynamic thermostability. We apply the rigidity theory-based Constraint Network Analysis (CNA) approach, analyzing directly and in a time-independent manner the statics of the BsLipA mutants. We carefully validate the CNA results on macroscopic and microscopic experimental observables and probe for their sensitivity with respect to input structures. Furthermore, we introduce a robust, local stability measure for predicting thermodynamic thermostability. Our results complement work that showed for pairs of homologous proteins that raising the structural stability is the most common way to obtain a higher thermostability. Furthermore, they demonstrate that related series of mutants with only a small number of mutations can be successfully analyzed by CNA, which suggests that CNA can be applied prospectively in rational protein design aimed at higher thermodynamic thermostability.
Collapse
Affiliation(s)
- Prakash Chandra Rathi
- Institute of Pharmaceutical and Medical Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Research Centre Jülich, Jülich, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medical Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
718
|
Rigidity Emerges during Antibody Evolution in Three Distinct Antibody Systems: Evidence from QSFR Analysis of Fab Fragments. PLoS Comput Biol 2015; 11:e1004327. [PMID: 26132144 PMCID: PMC4489365 DOI: 10.1371/journal.pcbi.1004327] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/14/2015] [Indexed: 11/21/2022] Open
Abstract
The effects of somatic mutations that transform polyspecific germline (GL) antibodies to affinity mature (AM) antibodies with monospecificity are compared among three GL-AM Fab pairs. In particular, changes in conformational flexibility are assessed using a Distance Constraint Model (DCM). We have previously established that the DCM can be robustly applied across a series of antibody fragments (VL to Fab), and subsequently, the DCM was combined with molecular dynamics (MD) simulations to similarly characterize five thermostabilizing scFv mutants. The DCM is an ensemble based statistical mechanical approach that accounts for enthalpy/entropy compensation due to network rigidity, which has been quite successful in elucidating conformational flexibility and Quantitative Stability/Flexibility Relationships (QSFR) in proteins. Applied to three disparate antibody systems changes in QSFR quantities indicate that the VH domain is typically rigidified, whereas the VL domain and CDR L2 loop become more flexible during affinity maturation. The increase in CDR H3 loop rigidity is consistent with other studies in the literature. The redistribution of conformational flexibility is largely controlled by nonspecific changes in the H-bond network, although certain Arg to Asp salt bridges create highly localized rigidity increases. Taken together, these results reveal an intricate flexibility/rigidity response that accompanies affinity maturation. Antibodies are protective proteins used by the immune system to recognize and neutralize foreign objects through interactions with a specific part of the target, called an antigen. Antibody structures are Y-shaped, contain multiple protein chains, and include two antigen-binding sites. The binding sites are located at the end of the Fab fragments, which are the upward facing arms of the Y-structure. The Fab fragments maintain binding affinity by themselves, and are thus often used as surrogates to student antibody-antigen interactions. High affinity antibodies are produced during the course of an immune response by successive mutations to germline gene-encoded antibodies. Germline antibodies are more likely to be polyspecific, whereas the affinity maturation process yields monoclonal antibodies that bind specifically to the target antigen. In this work, we use a computational Distance Constraint Model to characterize how mechanical properties change as three disparate germline antibodies are converted to affinity mature. Our results reveal a rich set of mechanical responses throughout the Fab structure. Nevertheless, increased rigidity in the VH domain is consistently observed, which is consistent with the transition from polyspecificity to monospecificity. That is, flexible antibody structures are able to recognize multiple antigens, while increased affinity and specificity is achieved—in part—by structural rigidification.
Collapse
|
719
|
Kumar S, Jena L, Sahoo M, Kakde M, Daf S, Varma AK. In Silico Docking to Explicate Interface between Plant-Originated Inhibitors and E6 Oncogenic Protein of Highly Threatening Human Papillomavirus 18. Genomics Inform 2015; 13:60-7. [PMID: 26175664 PMCID: PMC4500800 DOI: 10.5808/gi.2015.13.2.60] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 01/14/2023] Open
Abstract
The leading cause of cancer mortality globally amongst the women is due to human papillomavirus (HPV) infection. There is need to explore anti-cancerous drugs against this life-threatening infection. Traditionally, different natural compounds such as withaferin A, artemisinin, ursolic acid, ferulic acid, (-)-epigallocatechin-3-gallate, berberin, resveratrol, jaceosidin, curcumin, gingerol, indol-3-carbinol, and silymarin have been used as hopeful source of cancer treatment. These natural inhibitors have been shown to block HPV infection by different researchers. In the present study, we explored these natural compounds against E6 oncoprotein of high risk HPV18, which is known to inactivate tumor suppressor p53 protein. E6, a high throughput protein model of HPV18, was predicted to anticipate the interaction mechanism of E6 oncoprotein with these natural inhibitors using structure-based drug designing approach. Docking analysis showed the interaction of these natural inhibitors with p53 binding site of E6 protein residues 108-117 (CQKPLNPAEK) and help reinstatement of normal p53 functioning. Further, docking analysis besides helping in silico validations of natural compounds also helped elucidating the molecular mechanism of inhibition of HPV oncoproteins.
Collapse
Affiliation(s)
- Satish Kumar
- Bioinformatics Centre & Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram 442-102, India
| | - Lingaraja Jena
- Bioinformatics Centre & Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram 442-102, India
| | - Maheswata Sahoo
- Bioinformatics Centre & Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram 442-102, India
| | - Mrunmayi Kakde
- Bioinformatics Centre & Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram 442-102, India
| | - Sangeeta Daf
- Obstetrics & Gynaecology, Datta Meghe Institute of Medical Sciences (Deemed University), Nagpur 440-022, India
| | - Ashok K Varma
- Advanced Centre for Treatment, Research & Education in Cancer, Navi Mumbai 410-210, India
| |
Collapse
|
720
|
Wan S, Knapp B, Wright DW, Deane CM, Coveney PV. Rapid, Precise, and Reproducible Prediction of Peptide-MHC Binding Affinities from Molecular Dynamics That Correlate Well with Experiment. J Chem Theory Comput 2015; 11:3346-56. [PMID: 26575768 DOI: 10.1021/acs.jctc.5b00179] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The presentation of potentially pathogenic peptides by major histocompatibility complex (MHC) molecules is one of the most important processes in adaptive immune defense. Prediction of peptide-MHC (pMHC) binding affinities is therefore a principal objective of theoretical immunology. Machine learning techniques achieve good results if substantial experimental training data are available. Approaches based on structural information become necessary if sufficiently similar training data are unavailable for a specific MHC allele, although they have often been deemed to lack accuracy. In this study, we use a free energy method to rank the binding affinities of 12 diverse peptides bound by a class I MHC molecule HLA-A*02:01. The method is based on enhanced sampling of molecular dynamics calculations in combination with a continuum solvent approximation and includes estimates of the configurational entropy based on either a one or a three trajectory protocol. It produces precise and reproducible free energy estimates which correlate well with experimental measurements. If the results are combined with an amino acid hydrophobicity scale, then an extremely good ranking of peptide binding affinities emerges. Our approach is rapid, robust, and applicable to a wide range of ligand-receptor interactions without further adjustment.
Collapse
Affiliation(s)
- Shunzhou Wan
- Centre for Computational Science, Department of Chemistry, University College London , London WC1H 0AJ, United Kingdom
| | - Bernhard Knapp
- Protein Informatics Group, Department of Statistics, University of Oxford , Oxford, OX1 3TG, United Kingdom
| | - David W Wright
- Institute of Structural and Molecular Biology, University College London , London WC1E 6BT, United Kingdom
| | - Charlotte M Deane
- Protein Informatics Group, Department of Statistics, University of Oxford , Oxford, OX1 3TG, United Kingdom
| | - Peter V Coveney
- Centre for Computational Science, Department of Chemistry, University College London , London WC1H 0AJ, United Kingdom
| |
Collapse
|
721
|
Blazanovic K, Zhao H, Choi Y, Li W, Salvat RS, Osipovitch DC, Fields J, Moise L, Berwin BL, Fiering SN, Bailey-Kellogg C, Griswold KE. Structure-based redesign of lysostaphin yields potent antistaphylococcal enzymes that evade immune cell surveillance. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15021. [PMID: 26151066 PMCID: PMC4470366 DOI: 10.1038/mtm.2015.21] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus infections exert a tremendous burden on the health-care system, and the threat of drug-resistant strains continues to grow. The bacteriolytic enzyme lysostaphin is a potent antistaphylococcal agent with proven efficacy against both drug-sensitive and drug-resistant strains; however, the enzyme's own bacterial origins cause undesirable immunogenicity and pose a barrier to clinical translation. Here, we deimmunized lysostaphin using a computationally guided process that optimizes sets of mutations to delete immunogenic T cell epitopes without disrupting protein function. In vitro analyses showed the methods to be both efficient and effective, producing seven different deimmunized designs exhibiting high function and reduced immunogenic potential. Two deimmunized candidates elicited greatly suppressed proliferative responses in splenocytes from humanized mice, while at the same time the variants maintained wild-type efficacy in a staphylococcal pneumonia model. Overall, the deimmunized enzymes represent promising leads in the battle against S. aureus.
Collapse
Affiliation(s)
| | - Hongliang Zhao
- Thayer School of Engineering, Dartmouth , Hanover, New Hampshire, USA ; Laboratory of Microorganism Engineering, Beijing Institute of Biotechnology , Beijing, People's Republic of China
| | - Yoonjoo Choi
- Department of Computer Science, Dartmouth , Hanover, New Hampshire, USA
| | - Wen Li
- Thayer School of Engineering, Dartmouth , Hanover, New Hampshire, USA
| | - Regina S Salvat
- Thayer School of Engineering, Dartmouth , Hanover, New Hampshire, USA
| | - Daniel C Osipovitch
- Program in Experimental and Molecular Medicine, Dartmouth , Hanover, New Hampshire, USA
| | - Jennifer Fields
- Department of Microbiology and Immunology, Dartmouth , Hanover, New Hampshire, USA
| | - Leonard Moise
- Institute for Immunology and Informatics, University of Rhode Island , Providence, Rhode Island, USA
| | - Brent L Berwin
- Department of Microbiology and Immunology, Dartmouth , Hanover, New Hampshire, USA ; Norris Cotton Cancer Center, Dartmouth , Hanover, New Hampshire, USA
| | - Steven N Fiering
- Department of Microbiology and Immunology, Dartmouth , Hanover, New Hampshire, USA ; Norris Cotton Cancer Center, Dartmouth , Hanover, New Hampshire, USA
| | | | - Karl E Griswold
- Thayer School of Engineering, Dartmouth , Hanover, New Hampshire, USA ; Norris Cotton Cancer Center, Dartmouth , Hanover, New Hampshire, USA ; Department of Biological Sciences, Dartmouth , Hanover, New Hampshire, USA
| |
Collapse
|
722
|
Li N, Ainsworth RI, Ding B, Hou T, Wang W. Using Hierarchical Virtual Screening To Combat Drug Resistance of the HIV-1 Protease. J Chem Inf Model 2015; 55:1400-12. [DOI: 10.1021/acs.jcim.5b00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nan Li
- Department
of Chemistry and Biochemistry University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0359, United States
| | - Richard I. Ainsworth
- Department
of Chemistry and Biochemistry University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0359, United States
| | - Bo Ding
- Department
of Chemistry and Biochemistry University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0359, United States
| | - Tingjun Hou
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Wang
- Department
of Chemistry and Biochemistry University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0359, United States
| |
Collapse
|
723
|
Soltan Ghoraie L, Burkowski F, Zhu M. Using kernelized partial canonical correlation analysis to study directly coupled side chains and allostery in small G proteins. Bioinformatics 2015; 31:i124-32. [PMID: 26072474 PMCID: PMC4765857 DOI: 10.1093/bioinformatics/btv241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Motivation: Inferring structural dependencies among a protein’s side chains helps us understand their coupled motions. It is known that coupled fluctuations can reveal pathways of communication used for information propagation in a molecule. Side-chain conformations are commonly represented by multivariate angular variables, but existing partial correlation methods that can be applied to this inference task are not capable of handling multivariate angular data. We propose a novel method to infer direct couplings from this type of data, and show that this method is useful for identifying functional regions and their interactions in allosteric proteins. Results: We developed a novel extension of canonical correlation analysis (CCA), which we call ‘kernelized partial CCA’ (or simply KPCCA), and used it to infer direct couplings between side chains, while disentangling these couplings from indirect ones. Using the conformational information and fluctuations of the inactive structure alone for allosteric proteins in the Ras and other Ras-like families, our method identified allosterically important residues not only as strongly coupled ones but also in densely connected regions of the interaction graph formed by the inferred couplings. Our results were in good agreement with other empirical findings. By studying distinct members of the Ras, Rho and Rab sub-families, we show further that KPCCA was capable of inferring common allosteric characteristics in the small G protein super-family. Availability and implementation:https://github.com/lsgh/ismb15 Contact:lsoltang@uwaterloo.ca
Collapse
Affiliation(s)
- Laleh Soltan Ghoraie
- Department of Computer Science and Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Forbes Burkowski
- Department of Computer Science and Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Mu Zhu
- Department of Computer Science and Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
724
|
Shultis D, Dodge G, Zhang Y. Crystal structure of designed PX domain from cytokine-independent survival kinase and implications on evolution-based protein engineering. J Struct Biol 2015; 191:197-206. [PMID: 26073968 DOI: 10.1016/j.jsb.2015.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/13/2015] [Accepted: 06/10/2015] [Indexed: 01/03/2023]
Abstract
The Phox homology domain (PX domain) is a phosphoinositide-binding structural domain that is critical in mediating protein and cell membrane association and has been found in more than 100 eukaryotic proteins. The abundance of PX domains in nature offers an opportunity to redesign the protein using EvoDesign, a computational approach to design new sequences based on structure profiles of multiple evolutionarily related proteins. In this study, we report the X-ray crystallographic structure of a designed PX domain from the cytokine-independent survival kinase (CISK), which has been implicated as functioning in parallel with PKB/Akt in cell survival and insulin responses. Detailed data analysis of the designed CISK-PX protein demonstrates positive impacts of knowledge-based secondary structure and solvation predictions and structure-based sequence profiles on the efficiency of the evolutionary-based protein design method. The structure of the designed CISK-PX domain is close to the wild-type (1.54 Å in Cα RMSD), which was accurately predicted by I-TASSER based fragment assembly simulations (1.32 Å in Cα RMSD). This study represents the first successfully designed conditional peripheral membrane protein fold and has important implications in the examination and experimental validation of the evolution-based protein design approaches.
Collapse
Affiliation(s)
- David Shultis
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Gregory Dodge
- Department of Biological Chemistry, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
725
|
Wu D, Gu Q, Zhao N, Xia F, Li Z. Structure-based rational design of peptide hydroxamic acid inhibitors to target tumor necrosis factor-α converting enzyme as potential therapeutics for hepatitis. J Drug Target 2015; 23:936-42. [PMID: 26061299 DOI: 10.3109/1061186x.2015.1043916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The human tumor necrosis factor-α converting enzyme (TACE) has recently been raised as a new and promising therapeutic target of hepatitis and other inflammatory diseases. Here, we reported a successful application of the solved crystal structure of TACE complex with a peptide-like ligand INN for rational design of novel peptide hydroxamic acid inhibitors with high potency and selectivity to target and inhibit TACE. First, the intermolecular interactions between TACE catalytic domain and INN were characterized through an integrated bioinformatics approach, with which the key substructures of INN that dominate ligand binding were identified. Subsequently, the INN molecular structure was simplified to a chemical sketch of peptide hydroxamic acid compound, which can be regarded as a linear tripeptide capped by a N-terminal carboxybenzyl group (chemically protective group) and a C-terminal hydroxamate moiety (coordinated to the Zn(2+) at TACE active site). Based on the sketch, a virtual combinatorial library containing 180 peptide hydroxamic acids was generated, from which seven samples were identified as promising candidates by using a knowledge-based protein-peptide affinity predictor and were then tested in vitro with a standard TACE activity assay protocol. Consequently, three designed peptide hydroxamic acids, i.e. Cbz-Pro-Ile-Gln-hydroxamic acid, Cbz-Leu-Ile-Val-hydroxamic acid and Cbz-Phe-Val-Met-hydroxamic acid, exhibited moderate or high inhibitory activity against TACE, with inhibition constants Ki of 36 ± 5, 510 ± 46 and 320 ± 26 nM, respectively. We also examined the structural basis and non-bonded profile of TACE interaction with a designed peptide hydroxamic acid inhibitor, and found that the inhibitor ligand is tightly buried in the active pocket of TACE, forming a number of hydrogen bonds, hydrophobic forces and van der Waals contacts at the interaction interface, conferring both stability and specificity for TACE-inhibitor complex architecture.
Collapse
Affiliation(s)
- Dan Wu
- a Infectious Disease Department , The Shengjing Hospital of China Medical University , Shenyang , China
| | - Qiuhong Gu
- a Infectious Disease Department , The Shengjing Hospital of China Medical University , Shenyang , China
| | - Ning Zhao
- a Infectious Disease Department , The Shengjing Hospital of China Medical University , Shenyang , China
| | - Fei Xia
- a Infectious Disease Department , The Shengjing Hospital of China Medical University , Shenyang , China
| | - Zhiwei Li
- a Infectious Disease Department , The Shengjing Hospital of China Medical University , Shenyang , China
| |
Collapse
|
726
|
Shahbaaz M, Ahmad F, Imtaiyaz Hassan M. Structure-based functional annotation of putative conserved proteins having lyase activity from Haemophilus influenzae. 3 Biotech 2015; 5:317-336. [PMID: 28324295 PMCID: PMC4434415 DOI: 10.1007/s13205-014-0231-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022] Open
Abstract
Haemophilus influenzae is a small pleomorphic Gram-negative bacteria which causes several chronic diseases, including bacteremia, meningitis, cellulitis, epiglottitis, septic arthritis, pneumonia, and empyema. Here we extensively analyzed the sequenced genome of H. influenzae strain Rd KW20 using protein family databases, protein structure prediction, pathways and genome context methods to assign a precise function to proteins whose functions are unknown. These proteins are termed as hypothetical proteins (HPs), for which no experimental information is available. Function prediction of these proteins would surely be supportive to precisely understand the biochemical pathways and mechanism of pathogenesis of Haemophilus influenzae. During the extensive analysis of H. influenzae genome, we found the presence of eight HPs showing lyase activity. Subsequently, we modeled and analyzed three-dimensional structure of all these HPs to determine their functions more precisely. We found these HPs possess cystathionine-β-synthase, cyclase, carboxymuconolactone decarboxylase, pseudouridine synthase A and C, D-tagatose-1,6-bisphosphate aldolase and aminodeoxychorismate lyase-like features, indicating their corresponding functions in the H. influenzae. Lyases are actively involved in the regulation of biosynthesis of various hormones, metabolic pathways, signal transduction, and DNA repair. Lyases are also considered as a key player for various biological processes. These enzymes are critically essential for the survival and pathogenesis of H. influenzae and, therefore, these enzymes may be considered as a potential target for structure-based rational drug design. Our structure–function relationship analysis will be useful to search and design potential lead molecules based on the structure of these lyases, for drug design and discovery.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Faizan Ahmad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
727
|
Klausen MS, Anderson MV, Jespersen MC, Nielsen M, Marcatili P. LYRA, a webserver for lymphocyte receptor structural modeling. Nucleic Acids Res 2015; 43:W349-55. [PMID: 26007650 PMCID: PMC4489227 DOI: 10.1093/nar/gkv535] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/09/2015] [Indexed: 01/22/2023] Open
Abstract
The accurate structural modeling of B- and T-cell receptors is fundamental to gain a detailed insight in the mechanisms underlying immunity and in developing new drugs and therapies. The LYRA (LYmphocyte Receptor Automated modeling) web server (http://www.cbs.dtu.dk/services/LYRA/) implements a complete and automated method for building of B- and T-cell receptor structural models starting from their amino acid sequence alone. The webserver is freely available and easy to use for non-specialists. Upon submission, LYRA automatically generates alignments using ad hoc profiles, predicts the structural class of each hypervariable loop, selects the best templates in an automatic fashion, and provides within minutes a complete 3D model that can be downloaded or inspected online. Experienced users can manually select or exclude template structures according to case specific information. LYRA is based on the canonical structure method, that in the last 30 years has been successfully used to generate antibody models of high accuracy, and in our benchmarks this approach proves to achieve similarly good results on TCR modeling, with a benchmarked average RMSD accuracy of 1.29 and 1.48 Å for B- and T-cell receptors, respectively. To the best of our knowledge, LYRA is the first automated server for the prediction of TCR structure.
Collapse
Affiliation(s)
- Michael Schantz Klausen
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mads Valdemar Anderson
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Morten Nielsen
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Paolo Marcatili
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
728
|
Liu Y, Kieslich CA, Morikis D, Liao J. Engineering pre-SUMO4 as efficient substrate of SENP2. Protein Eng Des Sel 2015; 27:117-26. [PMID: 24671712 DOI: 10.1093/protein/gzu004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
SUMOylation, one of the most important protein post-translational modifications, plays critical roles in a variety of physiological and pathological processes. SENP (Sentrin/SUMO-specific protease), a family of SUMO-specific proteases, is responsible for the processing of pre-SUMO and removal of SUMO from conjugated substrates. SUMO4, the latest discovered member in the SUMO family, has been found as a type 1 diabetes susceptibility gene and its maturation is not understood so far. Despite the 14 amino acid differences between pre-SUMO4 and SUMO2, pre-SUMO4 is not processed by SENP2 but pre-SUMO2 does. A novel interdisciplinary approach involving computational modeling and a FRET-based protease assay was taken to engineer pre-SUMO4 as a substrate of SENP2. Given the difference in net charge between pre-SUMO4 and pre-SUMO2, the computational framework analysis of electrostatic similarities of proteins was applied to determine the contribution of each ionizable amino acid in a model of SENP2-(pre-SUMO4) binding, and to propose pre-SUMO4 mutations. The specificities of the SENP2 toward different pre-SUMO4 mutants were determined using a quantitative FRET assay by characterizing the catalytic efficiencies (kcat/KM). A single amino acid mutation made pre-SUMO4 amenable to SENP2 processing and a combination of two amino acid mutations made it highly accessible as SENP2 substrate. The combination of the two approaches provides a powerful protein engineering tool for future SUMOylation studies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
729
|
Frembgen-Kesner T, Andrews CT, Li S, Ngo NA, Shubert SA, Jain A, Olayiwola OJ, Weishaar MR, Elcock AH. Parametrization of Backbone Flexibility in a Coarse-Grained Force Field for Proteins (COFFDROP) Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of All Possible Two-Residue Peptides. J Chem Theory Comput 2015; 11:2341-54. [PMID: 26574429 DOI: 10.1021/acs.jctc.5b00038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we reported the parametrization of a set of coarse-grained (CG) nonbonded potential functions, derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acid pairs and designed for use in (implicit-solvent) Brownian dynamics (BD) simulations of proteins; this force field was named COFFDROP (COarse-grained Force Field for Dynamic Representations Of Proteins). Here, we describe the extension of COFFDROP to include bonded backbone terms derived from fitting to results of explicit-solvent MD simulations of all possible two-residue peptides containing the 20 standard amino acids, with histidine modeled in both its protonated and neutral forms. The iterative Boltzmann inversion (IBI) method was used to optimize new CG potential functions for backbone-related terms by attempting to reproduce angle, dihedral, and distance probability distributions generated by the MD simulations. In a simple test of the transferability of the extended force field, the angle, dihedral, and distance probability distributions obtained from BD simulations of 56 three-residue peptides were compared to results from corresponding explicit-solvent MD simulations. In a more challenging test of the COFFDROP force field, it was used to simulate eight intrinsically disordered proteins and was shown to quite accurately reproduce the experimental hydrodynamic radii (Rhydro), provided that the favorable nonbonded interactions of the force field were uniformly scaled downward in magnitude. Overall, the results indicate that the COFFDROP force field is likely to find use in modeling the conformational behavior of intrinsically disordered proteins and multidomain proteins connected by flexible linkers.
Collapse
Affiliation(s)
| | - Casey T Andrews
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Shuxiang Li
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Nguyet Anh Ngo
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Scott A Shubert
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Aakash Jain
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Oluwatoni J Olayiwola
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Mitch R Weishaar
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
730
|
Macias MJ, Martin-Malpartida P, Massagué J. Structural determinants of Smad function in TGF-β signaling. Trends Biochem Sci 2015; 40:296-308. [PMID: 25935112 DOI: 10.1016/j.tibs.2015.03.012] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/23/2015] [Accepted: 03/27/2015] [Indexed: 02/08/2023]
Abstract
Smad transcription factors are central to the signal transduction pathway that mediates the numerous effects of the transforming growth factor β (TGF-β) superfamily of cytokines in metazoan embryo development as well as in adult tissue regeneration and homeostasis. Although Smad proteins are conserved, recent genome-sequencing projects have revealed their sequence variation in metazoan evolution, human polymorphisms, and cancer. Structural studies of Smads bound to partner proteins and target DNA provide a framework for understanding the significance of these evolutionary and pathologic sequence variations. We synthesize the extant mutational and structural data to suggest how genetic variation in Smads may affect the structure, regulation, and function of these proteins. We also present a web application that compares Smad sequences and displays Smad protein structures and their disease-associated variants.
Collapse
Affiliation(s)
- Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain.
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
731
|
Moghadasi M, Mirzaei H, Mamonov A, Vakili P, Vajda S, Paschalidis IC, Kozakov D. The impact of side-chain packing on protein docking refinement. J Chem Inf Model 2015; 55:872-81. [PMID: 25714358 PMCID: PMC4734134 DOI: 10.1021/ci500380a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We study the impact of optimizing the side-chain positions in the interface region between two proteins during the process of binding. Mathematically, the problem is similar to side-chain prediction, which has been extensively explored in the process of protein structure prediction. The protein-protein docking application, however, has a number of characteristics that necessitate different algorithmic and implementation choices. In this work, we implement a distributed approximate algorithm that can be implemented on multiprocessor architectures and enables a trade-off between accuracy and running speed. We report computational results on benchmarks of enzyme-inhibitor and other types of complexes, establishing that the side-chain flexibility our algorithm introduces substantially improves the performance of docking protocols. Furthermore, we establish that the inclusion of unbound side-chain conformers in the side-chain positioning problem is critical in these performance improvements. The code is available to the community under open source license.
Collapse
Affiliation(s)
- Mohammad Moghadasi
- Division of Systems Engineering & Center for Information and Systems Engineering
| | - Hanieh Mirzaei
- Division of Systems Engineering & Center for Information and Systems Engineering
| | | | - Pirooz Vakili
- Division of Systems Engineering, and Department of Mechanical Engineering
| | | | - Ioannis Ch. Paschalidis
- Department of Electrical and Computer Engineering, Division of Systems Engineering, and Department of Biomedical Engineering
| | | |
Collapse
|
732
|
Ahlstrom LS, Law SM, Dickson A, Brooks CL. Multiscale modeling of a conditionally disordered pH-sensing chaperone. J Mol Biol 2015; 427:1670-80. [PMID: 25584862 PMCID: PMC4380812 DOI: 10.1016/j.jmb.2015.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/09/2014] [Accepted: 01/06/2015] [Indexed: 11/26/2022]
Abstract
The pH-sensing chaperone HdeA promotes the survival of enteropathogenic bacteria during transit through the harshly acidic environment of the mammalian stomach. At low pH, HdeA transitions from an inactive, folded, dimer to chaperone-active, disordered, monomers to protect against the acid-induced aggregation of periplasmic proteins. Toward achieving a detailed mechanistic understanding of the pH response of HdeA, we develop a multiscale modeling approach to capture its pH-dependent thermodynamics. Our approach combines pK(a) (logarithmic acid dissociation constant) calculations from all-atom constant pH molecular dynamics simulations with coarse-grained modeling and yields new, atomic-level, insights into HdeA chaperone function that can be directly tested by experiment. "pH triggers" that significantly destabilize the dimer are each located near the N-terminus of a helix, suggesting that their neutralization at low pH destabilizes the helix macrodipole as a mechanism of monomer disordering. Moreover, we observe a non-monotonic change in the pH-dependent stability of HdeA, with maximal stability of the dimer near pH5. This affect is attributed to the protonation Glu37, which exhibits an anomalously high pK(a) value and is located within the hydrophobic dimer interface. Finally, the pH-dependent binding pathway of HdeA comprises a partially unfolded, dimeric intermediate that becomes increasingly stable relative to the native dimer at lower pH values and displays key structural features for chaperone-substrate interaction. We anticipate that the insights from our model will help inform ongoing NMR and biochemical investigations.
Collapse
Affiliation(s)
- Logan S Ahlstrom
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sean M Law
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Alex Dickson
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Charles L Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
733
|
Choi JH, Laurent AH, Hilser VJ, Ostermeier M. Design of protein switches based on an ensemble model of allostery. Nat Commun 2015; 6:6968. [PMID: 25902417 PMCID: PMC4704092 DOI: 10.1038/ncomms7968] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/17/2015] [Indexed: 02/07/2023] Open
Abstract
Switchable proteins that can be regulated through exogenous or endogenous inputs have a broad range of biotechnological and biomedical applications. Here we describe the design of switchable enzymes based on an ensemble allosteric model. First, we insert an enzyme domain into an effector-binding domain such that both domains remained functionally intact. Second, we induce the fusion to behave as a switch through the introduction of conditional conformational flexibility designed to increase the conformational entropy of the enzyme domain in a temperature- or pH-dependent fashion. We confirm the switching behaviour in vitro and in vivo. Structural and thermodynamic studies support the hypothesis that switching result from an increase in conformational entropy of the enzyme domain in the absence of effector. These results support the ensemble model of allostery and embody a strategy for the design of protein switches.
Collapse
Affiliation(s)
- Jay H Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles Street, Baltimore, Maryland 21218, USA
| | - Abigail H Laurent
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles Street, Baltimore, Maryland 21218, USA
| | - Vincent J Hilser
- Department of Biology, Johns Hopkins University, 3400N Charles Street, Baltimore, Maryland 21218, USA
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles Street, Baltimore, Maryland 21218, USA
| |
Collapse
|
734
|
Choi JH, Ostermeier M. Rational design of a fusion protein to exhibit disulfide-mediated logic gate behavior. ACS Synth Biol 2015; 4:400-6. [PMID: 25144732 PMCID: PMC4410912 DOI: 10.1021/sb500254g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Synthetic
cellular logic gates are primarily built from gene circuits
owing to their inherent modularity. Single proteins can also possess
logic gate functions and offer the potential to be simpler, quicker,
and less dependent on cellular resources than gene circuits. However,
the design of protein logic gates that are modular and integrate with
other cellular components is a considerable challenge. As a step toward
addressing this challenge, we describe the design, construction, and
characterization of AND, ORN, and YES logic gates built by introducing
disulfide bonds into RG13, a fusion of maltose binding protein and
TEM-1 β-lactamase for which maltose is an allosteric activator
of enzyme activity. We rationally designed these disulfide bonds to
manipulate RG13’s allosteric regulation mechanism such that
the gating had maltose and reducing agents as input signals, and the
gates could be toggled between different gating functions using redox
agents, although some gates performed suboptimally.
Collapse
Affiliation(s)
- Jay H. Choi
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Marc Ostermeier
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
735
|
Thomas A, Biswas A, Ivaskevicius V, Oldenburg J. Structural and functional influences of coagulation factor XIII subunit B heterozygous missense mutants. Mol Genet Genomic Med 2015; 3:258-71. [PMID: 26247044 PMCID: PMC4521963 DOI: 10.1002/mgg3.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/17/2022] Open
Abstract
The coagulation factor XIII(FXIII) is a plasma circulating heterotetrameric protransglutaminase that acts at the end of the coagulation cascade by covalently cross-linking preformed fibrin clots (to themselves and to fibrinolytic inhibitors) in order to stabilize them against fibrinolysis. It circulates in the plasma as a heterotetramer composed of two homomeric catalytic Factor XIIIA2 (FXIIIA2) and two homomeric protective/carrier Factor XIIIB2 subunit (FXIIIB2). Congenital deficiency of FXIII is of two types: severe homozygous/compound heterozygous FXIII deficiency which results in severe bleeding symptoms and mild heterozygous FXIII deficiency which is associated with mild bleeding (only upon trauma) or an asymptomatic phenotype. Defects in the F13B gene (Factor XIIIB subunit) occur more frequently in mild FXIII deficiency patients than in severe FXIII deficiency. We had recently reported secretion-related defects for seven previously reported F13B missense mutations. In the present study we further analyze the underlying molecular pathological mechanisms as well as the heterozygous expression phenotype for these mutations using a combination of in vitro heterologous expression (in HEK293T cells) and confocal microscopy. In combination with the in vitro work we have also performed an in silico solvated molecular dynamic simulation study on previously reported FXIIIB subunit sushi domain homology models in order to predict the putative structure-functional impact of these mutations. We were able to categorize the mutations into the following functional groups that: (1) affect antigenic stability as well as binding to FXIIIA subunit, that is, Cys5Arg, Cys316Phe, and Pro428Ser (2) affect binding to FXIIIA subunit with little or no influence on antigenic stability, that is, Ile81Asn and Val401Gln c) influence neither aspects and are most likely causality linked polymorphisms or functional polymorphisms, that is, Leu116Phe and Val217Ile. The Cys5Arg mutation was the only mutation to show a direct secretion-based defect since the mutated protein was observed to accumulate in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Anne Thomas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn 53127, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn 53127, Bonn, Germany
| | - Vytautas Ivaskevicius
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn 53127, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn 53127, Bonn, Germany
| |
Collapse
|
736
|
Alonso-García N, García-Rubio I, Manso JA, Buey RM, Urien H, Sonnenberg A, Jeschke G, de Pereda JM. Combination of X-ray crystallography, SAXS and DEER to obtain the structure of the FnIII-3,4 domains of integrin α6β4. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:969-85. [PMID: 25849406 PMCID: PMC4388270 DOI: 10.1107/s1399004715002485] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/05/2015] [Indexed: 03/24/2024]
Abstract
Integrin α6β4 is a major component of hemidesmosomes that mediate the stable anchorage of epithelial cells to the underlying basement membrane. Integrin α6β4 has also been implicated in cell proliferation and migration and in carcinoma progression. The third and fourth fibronectin type III domains (FnIII-3,4) of integrin β4 mediate binding to the hemidesmosomal proteins BPAG1e and BPAG2, and participate in signalling. Here, it is demonstrated that X-ray crystallography, small-angle X-ray scattering and double electron-electron resonance (DEER) complement each other to solve the structure of the FnIII-3,4 region. The crystal structures of the individual FnIII-3 and FnIII-4 domains were solved and the relative arrangement of the FnIII domains was elucidated by combining DEER with site-directed spin labelling. Multiple structures of the interdomain linker were modelled by Monte Carlo methods complying with DEER constraints, and the final structures were selected against experimental scattering data. FnIII-3,4 has a compact and cambered flat structure with an evolutionary conserved surface that is likely to correspond to a protein-interaction site. Finally, this hybrid method is of general application for the study of other macromolecules and complexes.
Collapse
Affiliation(s)
- Noelia Alonso-García
- Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Inés García-Rubio
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
- Centro Universitario de la Defensa, Academia General Militar, Carretera de Huesca s/n, 50090 Zaragoza, Spain
| | - José A. Manso
- Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Rubén M. Buey
- Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Hector Urien
- Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Arnoud Sonnenberg
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - José M. de Pereda
- Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
737
|
Scior T, Paiz-Candia B, Islas ÁA, Sánchez-Solano A, Millan-Perez Peña L, Mancilla-Simbro C, Salinas-Stefanon EM. Predicting a double mutant in the twilight zone of low homology modeling for the skeletal muscle voltage-gated sodium channel subunit beta-1 (Nav1.4 β1). Comput Struct Biotechnol J 2015; 13:229-40. [PMID: 25904995 PMCID: PMC4402383 DOI: 10.1016/j.csbj.2015.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/18/2015] [Accepted: 03/21/2015] [Indexed: 12/18/2022] Open
Abstract
The molecular structure modeling of the β1 subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4) was carried out in the twilight zone of very low homology. Structural significance can per se be confounded with random sequence similarities. Hence, we combined (i) not automated computational modeling of weakly homologous 3D templates, some with interfaces to analogous structures to the pore-bearing Nav1.4 α subunit with (ii) site-directed mutagenesis (SDM), as well as (iii) electrophysiological experiments to study the structure and function of the β1 subunit. Despite the distant phylogenic relationships, we found a 3D-template to identify two adjacent amino acids leading to the long-awaited loss of function (inactivation) of Nav1.4 channels. This mutant type (T109A, N110A, herein called TANA) was expressed and tested on cells of hamster ovary (CHO). The present electrophysiological results showed that the double alanine substitution TANA disrupted channel inactivation as if the β1 subunit would not be in complex with the α subunit. Exhaustive and unbiased sampling of “all β proteins” (Ig-like, Ig) resulted in a plethora of 3D templates which were compared to the target secondary structure prediction. The location of TANA was made possible thanks to another “all β protein” structure in complex with an irreversible bound protein as well as a reversible protein–protein interface (our “Rosetta Stone” effect). This finding coincides with our electrophysiological data (disrupted β1-like voltage dependence) and it is safe to utter that the Nav1.4 α/β1 interface is likely to be of reversible nature.
Collapse
Affiliation(s)
- Thomas Scior
- Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, Puebla, Mexico
| | - Bertin Paiz-Candia
- Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ángel A Islas
- Laboratorio de Biofísica, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alfredo Sánchez-Solano
- Laboratorio de Biofísica, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Claudia Mancilla-Simbro
- Laboratorio de Biofísica, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, Mexico
| | | |
Collapse
|
738
|
Janda A, Eryilmaz E, Nakouzi A, Pohl MA, Bowen A, Casadevall A. Variable Region Identical IgA and IgE to Cryptococcus neoformans Capsular Polysaccharide Manifest Specificity Differences. J Biol Chem 2015; 290:12090-100. [PMID: 25778397 DOI: 10.1074/jbc.m114.618975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Indexed: 01/27/2023] Open
Abstract
In recent years several groups have shown that isotype switching from IgM to IgG to IgA can affect the affinity and specificity of antibodies sharing identical variable (V) regions. However, whether the same applies to IgE is unknown. In this study we compared the fine specificity of V region-identical IgE and IgA to Cryptococcus neoformans capsular polysaccharide and found that these differed in specificity from each other. The IgE and IgA paratopes were probed by nuclear magnetic resonance spectroscopy with (15)N-labeled peptide mimetics of cryptococcal polysaccharide antigen (Ag). IgE was found to cleave the peptide at a much faster rate than V region-identical IgG subclasses and IgA, consistent with an altered paratope. Both IgE and IgA were opsonic for C. neoformans and protected against infection in mice. In summary, V-region expression in the context of the ϵ constant (C) region results in specificity changes that are greater than observed for comparable IgG subclasses. These results raise the possibility that expression of certain V regions in the context of α and ϵ C regions affects their function and contributes to the special properties of those isotypes.
Collapse
Affiliation(s)
- Alena Janda
- From the Department of Microbiology and Immunology of the Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Ertan Eryilmaz
- Biotherapeutics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Antonio Nakouzi
- From the Department of Microbiology and Immunology of the Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Mary Ann Pohl
- From the Department of Microbiology and Immunology of the Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Anthony Bowen
- From the Department of Microbiology and Immunology of the Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Arturo Casadevall
- From the Department of Microbiology and Immunology of the Albert Einstein College of Medicine, Bronx, New York 10461 and
| |
Collapse
|
739
|
E S Harrison R, Gorham RD, Morikis D. Energetic evaluation of binding modes in the C3d and Factor H (CCP 19-20) complex. Protein Sci 2015; 24:789-802. [PMID: 25628052 DOI: 10.1002/pro.2650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/27/2014] [Accepted: 01/25/2015] [Indexed: 01/01/2023]
Abstract
As a part of innate immunity, the complement system relies on activation of the alternative pathway (AP). While feed-forward amplification generates an immune response towards foreign surfaces, the process requires regulation to prevent an immune response on the surface of host cells. Factor H (FH) is a complement protein secreted by native cells to negatively regulate the AP. In terms of structure, FH is composed of 20 complement-control protein (CCP) modules that are structurally homologous but vary in composition and function. Mutations in these CCPs have been linked to states of autoimmunity. In particular, several mutations in CCP 19-20 are correlated to atypical hemolytic uremic syndrome (aHUS). From crystallographic structures there are three putative binding sites of CCP 19-20 on C3d. Since there has been some controversy over the primary mode of binding from experimental studies, we approach characterization of binding using computational methods. Specifically, we compare each binding mode in terms of electrostatic character, structural stability, dissociative and associative properties, and predicted free energy of binding. After a detailed investigation, we found two of the three binding sites to be similarly stable while varying in the number of contacts to C3d and in the energetic barrier to complex dissociation. These sites are likely physiologically relevant and may facilitate multivalent binding of FH CCP 19-20 to C3b and either C3d or host glycosaminoglycans. We propose thermodynamically stable binding with modules 19 and 20, the latter driven by electrostatics, acting synergistically to increase the apparent affinity of FH for host surfaces.
Collapse
Affiliation(s)
- Reed E S Harrison
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, California
| | | | | |
Collapse
|
740
|
Wiech EM, Cheng HP, Singh SM. Molecular modeling and computational analyses suggests that the Sinorhizobium meliloti periplasmic regulator protein ExoR adopts a superhelical fold and is controlled by a unique mechanism of proteolysis. Protein Sci 2015; 24:319-27. [PMID: 25492513 PMCID: PMC4353358 DOI: 10.1002/pro.2616] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
The Sinorhizobium meliloti periplasmic ExoR protein and the ExoS/ChvI two-component system form a regulatory mechanism that directly controls the transformation of free-living to host-invading cells. In the absence of crystal structures, understanding the molecular mechanism of interaction between ExoR and the ExoS sensor, which is believed to drive the key regulatory step in the invasion process, remains a major challenge. In this study, we present a theoretical structural model of the active form of ExoR protein, ExoRm , generated using computational methods. Our model suggests that ExoR possesses a super-helical fold comprising 12 α-helices forming six Sel1-like repeats, including two that were unidentified in previous studies. This fold is highly conducive to mediating protein-protein interactions and this is corroborated by the identification of putative protein binding sites on the surface of the ExoRm protein. Our studies reveal two novel insights: (a) an extended conformation of the third Sel1-like repeat that might be important for ExoR regulatory function and (b) a buried proteolytic site that implies a unique proteolytic mechanism. This study provides new and interesting insights into the structure of S. meliloti ExoR, lays the groundwork for elaborating the molecular mechanism of ExoRm cleavage, ExoRm -ExoS interactions, and studies of ExoR homologs in other bacterial host interactions.
Collapse
Affiliation(s)
- Eliza M Wiech
- Department of Biology, The Graduate Center of the City University of New YorkNew York, New York, 10016
- Department of Biology, Brooklyn College, The City University of New YorkBrooklyn, New York, 11210
| | - Hai-Ping Cheng
- Department of Biology, The Graduate Center of the City University of New YorkNew York, New York, 10016
- Biological Sciences Department, Lehman College, The City University of New YorkBronx, New York, 10468
| | - Shaneen M Singh
- Department of Biology, The Graduate Center of the City University of New YorkNew York, New York, 10016
- Department of Biology, Brooklyn College, The City University of New YorkBrooklyn, New York, 11210
| |
Collapse
|
741
|
Knapp B, Demharter S, Esmaielbeiki R, Deane CM. Current status and future challenges in T-cell receptor/peptide/MHC molecular dynamics simulations. Brief Bioinform 2015; 16:1035-44. [DOI: 10.1093/bib/bbv005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 11/12/2022] Open
|
742
|
Xu D, Jaroszewski L, Li Z, Godzik A. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain-domain interaction prediction. ACTA ACUST UNITED AC 2015; 31:2098-105. [PMID: 25701568 DOI: 10.1093/bioinformatics/btv092] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/10/2015] [Indexed: 11/12/2022]
Abstract
MOTIVATION Most proteins consist of multiple domains, independent structural and evolutionary units that are often reshuffled in genomic rearrangements to form new protein architectures. Template-based modeling methods can often detect homologous templates for individual domains, but templates that could be used to model the entire query protein are often not available. RESULTS We have developed a fast docking algorithm ab initio domain assembly (AIDA) for assembling multi-domain protein structures, guided by the ab initio folding potential. This approach can be extended to discontinuous domains (i.e. domains with 'inserted' domains). When tested on experimentally solved structures of multi-domain proteins, the relative domain positions were accurately found among top 5000 models in 86% of cases. AIDA server can use domain assignments provided by the user or predict them from the provided sequence. The latter approach is particularly useful for automated protein structure prediction servers. The blind test consisting of 95 CASP10 targets shows that domain boundaries could be successfully determined for 97% of targets. AVAILABILITY AND IMPLEMENTATION The AIDA package as well as the benchmark sets used here are available for download at http://ffas.burnham.org/AIDA/. CONTACT adam@sanfordburnham.org SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dong Xu
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA, Center for Research in Biological Systems, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093-0446, USA and Center of Excellence in Genomic Medicine Research (CEGMR), King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Lukasz Jaroszewski
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA, Center for Research in Biological Systems, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093-0446, USA and Center of Excellence in Genomic Medicine Research (CEGMR), King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA, Center for Research in Biological Systems, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093-0446, USA and Center of Excellence in Genomic Medicine Research (CEGMR), King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Zhanwen Li
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA, Center for Research in Biological Systems, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093-0446, USA and Center of Excellence in Genomic Medicine Research (CEGMR), King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Adam Godzik
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA, Center for Research in Biological Systems, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093-0446, USA and Center of Excellence in Genomic Medicine Research (CEGMR), King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA, Center for Research in Biological Systems, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093-0446, USA and Center of Excellence in Genomic Medicine Research (CEGMR), King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA, Center for Research in Biological Systems, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093-0446, USA and Center of Excellence in Genomic Medicine Research (CEGMR), King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
743
|
Potapov V, Kaplan JB, Keating AE. Data-driven prediction and design of bZIP coiled-coil interactions. PLoS Comput Biol 2015; 11:e1004046. [PMID: 25695764 PMCID: PMC4335062 DOI: 10.1371/journal.pcbi.1004046] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/19/2014] [Indexed: 11/18/2022] Open
Abstract
Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology.
Collapse
Affiliation(s)
- Vladimir Potapov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jenifer B. Kaplan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Amy E. Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
744
|
Keegan RM, Bibby J, Thomas J, Xu D, Zhang Y, Mayans O, Winn MD, Rigden DJ. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:338-43. [PMID: 25664744 PMCID: PMC4321487 DOI: 10.1107/s1399004714025784] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 11/25/2014] [Indexed: 12/26/2022]
Abstract
AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.
Collapse
Affiliation(s)
- Ronan M. Keegan
- Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot OX11 0FA, England
| | - Jaclyn Bibby
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Jens Thomas
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Dong Xu
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olga Mayans
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Martyn D. Winn
- Science and Technology Facilities Council Daresbury Laboratory, Warrington WA4 4AD, England
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| |
Collapse
|
745
|
Soltan Ghoraie L, Burkowski F, Zhu M. Sparse networks of directly coupled, polymorphic, and functional side chains in allosteric proteins. Proteins 2015; 83:497-516. [DOI: 10.1002/prot.24752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 12/05/2014] [Accepted: 12/13/2014] [Indexed: 02/05/2023]
Affiliation(s)
| | - Forbes Burkowski
- School of Computer Science, University of Waterloo; Waterloo Ontario Canada
| | - Mu Zhu
- Department of Statistics and Actuarial Science; University of Waterloo; Waterloo Ontario Canada
| |
Collapse
|
746
|
Kmiecik S, Jamroz M, Kolinski M. Structure prediction of the second extracellular loop in G-protein-coupled receptors. Biophys J 2015; 106:2408-16. [PMID: 24896119 PMCID: PMC4052351 DOI: 10.1016/j.bpj.2014.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/26/2014] [Accepted: 04/17/2014] [Indexed: 12/29/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) play key roles in living organisms. Therefore, it is important to determine their functional structures. The second extracellular loop (ECL2) is a functionally important region of GPCRs, which poses significant challenge for computational structure prediction methods. In this work, we evaluated CABS, a well-established protein modeling tool for predicting ECL2 structure in 13 GPCRs. The ECL2s (with between 13 and 34 residues) are predicted in an environment of other extracellular loops being fully flexible and the transmembrane domain fixed in its x-ray conformation. The modeling procedure used theoretical predictions of ECL2 secondary structure and experimental constraints on disulfide bridges. Our approach yielded ensembles of low-energy conformers and the most populated conformers that contained models close to the available x-ray structures. The level of similarity between the predicted models and x-ray structures is comparable to that of other state-of-the-art computational methods. Our results extend other studies by including newly crystallized GPCRs.
Collapse
Affiliation(s)
- Sebastian Kmiecik
- University of Warsaw, Faculty of Chemistry, Laboratory of Theory of Biopolymers, Pasteura 1, 02-093 Warsaw, Poland
| | - Michal Jamroz
- University of Warsaw, Faculty of Chemistry, Laboratory of Theory of Biopolymers, Pasteura 1, 02-093 Warsaw, Poland
| | - Michal Kolinski
- Mossakowski Medical Research Center, Polish Academy of Sciences, Bioinformatics Laboratory, Pawinskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
747
|
Sensoy O, Weinstein H. A mechanistic role of Helix 8 in GPCRs: Computational modeling of the dopamine D2 receptor interaction with the GIPC1-PDZ-domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:976-83. [PMID: 25592838 DOI: 10.1016/j.bbamem.2014.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/15/2014] [Accepted: 12/02/2014] [Indexed: 01/18/2023]
Abstract
Helix-8 (Hx8) is a structurally conserved amphipathic helical motif in class-A GPCRs, adjacent to the C-terminal sequence that is responsible for PDZ-domain-recognition. The Hx8 segment in the dopamine D2 receptor (D2R) constitutes the C-terminal segment and we investigate its role in the function of D2R by studying the interaction with the PDZ-containing GIPC1 using homology models based on the X-ray structures of very closely related analogs: the D3R for the D2R model, and the PDZ domain of GIPC2 for GIPC1-PDZ. The mechanism of this interaction was investigated with all-atom unbiased molecular dynamics (MD) simulations that reveal the role of the membrane in maintaining the helical fold of Hx8, and with biased MD simulations to elucidate the energy drive for the interaction with the GIPC1-PDZ. We found that it becomes more favorable energetically for Hx8 to adopt the extended conformation observed in all PDZ-ligand complexes when it moves away from the membrane, and that C-terminus palmitoylation of D2R enhanced membrane penetration by the Hx8 backbone. De-palmitoylation enables Hx8 to move out into the aqueous environment for interaction with the PDZ domain. All-atom unbiased MD simulations of the full D2R-GIPC1-PDZ complex in sphingolipid/cholesterol membranes show that the D2R carboxyl C-terminus samples the region of the conserved GFGL motif located on the carboxylate-binding loop of the GIPC1-PDZ, and the entire complex distances itself from the membrane interface. Together, these results outline a likely mechanism of Hx8 involvement in the interaction of the GPCR with PDZ-domains in the course of signaling.
Collapse
Affiliation(s)
- Ozge Sensoy
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
748
|
Jou JD, Jain S, Georgiev I, Donald BR. BWM*: A Novel, Provable, Ensemble-Based Dynamic Programming Algorithm for Sparse Approximations of Computational Protein Design. LECTURE NOTES IN COMPUTER SCIENCE 2015. [DOI: 10.1007/978-3-319-16706-0_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
749
|
Hénin J, Salari R, Murlidaran S, Brannigan G. A predicted binding site for cholesterol on the GABAA receptor. Biophys J 2014; 106:1938-49. [PMID: 24806926 DOI: 10.1016/j.bpj.2014.03.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 12/29/2022] Open
Abstract
Modulation of the GABA type A receptor (GABAAR) function by cholesterol and other steroids is documented at the functional level, yet its structural basis is largely unknown. Current data on structurally related modulators suggest that cholesterol binds to subunit interfaces between transmembrane domains of the GABAAR. We construct homology models of a human GABAAR based on the structure of the glutamate-gated chloride channel GluCl of Caenorhabditis elegans. The models show the possibility of previously unreported disulfide bridges linking the M1 and M3 transmembrane helices in the α and γ subunits. We discuss the biological relevance of such disulfide bridges. Using our models, we investigate cholesterol binding to intersubunit cavities of the GABAAR transmembrane domain. We find that very similar binding modes are predicted independently by three approaches: analogy with ivermectin in the GluCl crystal structure, automated docking by AutoDock, and spontaneous rebinding events in unbiased molecular dynamics simulations. Taken together, the models and atomistic simulations suggest a somewhat flexible binding mode, with several possible orientations. Finally, we explore the possibility that cholesterol promotes pore opening through a wedge mechanism.
Collapse
Affiliation(s)
- Jérôme Hénin
- Laboratoire de Biochimie Théorique, CNRS, IBPC, and Université Paris Diderot, Paris, France
| | - Reza Salari
- Department of Physics, Rutgers University-Camden, Camden, New Jersey; Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey
| | - Sruthi Murlidaran
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey
| | - Grace Brannigan
- Department of Physics, Rutgers University-Camden, Camden, New Jersey; Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey.
| |
Collapse
|
750
|
Schindler CEM, de Vries SJ, Zacharias M. iATTRACT: simultaneous global and local interface optimization for protein-protein docking refinement. Proteins 2014; 83:248-58. [PMID: 25402278 DOI: 10.1002/prot.24728] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/30/2014] [Accepted: 11/12/2014] [Indexed: 11/12/2022]
Abstract
Protein-protein interactions are abundant in the cell but to date structural data for a large number of complexes is lacking. Computational docking methods can complement experiments by providing structural models of complexes based on structures of the individual partners. A major caveat for docking success is accounting for protein flexibility. Especially, interface residues undergo significant conformational changes upon binding. This limits the performance of docking methods that keep partner structures rigid or allow limited flexibility. A new docking refinement approach, iATTRACT, has been developed which combines simultaneous full interface flexibility and rigid body optimizations during docking energy minimization. It employs an atomistic molecular mechanics force field for intermolecular interface interactions and a structure-based force field for intramolecular contributions. The approach was systematically evaluated on a large protein-protein docking benchmark, starting from an enriched decoy set of rigidly docked protein-protein complexes deviating by up to 15 Å from the native structure at the interface. Large improvements in sampling and slight but significant improvements in scoring/discrimination of near native docking solutions were observed. Complexes with initial deviations at the interface of up to 5.5 Å were refined to significantly better agreement with the native structure. Improvements in the fraction of native contacts were especially favorable, yielding increases of up to 70%.
Collapse
|