701
|
Purnelle B, Coster F, Goffeau A. The sequence of 55 kb on the left arm of yeast chromosome XVI identifies a small nuclear RNA, a new putative protein kinase and two new putative regulators. Yeast 1996; 12:1483-92. [PMID: 8948103 DOI: 10.1002/(sici)1097-0061(199611)12:14%3c1483::aid-yea34%3e3.0.co;2-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have sequenced and analysed a 55786 bp fragment located on the left arm of chromosome XVI of Saccharomyces cerevisiae. The sequence contains 29 non-overlapping open reading frames (ORFs) longer than 300 bp, among which 12 genes have previously been sequenced: OYE3, REV3, SVS1, BEM4, CDC60, KIP2, PEP4, SPK1, PAL1, KES1, SNR17B and RPL37A. Three new ORFs, P2591, P2594 and P2597 are highly homologous to the human phosphotyrosyl phosphatase activator PTPA, to the pleiotropic regulator PRL1 of PP1 and PP2a protein phosphatases in plants and to the protein kinase PAR-1 in Caenorhabditis elegans, respectively. Three other ORFs, P2545, P2567 and P2578 have significant homology with ORFs of unknown function located on yeast chromosomes VIII, XVI and IV respectively.
Collapse
Affiliation(s)
- B Purnelle
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
702
|
Hunter CP, Kenyon C. Spatial and temporal controls target pal-1 blastomere-specification activity to a single blastomere lineage in C. elegans embryos. Cell 1996; 87:217-26. [PMID: 8861906 DOI: 10.1016/s0092-8674(00)81340-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The early asymmetric cleavages of Caenorhabditis elegans embryos produce blastomeres with distinct developmental potentials. Here, we show that the caudal-like homeodomain protein PAL-1 is required to specify the somatic identity of one posterior blastomere in the 4 cell embryo. We find that pal-1 activity is sequentially restricted to this blastomere. First, at the 4 cell stage, it is translated only in the two posterior blastomeres. Then, its function is restricted to one of these blastomeres. This second targeting step is dependent on the activities of the posteriorly localized SKN-1 and asymmetrically segregated PIE-1 proteins. We propose that the segregation of PIE-1, combined with the temporal decay of SKN-1, targets pal-1 activity to this posterior lineage, thus coupling the regulation of this conserved posterior patterning gene to asymmetric cell cleavages.
Collapse
Affiliation(s)
- C P Hunter
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0554, USA
| | | |
Collapse
|
703
|
Draper BW, Mello CC, Bowerman B, Hardin J, Priess JR. MEX-3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos. Cell 1996; 87:205-16. [PMID: 8861905 DOI: 10.1016/s0092-8674(00)81339-2] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
After the first division of the C. elegans embryo, the posterior blastomere can produce numerous muscles while the anterior blastomere cannot. We show here that maternal-effect lethal mutations in the gene mex-3 cause descendants of the anterior blastomere to produce muscles by a pattern of development similar to that of a descendant of the wild-type posterior blastomere. mex-3 encodes a probable RNA-binding protein that is distributed unequally in early embryos and that is a component of germline-specific granules called P granules. We propose that MEX-3 contributes to anterior-posterior asymmetry by regulating one or more mRNAs involved in specifying the fate of the posterior blastomere.
Collapse
Affiliation(s)
- B W Draper
- Department of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
704
|
Watts JL, Etemad-Moghadam B, Guo S, Boyd L, Draper BW, Mello CC, Priess JR, Kemphues KJ. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development 1996; 122:3133-40. [PMID: 8898226 DOI: 10.1242/dev.122.10.3133] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The generation of asymmetry in the one-cell embryo of Caenorhabditis elegans is necessary to establish the anterior-posterior axis and to ensure the proper identity of early blastomeres. Maternal-effect lethal mutations with a partitioning defective phenotype (par) have identified several genes involved in this process. We have identified a new gene, par-6, which acts in conjunction with other par genes to properly localize cytoplasmic components in the early embryo. The early phenotypes of par-6 embryos include the generation of equal-sized blastomeres, improper localization of P granules and SKN-1 protein, and abnormal second division cleavage patterns. Overall, this phenotype is very similar to that caused by mutations in a previously described gene, par-3. The probable basis for this similarity is revealed by our genetic and immunolocalization results; par-6 acts through par-3 by localizing or maintaining the PAR-3 protein at the cell periphery. In addition, we find that loss-of-function par-6 mutations act as dominant bypass suppressors of loss-of-function mutations in par-2.
Collapse
Affiliation(s)
- J L Watts
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
705
|
Uitto J, Pulkkinen L, Smith FJ, McLean WH. Plectin and human genetic disorders of the skin and muscle. The paradigm of epidermolysis bullosa with muscular dystrophy. Exp Dermatol 1996; 5:237-46. [PMID: 8981021 DOI: 10.1111/j.1600-0625.1996.tb00124.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent progress in understanding the molecular organization of the cutaneous basement membrane zone (BMZ) has revealed an intricate network of structural proteins necessary for stable association of the epidermis to the underlying dermis. Molecular genetics of the cutaneous BMZ has also revealed that defects in as many as nine distinct genes within the dermal-epidermal junction which result in different forms of epidermolysis bullosa (EB), a group of heritable mechano-bullous disorders. We have recently demonstrated that a variant of EB associated with late-onset development of muscular dystrophy (EB-MD, MIM no. 226670) results from mutations in the gene encoding plectin (PLEC1), a cytoskeleton associated attachment protein present in the hemidesmosomal inner plaque and the sarcolemma of the muscle. Consequently, mutations in this multi-functional gene/protein system can result in phenotypic manifestations of EB-MD both in the skin and the muscle. In this overview, we will summarize the domain organization of plectin and the structure of the corresponding gene (PLEC1), as well as the genetic basis of EB-MD in families studied thus far. Elucidation of the molecular basis of this subtype of EB adds to our understanding of the structural and functional complexity of the cutaneous BMZ.
Collapse
Affiliation(s)
- J Uitto
- Department of Dermatology, Jefferson Medical College, Philadelphia, Pennsylvania, USA.
| | | | | | | |
Collapse
|
706
|
Boyd L, Guo S, Levitan D, Stinchcomb DT, Kemphues KJ. PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. Development 1996; 122:3075-84. [PMID: 8898221 DOI: 10.1242/dev.122.10.3075] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The par genes participate in the process of establishing cellular asymmetries during the first cell cycle of Caenorhabditis elegans development. The par-2 gene is required for the unequal first cleavage and for asymmetries in cell cycle length and spindle orientation in the two resulting daughter cells. We have found that the PAR-2 protein is present in adult gonads and early embryos. In gonads, the protein is uniformly distributed at the cell cortex, and this subcellular localization depends on microfilaments. In the one-cell embryo, PAR-2 is localized to the posterior cortex and is partitioned into the posterior daughter, P1, at the first cleavage. PAR-2 exhibits a similar asymmetric cortical localization in P1, P2, and P3, the asymmetrically dividing blastomeres of germ line lineage. This distribution in embryos is very similar to that of PAR-1 protein. By analyzing the distribution of the PAR-2 protein in various par mutant backgrounds we found that proper asymmetric distribution of PAR-2 depends upon par-3 activity but not upon par-1 or par-4. par-2 activity is required for proper cortical localization of PAR-1 and this effect requires wild-type par-3 gene activity. We also find that, although par-2 activity is not required for posterior localization of P granules at the one-cell stage, it is required for proper cortical association of P granules in P1.
Collapse
Affiliation(s)
- L Boyd
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
707
|
Browning H, Berkowitz L, Madej C, Paulsen JE, Zolan ME, Strome S. Macrorestriction analysis of Caenorhabditis elegans genomic DNA. Genetics 1996; 144:609-19. [PMID: 8889524 PMCID: PMC1207554 DOI: 10.1093/genetics/144.2.609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The usefulness of genomic physical maps is greatly enhanced by linkage of the physical map with the genetic map. We describe a "macrorestriction mapping" procedure for Caenorhabditis elegans that we have applied to this endeavor. High molecular weight, genomic DNA is digested with infrequently cutting restriction enzymes and size-fractionated by pulsed field gel electrophoresis. Southern blots of the gels are probed with clones from the C. elegans physical map. This procedure allows the construction of restriction maps covering several hundred kilobases and the detection of polymorphic restriction fragments using probes that map several hundred kilobases away. We describe several applications of this technique. (1) We determined that the amount of DNA in a previously uncloned region is < 220 kb. (2) We mapped the mes-1 gene to a cosmid, by detecting polymorphic restriction fragments associated with a deletion allele of the gene. The 25-kb deletion was initially detected using as a probe sequences located approximately 400 kb away from the gene. (3) We mapped the molecular endpoint of the deficiency hDf6, and determined that three spontaneously derived duplications in the unc-38-dpy-5 region have very complex molecular structures, containing internal rearrangements and deletions.
Collapse
Affiliation(s)
- H Browning
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | | | | | | | | | |
Collapse
|
708
|
Mello CC, Schubert C, Draper B, Zhang W, Lobel R, Priess JR. The PIE-1 protein and germline specification in C. elegans embryos. Nature 1996; 382:710-2. [PMID: 8751440 DOI: 10.1038/382710a0] [Citation(s) in RCA: 272] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Totipotent germline blastomeres in Caenorhabditis elegans contain, but do not respond to, factors that promote somatic differentiation in other embryonic cells. Mutations in the maternal gene pie-1 result in the germline blastomeres adopting somatic cell fates. Here we show that pie-1 encodes a nuclear protein, PIE-1, that is localized to the germline blastomeres throughout early development. During division of each germline blastomere, PIE-1 initially associates with both centrosomes of the mitotic spindle. However, PIE-1 rapidly disappears from the centrosome destined for the somatic daughter, and persists in the centrosome of the daughter that becomes the next germline blastomere. The PIE-1 protein contains potential zinc-finger motifs also found in the mammalian growth-factor response protein TIS-11/NUP475 (refs 4-7). The localization and genetic properties of pie-1 provide an example of a repressor-based mechanism for preserving pluripotency within a stem cell lineage.
Collapse
Affiliation(s)
- C C Mello
- Department of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | | | | | | | |
Collapse
|
709
|
Guo S, Kemphues KJ. Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. Curr Opin Genet Dev 1996; 6:408-15. [PMID: 8791533 DOI: 10.1016/s0959-437x(96)80061-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Asymmetric cleavage plays an important role in Caenorhabditis elegans embryogenesis. In addition to generating cellular diversity, several early asymmetric cleavages contribute to the spatial organization of the embryo. Genetic and molecular analyses of several genes, including six par genes and the mex-1 and mes-1 genes, together with experimental embryological studies, have provided insights into mechanisms controlling polarity and spindle orientations during these cleavages. In particular, these studies focus attention on microfilament-based motility and changing protein distributions at the cell cortex.
Collapse
Affiliation(s)
- S Guo
- Section of Genetics and Development, 101 Biotechnology Building, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
710
|
Guo S, Kemphues KJ. A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature 1996; 382:455-8. [PMID: 8684486 DOI: 10.1038/382455a0] [Citation(s) in RCA: 228] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Daughter cells with distinct fates can arise through intrinsically asymmetrical divisions. Before such divisions, factors crucial for determining cell fates become asymmetrically localized in the mother cell. In Caenorhabditis elegans, PAR proteins are required for the early asymmetrical divisions that establish embryonic polarity, and are asymmetrically localized in early blastomeres, although the mechanism of their distribution is not known. Here we report the identification in C. elegans of nonmuscle myosin II heavy chain (designated NMY-2) by means of its interaction with the PAR-1 protein, a putative Ser/Thr protein kinase. Furthermore, injections of nmy-2 antisense RNA into ovaries of adult worms cause embryonic partitioning defects and lead to mislocalization of PAR proteins. We therefore conclude the NMY-2 is required for establishing cellular polarity in C. elegans embryos.
Collapse
Affiliation(s)
- S Guo
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
711
|
Abstract
Asymmetric cell divisions play a key role in establishing neuronal diversity in the mammalian and Drosophila CNS, but the mechanisms involved are mostly unknown. The Drosophila MP2 precursor divides asymmetrically to generate the dMP2/vMP2 interneurons. Delta-Notch signaling is required to specify vMP2 fate, whereas the localized determinant Numb is segregated into dMP2 and is required to specify dMP2 fate. Notch; numb double mutants have two dMP2 neurons; hence, Numb is not required for dMP2 fate, but antagonizes the Delta-Notch "vMP2" signal. In vivo Delta expression and in vitro culture experiments show that vMP2 fate is specified by an "inductive" signal from outside the MP2 lineage. Thus, intrinsic and extrinsic cues converge to specify binary cell fates in the MP2 cell lineage.
Collapse
Affiliation(s)
- E P Spana
- Howard Hughes Medical Institute, Department of Cell and Structural Biology, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
712
|
Gaudet J, VanderElst I, Spence AM. Post-transcriptional regulation of sex determination in Caenorhabditis elegans: widespread expression of the sex-determining gene fem-1 in both sexes. Mol Biol Cell 1996; 7:1107-21. [PMID: 8862524 PMCID: PMC275962 DOI: 10.1091/mbc.7.7.1107] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The fem-1 gene of C. elegans is one of three genes required for all aspects of male development in the nematode. Current models of sex determination propose that the products of the fem genes act in a novel signal-transduction pathway and that their activity is regulated primarily at the post-translational level in somatic tissues. We analyzed the expression of fem-1 to determine whether it revealed any additional levels of regulation. Both XX hermaphrodites and XO males express fem-1 at approximately constant levels throughout development. Somatic tissues in hermaphrodites adopt female fates, but they nonetheless express fem-1 mRNA and FEM-1 protein, suggesting that the regulation of fem-1 activity is post-transcriptional and probably post-translational. A compact promoter directs functional expression of fem-1 transgenes, as assayed by their masculinizing activity in fem-1 mutants. Activity also requires any two or more introns, suggesting that splicing may enhance fem-1 expression. The minimal noncoding sequences required for activity of fem-1 transgenes suffice to direct expression of a fem-1::lacZ reporter gene in all somatic tissues in both sexes. Many fem-1 transgenes, including those that rescue male somatic development in fem-1 mutants, paradoxically feminize the germline. We suggest that they do so by interfering with the germline expression of the endogenous fem-1 gene.
Collapse
Affiliation(s)
- J Gaudet
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
713
|
Mickey KM, Mello CC, Montgomery MK, Fire A, Priess JR. An inductive interaction in 4-cell stage C. elegans embryos involves APX-1 expression in the signalling cell. Development 1996; 122:1791-8. [PMID: 8674418 DOI: 10.1242/dev.122.6.1791] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the 4-cell stage of C. elegans embryogenesis, the P2 blastomere provides a signal that allows two initially equivalent sister blastomeres, called ABa and ABp, to adopt different fates. Preventing P2 signalling in wild-type embryos results in defects in ABp development that are similar to those caused by mutations in the glp-1 and apx-1 genes, which are homologs of the Drosophila genes Notch and Delta, respectively. Previous studies have shown that GLP-1 protein is expressed in 4-cell stage embryos in both ABa and ABp. In this report, we show that APX-1 protein is expressed in the P2 blastomere and that a temperature-sensitive apx-1 mutant has a temperature-sensitive period between the 4-cell and 8-cell stages. We propose that APX-1 is part or all of the P2 signal that induces ABp to adopt a fate different than ABa.
Collapse
Affiliation(s)
- K M Mickey
- Molecular and Cellular Biology Program, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| | | | | | | | | |
Collapse
|
714
|
Abstract
Anteroposterior asymmetries are apparent in C elegans development before the first cell division. Here we identify the cue that specifies the anteroposterior axis, and investigate how this cue is interpreted to generate initial asymmetry. In C. elegans, the sperm normally enters the egg in an invariant position. We have found that causing fertilisation to occur in the abnormal end of the egg completely reverses the orientation of the anteroposterior axis, but gives otherwise normal development. This result suggests that a component of the sperm normally specifies the anteroposterior axis. We have found that a cytoplasmic rearrangement in the uncleaved zygote is directed by the sperm, suggesting a mechanism by which the sperm may specify the axis. The results additionally reveal that the C elegans oocyte is constructed with no axis prespecified in the form of asymmetrically localised cytoplasmic determinants.
Collapse
Affiliation(s)
- B Goldstein
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
715
|
Kurzchalia T, Hartmann E. Are there similarities between the polarization of the C. elegans embryo and of an epithelial cell? Trends Cell Biol 1996; 6:131-2. [PMID: 15157475 DOI: 10.1016/0962-8924(96)20003-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
716
|
Hird SN, Paulsen JE, Strome S. Segregation of germ granules in living Caenorhabditis elegans embryos: cell-type-specific mechanisms for cytoplasmic localisation. Development 1996; 122:1303-12. [PMID: 8620857 DOI: 10.1242/dev.122.4.1303] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Germ granules are ribonucleoprotein particles that are thought to function in germline specification in invertebrates and possibly in vertebrates. In Caenorhabditis elegans, these structures, termed P granules, are partitioned to the germline P cells during the early embryonic divisions. By injecting a fluorescently labelled anti-P-granule antibody into the C. elegans germline syncitium, we followed P-granule segregation in live embryos using laser-scanning confocal microscopy. We show that, in early P cells (P0 and P1), P-granule partitioning is achieved primarily by their migration through the cytoplasm towards the site of formation of the germline daughter cell. A different mechanism appears to operate in later P cells (P2 and P3): P granules associate with the nucleus and move with it toward the site of formation of the germline daughter cell, where they are then deposited. At each division, there is also disassembly or degradation of those P granules that remain in the cytoplasm destined for the somatic daughter cell. Microfilaments, microtubules and the product of the gene mes-1 are required for the normal pattern of P-granule segregation in P2.
Collapse
Affiliation(s)
- S N Hird
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
717
|
Schnabel R, Weigner C, Hutter H, Feichtinger R, Schnabel H. mex-1 and the general partitioning of cell fate in the early C. elegans embryo. Mech Dev 1996; 54:133-47. [PMID: 8652407 DOI: 10.1016/0925-4773(95)00466-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It is thought that at least some of the initial specification of the five somatic founder cells of the C. elegans embryo occurs cell-autonomously through the segregation of factors during cell divisions. It has been suggested that in embryos from mothers homozygous for mutations in the maternal-effect gene mex-1, four blastomeres of the 8-cell embryo adopt the fate of the MS blastomere. It was proposed that mex-1 functions to localise or regulate factors that determine the fate of this blastomere. Here, a detailed cell lineage analysis of 9 mex-1 mutants reveals that the fates of all somatic founder cells are affected by mutations in this gene. We propose that mex-1, like the par genes, is involved in establishing the initial polarity of the embryo.
Collapse
Affiliation(s)
- R Schnabel
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
718
|
Christiano AM, Uitto J. Molecular complexity of the cutaneous basement membrane zone. Revelations from the paradigms of epidermolysis bullosa. Exp Dermatol 1996; 5:1-11. [PMID: 8624605 DOI: 10.1111/j.1600-0625.1996.tb00086.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Spectacular success has recently been made towards elucidation of the molecular basis of various forms of epidermolysis bullosa (EB), a group of heritable blistering skin diseases. The information derived from these studies has already had a profound impact in terms of precise diagnosis and classification, early prenatal prediction of the phenotype and genetic counseling in families at risk for recurrence. This review highlights recent progress made in defining the molecular basis of junctional and dystrophic forms of EB and the genotype/phenotype relationships established from these studies. Extensive molecular studies, such as the ones captured in this review, form a foundation for the rational design of gene therapies to counteract these conditions in the future.
Collapse
Affiliation(s)
- A M Christiano
- Department of Dermatology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
719
|
Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T, House CM, Fernandez CS, Cox T, Witters LA, Kemp BE. Mammalian AMP-activated protein kinase subfamily. J Biol Chem 1996; 271:611-4. [PMID: 8557660 DOI: 10.1074/jbc.271.2.611] [Citation(s) in RCA: 514] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mammalian 5'-AMP-activated protein kinase (AMPK) is related to a growing family of protein kinases in yeast and plants that are regulated by nutritional stress. We find the most prominent expressed form of the hepatic AMPK catalytic subunit (alpha 1) is distinct from the previously cloned kinase subunit (alpha 2). The alpha 1 (548 residues) and alpha 2 (552 residues) isoforms have 90% amino acid sequence identity within the catalytic core but only 61% identity elsewhere. The tissue distribution of the AMPK activity most closely parallels the low abundance 6-kilobase alpha 1 mRNA distribution and the alpha 1 immunoreactivity rather than alpha 2, with substantial amounts in kidney, liver, lung, heart, and brain. Both alpha 1 and alpha 2 isoforms are stimulated by AMP and contain noncatalytic beta and gamma subunits. The liver alpha 1 isoform accounts for approximately 94% of the enzyme activity measured using the SAMS peptide substrate. The tissue distribution of the alpha 2 immunoreactivity parallels the alpha 2 8.5-kilobase mRNA and is most prominent in skeletal muscle, heart, and liver. Isoforms of the beta and gamma subunits present in the human genome sequence reveal that the AMPK consists of a family of isoenzymes.
Collapse
Affiliation(s)
- D Stapleton
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
720
|
Affiliation(s)
- M P Koonce
- Division of Molecular Medicine, Wadsworth Center, Albany, New York 12201-0509, USA
| |
Collapse
|
721
|
Etemad-Moghadam B, Guo S, Kemphues KJ. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 1995; 83:743-52. [PMID: 8521491 DOI: 10.1016/0092-8674(95)90187-6] [Citation(s) in RCA: 351] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The par-3 gene is required for establishing polarity in early C. elegans embryos. Embryos from par-3 homozygous mothers show defects in segregation of cytoplasmic determinants and in positioning of the early cleavage spindles. We report here that the PAR-3 protein is asymmetrically distributed at the periphery of the zygote and asymmetrically dividing blastomeres of the germline lineage. The PAR-3 distribution is roughly the reciprocal of PAR-1, another protein required for establishing embryonic polarity in C. elegans. Analysis of the distribution of PAR-3 and PAR-1 in other par mutants reveals that par-2 activity is required for proper localization of PAR-3 and that PAR-3 is required for proper localization of PAR-1. In addition, the distribution of the PAR-3 protein correlates with differences in cleavage spindle orientation and suggests a mechanism by which PAR-3 contributes to control of cleavage pattern.
Collapse
Affiliation(s)
- B Etemad-Moghadam
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
722
|
Lin R, Thompson S, Priess JR. pop-1 encodes an HMG box protein required for the specification of a mesoderm precursor in early C. elegans embryos. Cell 1995; 83:599-609. [PMID: 7585963 DOI: 10.1016/0092-8674(95)90100-0] [Citation(s) in RCA: 255] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In C. elegans embryogenesis, the MS blastomere produces predominantly mesodermal cell types, while its sister E generates only endodermal tissue. We show that a maternal gene, pop-1, is essential for the specification of MS fate and that a mutation in pop-1 results in MS adopting an E fate. Previous studies have shown that the maternal gene skn-1 is required for both MS and E development and that skn-1 encodes a transcription factor. We show here that the pop-1 gene encodes a protein with an HMG box similar to the HMG boxes in the vertebrate lymphoid-specific transcriptional regulators TCF-1 and LEF-1. We propose that POP-1 and SKN-1 function together in the early embryo to allow MS-specific differentiation.
Collapse
Affiliation(s)
- R Lin
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
723
|
Abstract
A cell can divide asymmetrically by specifically segregating a determinant into one of its daughter cells. The Numb protein is a candidate for such a determinant in the asymmetric cell divisions of the developing Drosophila nervous system. Numb is a membrane-associated protein that localizes asymmetrically during cell division and segregates into one daughter cell, where it is required for the specification of the correct cell fate. Here we show that a nuclear protein, Prospero, translocates to the membrane at the beginning of cell division and colocalizes with Numb throughout mitosis, suggesting a common mechanism for asymmetric segregation. Numb and Prospero localization is coupled to mitosis and tightly correlated with the position of one of the two centrosomes. In contrast to centrosome positioning, however, Numb and Prospero localization is independent of microtubules. Cytochalasin D treatment suggests that the process is also independent of actin. We propose that there is an organizer of asymmetric cell division which provides positional information for both the orientation of the mitotic spindle and asymmetric localization of Numb and Prospero.
Collapse
Affiliation(s)
- J A Knoblich
- Howard Hughes Medical Institute, University of California at San Francisco 94143-0724, USA
| | | | | |
Collapse
|
724
|
Hirata J, Nakagoshi H, Nabeshima Y, Matsuzaki F. Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 1995; 377:627-30. [PMID: 7566173 DOI: 10.1038/377627a0] [Citation(s) in RCA: 281] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Asymmetric divisions that produce two distinct cells play fundamental roles in generating different cell types during development. In the Drosophila central nervous system, neural stem cells called neuroblasts divide unequally into another neuroblast and a ganglion mother cell which is subsequently cleaved into neurons. Correct gene expression of ganglion mother cells requires the transcription factor Prospero. Here we demonstrate the asymmetric segregation of Prospero on neuroblast division. Prospero synthesized in neuroblasts is retained in the cytoplasm and at mitosis is exclusively partitioned to ganglion mother cells, in which it is translocated to the nucleus. Differential segregation of Prospero was also found in the endoderm. We have identified a region in Prospero that is responsible for this event. The region shares a common motif with Numb, which also shows unequal segregation. We propose that asymmetric segregation of transcription factors is an intrinsic mechanism for establishing asymmetry in gene expression between sibling cells.
Collapse
Affiliation(s)
- J Hirata
- Department of Molecular Genetics, National Institute of Neuroscience, Tokyo, Japan
| | | | | | | |
Collapse
|
725
|
Abstract
Cell polarization is often accompanied by cytoskeletal rearrangements. Two signalling proteins, a GTPase and a kinase, are required for both actin and microtubule rearrangements. Are these two systems coupled?
Collapse
Affiliation(s)
- M Glotzer
- Cell Biology Program, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
726
|
Spana EP, Doe CQ. The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 1995; 121:3187-95. [PMID: 7588053 DOI: 10.1242/dev.121.10.3187] [Citation(s) in RCA: 284] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both intrinsic and extrinsic factors are known to regulate sibling cell fate. Here we describe a novel mechanism for the asymmetric localization of a transcription factor to one daughter cell at mitosis. The Drosophila CNS develops from asymmetrically dividing neuroblasts, which give rise to a large neuroblast and a smaller ganglion mother cell (GMC). The prospero gene encodes a transcription factor necessary for proper GMC gene expression. We show that the prospero protein is synthesized in the neuroblast where it is localized to the F-actin cell cortex. At mitosis, prospero is asymmetrically localized to the budding GMC and excluded from the neuroblast. After cytokinesis, prospero is translocated from the GMC cortex into the nucleus. Asymmetric cortical localization of prospero in neuroblasts requires entry into mitosis; it does not depend on numb function. prospero is also observed in cortical crescents in dividing precursors of the peripheral nervous system and adult midgut. The asymmetric cortical localization of prospero at mitosis is a mechanism for rapidly establishing distinct sibling cell fates in the CNS and possibly other tissues.
Collapse
Affiliation(s)
- E P Spana
- Howard Hughes Medical Institute, Department of Cell and Structural Biology, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
727
|
Affiliation(s)
- M S Rhyu
- National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|