701
|
Yin H, Liang X, Jogasuria A, Davidson NO, You M. miR-217 regulates ethanol-induced hepatic inflammation by disrupting sirtuin 1-lipin-1 signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1286-96. [PMID: 25797648 DOI: 10.1016/j.ajpath.2015.01.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 12/17/2022]
Abstract
Ethanol-mediated injury, combined with gut-derived lipopolysaccharide (LPS), provokes generation of proinflammatory cytokines in Kupffer cells, causing hepatic inflammation. Among the mediators of these effects, miR-217 aggravates ethanol-induced steatosis in hepatocytes. However, the role of miR-217 in ethanol-induced liver inflammation process is unknown. Here, we examined the role of miR-217 in the responses to ethanol, LPS, or a combination of ethanol and LPS in RAW 264.7 macrophages and in primary Kupffer cells. In macrophages, ethanol substantially exacerbated LPS-mediated induction of miR-217 and production of proinflammatory cytokines compared with LPS or ethanol alone. Consistently, ethanol administration to mice led to increases in miR-217 abundance and increased production of inflammatory cytokines in isolated primary Kupffer cells exposed to the combination of ethanol and LPS. miR-217 promoted combined ethanol and LPS-mediated inhibition of sirtuin 1 expression and activity in macrophages. Moreover, miR-217-mediated sirtuin 1 inhibition was accompanied by increased activities of two vital inflammatory regulators, NF-κB and the nuclear factor of activated T cells c4. Finally, adenovirus-mediated overexpression of miR-217 led to steatosis and inflammation in mice. These findings suggest that miR-217 is a pivotal regulator involved in ethanol-induced hepatic inflammation. Strategies to inhibit hepatic miR-217 could be a viable approach in attenuating alcoholic hepatitis.
Collapse
Affiliation(s)
- Huquan Yin
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, Tampa, Florida
| | - Xiaomei Liang
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, Tampa, Florida
| | - Alvin Jogasuria
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, College of Pharmacy, Rootstown, Ohio
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Min You
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, College of Pharmacy, Rootstown, Ohio.
| |
Collapse
|
702
|
Cecon E, Chen M, Marçola M, Fernandes PAC, Jockers R, Markus RP. Amyloid
β
peptide directly impairs pineal gland melatonin synthesis and melatonin receptor signaling through the ERK pathway. FASEB J 2015; 29:2566-82. [DOI: 10.1096/fj.14-265678] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/16/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Erika Cecon
- Chronopharmacology Laboratory, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
- Institut National de la Santé et de la Recherche Médicale U1016, Institut CochinParisFrance
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104ParisFrance
- University Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Min Chen
- Institut National de la Santé et de la Recherche Médicale U1016, Institut CochinParisFrance
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104ParisFrance
- University Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Marina Marçola
- Chronopharmacology Laboratory, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
| | - Pedro A. C. Fernandes
- Chronopharmacology Laboratory, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
| | - Ralf Jockers
- Institut National de la Santé et de la Recherche Médicale U1016, Institut CochinParisFrance
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104ParisFrance
- University Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Regina P. Markus
- Chronopharmacology Laboratory, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
| |
Collapse
|
703
|
Akasaki Y, Alvarez-Garcia O, Saito M, Caramés B, Iwamoto Y, Lotz MK. FoxO transcription factors support oxidative stress resistance in human chondrocytes. Arthritis Rheumatol 2015; 66:3349-58. [PMID: 25186470 DOI: 10.1002/art.38868] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 08/28/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE A major signaling pathway that regulates cellular aging is the insulin/insulin-like growth factor 1 (IGF-1)/phosphatidylinositol 3-kinase (PI3K)/Akt/FoxO transcription factor axis. We previously observed that FoxO transcription factors are dysregulated in aged and OA cartilage. The objective of this study was to investigate the impact of down-regulated FoxO transcription factors on chondrocytes. METHODS Small interfering RNAs (siRNAs) targeting FOXO1 (siFOXO1) and FOXO3 (siFOXO3) were transfected into human articular chondrocytes. Cell viability following treatment with the oxidant tert-butyl-hydroperoxide (tBHP) was measured by MTT assay. Caspase 3/7 activation and apoptotic cells were examined. Gene and protein expression of antioxidant proteins and autophagy-related proteins and changes in inflammatory mediators following treatment with interleukin-1β were assessed. Cells transfected with FOXO plasmids were also analyzed. RESULTS Cell viability was significantly reduced by siFOXO after treatment with tBHP. Apoptosis accompanied by caspase activation was significantly increased in siFOXO-transfected chondrocytes. Knockdown of FOXO1 and FOXO1+3 resulted in significant reductions in levels of glutathione peroxidase 1 (GPX-1), catalase, light chain 3 (LC3), Beclin1, and sirtuin 1 (SIRT-1) proteins following treatment with tBHP. In contrast, the constitutive active form of FOXO3 increased cell viability while inducing GPX-1, Beclin1, and LC3 in response to tBHP. Expression and production of ADAMTS-4 and chemerin were significantly increased in siFOXO-transfected chondrocytes. CONCLUSION Reduced expression of FoxO transcription factors in chondrocytes increased susceptibility to cell death induced by oxidative stress. This was associated with reduced levels of antioxidant proteins and autophagy-related proteins. Our data provide evidence for a key role of FoxO transcription factors as regulators of chondrocyte oxidative stress resistance and tissue homeostasis.
Collapse
Affiliation(s)
- Yukio Akasaki
- The Scripps Research Institute, La Jolla, California
| | | | | | | | | | | |
Collapse
|
704
|
Srinivasan M, Lahiri DK. Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer's disease and multiple sclerosis. Expert Opin Ther Targets 2015; 19:471-87. [PMID: 25652642 DOI: 10.1517/14728222.2014.989834] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Advances in molecular pathogenesis suggest that the chronic inflammation is a shared mechanism in the initiation and progression of multiple neurodegenerative diseases with diverse clinical manifestations such as Alzheimer's disease (AD) and Multiple sclerosis (MS). Restricted cell renewal and regenerative capacity make the neural tissues extremely vulnerable to the uncontrolled inflammatory process leading to irreversible tissue damage. AREAS COVERED A predominant consequence of increased inflammatory signaling is the upregulation of the transcription factor, NF-κB with subsequent neuroprotective or deleterious effects depending on the strength of the signal and the type of NF-κB dimers activated. We discuss the interplay between neuroinflammation and neurodegeneration keeping in focus NF-κB signaling as the point of convergence of multiple pathways associated with the development of the neurodegenerative pathologies, AD and MS. EXPERT OPINION Considerable interest exists in developing efficient NF-κB inhibitors for neurodegenerative diseases. The review includes an overview of natural compounds and rationally designed agents that inhibit NF-κB and mediate neuroprotection in AD and MS. The key chemical moieties of the natural and the synthetic compounds provide efficient leads for the development of effective small molecule inhibitors that selectively target NF-κB activation; this would result in the desired benefit to risk therapeutic effects.
Collapse
Affiliation(s)
- Mythily Srinivasan
- Indiana University School of Dentistry, Oral Pathology, Radiology and Medicine , Indianapolis, IN , USA +1 317 278 9686 ; +1 317 278 3018 ;
| | | |
Collapse
|
705
|
Komaravelli N, Kelley JP, Garofalo MP, Wu H, Casola A, Kolli D. Role of dietary antioxidants in human metapneumovirus infection. Virus Res 2015; 200:19-23. [PMID: 25645280 DOI: 10.1016/j.virusres.2015.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/20/2022]
Abstract
Human metapneumovirus (hMPV) is a major cause of respiratory tract infections in children, elderly and immunocompromised hosts, for which no vaccine or treatment are currently available. Oxidative stress and inflammatory responses represent important pathogenic mechanism(s) of hMPV infection. Here, we explored the potential protective role of dietary antioxidants in hMPV infection. Treatment of airway epithelial cells with resveratrol and quercetin during hMPV infection significantly reduced cellular oxidative damage, inflammatory mediator secretion and viral replication, without affecting viral gene transcription and protein synthesis, indicating that inhibition of viral replication occurred at the level of viral assembly and/or release. Modulation of proinflammatory mediator expression occurred through the inhibition of transcription factor nuclear factor (NF)-κB and interferon regulatory factor (IRF)-3 binding to their cognate site of endogenous gene promoters. Our results indicate the use of dietary antioxidants as an effective treatment approach for modulating hMPV induced lung oxidative damage and inflammation.
Collapse
Affiliation(s)
- Narayana Komaravelli
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - John P Kelley
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Matteo P Garofalo
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Haotian Wu
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Antonella Casola
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Deepthi Kolli
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
706
|
Mohan M, Kumar V, Lackner AA, Alvarez X. Dysregulated miR-34a-SIRT1-acetyl p65 axis is a potential mediator of immune activation in the colon during chronic simian immunodeficiency virus infection of rhesus macaques. THE JOURNAL OF IMMUNOLOGY 2014; 194:291-306. [PMID: 25452565 DOI: 10.4049/jimmunol.1401447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Persistent gastrointestinal inflammation, a hallmark of progressive HIV/SIV infection, causes disruption of the gastrointestinal epithelial barrier, microbial translocation, and generalized immune activation/inflammation driving AIDS progression. Apart from protein regulators, recent studies strongly suggest critical roles for microRNAs (miRNAs) in regulating and managing certain aspects of the inflammatory process. To examine their immunoregulatory role, we profiled miRNA expression in the colon from 12 chronic SIV-infected and 4 control macaques. After applying multiple comparisons correction, 10 (3 upregulated and 7 downregulated) miRNAs showed differential expression. Most notably, miR-34a showed significant upregulation in both epithelial and lamina propria leukocyte (LPL) compartments. Intense γH2A.X expression in colonic epithelium and LPLs confirmed the contribution of DNA damage response in driving miR-34a upregulation. SIRT1 mRNA and protein decreased significantly in both colonic epithelium and LPLs. Luciferase reporter assays validated rhesus macaque SIRT1 as a direct miR-34a target. Decreased SIRT1 expression was associated with constitutively enhanced expression of the transcriptionally active form of the p65 (acetylated on lysine 310) subunit of NF-κB exclusively in the LPL compartment. The intensity and number of acetylated p65(+) cells was markedly elevated in LPLs of chronically SIV-infected macaques compared with uninfected controls and localized to increased numbers of IgA(+) and IgG(+) plasma cells. These findings provide new insights into the potential role of the miR-34a-SIRT1-p65 axis in causing hyperactivation of the intestinal B cell system. Our results point to a possible mechanism where the normal immunosuppressive function of SIRT1 is inhibited by elevated miR-34a expression resulting in constitutive activation of acetylated p65 (lysine 310).
Collapse
Affiliation(s)
- Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Vinay Kumar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Andrew A Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| |
Collapse
|
707
|
Cheng SC, Joosten LA, Netea MG. The interplay between central metabolism and innate immune responses. Cytokine Growth Factor Rev 2014; 25:707-13. [DOI: 10.1016/j.cytogfr.2014.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022]
|
708
|
Choi SA, Choi JW, Wang KC, Phi JH, Lee JY, Park KD, Eum D, Park SH, Kim IH, Kim SK. Disulfiram modulates stemness and metabolism of brain tumor initiating cells in atypical teratoid/rhabdoid tumors. Neuro Oncol 2014; 17:810-21. [PMID: 25378634 DOI: 10.1093/neuonc/nou305] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 10/01/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Atypical teratoid/rhabdoid tumors (AT/RT) are among the most malignant pediatric brain tumors. Cells from brain tumors with high aldehyde dehydrogenase (ALDH) activity have a number of characteristics that are similar to brain tumor initiating cells (BTICs). This study aimed to evaluate the therapeutic potential of ALDH inhibition using disulfiram (DSF) against BTICs from AT/RT. METHODS Primary cultured BTICs from AT/RT were stained with Aldefluor and isolated by fluorescence activated cell sorting. The therapeutic effect of DSF against BTICs from AT/RT was confirmed in vitro and in vivo. RESULTS AT/RT cells displayed a high expression of ALDH. DSF demonstrated a more potent cytotoxic effect on ALDH(+) AT/RT cells compared with standard anticancer agents. Notably, treatment with DSF did not have a considerable effect on normal neural stem cells or fibroblasts. DSF significantly inhibited the ALDH enzyme activity of AT/RT cells. DSF decreased self-renewal ability, cell viability, and proliferation potential and induced apoptosis and cell cycle arrest in ALDH(+) AT/RT cells. Importantly, DSF reduced the metabolism of ALDH(+) AT/RT cells by increasing the nicotinamide adenine dinucleotide ratio of NAD(+)/NADH and regulating Silent mating type Information Regulator 2 homolog 1 (SIRT1), nuclear factor-kappaB, Lin28A/B, and miRNA let-7g. Animals in the DSF-treated group demonstrated a reduction of tumor volume (P < .05) and a significant survival benefit (P = .02). CONCLUSION Our study demonstrated the therapeutic potential of DSF against BTICs from AT/RT and suggested the possibility of ALDH inhibition for clinical application.
Collapse
Affiliation(s)
- Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., K.-C.W., J.H.P., J.Y.L., D.E., S.-K.K.); Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., J.H.P., J.Y.L., K.D.P., D.E., S.-K.K.); Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea (K.D.P.); Department of Pathology, Seoul National University Children's Hospital, Seoul, Republic of Korea (S-H.P.); Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (I.H.K.)
| | - Jung Won Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., K.-C.W., J.H.P., J.Y.L., D.E., S.-K.K.); Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., J.H.P., J.Y.L., K.D.P., D.E., S.-K.K.); Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea (K.D.P.); Department of Pathology, Seoul National University Children's Hospital, Seoul, Republic of Korea (S-H.P.); Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (I.H.K.)
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., K.-C.W., J.H.P., J.Y.L., D.E., S.-K.K.); Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., J.H.P., J.Y.L., K.D.P., D.E., S.-K.K.); Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea (K.D.P.); Department of Pathology, Seoul National University Children's Hospital, Seoul, Republic of Korea (S-H.P.); Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (I.H.K.)
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., K.-C.W., J.H.P., J.Y.L., D.E., S.-K.K.); Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., J.H.P., J.Y.L., K.D.P., D.E., S.-K.K.); Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea (K.D.P.); Department of Pathology, Seoul National University Children's Hospital, Seoul, Republic of Korea (S-H.P.); Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (I.H.K.)
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., K.-C.W., J.H.P., J.Y.L., D.E., S.-K.K.); Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., J.H.P., J.Y.L., K.D.P., D.E., S.-K.K.); Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea (K.D.P.); Department of Pathology, Seoul National University Children's Hospital, Seoul, Republic of Korea (S-H.P.); Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (I.H.K.)
| | - Kyung Duk Park
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., K.-C.W., J.H.P., J.Y.L., D.E., S.-K.K.); Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., J.H.P., J.Y.L., K.D.P., D.E., S.-K.K.); Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea (K.D.P.); Department of Pathology, Seoul National University Children's Hospital, Seoul, Republic of Korea (S-H.P.); Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (I.H.K.)
| | - Dayoung Eum
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., K.-C.W., J.H.P., J.Y.L., D.E., S.-K.K.); Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., J.H.P., J.Y.L., K.D.P., D.E., S.-K.K.); Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea (K.D.P.); Department of Pathology, Seoul National University Children's Hospital, Seoul, Republic of Korea (S-H.P.); Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (I.H.K.)
| | - Sung-Hye Park
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., K.-C.W., J.H.P., J.Y.L., D.E., S.-K.K.); Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., J.H.P., J.Y.L., K.D.P., D.E., S.-K.K.); Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea (K.D.P.); Department of Pathology, Seoul National University Children's Hospital, Seoul, Republic of Korea (S-H.P.); Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (I.H.K.)
| | - Il Han Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., K.-C.W., J.H.P., J.Y.L., D.E., S.-K.K.); Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., J.H.P., J.Y.L., K.D.P., D.E., S.-K.K.); Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea (K.D.P.); Department of Pathology, Seoul National University Children's Hospital, Seoul, Republic of Korea (S-H.P.); Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (I.H.K.)
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., K.-C.W., J.H.P., J.Y.L., D.E., S.-K.K.); Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea (S.A.C., J.W.C., J.H.P., J.Y.L., K.D.P., D.E., S.-K.K.); Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea (K.D.P.); Department of Pathology, Seoul National University Children's Hospital, Seoul, Republic of Korea (S-H.P.); Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (I.H.K.)
| |
Collapse
|
709
|
Jazwa A, Kasper L, Bak M, Sobczak M, Szade K, Jozkowicz A, Sladek K, Dulak J. Differential inflammatory microRNA and cytokine expression in pulmonary sarcoidosis. Arch Immunol Ther Exp (Warsz) 2014; 63:139-46. [PMID: 25366387 PMCID: PMC4359280 DOI: 10.1007/s00005-014-0315-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/05/2014] [Indexed: 12/28/2022]
Abstract
Sarcoidosis is a granulomatous disease of unknown etiology. The disease has an important inflammatory and immune component; however, its immunopathogenesis is not completely understood. Recently, the role of microRNAs (miRNAs), the small non-coding RNAs, has attracted attention as both being involved in pathogenesis and serving as disease markers. Accordingly, changes in the expression of some miRNAs have been also associated with different autoimmune pathologies. However, not much is known about the role of miRNAs in sarcoidosis. Therefore, the aim of this study was to compare the level of expression of selected miRNAs in healthy individuals and patients with sarcoidosis. We detected significantly increased level of miR-34a in peripheral blood mononuclear cells isolated from sarcoidosis patients. Moreover, significantly up-regulated levels of interferon (IFN)-γ, IFN-γ inducible protein (IP-10) and vascular endothelial growth factor were detected in sera of patients when compared to healthy subjects. Our results add to a known inflammatory component in sarcoidosis. Changes in the levels of miR-34a may suggest its involvement in the pathology of this disease.
Collapse
Affiliation(s)
- Agnieszka Jazwa
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | | | | | | | | | | | | | | |
Collapse
|
710
|
Esser N, Paquot N, Scheen AJ. Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs 2014; 24:283-307. [PMID: 25345753 DOI: 10.1517/13543784.2015.974804] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION There is a growing body of evidence to suggest that chronic silent inflammation is a key feature in abdominal obesity, metabolic syndrome, type 2 diabetes (T2DM) and cardiovascular disease (CVD). These observations suggest that pharmacological strategies, which reduce inflammation, may be therapeutically useful in treating obesity, type 2 diabetes and associated CVD. AREA COVERED The article covers novel strategies, using either small molecules or monoclonal antibodies. These strategies include: approaches targeting IKK-b-NF-kB (salicylates, salsalate), TNF-α (etanercept, infliximab, adalimumab), IL-1β (anakinra, canakinumab) and IL-6 (tocilizumab), AMP-activated protein kinase activators, sirtuin-1 activators, mammalian target of rapamycin inhibitors and C-C motif chemokine receptor 2 antagonists. EXPERT OPINION The available data supports the concept that targeting inflammation improves insulin sensitivity and β-cell function; it also ameliorates glucose control in insulin-resistant patients with inflammatory rheumatoid diseases as well in patients with metabolic syndrome or T2DM. Although promising, the observed metabolic effects remain rather modest in most clinical trials. The potential use of combined anti-inflammatory agents targeting both insulin resistance and insulin secretion appears appealing but remains unexplored. Large-scale prospective clinical trials are underway to investigate the safety and efficacy of different anti-inflammatory drugs. Further evidence is needed to support the concept that targeting inflammation pathways may represent a valuable option to tackle the cardiometabolic complications of obesity.
Collapse
Affiliation(s)
- Nathalie Esser
- University of Liege and Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, Virology and Immunology Unit, GIGA-ST , CHU Liège, Liège , Belgium
| | | | | |
Collapse
|
711
|
Morita M, Chen J, Fujino M, Kitazawa Y, Sugioka A, Zhong L, Li XK. Identification of microRNAs involved in acute rejection and spontaneous tolerance in murine hepatic allografts. Sci Rep 2014; 4:6649. [PMID: 25323448 PMCID: PMC5377586 DOI: 10.1038/srep06649] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/19/2014] [Indexed: 12/28/2022] Open
Abstract
Graft acceptance without the need for immunosuppressive drugs is the ultimate goal of transplantation therapy. In murine liver transplantation, allografts are accepted across major histocompatibility antigen complex barriers without the use of immunosuppressive drugs and constitute a suitable model for research on immunological rejection and tolerance. MicroRNA (miRNA) has been known to be involved in the immunological responses. In order to identify mRNAs in spontaneous liver allograft tolerance, miRNA expression in hepatic allografts was examined using this transplantation model. According to the graft pathological score and function, miR-146a, 15b, 223, 23a, 27a, 34a and 451 were upregulated compared with the expression observed in the syngeneic grafts. In contrast, miR-101a, 101b and 148a were downregulated. Our results demonstrated the alteration of miRNAs in the allografts and may indicate the role of miRNAs in the induction of tolerance after transplantation. Furthermore, our data suggest that monitoring the graft expression of novel miRNAs may allow clinicians to differentiate between rejection and tolerance. A better understanding of the tolerance inducing mechanism observed in murine hepatic allografts may provide a therapeutic strategy for attenuating allograft rejection.
Collapse
Affiliation(s)
- Miwa Morita
- 1] Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo [2] Department of Surgery, Fujita Health University School of Medicine, Aichi, Japan
| | - Jiajie Chen
- 1] Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo [2] Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Masayuki Fujino
- 1] Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo [2] AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yusuke Kitazawa
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo
| | - Atsushi Sugioka
- Department of Surgery, Fujita Health University School of Medicine, Aichi, Japan
| | - Liang Zhong
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo
| |
Collapse
|
712
|
Bosch-Presegué L, Vaquero A. Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J 2014; 282:1745-67. [DOI: 10.1111/febs.13053] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Laia Bosch-Presegué
- Chromatin Biology Laboratory; Cancer Epigenetics and Biology Program; Institut d'Investigació Biomèdica de Bellvitge; Barcelona Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory; Cancer Epigenetics and Biology Program; Institut d'Investigació Biomèdica de Bellvitge; Barcelona Spain
| |
Collapse
|
713
|
Zhang ZF, Zhang YQ, Fan SH, Zhuang J, Zheng YL, Lu J, Wu DM, Shan Q, Hu B. Troxerutin protects against 2,2',4,4'-tetrabromodiphenyl ether (BDE-47)-induced liver inflammation by attenuating oxidative stress-mediated NAD⁺-depletion. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:98-109. [PMID: 25262482 DOI: 10.1016/j.jhazmat.2014.09.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/30/2014] [Accepted: 09/08/2014] [Indexed: 06/03/2023]
Abstract
Emerging evidence indicates that 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) induces liver injury through enhanced ROS production and lymphocytic infiltration, which may promote a liver inflammatory response. Antioxidants have been reported to attenuate the cellular toxicity associated with polybrominated diphenyl ethers (PBDEs). In this study, we investigated the effect of troxerutin, a trihydroxyethylated derivative of the natural bioflavonoid rutin, on BDE-47-induced liver inflammation and explored the potential mechanisms underlying this effect. Our results showed that NAD(+)-depletion was involved in the oxidative stress-mediated liver injury in a BDE-47 treated mouse model, which was confirmed by Vitamin E treatment. Furthermore, our data revealed that troxerutin effectively alleviated liver inflammation by mitigating oxidative stress-mediated NAD(+)-depletion in BDE-47 treated mice. Consequently, troxerutin remarkably restored SirT1 protein expression and activity in the livers of BDE-47-treated mice. Mechanistically, troxerutin dramatically repressed the nuclear translocation of NF-κB p65 and the acetylation of NF-κB p65 (Lys 310) and Histone H3 (Lys9) to abate the transcription of inflammatory genes in BDE-47-treated mouse livers. These inhibitory effects of troxerutin were markedly blunted by EX527 (SirT1 inhibitor) treatment. This study provides novel mechanistic insights into the toxicity of BDE-47 and indicates that troxerutin might be used in the prevention and therapy of BDE-47-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zi-Feng Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province, PR China; Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China
| | - Yan-Qiu Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province, PR China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China
| | - Juan Zhuang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province, PR China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China.
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China
| |
Collapse
|
714
|
Akasaki Y, Alvarez-Garcia O, Saito M, Caramés B, Iwamoto Y, Lotz MK. FoxO transcription factors support oxidative stress resistance in human chondrocytes. ARTHRITIS & RHEUMATOLOGY (HOBOKEN, N.J.) 2014. [PMID: 25186470 DOI: 10.1002/art.38868.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE A major signaling pathway that regulates cellular aging is the insulin/insulin-like growth factor 1 (IGF-1)/phosphatidylinositol 3-kinase (PI3K)/Akt/FoxO transcription factor axis. We previously observed that FoxO transcription factors are dysregulated in aged and OA cartilage. The objective of this study was to investigate the impact of down-regulated FoxO transcription factors on chondrocytes. METHODS Small interfering RNAs (siRNAs) targeting FOXO1 (siFOXO1) and FOXO3 (siFOXO3) were transfected into human articular chondrocytes. Cell viability following treatment with the oxidant tert-butyl-hydroperoxide (tBHP) was measured by MTT assay. Caspase 3/7 activation and apoptotic cells were examined. Gene and protein expression of antioxidant proteins and autophagy-related proteins and changes in inflammatory mediators following treatment with interleukin-1β were assessed. Cells transfected with FOXO plasmids were also analyzed. RESULTS Cell viability was significantly reduced by siFOXO after treatment with tBHP. Apoptosis accompanied by caspase activation was significantly increased in siFOXO-transfected chondrocytes. Knockdown of FOXO1 and FOXO1+3 resulted in significant reductions in levels of glutathione peroxidase 1 (GPX-1), catalase, light chain 3 (LC3), Beclin1, and sirtuin 1 (SIRT-1) proteins following treatment with tBHP. In contrast, the constitutive active form of FOXO3 increased cell viability while inducing GPX-1, Beclin1, and LC3 in response to tBHP. Expression and production of ADAMTS-4 and chemerin were significantly increased in siFOXO-transfected chondrocytes. CONCLUSION Reduced expression of FoxO transcription factors in chondrocytes increased susceptibility to cell death induced by oxidative stress. This was associated with reduced levels of antioxidant proteins and autophagy-related proteins. Our data provide evidence for a key role of FoxO transcription factors as regulators of chondrocyte oxidative stress resistance and tissue homeostasis.
Collapse
Affiliation(s)
- Yukio Akasaki
- The Scripps Research Institute, La Jolla, California
| | | | | | | | | | | |
Collapse
|
715
|
Filippov S, Pinkosky SL, Newton RS. LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase. Curr Opin Lipidol 2014; 25:309-15. [PMID: 24978142 PMCID: PMC4162331 DOI: 10.1097/mol.0000000000000091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW To review the profile of ETC-1002, as shown in preclinical and clinical studies, including LDL-cholesterol (LDL-C)-lowering activity and beneficial effects on other cardiometabolic risk markers as they relate to the inhibition of adenosine triphosphate-citrate lyase and the activation of adenosine monophosphate-activated protein kinase. RECENT FINDINGS ETC-1002 is an adenosine triphosphate-citrate lyase inhibitor/adenosine monophosphate-activated protein kinase activator currently in Phase 2b clinical development. In seven Phase 1 and Phase 2a clinical studies, ETC-1002 dosed once daily for 2-12 weeks has lowered LDL-C and reduced high-sensitivity C-reactive protein by up to 40%, with neutral to positive effects on glucose levels, blood pressure, and body weight. Importantly, use of ETC-1002 in statin-intolerant patients has shown statin-like lowering of LDL-C without the muscle pain and weakness responsible for discontinuation of statin use by many patients. ETC-1002 has also been shown to produce an incremental benefit, lowering LDL-C as an add-on therapy to a low-dose statin. In over 300 individuals in studies of up to 12 weeks, ETC-1002 has been well tolerated with no serious adverse effects. SUMMARY Because adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase play central roles in regulating lipid and glucose metabolism, pharmacological modulation of these two enzymes could provide an important therapeutic alternative for statin-intolerant patients with hypercholesterolemia.
Collapse
|
716
|
Vachharajani VT, Liu T, Brown CM, Wang X, Buechler NL, Wells JD, Yoza BK, McCall CE. SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. J Leukoc Biol 2014; 96:785-96. [PMID: 25001863 DOI: 10.1189/jlb.3ma0114-034rr] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mechanism-based sepsis treatments are unavailable, and their incidence is rising worldwide. Deaths occur during the early acute phase of hyperinflammation or subsequent postacute hypoinflammatory phase with sustained organ failure. The acute sepsis phase shifts rapidly, and multiple attempts to treat early excessive inflammation have uniformly failed. We reported in a sepsis cell model and human sepsis blood leukocytes that nuclear NAD+ sensor SIRT1 deacetylase remodels chromatin at specific gene sets to switch the acute-phase proinflammatory response to hypoinflammatory. Importantly, SIRT1 chromatin reprogramming is reversible, suggesting that inhibition of SIRT1 might reverse postacute-phase hypoinflammation. We tested this concept in septic mice, using the highly specific SIRT1 inhibitor EX-527, a small molecule that closes the NAD+ binding site of SIRT1. Strikingly, when administered 24 h after sepsis, all treated animals survived, whereas only 40% of untreated mice survived. EX-527 treatment reversed the inability of leukocytes to adhere at the small intestine MVI, reversed in vivo endotoxin tolerance, increased leukocyte accumulation in peritoneum, and improved peritoneal bacterial clearance. Mechanistically, the SIRT1 inhibitor restored repressed endothelial E-selectin and ICAM-1 expression and PSGL-1 expression on the neutrophils. Systemic benefits of EX-527 treatment included stabilized blood pressure, improved microvascular blood flow, and a shift toward proimmune macrophages in spleen and bone marrow. Our findings reveal that modifying the SIRT1 NAD+ axis may provide a novel way to treat sepsis in its hypoinflammatory phase.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Barbara K Yoza
- Internal Medicine, and Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | |
Collapse
|
717
|
Quadri S, Siragy HM. Regulation of (pro)renin receptor expression in mIMCD via the GSK-3β-NFAT5-SIRT-1 signaling pathway. Am J Physiol Renal Physiol 2014; 307:F593-600. [PMID: 24990896 DOI: 10.1152/ajprenal.00245.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The localization and regulation of (pro)renin receptor (PRR) expression in kidney collecting duct cells are not well established. We hypothesized that low salt (LS) contributes to the regulation of PRR expression in these cells via the GSK-3β-NFAT5-sirtuin1 (SIRT-1) signaling pathway. Mouse inner medullary collecting duct (mIMCD) cells were treated with NaCl at 130 (normal salt; NS), 63 (LS), or 209 mM (high salt; HS) alone or in combination with NFAT5 scrambled small interfering (si) RNA, NFAT5 siRNA, or the SIRT-1 inhibitor EX-527. Compared with NS, LS increased the mRNA and protein expression of PRR by 71% and 69% (P < 0.05), and reduced phosphorylation of GSK-3β by 62% (P < 0.01), mRNA and protein expressions of NFAT5 by 65% and 45% (P < 0.05), and SIRT-1 by 44% and 50% (P < 0.01), respectively. LS also enhanced p65 NF-κB by 102% (P < 0.01). Treatment with HS significantly reduced the mRNA and protein expression of PRR by 32% and 23% (P < 0.05), and increased the mRNA and protein expression of NFAT5 by 39% and 45% (P < 0.05) and SIRT-1 by 51% and 56% (P < 0.05), respectively. HS+NFAT5 siRNA reduced the mRNA and protein expression of NFAT5 by 51% and 35% (P < 0.01) and increased the mRNA and protein expression of PRR by 148% and 70% (P < 0.01), respectively. HS+EX-527 significantly increased the mRNA and protein expression of PRR by 96% and 58% (P < 0.05), respectively. We conclude that expression of PRR in mIMCD cells is regulated by the GSK-3β-NFAT5- SIRT-1 signaling pathway.
Collapse
Affiliation(s)
- Syed Quadri
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia
| | - Helmy M Siragy
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
718
|
Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R, Hewitt G, Pender SLF, Fullard N, Nelson G, Mann J, van de Sluis B, Mann DA, von Zglinicki T. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 2014; 2:4172. [PMID: 24960204 PMCID: PMC4090717 DOI: 10.1038/ncomms5172] [Citation(s) in RCA: 563] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/20/2014] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation is associated with normal and pathological ageing. Here we show that chronic, progressive low-grade inflammation induced by knockout of the nfkb1 subunit of the transcription factor NF-κB induces premature ageing in mice. We also show that these mice have reduced regeneration in liver and gut. nfkb1(-/-) fibroblasts exhibit aggravated cell senescence because of an enhanced autocrine and paracrine feedback through NF-κB, COX-2 and ROS, which stabilizes DNA damage. Preferential accumulation of telomere-dysfunctional senescent cells in nfkb1(-/-) tissues is blocked by anti-inflammatory or antioxidant treatment of mice, and this rescues tissue regenerative potential. Frequencies of senescent cells in liver and intestinal crypts quantitatively predict mean and maximum lifespan in both short- and long-lived mice cohorts. These data indicate that systemic chronic inflammation can accelerate ageing via ROS-mediated exacerbation of telomere dysfunction and cell senescence in the absence of any other genetic or environmental factor.
Collapse
Affiliation(s)
- Diana Jurk
- Institute for Ageing and Health, Newcastle University, NE4 5PL, UK
| | - Caroline Wilson
- Fibrosis Laboratory, Liver Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - João F. Passos
- Institute for Ageing and Health, Newcastle University, NE4 5PL, UK
| | - Fiona Oakley
- Fibrosis Laboratory, Liver Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Laura Greaves
- Mitochondrial Research Group, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Chris Fox
- Fibrosis Laboratory, Liver Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Conor Lawless
- Institute for Ageing and Health, Newcastle University, NE4 5PL, UK
- Institute for Cell and Molecular Biosciences, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Rhys Anderson
- Institute for Ageing and Health, Newcastle University, NE4 5PL, UK
| | - Graeme Hewitt
- Institute for Ageing and Health, Newcastle University, NE4 5PL, UK
| | - Sylvia LF Pender
- Faculty of Medicine, University of Southampton. Mailpoint 813, Sir Henry Wellcome Laboratories, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Nicola Fullard
- Fibrosis Laboratory, Liver Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Glyn Nelson
- Institute for Ageing and Health, Newcastle University, NE4 5PL, UK
| | - Jelena Mann
- Fibrosis Laboratory, Liver Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Bart van de Sluis
- Molecular Genetics Laboratory, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Derek A. Mann
- Fibrosis Laboratory, Liver Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- These authors contributed equally to this work
| | - Thomas von Zglinicki
- Institute for Ageing and Health, Newcastle University, NE4 5PL, UK
- These authors contributed equally to this work
| |
Collapse
|
719
|
Perovic A, Unic A, Dumic J. Recreational scuba diving: negative or positive effects of oxidative and cardiovascular stress? Biochem Med (Zagreb) 2014; 24:235-47. [PMID: 24969917 PMCID: PMC4083575 DOI: 10.11613/bm.2014.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/16/2014] [Indexed: 12/22/2022] Open
Abstract
Environmental conditions and increased physical activity during scuba diving are followed by increased production of free radicals and disturbed redox balance. Redox balance disorder is associated with damage of cellular components, changes of cellular signaling pathways and alterations of gene expression. Oxidative stress leads to increased expression of sirtuins (SIRTs), molecules which play an important role in the antioxidant defense, due to their sensitivity to the changes in the redox status and their ability to regulate redox homeostasis. These facts make SIRTs interesting to be considered as molecules affected by scuba diving and in that sense, as potential biomarkers of oxidative status or possible drug targets in reduction of reactive oxygen species (ROS) accumulation. In addition, SIRTs effects through currently known targets make them intriguing molecules which can act positively on health in general and whose expression can be induced by scuba diving.A demanding physical activity, as well as other circumstances present in scuba diving, has the greatest load on the cardiovascular function (CV). The mechanisms of CV response during scuba diving are still unclear, but diving-induced oxidative stress and the increase in SIRTs expression could be an important factor in CV adaptation. This review summarizes current knowledge on scuba diving-induced oxidative and CV stress and describes the important roles of SIRTs in the (patho)physiological processes caused by the redox balance disorder.
Collapse
Affiliation(s)
- Antonija Perovic
- Department of Biochemical and Hematological Laboratory Diagnostics, Dubrovnik General Hospital, Dubrovnik, Croatia
| | | | | |
Collapse
|
720
|
Histone demethylase Jumonji D3 (JMJD3/KDM6B) at the nexus of epigenetic regulation of inflammation and the aging process. J Mol Med (Berl) 2014; 92:1035-43. [DOI: 10.1007/s00109-014-1182-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/27/2014] [Accepted: 06/05/2014] [Indexed: 02/03/2023]
|
721
|
Kowluru RA, Santos JM, Zhong Q. Sirt1, a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy. Invest Ophthalmol Vis Sci 2014; 55:5653-60. [PMID: 24894401 DOI: 10.1167/iovs.14-14383] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE In the pathogenesis of diabetic retinopathy, matrix metalloproteinase (MMP)-9 damages retinal mitochondria, activating the apoptotic machinery. Transcription of MMP-9 is regulated by nuclear factor kappa B (NF-κB), and the activation of NF-κB is modulated by the acetylation of its p65 subunit. Sirtuin 1 (Sirt1), a deacetylase, plays an important role in the acetylation-deacetylation of p65. The goal of this study is to investigate the role of Sirt1 in the activation of MMP-9 in diabetic retinopathy. METHODS The effect of hyperglycemia and Sirt1 activator, resveratrol, on acetylation of p65 and its binding at MMP-9 promoter-and mitochondrial damage and apoptosis-was assessed in the retinal endothelial cells. Role of oxidative stress in the regulation of Sirt1 was evaluated in the cells incubated in H2O2. The results were confirmed in the retina from diabetic mice with Sod2 or MMP-9 gene manipulated. RESULTS High glucose decreased Sirt1 activity and increased p65 acetylation, and resveratrol prevented increase in p65 acetylation, binding of p65 at MMP-9 promoter and MMP-9 activation, mitochondria damage, and cell apoptosis. While Sirt1 was decreased by H2O2, MMP-9 was significantly increased. Retina from wild-type diabetic mice presented similar decrease in Sirt1, and diabetic mice with Sod2 overexpression or MMP-9 deletion had normal retinal Sirt1. Retinal microvasculature from human donors with established diabetic retinopathy also had decreased Sirt1. CONCLUSIONS Thus, in diabetes, increase in oxidative stress inhibits Sirt1 and p65 is hyperacetylated, increasing the binding of p65 at MMP-9 promoter. Prevention of Sirt1 inhibition, via modulating acetylation of p65, should protect activation of MMP-9 and inhibit the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | - Julia M Santos
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | - Qing Zhong
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
722
|
Yang Y, Yang WS, Yu T, Sung GH, Park KW, Yoon K, Son YJ, Hwang H, Kwak YS, Lee CM, Rhee MH, Kim JH, Cho JY. ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:218-228. [PMID: 24735861 DOI: 10.1016/j.jep.2014.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/04/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Korean Red Ginseng (KRG) is one of the representative traditional herbal medicines prepared from Panax ginseng Meyer (Araliaceae) in Korea. It has been reported that KRG exhibits a lot of different biological actions such as anti-aging, anti-fatigue, anti-stress, anti-atherosclerosis, anti-diabetic, anti-cancer, and anti-inflammatory activities. Although systematic studies have investigated how KRG is able to ameliorate various inflammatory diseases, its molecular inhibitory mechanisms had not been carried out prior to this study. MATERIALS AND METHODS In order to investigate these mechanisms, we evaluated the effects of a water extract of Korean Red Ginseng (KRG-WE) on the in vitro inflammatory responses of activated RAW264.7 cells, and on in vivo gastritis and peritonitis models by analyzing the activation events of inflammation-inducing transcription factors and their upstream kinases. RESULTS KRG-WE reduced the production of nitric oxide (NO), protected cells against NO-induced apoptosis, suppressed mRNA levels of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, and interferon (IFN)-β, ameliorated EtOH/HCl-induced gastritis, and downregulated peritoneal exudate-derived NO production from lipopolysaccharide (LPS)-injected mice. The inhibition of these inflammatory responses by KRG-WE was regulated through the suppression of p38, c-Jun N-terminal kinase (JNK), and TANK-binding kinase 1 (TBK1) and by subsequent inhibition of activating transcription factor (ATF)-2, cAMP response element-binding protein (CREB), and IRF-3 activation. Of ginsensides included in this extract, interestingly, G-Rc showed the highest inhibitory potency on IRF-3-mediated luciferase activity. CONCLUSION These results strongly suggest that the anti-inflammatory activities of KRG-WE could be due to its inhibition of the p38/JNK/TBK1 activation pathway.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Woo Seok Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Tao Yu
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Gi-Ho Sung
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 369-873, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Keejung Yoon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon 540-742, Republic of Korea
| | - Hyunsik Hwang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Yi-Seong Kwak
- Ginseng Corporation Central Research Institute, Daejeon 305-805, Republic of Korea
| | - Chang-Muk Lee
- Metabolic Engineering Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
723
|
Zhang JG, Hong DF, Zhang CW, Sun XD, Wang ZF, Shi Y, Liu JW, Shen GL, Zhang YB, Cheng J, Wang CY, Zhao G. Sirtuin 1 facilitates chemoresistance of pancreatic cancer cells by regulating adaptive response to chemotherapy-induced stress. Cancer Sci 2014; 105:445-54. [PMID: 24484175 PMCID: PMC4317803 DOI: 10.1111/cas.12364] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/07/2014] [Accepted: 01/22/2014] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy drugs themselves may act as stressors to induce adaptive responses to promote the chemoresistance of cancer cells. Our previous research showed that sirtuin 1 (SIRT1) was overexpressed in pancreatic cancer patients and deregulation of SIRT1 with RNAi could enhance chemosensitivity. Thus, we hypothesized that SIRT1 might facilitate chemoresistance in pancreatic cancer cells through regulating the adaptive response to chemotherapy-induced stress. In the present study, SIRT1 in PANC-1, BXPC-3, and ASPC-1 cells was upregulated after treatment with gemcitabine. Moreover, the decrease in SIRT1 activity with special inhibitor EX527 had a synergic effect on chemotherapy with gemcitabine in PANC-1 and ASPC-1 cell lines, which significantly promoted apoptosis, senescence, and G0 /G1 cycle arrest. Western blot results also showed that SIRT1, acetylated-p53, FOXO3a, and p21 were upregulated after combined treatment, whereas no obvious change was evident in total p53 protein. To further confirm the role of SIRT1 in clinical chemotherapy, SIRT1 was detected in eight pancreatic cancer tissues acquired by endoscopy ultrasonography guided fine needle aspiration biopsy before and after chemotherapy. Compared to before chemotherapy, SIRT1 was significantly increased after treatment with gemcitabine in six cases. Thus, our results indicated a special role for SIRT1 in the regulation of adaptive response to chemotherapy-induced stress, which is involved in chemoresistance. Moreover, it indicates that blocking SIRT1 activity with targeting drugs might be a novel strategy to reverse the chemoresistance of pancreatic cancer.
Collapse
Affiliation(s)
- Jun-Gang Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China; Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
724
|
Gauter-Fleckenstein B, Reboucas JS, Fleckenstein K, Tovmasyan A, Owzar K, Jiang C, Batinic-Haberle I, Vujaskovic Z. Robust rat pulmonary radioprotection by a lipophilic Mn N-alkylpyridylporphyrin, MnTnHex-2-PyP(5+). Redox Biol 2014; 2:400-10. [PMID: 24624330 PMCID: PMC3949096 DOI: 10.1016/j.redox.2013.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022] Open
Abstract
With the goal to enhance the distribution of cationic Mn porphyrins within mitochondria, the lipophilic Mn(III)meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, MnTnHex-2-PyP(5+) has been synthesized and tested in several different model of diseases, where it shows remarkable efficacy at as low as 50 µg/kg single or multiple doses. Yet, in a rat lung radioprotection study, at higher 0.6-1 mg/kg doses, due to its high accumulation and micellar character, it became toxic. To avoid the toxicity, herein the pulmonary radioprotection of MnTnHex-2-PyP(5+) was assessed at 50 µg/kg. Fischer rats were irradiated to their right hemithorax (28 Gy) and treated with 0.05 mg/kg/day of MnTnHex-2-PyP(5+) for 2 weeks by subcutaneously-implanted osmotic pumps, starting at 2 h post-radiation. The body weights and breathing frequencies were followed for 10 weeks post-radiation, when the histopathology and immunohistochemistry were assessed. Impact of MnTnHex-2-PyP(5+) on macrophage recruitment (ED-1), DNA oxidative damage (8-OHdG), TGF-β1, VEGF(A) and HIF-1α were measured. MnTnHex-2-PyP(5+) significantly decreased radiation-induced lung histopathological (H&E staining) and functional damage (breathing frequencies), suppressed oxidative stress directly (8-OHdG), or indirectly, affecting TGF-β1, VEGF (A) and HIF-1α pathways. The magnitude of the therapeutic effects is similar to the effects demonstrated under same experimental conditions with 120-fold higher dose of ~5000-fold less lipophilic Mn(III)meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+).
Collapse
Key Words
- 8-OHdG, 8-hydroxy-2'-deoxyguanosine
- AKT, protein kinase B (PKB), a serine/threonine-specific protein kinase
- ALS, amyotrophic laterial sclerosis
- AP-1, activator protein-1
- AT, ataxia telangiectasia
- BBB, blood brain barrier
- Breathing frequencies
- CNS, central nervous system
- CO3−, carbonate radical
- ClO−, hypochlorite
- ETC, mitochondrial electron transport chain
- Fischer rats
- GMP, good manufacturing practice
- GS−, monodeprotonated glutathione
- HIF-1α, hypoxia inducible factor-1
- HO2−, monodeprotonated hydrogen peroxide
- Histopathology
- I/R, ischemia reperfusion
- Immunohistochemistry
- Lung injury
- MCAO, middle cerebral artery occlusion
- Manganese porphyrins
- MnP, Mn porphyrin
- MnTDE-2-ImP5+, Mn(III) tetrakis[N,N'-diethylimidazolium-2-yl)porphyrin, AEOL10150
- MnTE-2-PyP5+
- MnTE-2-PyP5+, Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (AEOL10113)
- MnTnBuOE-2-PyP5+, Mn(III) meso-tetrakis(N-(n-butoxyethyl)pyridinium-2-yl)porphyrin
- MnTnHex-2-PyP5+
- MnTnHex-2-PyP5+, Mn(III) meso-tetrakis(N-(n-hexyl)pyridinium-2-yl)porphyrin (AEOL10113)
- NF-κB, nuclear factor κB
- NHE, normal hydrogen electrode
- NO, nitric oxide
- NOX4, NADPH oxidase, isoform 4 E1/2, Half-wave metal-centered reduction potential
- Nrf-2, nuclear factor-erythroid-derived 2-like 2
- O2−, superoxide
- ONOO−, peroxynitrite
- PI3K, phosphatidylinositide 3-kinase
- PTEN, phosphoinositide 3-phosphatase
- Radioprotection
- Redox-modulators
- SAH, subarachnoid hemorrhage
- SOD, superoxide dismutase
- SP-1, specificity protein-1
- TF, transcription factor
- TGF-β1, one of the 3 members of the TGF-β transforming growth factor-β family
- VEGF, vascular endothelial growth factor
- mTOR, mammalian target of rapamycin (mTOR), a serine/threonine protein kinase
Collapse
Affiliation(s)
- Benjamin Gauter-Fleckenstein
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA ; Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julio S Reboucas
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katharina Fleckenstein
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA ; Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, USA ; Biostatistics and Computational Biology Core, RadCCORE, Duke University Medical Center, Durham, USA
| | - Chen Jiang
- Biostatistics and Computational Biology Core, RadCCORE, Duke University Medical Center, Durham, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA ; Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, 655W Baltimore Street, Bressler Research Building, 8-025, Baltimore, MD 21201, USA
| |
Collapse
|
725
|
Fuentes-Antrás J, Ioan AM, Tuñón J, Egido J, Lorenzo Ó. Activation of toll-like receptors and inflammasome complexes in the diabetic cardiomyopathy-associated inflammation. Int J Endocrinol 2014; 2014:847827. [PMID: 24744784 PMCID: PMC3972909 DOI: 10.1155/2014/847827] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/23/2014] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy is defined as a ventricular dysfunction initiated by alterations in cardiac energy substrates in the absence of coronary artery disease and hypertension. Hyperglycemia, hyperlipidemia, and insulin resistance are major inducers of the chronic low-grade inflammatory state that characterizes the diabetic heart. Cardiac Toll-like receptors and inflammasome complexes may be key inducers for inflammation probably through NF-κB activation and ROS overproduction. However, metabolic dysregulated factors such as peroxisome proliferator-activated receptors and sirtuins may serve as therapeutic targets to control this response by mitigating both Toll-like receptors and inflammasome signaling.
Collapse
Affiliation(s)
- J. Fuentes-Antrás
- Cardiovascular Research Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - A. M. Ioan
- Cardiovascular Research Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - J. Tuñón
- Cardiovascular Research Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - J. Egido
- Cardiovascular Research Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - Ó. Lorenzo
- Cardiovascular Research Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- *Ó. Lorenzo:
| |
Collapse
|
726
|
Lee YS, Lee EK, Oh HH, Choi CS, Kim S, Jun HS. Sodium meta-arsenite ameliorates hyperglycemia in obese diabetic db/db mice by inhibition of hepatic gluconeogenesis. J Diabetes Res 2014; 2014:961732. [PMID: 25610880 PMCID: PMC4290036 DOI: 10.1155/2014/961732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 12/29/2022] Open
Abstract
Sodium meta-arsenite (SA) is implicated in the regulation of hepatic gluconeogenesis-related genes in vitro; however, the effects in vivo have not been studied. We investigated whether SA has antidiabetic effects in a type 2 diabetic mouse model. Diabetic db/db mice were orally intubated with SA (10 mg kg(-1) body weight/day) for 8 weeks. We examined hemoglobin A1c (HbA1c), blood glucose levels, food intake, and body weight. We performed glucose, insulin, and pyruvate tolerance tests and analyzed glucose production and the expression of gluconeogenesis-related genes in hepatocytes. We analyzed energy metabolism using a comprehensive animal metabolic monitoring system. SA-treated diabetic db/db mice had reduced concentrations of HbA1c and blood glucose levels. Exogenous glucose was quickly cleared in glucose tolerance tests. The mRNA expressions of genes for gluconeogenesis-related enzymes, glucose 6-phosphatase (G6Pase), and phosphoenolpyruvate carboxykinase (PEPCK) were significantly reduced in the liver of SA-treated diabetic db/db mice. In primary hepatocytes, SA treatment decreased glucose production and the expression of G6Pase, PEPCK, and hepatocyte nuclear factor 4 alpha (HNF-4α) mRNA. Small heterodimer partner (SHP) mRNA expression was increased in hepatocytes dependent upon the SA concentration. The expression of Sirt1 mRNA and protein was reduced, and acetylated forkhead box protein O1 (FoxO1) was induced by SA treatment in hepatocytes. In addition, SA-treated diabetic db/db mice showed reduced energy expenditure. Oral intubation of SA ameliorates hyperglycemia in db/db mice by reducing hepatic gluconeogenesis through the decrease of Sirt1 expression and increase in acetylated FoxO1.
Collapse
MESH Headings
- Acetylation
- Animals
- Arsenites/pharmacology
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Body Weight/drug effects
- Cells, Cultured
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Disease Models, Animal
- Eating/drug effects
- Energy Metabolism/drug effects
- Forkhead Box Protein O1
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gluconeogenesis/drug effects
- Glucose-6-Phosphatase/genetics
- Glucose-6-Phosphatase/metabolism
- Glycated Hemoglobin/metabolism
- Hepatocyte Nuclear Factor 4/genetics
- Hepatocyte Nuclear Factor 4/metabolism
- Hypoglycemic Agents/pharmacology
- Liver/drug effects
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Obesity/complications
- Phosphoenolpyruvate Carboxykinase (ATP)/genetics
- Phosphoenolpyruvate Carboxykinase (ATP)/metabolism
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Sodium Compounds/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Young-Sun Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Eun-Kyu Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Hyun-Hee Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Cheol Soo Choi
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
- Endocrinology, Internal Medicine, Gachon University Gil Medical Center, Namdong-gu, Guwol-dong 1198, Incheon 405-760, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 405-760, Republic of Korea
| | - Sujong Kim
- Komipharm International Co. Ltd., 3188 Seongnam-dong, Jungwon-gu, Seongnam-si, Gyeonggi-do 462-827, Republic of Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 405-760, Republic of Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
- *Hee-Sook Jun:
| |
Collapse
|