701
|
Gomes S, Leão M, Raimundo L, Ramos H, Soares J, Saraiva L. p53 family interactions and yeast: together in anticancer therapy. Drug Discov Today 2016; 21:616-24. [PMID: 26891980 DOI: 10.1016/j.drudis.2016.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 12/31/2022]
Abstract
The p53 family proteins are among the most appealing targets for cancer therapy. A deeper understanding of the complex interplay that these proteins establish with murine double minute (MDM)2, MDMX, and mutant p53 could reveal new exciting therapeutic opportunities in cancer treatment. Here, we summarize the most relevant advances in the biology of p53 family protein-protein interactions (PPIs), and the latest pharmacological developments achieved from targeting these interactions. We also highlight the remarkable contributions of yeast-based assays to this research. Collectively, we emphasize promising strategies, based on the inhibition of p53 family PPIs, which have expedited anticancer drug development.
Collapse
Affiliation(s)
- Sara Gomes
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Mariana Leão
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Liliana Raimundo
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Helena Ramos
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Joana Soares
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Lucília Saraiva
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
702
|
Gansmo LB, Bjørnslett M, Halle MK, Salvesen HB, Dørum A, Birkeland E, Hveem K, Romundstad P, Vatten L, Lønning PE, Knappskog S. The MDM4 SNP34091 (rs4245739) C-allele is associated with increased risk of ovarian-but not endometrial cancer. Tumour Biol 2016; 37:10697-702. [PMID: 26867771 PMCID: PMC4999457 DOI: 10.1007/s13277-016-4940-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/29/2016] [Indexed: 12/17/2022] Open
Abstract
The MDM4 protein (also known as MDMX or HDMX) is a negative regulator of p53, not only by direct interaction but also through its interaction with MDM2. Further, MDM4 overexpression and amplification have been observed in several cancer forms. Recently, a single nucleotide polymorphism (SNP) in the 3’ untranslated region of the MDM4 gene, SNP34091A > C (rs4245739) was reported to alter MDM4 messenger RNA (mRNA) stability by modulating a microRNA binding site, thereby leading to decreased MDM4 levels. In this case-control study, we aimed to evaluate the possible association between MDM4 SNP34091 status and cancer risk by comparing the genotype frequencies in large hospital-based cohorts of endometrial- (n = 1404) and ovarian (n = 1385) cancer patients with healthy female controls (n = 1870). Genotype frequencies were compared by odds ratio (OR) estimates and Fisher exact tests. We found that individuals harboring the MDM4 SNP34091AC/CC genotypes had a significantly elevated risk for serous ovarian cancer (SOC) in general and high-grade serous ovarian cancer (HGSOC) in particular (SOC: OR = 1.18., 95 % CI = 1.01–1.39; HGSOC: OR = 1.25, CI = 1.02–1.53). No association between SNP34091 genotypes and endometrial cancer risk was observed. Our data indicate the MDM4 SNP34091AC/CC genotypes to be associated with an elevated risk for SOC and in particular the HGSOC type.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Adenocarcinoma, Clear Cell/epidemiology
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Mucinous/epidemiology
- Adenocarcinoma, Mucinous/genetics
- Alleles
- Carcinoma, Endometrioid/epidemiology
- Carcinoma, Endometrioid/genetics
- Case-Control Studies
- Cell Cycle Proteins
- Cystadenocarcinoma, Serous/epidemiology
- Cystadenocarcinoma, Serous/genetics
- Endometrial Neoplasms/epidemiology
- Endometrial Neoplasms/genetics
- Female
- Gene Frequency
- Genes, Neoplasm
- Genetic Predisposition to Disease
- Genotype
- Humans
- Neoplasm Proteins/genetics
- Norway/epidemiology
- Nuclear Proteins/genetics
- Odds Ratio
- Ovarian Neoplasms/epidemiology
- Ovarian Neoplasms/genetics
- Polymorphism, Single Nucleotide
- Proto-Oncogene Proteins/genetics
Collapse
Affiliation(s)
- Liv B Gansmo
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Merete Bjørnslett
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mari Kyllesø Halle
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Helga B Salvesen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anne Dørum
- Department of Gynecologic Oncology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Einar Birkeland
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Kristian Hveem
- Department of Public Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pål Romundstad
- Department of Public Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Vatten
- Department of Public Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per Eystein Lønning
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
703
|
Harajly M, Zalzali H, Nawaz Z, Ghayad SE, Ghamloush F, Basma H, Zainedin S, Rabeh W, Jabbour M, Tawil A, Badro DA, Evan GI, Saab R. p53 Restoration in Induction and Maintenance of Senescence: Differential Effects in Premalignant and Malignant Tumor Cells. Mol Cell Biol 2016; 36:438-51. [PMID: 26598601 PMCID: PMC4719431 DOI: 10.1128/mcb.00747-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/23/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022] Open
Abstract
The restoration of p53 has been suggested as a therapeutic approach in tumors. However, the timing of p53 restoration in relation to its efficacy during tumor progression still is unclear. We now show that the restoration of p53 in murine premalignant proliferating pineal lesions resulted in cellular senescence, while p53 restoration in invasive pineal tumors did not. The effectiveness of p53 restoration was not dependent on p19(Arf) expression but showed an inverse correlation with Mdm2 expression. In tumor cells, p53 restoration became effective when paired with either DNA-damaging therapy or with nutlin, an inhibitor of p53-Mdm2 interaction. Interestingly, the inactivation of p53 after senescence resulted in reentry into the cell cycle and rapid tumor progression. The evaluation of a panel of human supratentorial primitive neuroectodermal tumors (sPNET) showed low activity of the p53 pathway. Together, these data suggest that the restoration of the p53 pathway has different effects in premalignant versus invasive pineal tumors, and that p53 activation needs to be continually sustained, as reversion from senescence occurs rapidly with aggressive tumor growth when p53 is lost again. Finally, p53 restoration approaches may be worth exploring in sPNET, where the p53 gene is intact but the pathway is inactive in the majority of examined tumors.
Collapse
Affiliation(s)
- Mohamad Harajly
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hasan Zalzali
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Zafar Nawaz
- Cytogenetics and Molecular Cytogenetic Laboratory, Hamad General Hospital, Doha, Qatar
| | - Sandra E Ghayad
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Farah Ghamloush
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hussein Basma
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Samiha Zainedin
- Cytogenetics and Molecular Cytogenetic Laboratory, Hamad General Hospital, Doha, Qatar
| | - Wissam Rabeh
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mark Jabbour
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ayman Tawil
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Danielle A Badro
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Raya Saab
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
704
|
Burgess A, Chia KM, Haupt S, Thomas D, Haupt Y, Lim E. Clinical Overview of MDM2/X-Targeted Therapies. Front Oncol 2016; 6:7. [PMID: 26858935 PMCID: PMC4728205 DOI: 10.3389/fonc.2016.00007] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/11/2016] [Indexed: 12/24/2022] Open
Abstract
MDM2 and MDMX are the primary negative regulators of p53, which under normal conditions maintain low intracellular levels of p53 by targeting it to the proteasome for rapid degradation and inhibiting its transcriptional activity. Both MDM2 and MDMX function as powerful oncogenes and are commonly over-expressed in some cancers, including sarcoma (~20%) and breast cancer (~15%). In contrast to tumors that are p53 mutant, whereby the current therapeutic strategy restores the normal active conformation of p53, MDM2 and MDMX represent logical therapeutic targets in cancer for increasing wild-type (WT) p53 expression and activities. Recent preclinical studies suggest that there may also be situations that MDM2/X inhibitors could be used in p53 mutant tumors. Since the discovery of nutlin-3a, the first in a class of small molecule MDM2 inhibitors that binds to the hydrophobic cleft in the N-terminus of MDM2, preventing its association with p53, there is now an extensive list of related compounds. In addition, a new class of stapled peptides that can target both MDM2 and MDMX have also been developed. Importantly, preclinical modeling, which has demonstrated effective in vitro and in vivo killing of WT p53 cancer cells, has now been translated into early clinical trials allowing better assessment of their biological effects and toxicities in patients. In this overview, we will review the current MDM2- and MDMX-targeted therapies in development, focusing particularly on compounds that have entered into early phase clinical trials. We will highlight the challenges pertaining to predictive biomarkers for and toxicities associated with these compounds, as well as identify potential combinatorial strategies to enhance its anti-cancer efficacy.
Collapse
Affiliation(s)
- Andrew Burgess
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St. Vincent's Clinical School, UNSW Australia, Sydney, NSW, Australia
| | - Kee Ming Chia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research , Sydney, NSW , Australia
| | - Sue Haupt
- The Sir Peter MacCallum Department of Oncology, the University of Melbourne , Melbourne, VIC , Australia
| | - David Thomas
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St. Vincent's Clinical School, UNSW Australia, Sydney, NSW, Australia
| | - Ygal Haupt
- The Sir Peter MacCallum Department of Oncology, the University of Melbourne , Melbourne, VIC , Australia
| | - Elgene Lim
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St. Vincent's Clinical School, UNSW Australia, Sydney, NSW, Australia
| |
Collapse
|
705
|
Grace CR, Ban D, Min J, Mayasundari A, Min L, Finch KE, Griffiths L, Bharatham N, Bashford D, Kiplin Guy R, Dyer MA, Kriwacki RW. Monitoring Ligand-Induced Protein Ordering in Drug Discovery. J Mol Biol 2016; 428:1290-1303. [PMID: 26812210 DOI: 10.1016/j.jmb.2016.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
While the gene for p53 is mutated in many human cancers causing loss of function, many others maintain a wild-type gene but exhibit reduced p53 tumor suppressor activity through overexpression of the negative regulators, Mdm2 and/or MdmX. For the latter mechanism of loss of function, the activity of endogenous p53 can be restored through inhibition of Mdm2 or MdmX with small molecules. We previously reported a series of compounds based upon the Nutlin-3 chemical scaffold that bind to both MdmX and Mdm2 [Vara, B. A. et al. (2014) Organocatalytic, diastereo- and enantioselective synthesis of nonsymmetric cis-stilbene diamines: A platform for the preparation of single-enantiomer cis-imidazolines for protein-protein inhibition. J. Org. Chem. 79, 6913-6938]. Here we present the first solution structures based on data from NMR spectroscopy for MdmX in complex with four of these compounds and compare them with the MdmX:p53 complex. A p53-derived peptide binds with high affinity (Kd value of 150nM) and causes the formation of an extensive network of hydrogen bonds within MdmX; this constitutes the induction of order within MdmX through ligand binding. In contrast, the compounds bind more weakly (Kd values from 600nM to 12μM) and induce an incomplete hydrogen bond network within MdmX. Despite relatively weak binding, the four compounds activated p53 and induced p21(Cip1) expression in retinoblastoma cell lines that overexpress MdmX, suggesting that they specifically target MdmX and/or Mdm2. Our results document structure-activity relationships for lead-like small molecules targeting MdmX and suggest a strategy for their further optimization in the future by using NMR spectroscopy to monitor small-molecule-induced protein order as manifested through hydrogen bond formation.
Collapse
Affiliation(s)
- Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - David Ban
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Anand Mayasundari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lie Min
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Kristin E Finch
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lyra Griffiths
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Nagakumar Bharatham
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Donald Bashford
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN 38105, USA.
| |
Collapse
|
706
|
Luo H, Cowen L, Yu G, Jiang W, Tang Y. SMG7 is a critical regulator of p53 stability and function in DNA damage stress response. Cell Discov 2016; 2:15042. [PMID: 27462439 PMCID: PMC4860962 DOI: 10.1038/celldisc.2015.42] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
The p53 tumor suppressor functions as a transcription factor and plays a pivotal role in regulation of cellular response to DNA damage by activating various genes including those involved in cell cycle arrest. p53 stability is essential for its function during stress response; however, the molecular mechanism for DNA damage-induced stabilization of p53 is not fully understood. In our present study, we have identified SMG7 (suppressor with morphological defects in genitalia 7), also known as EST1C, as a novel p53-binding protein. SMG7 is an mRNA surveillance factor implicated in degradation of p53 mRNA-containing nonsense mutations, yet it is completely unknown whether SMG7 regulates p53 function. Here, we show that SMG7 has a crucial role in p53-mediated response to genotoxic stress by regulating p53 stability. Using somatic gene knockout, we found that deletion of SMG7 abrogates DNA damage-induced p53 stabilization, although it exhibits minimal effect on the basal levels of p53. Importantly, loss of SMG7 impairs p53-mediated activation of p21 and cell cycle arrest following DNA damage. Pharmacological inhibition of Mdm2, a major E3 ubiquitin ligase for p53, restored p53 stability in gamma-irradiated SMG7-deficient cells. Furthermore, SMG7 physically interacts with Mdm2 and promotes ATM-mediated inhibitory phosphorylation of Mdm2 following ionizing radiation. Therefore, our present data demonstrate that SMG7 is critical for p53 function in DNA damage response, and reveal the SMG7-mediated phosphorylation of Mdm2 as a previously unknown mechanism for p53 regulation.
Collapse
Affiliation(s)
- Hongwei Luo
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - Lauren Cowen
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - Guowu Yu
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - Wenguo Jiang
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - Yi Tang
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| |
Collapse
|
707
|
Raveendran R, Braude JP, Wexselblatt E, Novohradsky V, Stuchlikova O, Brabec V, Gandin V, Gibson D. Pt(iv) derivatives of cisplatin and oxaliplatin with phenylbutyrate axial ligands are potent cytotoxic agents that act by several mechanisms of action. Chem Sci 2016; 7:2381-2391. [PMID: 29997781 PMCID: PMC6003606 DOI: 10.1039/c5sc04205d] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/24/2015] [Indexed: 12/27/2022] Open
Abstract
The Pt(iv) derivative of cisplatin, ctc-[Pt(NH3)2(PhB)2Cl2], is a p53 independent very potent cytotoxic agent that kills cancer cells by triggering various cellular pathways.
Our study demonstrates that Pt(iv) derivative of cisplatin, with two axial PhB ligands, ctc-[Pt(NH3)2(PhB)2Cl2], is a very potent cytotoxic agent against many different human cancer cell lines and is up to 100 fold more potent than cisplatin, and significantly more potent than the Pt(iv) derivatives of cisplatin with either two hydroxido, two acetato or two valproato ligands. The high potency of this compound (and some others) is due to several factors including enhanced internalization, probably driven by “synergistic accumulation” of both the Pt moiety and the phenylbutyrate, that correlates with enhanced DNA binding and cytotoxicity. ctc-[Pt(NH3)2(PhB)2Cl2] inhibits 60–70% HDAC activity in cancer cells, at levels below the IC50 values of PhB, suggesting synergism between Pt and PhB. Mechanistically, ctc-[Pt(NH3)2(PhB)2Cl2] induces activation of caspases (3 and 9) triggering apoptotic signaling via the mitochondrial pathway. Data also suggest that the antiproliferative effect of ctc-[Pt(NH3)2(PhB)2Cl2] may not depend of p53. Pt(iv) derivatives of cisplatin with either two axial PhB or valproate ligands are more potent than their oxaliplatin analogs. ctc-[Pt(NH3)2(PhB)2Cl2] is significantly more potent than its valproate analog ctc-[Pt(NH3)2(VPA)2Cl2]. These compounds combine multiple effects such as efficient uptake of both Pt and PhB with DNA binding, HDAC inhibition and activation of caspases to effectively kill cancer cells.
Collapse
Affiliation(s)
- Raji Raveendran
- Institute for Drug Research , School of Pharmacy , The Hebrew University , Jerusalem , 91120 , Israel
| | - Jeremy Phillip Braude
- Dipartimento di Scienze del Farmaco , Universita di Padova , Via Marzolo 5 , 35131 Padova , Italy .
| | - Ezequiel Wexselblatt
- Institute for Drug Research , School of Pharmacy , The Hebrew University , Jerusalem , 91120 , Israel
| | - Vojtech Novohradsky
- Institute of Biophysics , Academy of Sciences of the Czech Republic, v.v.i. , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Olga Stuchlikova
- Institute of Biophysics , Academy of Sciences of the Czech Republic, v.v.i. , Kralovopolska 135 , CZ-61265 Brno , Czech Republic.,Department of Biophysics , Faculty of Science , Palacky University , 17. listopadu 12 , CZ-77146 Olomouc , Czech Republic
| | - Viktor Brabec
- Institute of Biophysics , Academy of Sciences of the Czech Republic, v.v.i. , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco , Universita di Padova , Via Marzolo 5 , 35131 Padova , Italy .
| | - Dan Gibson
- Institute for Drug Research , School of Pharmacy , The Hebrew University , Jerusalem , 91120 , Israel
| |
Collapse
|
708
|
Molecular landscape of pancreatic cancer: implications for current clinical trials. Oncotarget 2016; 6:4553-61. [PMID: 25714017 PMCID: PMC4467098 DOI: 10.18632/oncotarget.2972] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/18/2022] Open
Abstract
Despite recent improvements, overall survival for advanced adenocarcinoma of the pancreas continues to be poor. In comparison to other tumor types that have enjoyed marked survival benefit by targeting aberrant cell signaling pathways, standard of care treatment for pancreatic cancer is limited to conventional cytotoxic chemotherapy. Multiple pathway aberrations have been documented in pancreatic cancer. A review of the COSMIC database reveals that most pancreatic cancers contain somatic mutations, with the five most frequent being KRAS, TP53, CDKN2A, SMAD4, and ARID1A, and multiple other abnormalities seen including, but not limited to, mutations in STK11/LKB1, FBXW7, PIK3CA, and BRAF. In the era of tumor profiling, these aberrations may provide an opportunity for new therapeutic approaches. Yet, searching clinicaltrials.gov for recent drug intervention trials for pancreatic adenocarcinoma, remarkably few (10 of 116 (8.6%)) new study protocols registered in the last three years included a molecular/biomarker stratification strategy. Enhanced efforts to target subsets of patients with pancreatic cancer in order to optimize therapy benefit are warranted.
Collapse
|
709
|
Xu XL, Bao QC, Jia JM, Liu F, Guo XK, Zhang MY, Wei JL, Lu MC, Xu LL, Zhang XJ, You QD, Sun HP. CPUY201112, a novel synthetic small-molecule compound and inhibitor of heat shock protein Hsp90, induces p53-mediated apoptosis in MCF-7 cells. Sci Rep 2016; 6:19004. [PMID: 26743233 PMCID: PMC4705544 DOI: 10.1038/srep19004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
Heat-shock protein 90 (Hsp90) is highly expressed in many tumor cells and is associated with the maintenance of malignant phenotypes. Targeting Hsp90 has had therapeutic success in both solid and hematological malignancies, which has inspired more studies to identify new Hsp90 inhibitors with improved clinical efficacy. Using a fragment-based approach and subsequent structural optimization guided by medicinal chemistry principles, we identified the novel compound CPUY201112 as a potent Hsp90 inhibitor. It binds to the ATP-binding pocket of Hsp90 with a kinetic dissociation (Kd) constant of 27 ± 2.3 nM. It also exhibits potent in vitro antiproliferative effects in a range of solid tumor cells. In MCF-7 cells with high Hsp90 expression, CPUY201112 induces the degradation of Hsp90 client proteins including HER-2, Akt, and c-RAF. We prove that treating MCF-7 cells with CPUY201112 results in cell cycle arrest and apoptosis through the wild-type (wt) p53 pathway. CPUY201112 also synergizes with Nutlin-3a to induce cancer cell apoptosis. CPUY201112 significantly inhibited the growth of MCF-7 xenografts in nude mice without apparent body weight loss. These results demonstrate that CPUY201112 is a novel Hsp90 inhibitor with potential use in treating wild-type p53 related cancers.
Collapse
Affiliation(s)
- Xiao-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-chao Bao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian-Min Jia
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fang Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Ke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ming-ye Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin-lian Wei
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng-chen Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Jin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao-Peng Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
710
|
Wienken M, Dickmanns A, Nemajerova A, Kramer D, Najafova Z, Weiss M, Karpiuk O, Kassem M, Zhang Y, Lozano G, Johnsen SA, Moll UM, Zhang X, Dobbelstein M. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53. Mol Cell 2016; 61:68-83. [PMID: 26748827 PMCID: PMC6284523 DOI: 10.1016/j.molcel.2015.12.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/08/2015] [Accepted: 11/23/2015] [Indexed: 01/16/2023]
Abstract
The MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell proliferation. In conclusion, MDM2 supports the Polycomb-mediated repression of lineage-specific genes, independent of p53.
Collapse
Affiliation(s)
- Magdalena Wienken
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany
| | - Alice Nemajerova
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniela Kramer
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany
| | - Zeynab Najafova
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Miriam Weiss
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany
| | - Oleksandra Karpiuk
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany
| | - Moustapha Kassem
- Molecular Endocrinology and Stem Cell Research Unit (KMEB), University Hospital of Odense and University of Southern Denmark, Odense 5000, Denmark
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven A Johnsen
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Ute M Moll
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany; Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Xin Zhang
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany.
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany.
| |
Collapse
|
711
|
Rezk MS, Abdel-Halim M, Keeton A, Franklin D, Bauer M, Boeckler FM, Engel M, Hartmann RW, Zhang Y, Piazza GA, Abadi AH. Synthesis and Optimization of New 3,6-Disubstitutedindole Derivatives and Their Evaluation as Anticancer Agents Targeting the MDM2/MDMx Complex. Chem Pharm Bull (Tokyo) 2016; 64:34-41. [PMID: 26726742 DOI: 10.1248/cpb.c15-00608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Twelve derivatives of the general formula 3-substituted-6-chloroindoles were synthesized and tested for their growth inhibitory effects versus p53(+/+) colorectal cancer HCT116 and its p53 knockout isogenic cells; colorectal cancer cell p53(-/-) SW480; the lung cancer cell line p53(-/-) H1299; mouse embryonic fibroblasts (MEF) p53(+/+) and its p53 knockout isogenic cells. The compounds were also evaluated for their ability to induce p53 nuclear translocation and binding to murine double minute 2 (MDM2) and murine double minute 4 (MDM4). Of these, compound 5a was the most active in inhibiting the growth of cells, with selectivity towards the p53(+/+) cell lines, and it showed stronger binding to MDM4 rather than MDM2. The activity profile of compound 5a is strongly similar to that of Nutlin-3.
Collapse
Affiliation(s)
- Mohamed Salah Rezk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
712
|
Hoppmann C, Wang L. Proximity-enabled bioreactivity to generate covalent peptide inhibitors of p53–Mdm4. Chem Commun (Camb) 2016; 52:5140-3. [DOI: 10.1039/c6cc01226d] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new method for developing macromolecular covalent drugs by designing an unnatural amino acid to target a nearby natural residue.
Collapse
Affiliation(s)
- Christian Hoppmann
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute
- University of California, San Francisco
- San Francisco
- USA
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute
- University of California, San Francisco
- San Francisco
- USA
| |
Collapse
|
713
|
Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo SX, Low DHP, Koh CM, Rambow F, Fiers M, Rogiers A, Radaelli E, Al-Haddawi M, Tan SY, Hermans E, Amant F, Yan H, Lakshmanan M, Koumar RC, Lim ST, Derheimer FA, Campbell RM, Bonday Z, Tergaonkar V, Shackleton M, Blattner C, Marine JC, Guccione E. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest 2016. [PMID: 26595814 DOI: 10.1172/jci82534.mdm4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
MDM4 is a promising target for cancer therapy, as it is undetectable in most normal adult tissues but often upregulated in cancer cells to dampen p53 tumor-suppressor function. The mechanisms that underlie MDM4 upregulation in cancer cells are largely unknown. Here, we have shown that this key oncogenic event mainly depends on a specific alternative splicing switch. We determined that while a nonsense-mediated, decay-targeted isoform of MDM4 (MDM4-S) is produced in normal adult tissues as a result of exon 6 skipping, enhanced exon 6 inclusion leads to expression of full-length MDM4 in a large number of human cancers. Although this alternative splicing event is likely regulated by multiple splicing factors, we identified the SRSF3 oncoprotein as a key enhancer of exon 6 inclusion. In multiple human melanoma cell lines and in melanoma patient-derived xenograft (PDX) mouse models, antisense oligonucleotide-mediated (ASO-mediated) skipping of exon 6 decreased MDM4 abundance, inhibited melanoma growth, and enhanced sensitivity to MAPK-targeting therapeutics. Additionally, ASO-based MDM4 targeting reduced diffuse large B cell lymphoma PDX growth. As full-length MDM4 is enhanced in multiple human tumors, our data indicate that this strategy is applicable to a wide range of tumor types. We conclude that enhanced MDM4 exon 6 inclusion is a common oncogenic event and has potential as a clinically compatible therapeutic target.
Collapse
|
714
|
Chen X, Lu W. Functional Interrogation of the N-Terminal Lid of MDMX in p53 Binding via Native Chemical Ligation. Chem Pharm Bull (Tokyo) 2016; 64:1004-8. [DOI: 10.1248/cpb.c15-00975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xishan Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education
| |
Collapse
|
715
|
Ribeiro CJA, Amaral JD, Rodrigues CMP, Moreira R, Santos MMM. Spirooxadiazoline oxindoles with promising in vitro antitumor activities. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00450k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper reports the synthesis and biological evaluation of thirty one spirooxadiazoline oxindoles as potential anticancer agents.
Collapse
Affiliation(s)
- Carlos J. A. Ribeiro
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Joana D. Amaral
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Maria M. M. Santos
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| |
Collapse
|
716
|
Wang B, Shen ZL, Gao ZD, Zhao G, Wang CY, Yang Y, Zhang JZ, Yan YC, Shen C, Jiang KW, Ye YJ, Wang S. MiR-194, commonly repressed in colorectal cancer, suppresses tumor growth by regulating the MAP4K4/c-Jun/MDM2 signaling pathway. Cell Cycle 2015; 14:1046-58. [PMID: 25602366 DOI: 10.1080/15384101.2015.1007767] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor growth cascade is a complicated and multistep process with numerous obstacles. Until recently, evidences have shown the involvement of microRNAs (miRNAs) in tumorigenesis and tumor progression of various cancers, including colorectal cancer (CRC). In this study, we explored the role of miR-194 and its downstream pathway in CRC. We acquired data through miRNA microarray profiles, showing that the expression of miR-194 was significantly suppressed in CRC tissues compared with corresponding noncancerous tissues. Decreased miR-194 expression was obviously associated with tumor size and tumor differentiation, as well as TNM stage. Both Kaplan-Meier and multivariate survival analysis showed that downregulated miR-194 was associated with overall survival. Moreover, functional assays indicated that overexpression of miR-194 in CRC cell lines inhibited cell proliferation both in vitro and in vivo. In addition, using dual-luciferase reporter gene assay, we found MAP4K4 was the direct target of miR-194. Silencing of MAP4K4 resulted in similar biological behavior changes to that of overexpression of miR-194. We also observed through Human Gene Expression Array that MDM2 was one of the downstream targets of MAP4K4. Knockdown of MAP4K4 downregulated MDM2 expression through transcription factor c-Jun binding to the -1063 to -1057 bp of the promoter. These results suggest that miR-194, regulating the MAP4K4/c-Jun/MDM2 signaling pathway, might act as a tumor suppressor and serve as a novel target for CRC prevention and therapy.
Collapse
Affiliation(s)
- Bo Wang
- a Department of Gastroenterological Surgery ; Peking University People's Hospital ; Beijing , PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
717
|
The Six1 oncoprotein downregulates p53 via concomitant regulation of RPL26 and microRNA-27a-3p. Nat Commun 2015; 6:10077. [PMID: 26687066 PMCID: PMC4703841 DOI: 10.1038/ncomms10077] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022] Open
Abstract
TP53 is mutated in 50% of all cancers, and its function is often compromised in cancers where it is not mutated. Here we demonstrate that the pro-tumorigenic/metastatic Six1 homeoprotein decreases p53 levels through a mechanism that does not involve the negative regulator of p53, MDM2. Instead, Six1 regulates p53 via a dual mechanism involving upregulation of microRNA-27a and downregulation of ribosomal protein L26 (RPL26). Mutation analysis confirms that RPL26 inhibits miR-27a binding and prevents microRNA-mediated downregulation of p53. The clinical relevance of this interaction is underscored by the finding that Six1 expression strongly correlates with decreased RPL26 across numerous tumour types. Importantly, we find that Six1 expression leads to marked resistance to therapies targeting the p53–MDM2 interaction. Thus, we identify a competitive mechanism of p53 regulation, which may have consequences for drugs aimed at reinstating p53 function in tumours. p53 is a tumour suppressor that is mutated in a large number of cancers and its expression is controlled largely by the ubiquitin ligase MDM2. Here, the authors show that the homeoprotein, Six1, can regulate p53 in an MDM2- independent manner via regulation of miR-27a and the RNA binding protein, RPL26.
Collapse
|
718
|
Hrstka R, Bouchalova P, Michalova E, Matoulkova E, Muller P, Coates PJ, Vojtesek B. AGR2 oncoprotein inhibits p38 MAPK and p53 activation through a DUSP10-mediated regulatory pathway. Mol Oncol 2015; 10:652-62. [PMID: 26733232 DOI: 10.1016/j.molonc.2015.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/12/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022] Open
Abstract
The tumor suppressor p53 plays a key role in malignant transformation and tumor development. However, the frequency of p53 mutations within individual types of cancer is different, suggesting the existence of other mechanisms attenuating p53 tumor suppressor activity. Changes in upstream regulators of p53 such as MDM2 amplification and overexpression, expression of viral oncoproteins, estrogen receptor signaling, or changes in p53 transcriptional target genes were previously described in wild-type p53 tumors. We identified a novel pathway responsible for attenuation of p53 activity in human cancers. We demonstrate that AGR2, which is overexpressed in a variety of human cancers and provides a poor prognosis, up-regulates DUSP10 which subsequently inhibits p38 MAPK and prevents p53 activation by phosphorylation. Analysis of human breast cancers reveals that AGR2 specifically provides a poor prognosis in ER+ breast cancers with wild-type p53 but not ER- or mutant p53 breast cancers, and analysis of independent data sets show that DUSP10 levels also have prognostic significance in this specific sub-group of patients. These data not only reveal a novel pro-oncogenic signaling pathway mediating resistance to DNA damaging agents in human tumors, but also has implications for designing alternative strategies for modulation of wild-type p53 activity in cancer therapy.
Collapse
Affiliation(s)
- Roman Hrstka
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Pavla Bouchalova
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Eva Michalova
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Eva Matoulkova
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Petr Muller
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Philip J Coates
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
719
|
Ach T, Schwarz-Furlan S, Ach S, Agaimy A, Gerken M, Rohrmeier C, Zenk J, Iro H, Brockhoff G, Ettl T. Genomic aberrations of MDM2, MDM4, FGFR1 and FGFR3 are associated with poor outcome in patients with salivary gland cancer. J Oral Pathol Med 2015; 45:500-9. [PMID: 26661925 DOI: 10.1111/jop.12394] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor receptor 1 and 3 (FGFR1, FGFR3) impact on tissue homoeostasis, embryonic development and carcinogenesis. Murine double minute protein 4 (MDM4) and mouse double minute 2 homologue (MDM2) are regulators of p53-protein and may be the origin of an apoptosis overpowering cascade. A collective of 266 carcinomas of salivary glands were investigated for MDM2, MDM4, FGFR1 and FGFR3 aberrations by fluorescence in situ hybridization (FISH). The results were matched with clinicopathological parameters and with expression of PTEN and p53. MDM2 gene amplification (n = 9) and chromosomal aberrations (trisomy, n = 47; high polysomy, n = 7) are linked to high-grade malignancy (P < 0.001), lymph node metastasis (P = 0.001), advanced tumour size (P = 0.013) and stage (P < 0.001), gender (P = 0.002) and age (P = 0.001). MDM4 gene amplification (n = 19) and chromosomal aberrations (trisomy, n = 34; high polysomy, n = 31) are correlated to high-grade malignancy (P < 0.001), lymph node metastasis (P = 0.008), advanced tumour size (P = 0.039), stage (P = 0.004) and loss of PTEN (P < 0.001). Only, high-grade malignancy (P < 0.001), lymph node metastasis (P = 0.036) and advanced tumour stage (P = 0.025) are associated with FGFR3 amplification (n = 1) or chromosomal aberrations (low polysomy, n = 61; high polysomy, n = 55) but not with MDM4 alterations. FGFR1 amplifications (n = 5) and chromosomal aberrations (trisomy, n = 38; high polysomy, n = 30) are associated with high-grade malignancy (P < 0.001), advanced tumour size (P = 0.026) and stage (P = 0.004), gender (P = 0.016) and age (P = 0.023). Aberrations of MDM2, MDM4, FGFR1 and FGFR3 correlate with aggressive tumour growth and nodal metastasis. MDM2 (P < 0.001), MDM4 (P = 0.005) and FGFR3 (P = 0.006) alterations are associated with worse overall survival of patients with salivary gland cancer.
Collapse
Affiliation(s)
- Tobias Ach
- Department of Oral and Maxillofacial Surgery, University of Regensburg, Regensburg, Germany
| | | | - Stephanie Ach
- Department of Oral and Maxillofacial Surgery, University of Regensburg, Regensburg, Germany
| | - Abbas Agaimy
- Department of Pathology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Gerken
- Center of Tumor Registry, University of Regensburg, Regensburg, Germany
| | - Christian Rohrmeier
- Department of Otorhinolaryngology, University of Regensburg, Regensburg, Germany
| | - Johannes Zenk
- Department of Otorhinolaryngology, Hospital of Augsburg, Augsburg, Germany
| | - Heinrich Iro
- Department of Otorhinolaryngology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University of Regensburg, Regensburg, Germany
| | - Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University of Regensburg, Regensburg, Germany
| |
Collapse
|
720
|
Trian T, Allard B, Ozier A, Maurat E, Dupin I, Thumerel M, Ousova O, Gillibert-Duplantier J, Le Morvan V, Begueret H, Girodet PO, Marthan R, Berger P. Selective dysfunction of p53 for mitochondrial biogenesis induces cellular proliferation in bronchial smooth muscle from asthmatic patients. J Allergy Clin Immunol 2015; 137:1717-1726.e13. [PMID: 26688517 DOI: 10.1016/j.jaci.2015.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Increase of bronchial smooth muscle (BSM) mass is a crucial feature of asthma remodeling. The mechanisms of such an increased BSM mass are complex but involve enhanced mitochondrial biogenesis, leading to increased proliferation of BSM cells in asthmatic patients. The major tumor suppressor protein p53 is a key cell regulator involved in cell proliferation and has also been implicated in mitochondrial biogenesis. However, the role of p53 in BSM cell proliferation and mitochondrial biogenesis has not been investigated thus far. OBJECTIVE We sought to evaluate the role of p53 in proliferation of BSM cells in asthmatic patients and mitochondrial biogenesis. METHODS The expression of p53 was assessed both in vitro by using flow cytometry and Western blotting and ex vivo by using RT-PCR after laser microdissection. The role of p53 was assessed with small hairpin RNA lentivirus in both asthmatic patients and control subjects with BSM cell proliferation by using 5-bromo-2'-deoxyuridine and cell counting and in the expression of p21, BCL2-associated X protein, mitochondrial transcription factor A (TFAM), and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). RESULTS Twenty-nine patients with moderate-to-severe asthma and 26 control subjects were enrolled in the study. p53 expression was increased in BSM from asthmatic patients both ex vivo and in vitro, with a decreased interaction with mouse double minute 2 homolog (Mdm2) and an increased phosphorylation of serine 20. p53 did not inhibit the transcription of both TFAM and PGC-1α in BSM cells from asthmatic patients. As a consequence, p53 is unable to slow the increased mitochondrial biogenesis and hence the subsequent increased proliferation of BSM cells in asthmatic patients. CONCLUSION This study suggests that p53 might act as a new potential therapeutic target against BSM remodeling in asthmatic patients.
Collapse
Affiliation(s)
- Thomas Trian
- Université Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Bordeaux, France.
| | - Benoit Allard
- Université Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Bordeaux, France
| | - Annaig Ozier
- Université Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Bordeaux, France; CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, Service de chirurgie thoracique, Service d'anatomopathologie, Pessac, France
| | - Elise Maurat
- Université Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Bordeaux, France
| | - Isabelle Dupin
- Université Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Bordeaux, France
| | - Matthieu Thumerel
- Université Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Bordeaux, France; CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, Service de chirurgie thoracique, Service d'anatomopathologie, Pessac, France
| | - Olga Ousova
- Université Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Bordeaux, France
| | - Jennifer Gillibert-Duplantier
- Université Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Bordeaux, France
| | | | - Hugues Begueret
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, Service de chirurgie thoracique, Service d'anatomopathologie, Pessac, France
| | - Pierre-Olivier Girodet
- Université Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Bordeaux, France; CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, Service de chirurgie thoracique, Service d'anatomopathologie, Pessac, France
| | - Roger Marthan
- Université Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Bordeaux, France; CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, Service de chirurgie thoracique, Service d'anatomopathologie, Pessac, France
| | - Patrick Berger
- Université Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Bordeaux, France; CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, Service de chirurgie thoracique, Service d'anatomopathologie, Pessac, France
| |
Collapse
|
721
|
Qin JJ, Wang W, Voruganti S, Wang H, Zhang WD, Zhang R. Identification of a new class of natural product MDM2 inhibitor: In vitro and in vivo anti-breast cancer activities and target validation. Oncotarget 2015; 6:2623-40. [PMID: 25739118 PMCID: PMC4413606 DOI: 10.18632/oncotarget.3098] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/25/2014] [Indexed: 12/20/2022] Open
Abstract
The MDM2 oncogene has been suggested as a molecular target for treating human cancers, including breast cancer. Most MDM2 inhibitors under development are targeting the MDM2-p53 binding, and have little or no effects on cancers without functional p53, such as advanced breast cancer. The present study was designed to develop a new class of MDM2 inhibitors that exhibit anticancer activity in MDM2-dependent and p53-independent manners. The selective MDM2 inhibitors were discovered by a computational structure-based screening, yielding a lead compound, termed JapA. We further found that JapA inhibited cell growth, decreased cell proliferation, and induced G2/M phase arrest and apoptosis in breast cancer cells through an MDM2-dependent mechanism, regardless of p53 status. It also inhibited the tumor growth and lung metastasis in breast cancer xenograft models without causing any host toxicity. Furthermore, JapA directly bound to MDM2 protein and reduced MDM2 levels in cancer cells in vitro and in vivo by promoting MDM2 protein degradation and inhibiting MDM2 transcription, which is distinct from the existing MDM2 inhibitors. In conclusion, JapA represents a new class of MDM2 inhibitor that exerts its anticancer activity through directly down-regulating MDM2, and might be developed as a novel cancer therapeutic agent.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.,Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sukesh Voruganti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hui Wang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.,Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
722
|
Abstract
Cancer drugs are broadly classified into two categories: cytotoxic chemotherapies and targeted therapies that specifically modulate the activity of one or more proteins involved in cancer. Major advances have been achieved in targeted cancer therapies in the past few decades, which is ascribed to the increasing understanding of molecular mechanisms for cancer initiation and progression. Consequently, monoclonal antibodies and small molecules have been developed to interfere with a specific molecular oncogenic target. Targeting gain-of-function mutations, in general, has been productive. However, it has been a major challenge to use standard pharmacologic approaches to target loss-of-function mutations of tumor suppressor genes. Novel approaches, including synthetic lethality and collateral vulnerability screens, are now being developed to target gene defects in p53, PTEN, and BRCA1/2. Here, we review and summarize the recent findings in cancer genomics, drug development, and molecular cancer biology, which show promise in targeting tumor suppressors in cancer therapeutics.
Collapse
Affiliation(s)
- Yunhua Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoxiao Hu
- State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Cecil Han
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liana Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinna Zhang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Xiongbin Lu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
723
|
Chen J, Wang J, Zhang Q, Chen K, Zhu W. Probing Origin of Binding Difference of inhibitors to MDM2 and MDMX by Polarizable Molecular Dynamics Simulation and QM/MM-GBSA Calculation. Sci Rep 2015; 5:17421. [PMID: 26616018 PMCID: PMC4663504 DOI: 10.1038/srep17421] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022] Open
Abstract
Binding abilities of current inhibitors to MDMX are weaker than to MDM2. Polarizable molecular dynamics simulations (MD) followed by Quantum mechanics/molecular mechanics generalized Born surface area (QM//MM-GBSA) calculations were performed to investigate the binding difference of inhibitors to MDM2 and MDMX. The predicted binding free energies not only agree well with the experimental results, but also show that the decrease in van der Walls interactions of inhibitors with MDMX relative to MDM2 is a main factor of weaker bindings of inhibitors to MDMX. The analyses of dihedral angles based on MD trajectories suggest that the closed conformation formed by the residues M53 and Y99 in MDMX leads to a potential steric clash with inhibitors and prevents inhibitors from arriving in the deep of MDMX binding cleft, which reduces the van der Waals contacts of inhibitors with M53, V92, P95 and L98. The calculated results using the residue-based free energy decomposition method further prove that the interaction strength of inhibitors with M53, V92, P95 and L98 from MDMX are obviously reduced compared to MDM2. We expect that this study can provide significant theoretical guidance for designs of potent dual inhibitors to block the p53-MDM2/MDMX interactions.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250014, China
| | - Jinan Wang
- Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Qinggang Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Kaixian Chen
- Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Weiliang Zhu
- Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| |
Collapse
|
724
|
Oxidative Stress in Placenta: Health and Diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:293271. [PMID: 26693479 PMCID: PMC4676991 DOI: 10.1155/2015/293271] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/12/2015] [Indexed: 12/23/2022]
Abstract
During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed.
Collapse
|
725
|
Down-regulation of 5S rRNA by miR-150 and miR-383 enhances c-Myc-rpL11 interaction and inhibits proliferation of esophageal squamous carcinoma cells. FEBS Lett 2015; 589:3989-97. [DOI: 10.1016/j.febslet.2015.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 11/10/2015] [Indexed: 01/05/2023]
|
726
|
Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo SX, Low DHP, Koh CM, Rambow F, Fiers M, Rogiers A, Radaelli E, Al-Haddawi M, Tan SY, Hermans E, Amant F, Yan H, Lakshmanan M, Koumar RC, Lim ST, Derheimer FA, Campbell RM, Bonday Z, Tergaonkar V, Shackleton M, Blattner C, Marine JC, Guccione E. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest 2015; 126:68-84. [PMID: 26595814 DOI: 10.1172/jci82534] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/09/2015] [Indexed: 12/27/2022] Open
Abstract
MDM4 is a promising target for cancer therapy, as it is undetectable in most normal adult tissues but often upregulated in cancer cells to dampen p53 tumor-suppressor function. The mechanisms that underlie MDM4 upregulation in cancer cells are largely unknown. Here, we have shown that this key oncogenic event mainly depends on a specific alternative splicing switch. We determined that while a nonsense-mediated, decay-targeted isoform of MDM4 (MDM4-S) is produced in normal adult tissues as a result of exon 6 skipping, enhanced exon 6 inclusion leads to expression of full-length MDM4 in a large number of human cancers. Although this alternative splicing event is likely regulated by multiple splicing factors, we identified the SRSF3 oncoprotein as a key enhancer of exon 6 inclusion. In multiple human melanoma cell lines and in melanoma patient-derived xenograft (PDX) mouse models, antisense oligonucleotide-mediated (ASO-mediated) skipping of exon 6 decreased MDM4 abundance, inhibited melanoma growth, and enhanced sensitivity to MAPK-targeting therapeutics. Additionally, ASO-based MDM4 targeting reduced diffuse large B cell lymphoma PDX growth. As full-length MDM4 is enhanced in multiple human tumors, our data indicate that this strategy is applicable to a wide range of tumor types. We conclude that enhanced MDM4 exon 6 inclusion is a common oncogenic event and has potential as a clinically compatible therapeutic target.
Collapse
|
727
|
Bradbury R, Jiang WG, Cui YX. The clinical and therapeutic uses of MDM2 and PSMA and their potential interaction in aggressive cancers. Biomark Med 2015; 9:1353-70. [PMID: 26581688 DOI: 10.2217/bmm.15.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) overexpression is observed in the neovasculature of solid tumors, but not in the vasculature of normal tissues. Increased PSMA expression is positively associated with tumor stage and grade, although its function in cancer remains unclear. Mouse double minute 2 (MDM2) is a negative regulator of the p53 tumor suppressor and is reported to regulate VEGF expression and angiogenesis. Both proteins have been considered as biomarkers and therapeutic targets for advanced solid tumors. Our work and a recent microarray-based gene profiling study suggest there could be signaling interplay between MDM2 and PSMA. We herein review the mechanisms underlining the outgrowth of tumors associated with PSMA and MDM2, their potential interaction and how this may be applied to anticancer therapeutics.
Collapse
Affiliation(s)
- Robyn Bradbury
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Yu-Xin Cui
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| |
Collapse
|
728
|
Dörsam B, Fahrer J. The disulfide compound α-lipoic acid and its derivatives: A novel class of anticancer agents targeting mitochondria. Cancer Lett 2015; 371:12-9. [PMID: 26604131 DOI: 10.1016/j.canlet.2015.11.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 01/20/2023]
Abstract
The endogenous disulfide α-lipoic acid (LA) is an essential mitochondrial co-factor. In addition, LA and its reduced counterpart dihydro lipoic acid form a potent redox couple with antioxidative functions, for which it is used as dietary supplement and therapeutic. Recently, it has gained attention due to its cytotoxic effects in cancer cells, which is the key aspect of this review. We initially recapitulate the dietary occurrence, gastrointestinal absorption and pharmacokinetics of LA, illustrating its diverse antioxidative mechanisms. We then focus on its mode of action in cancer cells, in which it triggers primarily the mitochondrial pathway of apoptosis, whereas non-transformed primary cells are hardly affected. Furthermore, LA impairs oncogenic signaling and displays anti-metastatic potential. Novel LA derivatives such as CPI-613, which target mitochondrial energy metabolism, are described and recent pre-clinical studies are presented, which demonstrate that LA and its derivatives exert antitumor activity in vivo. Finally, we highlight clinical studies currently performed with the LA analog CPI-613. In summary, LA and its derivatives are promising candidates to complement the arsenal of established anticancer drugs due to their mitochondria-targeted mode of action and non-genotoxic properties.
Collapse
Affiliation(s)
- Bastian Dörsam
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| |
Collapse
|
729
|
Abstract
p53 has been studied intensively as a major tumour suppressor that detects oncogenic events in cancer cells and eliminates them through senescence (a permanent non-proliferative state) or apoptosis. Consistent with this role, p53 activity is compromised in a high proportion of all cancer types, either through mutation of the TP53 gene (encoding p53) or changes in the status of p53 modulators. p53 has additional roles, which may overlap with its tumour-suppressive capacity, in processes including the DNA damage response, metabolism, aging, stem cell differentiation and fertility. Moreover, many mutant p53 proteins, termed 'gain-of-function' (GOF), acquire new activities that help drive cancer aggression. p53 is regulated mainly through protein turnover and operates within a negative-feedback loop with its transcriptional target, MDM2 (murine double minute 2), an E3 ubiquitin ligase which mediates the ubiquitylation and proteasomal degradation of p53. Induction of p53 is achieved largely through uncoupling the p53-MDM2 interaction, leading to elevated p53 levels. Various stress stimuli acting on p53 (such as hyperproliferation and DNA damage) use different, but overlapping, mechanisms to achieve this. Additionally, p53 activity is regulated through critical context-specific or fine-tuning events, mediated primarily through post-translational mechanisms, particularly multi-site phosphorylation and acetylation. In the present review, I broadly examine these events, highlighting their regulatory contributions, their ability to integrate signals from cellular events towards providing most appropriate response to stress conditions and their importance for tumour suppression. These are fascinating aspects of molecular oncology that hold the key to understanding the molecular pathology of cancer and the routes by which it may be tackled therapeutically.
Collapse
|
730
|
Affiliation(s)
- Yunhua Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liana Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiongbin Lu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
731
|
Retraction: ‘p53-induced Rap2B positively regulates migration in cells exposed to glucose deprivation’ by D.-S. Pei, J.-H. Di, W.-Q. Du and J.-N. Zheng. Mol Carcinog 2015. [DOI: 10.1002/mc.22357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
732
|
Sgammato R, Desiderio D, Lamberti A, Raimo G, Novellino E, Carotenuto A, Masullo M. Nondenaturing polyacrylamide gel electrophoresis to study the dissociation of the p53·MDM2/X complex by potentially anticancer compounds. Electrophoresis 2015; 36:3101-4. [DOI: 10.1002/elps.201500305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Roberta Sgammato
- Department of Movement Sciences and Wellness, University of Naples "Parthenope", Naples, Italy.,CEINGE - Biotecnologie Avanzate s.c. a r.l, Naples, Italy
| | - Doriana Desiderio
- Department of Biosciences and Territory, University of Molise, Pesche, Isernia, Italy
| | - Anna Lamberti
- Department of Movement Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Gennaro Raimo
- Department of Biosciences and Territory, University of Molise, Pesche, Isernia, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Mariorosario Masullo
- Department of Movement Sciences and Wellness, University of Naples "Parthenope", Naples, Italy.,CEINGE - Biotecnologie Avanzate s.c. a r.l, Naples, Italy
| |
Collapse
|
733
|
Busuttil RA, Zapparoli GV, Haupt S, Fennell C, Wong SQ, Pang JMB, Takeno EA, Mitchell C, Di Costanzo N, Fox S, Haupt Y, Dobrovic A, Boussioutas A. Role of p53 in the progression of gastric cancer. Oncotarget 2015; 5:12016-26. [PMID: 25427447 PMCID: PMC4322971 DOI: 10.18632/oncotarget.2434] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 12/20/2022] Open
Abstract
Intestinal metaplasia (IM) is a premalignant lesion associated with gastric cancer (GC) but is poorly described in terms of molecular changes. Here, we explored the role of TP53, a commonly mutated gene in GC, to determine if p53 protein expression and/or the presence of somatic mutations in TP53 can be used as a predictive marker for patients at risk of progressing to GC from IM. Immunohistochemistry and high resolution melting were used to determine p53 protein expression and TP53 mutation status respectively in normal gastric mucosa, IM without concurrent GC (IM-GC), IM with concurrent GC (IM+GC) and GC. This comparative study revealed an incremental increase in p53 expression levels with progression of disease from normal mucosa, via an IM intermediate to GC. TP53 mutations however, were not detected in IM but occurred frequently in GC. Further, we identified increased protein expression of Mdm2/x, both powerful regulators of p53, in 100% of the IM+GC cohort with these samples also exhibiting high levels of wild-type p53 protein. Our data suggests that TP53 mutations occur late in gastric carcinogenesis contributing to the final transition to cancer. We also demonstrated involvement of Mdmx in GC.
Collapse
Affiliation(s)
- Rita A Busuttil
- Cancer Genetics and Genomics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia. Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Giada V Zapparoli
- Molecular Pathology Research and Development Laboratory, Department of Pathology Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia. Translational Genomics and Epigenomics Laboratory, Ludwig Institute for Cancer Research, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, VIC, Australia
| | - Sue Haupt
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. Molecular Pathology Research and Development Laboratory, Department of Pathology Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia. Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Christina Fennell
- Cancer Genetics and Genomics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Stephen Q Wong
- Molecular Pathology Research and Development Laboratory, Department of Pathology Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Jia-Min B Pang
- Molecular Pathology Research and Development Laboratory, Department of Pathology Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia. Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Elena A Takeno
- Molecular Pathology Research and Development Laboratory, Department of Pathology Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Catherine Mitchell
- Molecular Pathology Research and Development Laboratory, Department of Pathology Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Natasha Di Costanzo
- Cancer Genetics and Genomics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Stephen Fox
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. Molecular Pathology Research and Development Laboratory, Department of Pathology Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia. Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Ygal Haupt
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. Translational Genomics and Epigenomics Laboratory, Ludwig Institute for Cancer Research, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, VIC, Australia. Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia. Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Alexander Dobrovic
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. Molecular Pathology Research and Development Laboratory, Department of Pathology Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia. Translational Genomics and Epigenomics Laboratory, Ludwig Institute for Cancer Research, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, VIC, Australia. Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Alex Boussioutas
- Cancer Genetics and Genomics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia. Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia. Department of Gastroenterology, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
734
|
Zheng J, Lang Y, Zhang Q, Cui D, Sun H, Jiang L, Chen Z, Zhang R, Gao Y, Tian W, Wu W, Tang J, Chen Z. Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation. Genes Dev 2015. [PMID: 26220995 PMCID: PMC4526736 DOI: 10.1101/gad.261792.115] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Upon ribosomal stress, the central region of MDM2 is bound by ribosomal proteins, particularly ribosomal protein L11 (RPL11), leading to MDM2 inactivation and subsequent p53 activation. Zheng et al. solved the complex structure of human MDM2–RPL11 at 2.4 Å and show that formation of the MDM2–RPL11 complex induces substantial conformational changes in both proteins. The central region of MDM2 is critical for p53 activation and tumor suppression. Upon ribosomal stress, this region is bound by ribosomal proteins, particularly ribosomal protein L11 (RPL11), leading to MDM2 inactivation and subsequent p53 activation. Here, we solved the complex structure of human MDM2–RPL11 at 2.4 Å. MDM2 extensively interacts with RPL11 through an acidic domain and two zinc fingers. Formation of the MDM2–RPL11 complex induces substantial conformational changes in both proteins. RPL11, unable to bind MDM2 mutants, fails to induce the activation of p53 in cells. MDM2 mimics 28S rRNA binding to RPL11. The C4 zinc finger determines RPL11 binding to MDM2 but not its homolog, MDMX. Our results highlight the essential role of the RPL11–MDM2 interaction in p53 activation and tumor suppression and provide a structural basis for potential new anti-tumor drug development.
Collapse
Affiliation(s)
- Jiangge Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Yue Lang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Di Cui
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Haili Sun
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lun Jiang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Zhenhang Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Rui Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yina Gao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Wenli Tian
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
735
|
Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, Gu Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl 2015; 54:12029-33. [PMID: 26310292 PMCID: PMC4677991 DOI: 10.1002/anie.201506030] [Citation(s) in RCA: 444] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/29/2015] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas9 represents a promising platform for genome editing, yet means for its safe and efficient delivery remain to be fully realized. A novel vehicle that simultaneously delivers the Cas9 protein and single guide RNA (sgRNA) is based on DNA nanoclews, yarn-like DNA nanoparticles that are synthesized by rolling circle amplification. The biologically inspired vehicles were efficiently loaded with Cas9/sgRNA complexes and delivered the complexes to the nuclei of human cells, thus enabling targeted gene disruption while maintaining cell viability. Editing was most efficient when the DNA nanoclew sequence and the sgRNA guide sequence were partially complementary, offering a design rule for enhancing delivery. Overall, this strategy provides a versatile method that could be adapted for delivering other DNA-binding proteins or functional nucleic acids.
Collapse
Affiliation(s)
- Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695 (USA)
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| | - Wenyan Ji
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695 (USA)
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| | - Jordan M Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905 (USA)
| | - Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695 (USA)
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| | - Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695 (USA)
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905 (USA).
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695 (USA).
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA).
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599 (USA).
| |
Collapse
|
736
|
Pettersson M, Quant M, Min J, Iconaru L, Kriwacki RW, Waddell MB, Guy RK, Luthman K, Grøtli M. Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction. PLoS One 2015; 10:e0137867. [PMID: 26427060 PMCID: PMC4591261 DOI: 10.1371/journal.pone.0137867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/23/2015] [Indexed: 11/19/2022] Open
Abstract
The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2) via a direct protein-protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.
Collapse
Affiliation(s)
- Mariell Pettersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Maria Quant
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105, United States of America
| | - Luigi Iconaru
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105, United States of America
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105, United States of America
| | - M. Brett Waddell
- Molecular Interaction Analysis Shared Resource, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105, United States of America
| | - R. Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105, United States of America
| | - Kristina Luthman
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
737
|
Liu Y, Mallampalli RK. Small molecule therapeutics targeting F-box proteins in cancer. Semin Cancer Biol 2015; 36:105-19. [PMID: 26427329 DOI: 10.1016/j.semcancer.2015.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022]
Abstract
The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well-characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Medicine, The Acute Lung Injury, Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Rama K Mallampalli
- Department of Medicine, The Acute Lung Injury, Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
738
|
Zhou J, Yang Y, Zhang D, Zhou L, Liu F, Tao L, Lu LM. Association of the recurrence of vocal leukoplakia with MDM2-309 variants over a 2-year period: a prospective study. Acta Otolaryngol 2015; 136:95-9. [PMID: 26371559 DOI: 10.3109/00016489.2015.1082194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONCLUSION MDM2-309 polymorphism variant genotypes decrease the risk of recurrence in vocal leukoplakia. OBJECTIVE The results of a previous study 2 years ago showed the effect of mouse double minute 2 homolog (MDM2) SNP309 polymorphisms in people with laryngeal carcinoma and vocal leukoplakia (a pre-cancerous laryngeal carcinoma lesion). This prospective, clinical trial was performed to assess the relationship between MDM2-309 polymorphism variants and recurrence/cancerization rates in people with vocal leukoplakia over a 2-year period. PARTICIPANTS AND METHOD A total of 61 post-operative patients with vocal leukoplakia participated in this prospective, observational, 2-year, follow-up study, and were genotyped for the MDM2-309 gene using pyrosequencing. Recurrence and cancerization rates were used to assess the relationship between the clinical outcome and the genotype variants. RESULTS The recurrence rate in the GT genotypes group was lower than that in the normal TT genotype group (17.2% vs 50%, p = 0.05) and there was a significantly lower recurrence rate in the GG genotype group than in the normal TT genotype group (10% vs 50%, p = 0.03). However, there was no statistically significant difference in the cancerization rate between the MDM2-309 variant (GT + GG) genotypes group and the normal TT genotype group (12.2% vs 8.3%, p > 0.05) over the 2-year follow-up period.
Collapse
Affiliation(s)
- Jian Zhou
- a Department of Otolaryngology , Eye Ear Nose & Throat Hospital, Fudan University , Shanghai , PR China
| | - Yue Yang
- a Department of Otolaryngology , Eye Ear Nose & Throat Hospital, Fudan University , Shanghai , PR China
| | - Duo Zhang
- a Department of Otolaryngology , Eye Ear Nose & Throat Hospital, Fudan University , Shanghai , PR China
| | - Liang Zhou
- a Department of Otolaryngology , Eye Ear Nose & Throat Hospital, Fudan University , Shanghai , PR China
| | - Fei Liu
- b Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine , Shanghai , PR China and
| | - Lei Tao
- a Department of Otolaryngology , Eye Ear Nose & Throat Hospital, Fudan University , Shanghai , PR China
- c Department of Otolaryngology, Pudong Hospital , Fudan University , Shanghai , PR China
| | - Li-Ming Lu
- b Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine , Shanghai , PR China and
| |
Collapse
|
739
|
Nahta R, Al-Mulla F, Al-Temaimi R, Amedei A, Andrade-Vieira R, Bay SN, Brown DG, Calaf GM, Castellino RC, Cohen-Solal KA, Colacci A, Cruickshanks N, Dent P, Di Fiore R, Forte S, Goldberg GS, Hamid RA, Krishnan H, Laird DW, Lasfar A, Marignani PA, Memeo L, Mondello C, Naus CC, Ponce-Cusi R, Raju J, Roy D, Roy R, Ryan EP, Salem HK, Scovassi AI, Singh N, Vaccari M, Vento R, Vondráček J, Wade M, Woodrick J, Bisson WH. Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression. Carcinogenesis 2015; 36 Suppl 1:S2-18. [PMID: 26106139 DOI: 10.1093/carcin/bgv028] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.
Collapse
Affiliation(s)
- Rita Nahta
- Departments of Pharmacology and Hematology & Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada, Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA, Department of Environmental and Radiological Health Sciences/Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA, Instituto de Alta Investigacion, Universidad de Tarapaca, Arica 8097877, Chile, Division of Hematology and Oncology, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA, Department of Medicine/Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901-1914, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 980033, USA, Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, 90127 Palermo, Italy, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Graduate School of Biomedical Sciences and Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084-1501, USA, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontari
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy
| | - Rafaela Andrade-Vieira
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sarah N Bay
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences/Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gloria M Calaf
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA, Instituto de Alta Investigacion, Universidad de Tarapaca, Arica 8097877, Chile
| | - Robert C Castellino
- Division of Hematology and Oncology, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Karine A Cohen-Solal
- Department of Medicine/Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901-1914, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Nichola Cruickshanks
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 980033, USA
| | - Paul Dent
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 980033, USA
| | - Riccardo Di Fiore
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, 90127 Palermo, Italy
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Gary S Goldberg
- Graduate School of Biomedical Sciences and Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084-1501, USA
| | - Roslida A Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
| | - Harini Krishnan
- Graduate School of Biomedical Sciences and Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084-1501, USA
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 60503, USA
| | - Paola A Marignani
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Christian C Naus
- Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Richard Ponce-Cusi
- Instituto de Alta Investigacion, Universidad de Tarapaca, Arica 8097877, Chile
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Debasish Roy
- Department of Natural Science, The City University of New York at Hostos Campus, Bronx, NY 10451, USA
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences/Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Hosni K Salem
- Urology Dept., kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre, King George's Medical University, Lucknow, UP 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Renza Vento
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, 90127 Palermo, Italy, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics AS CR, Brno 612 65, Czech Republic
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan 16163, Italy and
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
740
|
Chan G, Jordaan G, Nishimura RN, Weisbart RH. Combining intracellular antibodies to restore function of mutated p53 in cancer. Int J Cancer 2015; 138:182-6. [PMID: 26174762 DOI: 10.1002/ijc.29685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/06/2015] [Indexed: 12/13/2022]
Abstract
TP53 is a tumor suppressor gene that is mutated in 50% of cancers, and its function is tightly regulated by the E3 ligase, Mdm2. Both p53 and Mdm2 are localized in the cell nucleus, a site that is impervious to therapeutic regulation by most antibodies. We identified a cell-penetrating lupus monoclonal anti-DNA antibody, mAb 3E10, that targets the nucleus, and we engineered mAb 3E10 to function as an intranuclear transport system to deliver therapeutic antibodies into the nucleus as bispecific single chain Fv (scFv) fragments. Bispecific scFvs composed of 3E10 include PAb421 (3E10-PAb421) that binds p53 and restores the function of mutated p53, and 3G5 (3E10-3G5) that binds Mdm2 and prevents destruction of p53 by Mdm2. We documented the therapeutic efficacy of these bispecific scFvs separately in previous studies. In this study, we show that combination therapy with 3E10-PAb421 and 3E10-3G5 augments growth inhibition of cells with p53 mutations compared to the effect of either antibody alone. By contrast, no enhanced response was observed in cells with wild-type p53 or in cells homozygous null for p53.
Collapse
Affiliation(s)
- Grace Chan
- Department of Research, Veterans Affairs Greater Los Angele Healthcare System, Sepulveda, CA
| | - Gwen Jordaan
- Department of Research, Veterans Affairs Greater Los Angele Healthcare System, Sepulveda, CA
| | - Robert N Nishimura
- Department of Research, Veterans Affairs Greater Los Angele Healthcare System, Sepulveda, CA
- Department of Neurology, University of California, Los Angeles, CA
| | - Richard H Weisbart
- Department of Research, Veterans Affairs Greater Los Angele Healthcare System, Sepulveda, CA
| |
Collapse
|
741
|
Gessier F, Kallen J, Jacoby E, Chène P, Stachyra-Valat T, Ruetz S, Jeay S, Holzer P, Masuya K, Furet P. Discovery of dihydroisoquinolinone derivatives as novel inhibitors of the p53–MDM2 interaction with a distinct binding mode. Bioorg Med Chem Lett 2015; 25:3621-5. [DOI: 10.1016/j.bmcl.2015.06.058] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/16/2015] [Indexed: 11/25/2022]
|
742
|
Toro AR, Pérez-Pérez A, Corrales Gutiérrez I, Sánchez-Margalet V, Varone CL. Mechanisms involved in p53 downregulation by leptin in trophoblastic cells. Placenta 2015; 36:1266-75. [PMID: 26386653 DOI: 10.1016/j.placenta.2015.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/09/2015] [Accepted: 08/30/2015] [Indexed: 11/15/2022]
Abstract
Leptin, a 16-kDa polypeptide hormone, is produced by the adipocyte and can also be synthesized by placenta. We previously demonstrated that leptin promotes proliferation and survival in placenta, in part mediated by the p53 pathway. In this work, we investigated the mechanisms involved in leptin down-regulation of p53 level. The human first trimester cytotrophoblastic Swan-71 cell line and human placental explants at term were used. In order to study the late phase of apoptosis, triggered by serum deprivation, experiments of DNA fragmentation were carried out. Exogenous leptin added to human placental explants, showed a decrease on DNA ladder formation and MAPK pathway is involved in this leptin effect. We also found that under serum deprivation condition, leptin decreases p53 levels and the inhibitory leptin effect is lost when cells were pretreated with 50 μM PD98059 or 10 μM LY29004; or were transfected with dominant negative mutants of intermediates of these pathways, suggesting that MAPK and PI3K signaling pathways are necessaries for leptin action. Additionally, leptin diminished Ser-46 p53 phosphorylation and this effect in placental explants was mediated by the activation of MAPK and PI3K pathways. Finally, in order to assess leptin effect on p53 half-life experiments with cycloheximide were performed and MDM-2 expression was analyzed. Leptin diminished p53 half-life and up-regulated MDM-2 expression. In summary, we provided evidence suggesting that leptin anti-apoptotic effect is mediated by MAPK and PI3K pathways.
Collapse
Affiliation(s)
- Ayelén Rayen Toro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Antonio Pérez-Pérez
- Departamento de Bioquímica Médica y Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Isabel Corrales Gutiérrez
- Departamento de Bioquímica Médica y Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Víctor Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Cecilia Laura Varone
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
743
|
Lu S, Lu KN, Cheng SY, Hu B, Ma X, Nystrom N, Lu X. Identifying Driver Genomic Alterations in Cancers by Searching Minimum-Weight, Mutually Exclusive Sets. PLoS Comput Biol 2015; 11:e1004257. [PMID: 26317392 PMCID: PMC4552843 DOI: 10.1371/journal.pcbi.1004257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/24/2015] [Indexed: 02/07/2023] Open
Abstract
An important goal of cancer genomic research is to identify the driving pathways underlying disease mechanisms and the heterogeneity of cancers. It is well known that somatic genome alterations (SGAs) affecting the genes that encode the proteins within a common signaling pathway exhibit mutual exclusivity, in which these SGAs usually do not co-occur in a tumor. With some success, this characteristic has been utilized as an objective function to guide the search for driver mutations within a pathway. However, mutual exclusivity alone is not sufficient to indicate that genes affected by such SGAs are in common pathways. Here, we propose a novel, signal-oriented framework for identifying driver SGAs. First, we identify the perturbed cellular signals by mining the gene expression data. Next, we search for a set of SGA events that carries strong information with respect to such perturbed signals while exhibiting mutual exclusivity. Finally, we design and implement an efficient exact algorithm to solve an NP-hard problem encountered in our approach. We apply this framework to the ovarian and glioblastoma tumor data available at the TCGA database, and perform systematic evaluations. Our results indicate that the signal-oriented approach enhances the ability to find informative sets of driver SGAs that likely constitute signaling pathways. An important goal of studying cancer genomics is to identify critical pathways that, when perturbed by somatic genomic alterations (SGAs) such as somatic mutations, copy number alterations and epigenomic alterations, cause cancers and underlie different clinical phenotypes. In this study, we present a framework for discovering perturbed signaling pathways in cancers by integrating genome alteration data and transcriptomic data from the Cancer Genome Atlas (TCGA) project. Since gene expression in a cell is regulated by cellular signaling systems, we used transcriptomic changes to reveal perturbed cellular signals in each tumor. We then combined the genomic alteration data to search for SGA events across multiple tumors that affected a common signal, thus identifying the candidate members of cancer pathways. Our results demonstrate the advantage of the signal-oriented pathway approach over previous methods.
Collapse
Affiliation(s)
- Songjian Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Kevin N. Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shi-Yuan Cheng
- Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Bo Hu
- Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Xiaojun Ma
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nicholas Nystrom
- Pittsburgh Supercomputing Center, Pittsburgh, Pennsylvania, United States of America
| | - Xinghua Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
744
|
Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, Gu Z. Self-Assembled DNA Nanoclews for the Efficient Delivery of CRISPR-Cas9 for Genome Editing. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506030] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
745
|
Urso L, Calabrese F, Favaretto A, Conte P, Pasello G. Critical review about MDM2 in cancer: Possible role in malignant mesothelioma and implications for treatment. Crit Rev Oncol Hematol 2015; 97:220-30. [PMID: 26358421 DOI: 10.1016/j.critrevonc.2015.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 07/02/2015] [Accepted: 08/18/2015] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor p53 regulates genes involved in DNA repair, metabolism, cell cycle arrest, apoptosis and senescence. p53 is mutated in about 50% of the human cancers, while in tumors with wild-type p53 gene, the protein function may be lost because of overexpression of Murine Double Minute 2 (MDM2). MDM2 targets p53 for ubiquitylation and proteasomal degradation. p53 reactivation through MDM2 inhibitors seems to be a promising strategy to sensitize p53 wild-type cancer cells to apoptosis. Moreover, additional p53-independent molecular functions of MDM2, such as neoangiogenesis promotion, have been suggested. Thus, MDM2 might be a target for anticancer treatment because of its antiapoptotic and proangiogenetic role. Malignant pleural mesothelioma (MPM) is an aggressive asbestos-related tumor where wild-type p53 might be present. The present review gives a complete landscape about the role of MDM2 in cancer pathogenesis, prognosis and treatment, with particular focus on Malignant Pleural Mesothelioma.
Collapse
Affiliation(s)
- Loredana Urso
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Italy
| | - Adolfo Favaretto
- Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - PierFranco Conte
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy; Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Giulia Pasello
- Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy.
| |
Collapse
|
746
|
Goudarzi KM, Nistér M, Lindström MS. mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels. Cancer Biol Ther 2015; 15:1499-514. [PMID: 25482947 DOI: 10.4161/15384047.2014.955743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a master regulator of cell growth through its ability to stimulate ribosome biogenesis and mRNA translation. In contrast, the p53 tumor suppressor negatively controls cell growth and is activated by a wide range of insults to the cell. The mTOR and p53 signaling pathways are connected by a number of different mechanisms. Chemotherapeutics that inhibit ribosome biogenesis often induce nucleolar stress and activation of p53. Here we have investigated how the p53 response to nucleolar stress is affected by simultaneous mTOR inhibition in osteosarcoma and glioma cell lines. We found that inhibitors of the mTOR pathway including rapamycin, wortmannin, and caffeine blunted the p53 response to nucleolar stress induced by actinomycin D. Synthetic inhibitors of mTOR (temsirolimus, LY294.002 and PP242) also impaired actinomycin D triggered p53 stabilization and induction of p21. Ribosomal protein (RPL11) is known to be required for p53 protein stabilization following nucleolar stress. Treatment of cells with mTOR inhibitors may lead to reduced synthesis of RPL11 and thereby destabilize p53. We found that rapamycin mimicked the effect of RPL11 depletion in terms of blunting the p53 response to nucleolar stress. However, the extent to which the levels of p53 and RPL11 were reduced by rapamycin varied between cell lines. Additional mechanisms whereby rapamycin blunts the p53 response to nucleolar stress are likely to be involved. Indeed, rapamycin increased the levels of endogenous MDM2 despite inhibition of its phosphorylation at Ser-166. Our findings may have implications for the design of combinatorial cancer treatments with mTOR pathway inhibitors.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- Act D, actinomycin D
- BrdU, bromodeoxyuridine
- CHX, cycloheximide
- DMSO, dimethylsulphoxide
- DOX, doxorubicin
- EGCG, epigallocatechin-3-gallate
- FACS, fluorescence-activated cell sorting
- MPA, mycophenolic acid
- MTT, (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide)
- PI, propidium iodide
- actinomycin D
- caffeine
- glioma
- mTOR
- mTOR, mechanistic target of rapamycin
- nutlin-3
- p21
- p53
- rapamycin
- ribosomal protein L11
- ribosome biogenesis
Collapse
Affiliation(s)
- Kaveh M Goudarzi
- a Department of Oncology-Pathology; Karolinska Institutet; Cancer Center Karolinska ; Karolinska University Hospital ; Stockholm , Sweden
| | | | | |
Collapse
|
747
|
Zhang C, Liu J, Wang X, Wu R, Lin M, Laddha SV, Yang Q, Chan CS, Feng Z. MicroRNA-339-5p inhibits colorectal tumorigenesis through regulation of the MDM2/p53 signaling. Oncotarget 2015; 5:9106-17. [PMID: 25193859 PMCID: PMC4253422 DOI: 10.18632/oncotarget.2379] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tumor suppressor p53 plays a central role in tumor suppression. To ensure its proper function, the levels and activity of p53 are under a tight regulation in cells. MicroRNAs are short non-coding RNAs that play an important role in regulation of gene expression. Recently, microRNA-339-5p has been reported to be frequently down-regulated in colorectal cancer, and furthermore, its down-regulation is associated with poor prognosis in cancer patients, which strongly suggests a tumor suppressive function of microRNA-339-5p in colorectal cancer. In this study, we found that microRNA-339-5p directly represses the expression of MDM2, a key negative regulator of p53, through binding to MDM2 3′-UTR in colorectal cancer cells. Through the down-regulation of MDM2, microRNA-339-5p increases p53 protein levels and functions, including p53 transcriptional activity and p53-mediated apoptosis and senescence in response to stress. Furthermore, microRNA-339-5p inhibits the migration and invasion of colorectal cancer cells and the growth of colorectal xenograft tumors in a largely p53-dependent manner. Our results highlighted an important role of microRNA-339-5p in suppression of colorectal tumorigenesis, and also revealed that regulating the p53 function is an important mechanism for microRNA-339-5p in tumor suppression.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA; These auhors contributed equally to this work
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA; These auhors contributed equally to this work
| | - Xiaolong Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA; Department of Breast Surgery, Qilu Hospital, Shandong University, Ji'nan, China
| | - Rui Wu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Meihua Lin
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | | | - Qifeng Yang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA; Department of Breast Surgery, Qilu Hospital, Shandong University, Ji'nan, China
| | - Chang S Chan
- Center for Systems Biology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
748
|
Matsui A, Ihara T, Suda H, Mikami H, Semba K. Gene amplification: mechanisms and involvement in cancer. Biomol Concepts 2015; 4:567-82. [PMID: 25436757 DOI: 10.1515/bmc-2013-0026] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/02/2013] [Indexed: 11/15/2022] Open
Abstract
Gene amplification was recognized as a physiological process during the development of Drosophila melanogaster. Intriguingly, mammalian cells use this mechanism to overexpress particular genes for survival under stress, such as during exposure to cytotoxic drugs. One well-known example is the amplification of the dihydrofolate reductase gene observed in methotrexate-resistant cells. Four models have been proposed for the generation of amplifications: extrareplication and recombination, the breakage-fusion-bridge cycle, double rolling-circle replication, and replication fork stalling and template switching. Gene amplification is a typical genetic alteration in cancer, and historically many oncogenes have been identified in the amplified regions. In this regard, novel cancer-associated genes may remain to be identified in the amplified regions. Recent comprehensive approaches have further revealed that co-amplified genes also contribute to tumorigenesis in concert with known oncogenes in the same amplicons. Considering that cancer develops through the alteration of multiple genes, gene amplification is an effective acceleration machinery to promote tumorigenesis. Identification of cancer-associated genes could provide novel and effective therapeutic targets.
Collapse
|
749
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-Based Design of Inhibitors of Protein-Protein Interactions: Mimicking Peptide Binding Epitopes. Angew Chem Int Ed Engl 2015; 54:8896-927. [PMID: 26119925 PMCID: PMC4557054 DOI: 10.1002/anie.201412070] [Citation(s) in RCA: 506] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A-D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices.
Collapse
Affiliation(s)
- Marta Pelay-Gimeno
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Adrian Glas
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Oliver Koch
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| |
Collapse
|
750
|
Pencik J, Schlederer M, Gruber W, Unger C, Walker SM, Chalaris A, Marié IJ, Hassler MR, Javaheri T, Aksoy O, Blayney JK, Prutsch N, Skucha A, Herac M, Krämer OH, Mazal P, Grebien F, Egger G, Poli V, Mikulits W, Eferl R, Esterbauer H, Kennedy R, Fend F, Scharpf M, Braun M, Perner S, Levy DE, Malcolm T, Turner SD, Haitel A, Susani M, Moazzami A, Rose-John S, Aberger F, Merkel O, Moriggl R, Culig Z, Dolznig H, Kenner L. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun 2015. [PMID: 26198641 PMCID: PMC4525303 DOI: 10.1038/ncomms8736] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19ARF as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF–Mdm2–p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14ARF expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition. IL6-STAT3 signaling is activated in prostate cancer, however inhibiting this pathway has not lead to a survival advantage in patients. Here, Pencik et al. show that loss of the IL6-STAT3 axis in mice and humans leads to metastasis due to loss of ARF, unravelling STAT3 and ARF as potential prognostic markers in prostate cancer.
Collapse
Affiliation(s)
- Jan Pencik
- 1] Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria. [2] Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michaela Schlederer
- 1] Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria [2] Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Gruber
- Department of Molecular Biology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Christine Unger
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Steven M Walker
- Center for Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN Belfast, UK
| | - Athena Chalaris
- Institute of Biochemistry, University of Kiel, 24098 Kiel, Germany
| | - Isabelle J Marié
- 1] Department of Pathology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA [2] Department of Microbiology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA
| | - Melanie R Hassler
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria
| | - Osman Aksoy
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jaine K Blayney
- NI Stratified Medicine Research Group, University of Ulster, BT47 6SB Londonderry, UK
| | - Nicole Prutsch
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna Skucha
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Merima Herac
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Peter Mazal
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria
| | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Valeria Poli
- Molecular Biotechnology Center (MBC), Department of Genetics, Biology and Biochemistry, University of Turin, Turin 10126, Italy
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Robert Eferl
- Department of Medicine I, Division: Institute for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Kennedy
- Center for Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN Belfast, UK
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Marcus Scharpf
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Martin Braun
- Institute of Pathology, Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, 53127 Bonn, Germany
| | - Sven Perner
- Institute of Pathology, Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, 53127 Bonn, Germany
| | - David E Levy
- 1] Department of Pathology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA [2] Department of Microbiology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA
| | - Tim Malcolm
- Department of Pathology, University of Cambridge, CB2 0QQ Cambridge, UK
| | - Suzanne D Turner
- Department of Pathology, University of Cambridge, CB2 0QQ Cambridge, UK
| | - Andrea Haitel
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Susani
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ali Moazzami
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Stefan Rose-John
- Institute of Biochemistry, University of Kiel, 24098 Kiel, Germany
| | - Fritz Aberger
- Department of Molecular Biology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Olaf Merkel
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Moriggl
- 1] Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria [2] Unit for Translational Methods in Cancer Research, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- 1] Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria [2] Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria [3] Unit of Pathology of Laboratory Animals (UPLA), University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|