751
|
Buraschi S, Xu SQ, Stefanello M, Moskalev I, Morcavallo A, Genua M, Tanimoto R, Birbe R, Peiper SC, Gomella LG, Belfiore A, Black PC, Iozzo RV, Morrione A. Suppression of progranulin expression inhibits bladder cancer growth and sensitizes cancer cells to cisplatin. Oncotarget 2016; 7:39980-39995. [PMID: 27220888 PMCID: PMC5129986 DOI: 10.18632/oncotarget.9556] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/08/2016] [Indexed: 12/11/2022] Open
Abstract
We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play a key role in driving the transition to the invasive phenotype of urothelial cancer. However, it is not established whether targeting progranulin could have therapeutic effects on bladder cancer. In this study, we stably depleted urothelial cancer cells of endogenous progranulin by shRNA approaches and determined that progranulin depletion severely inhibited the ability of tumorigenic urothelial cancer cells to migrate, invade and grow in anchorage-independency. We further demonstrate that progranulin expression is critical for tumor growth in vivo, in both xenograft and orthotopic tumor models. Notably, progranulin levels correlated with response to cisplatin treatment and were upregulated in bladder tumors. Our data indicate that progranulin may constitute a novel target for therapeutic intervention in bladder tumors. In addition, progranulin may serve as a novel biomarker for bladder cancer.
Collapse
Affiliation(s)
- Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology and The Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Shi-Qiong Xu
- Department of Urology and Biology and The Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Manuela Stefanello
- Department of Urology and Biology and The Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Igor Moskalev
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Alaide Morcavallo
- Department of Urology and Biology and The Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Marco Genua
- Department of Urology and Biology and The Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Ryuta Tanimoto
- Department of Urology and Biology and The Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Ruth Birbe
- Department of Pathology, Anatomy and Cell Biology and The Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Stephen C. Peiper
- Department of Pathology, Anatomy and Cell Biology and The Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Leonard G. Gomella
- Department of Urology and Biology and The Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Antonino Belfiore
- Department of Health and Endocrinology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Peter C. Black
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and The Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| | - Andrea Morrione
- Department of Urology and Biology and The Prostate Cancer Program, Kimmel Cancer Center, Thomas Jefferson University, PA, Philadelphia, USA
| |
Collapse
|
752
|
Del Val IJ, Polizzi KM, Kontoravdi C. A theoretical estimate for nucleotide sugar demand towards Chinese Hamster Ovary cellular glycosylation. Sci Rep 2016; 6:28547. [PMID: 27345611 PMCID: PMC4921913 DOI: 10.1038/srep28547] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/03/2016] [Indexed: 01/18/2023] Open
Abstract
Glycosylation greatly influences the safety and efficacy of many of the highest-selling recombinant therapeutic proteins (rTPs). In order to define optimal cell culture feeding strategies that control rTP glycosylation, it is necessary to know how nucleotide sugars (NSs) are consumed towards host cell and rTP glycosylation. Here, we present a theoretical framework that integrates the reported glycoproteome of CHO cells, the number of N-linked and O-GalNAc glycosylation sites on individual host cell proteins (HCPs), and the carbohydrate content of CHO glycosphingolipids to estimate the demand of NSs towards CHO cell glycosylation. We have identified the most abundant N-linked and O-GalNAc CHO glycoproteins, obtained the weighted frequency of N-linked and O-GalNAc glycosites across the CHO cell proteome, and have derived stoichiometric coefficients for NS consumption towards CHO cell glycosylation. By combining the obtained stoichiometric coefficients with previously reported data for specific growth and productivity of CHO cells, we observe that the demand of NSs towards glycosylation is significant and, thus, is required to better understand the burden of glycosylation on cellular metabolism. The estimated demand of NSs towards CHO cell glycosylation can be used to rationally design feeding strategies that ensure optimal and consistent rTP glycosylation.
Collapse
Affiliation(s)
- Ioscani Jimenez Del Val
- School of Chemical &Bioprocess Engineering, University College Dublin, Belfield campus, Dublin 4, Ireland.,Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Karen M Polizzi
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.,Centre for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Cleo Kontoravdi
- Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
753
|
Fahie K, Zachara NE. Molecular Functions of Glycoconjugates in Autophagy. J Mol Biol 2016; 428:3305-3324. [PMID: 27345664 DOI: 10.1016/j.jmb.2016.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023]
Abstract
Glycoconjugates, glycans, carbohydrates, and sugars: these terms encompass a class of biomolecules that are diverse in both form and function ranging from free oligosaccharides, glycoproteins, and proteoglycans, to glycolipids that make up a complex glycan code that impacts normal physiology and disease. Recent data suggest that one mechanism by which glycoconjugates impact physiology is through the regulation of the process of autophagy. Autophagy is a degradative pathway necessary for differentiation, organism development, and the maintenance of cell and tissue homeostasis. In this review, we will highlight what is known about the regulation of autophagy by glycoconjugates focusing on signaling mechanisms from the extracellular surface and the regulatory roles of intracellular glycans. Glycan signaling from the extracellular matrix converges on "master" regulators of autophagy including AMPK and mTORC1, thus impacting their localization, activity, and/or expression. Within the intracellular milieu, gangliosides are constituents of the autophagosome membrane, a subset of proteins composing the autophagic machinery are regulated by glycosylation, and oligosaccharide exposure in the cytosol triggers an autophagic response. The examples discussed provide some mechanistic insights into glycan regulation of autophagy and reveal areas for future investigation.
Collapse
Affiliation(s)
- Kamau Fahie
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185, USA.
| |
Collapse
|
754
|
Ricard-Blum S, Gondelaud F. [Shuttling from the extracellular matrix to the nucleus]. Biol Aujourdhui 2016; 210:37-44. [PMID: 27286579 DOI: 10.1051/jbio/2016007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 01/03/2023]
Abstract
Several enzymes secreted in the extracellular space, such as matrix metalloproteinases and lysyl oxidase, are internalized and translocated to the nucleus, where they may act as proteases and transcription factors to regulate gene expression and enhance apoptosis. Membrane proteoglycan syndecans, glycosaminoglycans and an anti-angiogenic matricryptin of collagen XVIII have also been identified in the nucleus. The nuclear entry of most extracellular proteins is likely mediated by nuclear localizing sequences. The molecular mechanisms of nuclear import, the physiopathological contexts, which induce it, and the biological roles played in vivo by extracellular proteins and proteoglycans are still underexplored.
Collapse
|
755
|
Reinhard J, Brösicke N, Theocharidis U, Faissner A. The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain. Int J Biochem Cell Biol 2016; 81:174-183. [PMID: 27157088 DOI: 10.1016/j.biocel.2016.05.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/25/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
Numerous studies demonstrated that neural stem cells and cancer stem cells (NSCs/CSCs) share several overlapping characteristics such as self-renewal, multipotency and a comparable molecular repertoire. In addition to the intrinsic cellular properties, NSCs/CSCs favor a similar environment to acquire and maintain their characteristics. In the present review, we highlight the shared properties of NSCs and CSCs in regard to their extracellular microenvironment called the NSC/CSC niche. Moreover, we point out that extracellular matrix (ECM) molecules and their complementary receptors influence the behavior of NSCs/CSCs as well as brain tumor progression. Here, we focus on the expression profile and functional importance of the ECM glycoprotein tenascin-C, the chondroitin sulfate proteoglycan DSD-1-PG/phosphacan but also on other important glycoprotein/proteoglycan constituents. Within this review, we specifically concentrate on glioblastoma multiforme (GBM). GBM is the most common malignant brain tumor in adults and is associated with poor prognosis despite intense and aggressive surgical and therapeutic treatment. Recent studies indicate that GBM onset is driven by a subpopulation of CSCs that display self-renewal and recapitulate tumor heterogeneity. Based on the CSC hypothesis the cancer arises just from a small subpopulation of self-sustaining cancer cells with the exclusive ability to self-renew and maintain the tumor. Besides the fundamental stem cell properties of self-renewal and multipotency, GBM stem cells share further molecular characteristics with NSCs, which we would like to review in this article.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Nicole Brösicke
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Ursula Theocharidis
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
756
|
Abstract
The skeleton is unique from all other tissues in the body because of its ability to mineralize. The incorporation of mineral into bones and teeth is essential to give them strength and structure for body support and function. For years, researchers have wondered how mineralized tissues form and repair. A major focus in this context has been on the role of the extracellular matrix, which harbors key regulators of the mineralization process. In this introductory minireview, we will review some key concepts of matrix biology as it related to mineralized tissues. Concurrently, we will highlight the subject of this special issue covering many aspects of mineralized tissues, including bones and teeth and their associated structures cartilage and tendon. Areas of emphasis are on the generation and analysis of new animal models with permutations of matrix components as well as the development of new approaches for tissue engineering for repair of damaged hard tissue. In assembling key topics on mineralized tissues written by leaders in our field, we hope the reader will get a broad view of the topic and all of its fascinating complexities.
Collapse
Affiliation(s)
- Marian F Young
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States.
| |
Collapse
|
757
|
|
758
|
Gouignard N, Maccarana M, Strate I, von Stedingk K, Malmström A, Pera EM. Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin. Dis Model Mech 2016; 9:607-20. [PMID: 27101845 PMCID: PMC4920151 DOI: 10.1242/dmm.024661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC). Musculocontractural Ehlers-Danlos syndrome (MCEDS) is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS) biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE). Studies in mice have extended our understanding of DS-epi1 in connective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1 is important for the generation of isolated iduronic acid residues in chondroitin sulfate (CS)/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial-mesenchymal transition (EMT) and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and metastasis in neuroblastoma and malignant melanoma suggest an association between DS and NC-derived cancers.
Collapse
Affiliation(s)
- Nadège Gouignard
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Marco Maccarana
- Department of Experimental Medical Science, Lund University, Lund 221 84, Sweden
| | - Ina Strate
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | | | - Anders Malmström
- Department of Experimental Medical Science, Lund University, Lund 221 84, Sweden
| | - Edgar M Pera
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| |
Collapse
|
759
|
Huang Y, Askew EB, Knudson CB, Knudson W. CRISPR/Cas9 knockout of HAS2 in rat chondrosarcoma chondrocytes demonstrates the requirement of hyaluronan for aggrecan retention. Matrix Biol 2016; 56:74-94. [PMID: 27094859 DOI: 10.1016/j.matbio.2016.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022]
Abstract
Hyaluronan (HA) plays an essential role in cartilage where it functions to retain aggrecan. Previous studies have suggested that aggrecan is anchored indirectly to the plasma membrane of chondrocytes via its binding to cell-associated HA. However, reagents used to test these observations such as hyaluronidase and HA oligosaccharides are short term and may have side activities that complicate interpretation. Using the CRISPR/Cas9 gene editing approach, a model system was developed by generating HA-deficient chondrocyte cell lines. HA synthase-2 (Has2)-specific single guide RNA was introduced into two different variant lines of rat chondrosarcoma chondrocytes; knockout clones were isolated and characterized. Two other members of the HA synthase gene family were expressed at very low relative copy number but showed no compensatory response in the Has2 knockouts. Wild type chondrocytes of both variants exhibited large pericellular matrices or coats extending from the plasma membrane. Addition of purified aggrecan monomer expanded the size of these coats as the proteoglycan became retained within the pericellular matrix. Has2 knockout chondrocytes lost all capacity to assemble a particle-excluding pericellular matrix and more importantly, no matrices formed around the knockout cells following the addition of purified aggrecan. When grown as pellet cultures so as to generate a bioengineered neocartilage tissue, the Has2 knockout chondrocytes assumed a tightly-compacted morphology as compared to the wild type cells. When knockout chondrocytes were transduced with Adeno-ZsGreen1-mycHas2, the cell-associated pericellular matrices were restored including the capacity to bind and incorporate additional exogenous aggrecan into the matrix. These results suggest that HA is essential for aggrecan retention and maintaining cell separation during tissue formation.
Collapse
Affiliation(s)
- Yi Huang
- Department of Anatomy and Cell Biology, East Carolina University, The Brody School of Medicine, Greenville, NC 27834, USA
| | - Emily B Askew
- Department of Anatomy and Cell Biology, East Carolina University, The Brody School of Medicine, Greenville, NC 27834, USA
| | - Cheryl B Knudson
- Department of Anatomy and Cell Biology, East Carolina University, The Brody School of Medicine, Greenville, NC 27834, USA
| | - Warren Knudson
- Department of Anatomy and Cell Biology, East Carolina University, The Brody School of Medicine, Greenville, NC 27834, USA.
| |
Collapse
|
760
|
Myren M, Kirby DJ, Noonan ML, Maeda A, Owens RT, Ricard-Blum S, Kram V, Kilts TM, Young MF. Biglycan potentially regulates angiogenesis during fracture repair by altering expression and function of endostatin. Matrix Biol 2016; 52-54:141-150. [PMID: 27072616 DOI: 10.1016/j.matbio.2016.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/31/2022]
Abstract
The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing [1]. By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bgn in modulating angiogenesis during fracture healing. Using micro-computed tomography angiography we found significant differences in the vessel size and volume among other parameters. To further understand the mechanistic basis for this, we explored the relationship between Bgn and the anti-angiogenic protein endostatin. Immunohistochemistry (IHC) showed co-localization of Bgn and endostatin in regions of bone formation, with increased endostatin staining in Bgn-KO compared to WT at 14days post-fracture. To further elucidate the relationship between Bgn and endostatin, an endothelial cell tube formation assay was used. This study showed that endothelial cells treated with endostatin had significantly decreased vessel length and vessel branches compared to untreated cells, while cells treated with endostatin and Bgn at a 1:1M ratio had vessel length and vessel branches comparable to untreated cells. This indicated that Bgn was able to mitigate the inhibitory effect of endostatin on endothelial cell growth. In summary, these results suggest that Bgn is needed for proper blood vessel formation during fracture healing, and one mechanism by which Bgn impacts angiogenesis is through inhibition of endostatin.
Collapse
Affiliation(s)
- Maja Myren
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
| | - David J Kirby
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
| | - Megan L Noonan
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
| | - Azusa Maeda
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
| | - Rick T Owens
- Life Cell Corporation, Branchburg, NJ 08876, United States
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246 CNRS - University Lyon 1, ICBMS, 69622 Villeurbanne, France
| | - Vardit Kram
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
| | - Tina M Kilts
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
| | - Marian F Young
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
761
|
Spatiotemporal distribution of extracellular matrix changes during mouse duodenojejunal flexure formation. Cell Tissue Res 2016; 365:367-79. [PMID: 27053245 DOI: 10.1007/s00441-016-2390-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
Although gut flexures characterize gut morphology, the mechanisms underlying flexure formation remain obscure. Previously, we analyzed the mouse duodenojejunal flexure (DJF) as a model for its formation and reported asymmetric morphologies between the inner and outer bending sides of the fetal mouse DJF, implying their contribution to DJF formation. We now present the extracellular matrix (ECM) as an important factor for gut morphogenesis. We investigate ECM distribution during mouse DJF formation by histological techniques. In the intercellular space of the gut wall, high Alcian-Blue positivity for proteoglycans shifted from the outer to the inner side of the gut wall during DJF formation. Immunopositivity for fibronectin, collagen I, or pan-tenascin was higher at the inner than at the outer side. Collagen IV and laminins localized to the epithelial basement membrane. Beneath the mesothelium at the pre-formation stage, collagen IV and laminin immunopositivity showed inverse results, corresponding to the different cellular characteristics at this site. At the post-formation stage, however, laminin positivity beneath the mesothelium was the reverse of that observed during the pre-formation stage. High immunopositivity for collagen IV and laminins at the inner gut wall mesenchyme of the post-formation DJF implied a different blood vessel distribution. We conclude that ECM distribution changes spatiotemporally during mouse DJF formation, indicating ECM association with the establishment of asymmetric morphologies during this process.
Collapse
|
762
|
Chemotherapy induces expression and release of heparanase leading to changes associated with an aggressive tumor phenotype. Matrix Biol 2016; 55:22-34. [PMID: 27016342 DOI: 10.1016/j.matbio.2016.03.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/19/2016] [Accepted: 03/19/2016] [Indexed: 12/20/2022]
Abstract
High heparanase expression is associated with enhanced tumor growth, angiogenesis, and metastasis in many types of cancer. However, the mechanisms driving high heparanase expression are not fully understood. In the present study, we discovered that drugs used in the treatment of myeloma upregulate heparanase expression. Frontline anti-myeloma drugs, bortezomib and carfilzomib activate the nuclear factor-kappa B (NF-κB) pathway to trigger heparanase expression in tumor cells. Blocking the NF-κB pathway diminished this chemotherapy-induced upregulation of heparanase expression. Activated NF-κB signaling was also found to drive high heparanase expression in drug resistant myeloma cell lines. In addition to enhancing heparanase expression, chemotherapy also caused release of heparanase by tumor cells into the conditioned medium. This soluble heparanase was taken up by macrophages and triggered an increase in TNF-α production. Heparanase is also taken up by tumor cells where it induced expression of HGF, VEGF and MMP-9 and activated ERK and Akt signaling pathways. These changes induced by heparanase are known to be associated with the promotion of an aggressive tumor phenotype. Importantly, the heparanase inhibitor Roneparstat diminished the uptake and the downstream effects of soluble heparanase. Together, these discoveries reveal a novel mechanism whereby chemotherapy upregulates heparanase, a known promoter of myeloma growth, and suggest that therapeutic targeting of heparanase during anti-cancer therapy may improve patient outcome.
Collapse
|
763
|
Adhesion molecules and the extracellular matrix as drug targets for glioma. Brain Tumor Pathol 2016; 33:97-106. [PMID: 26992378 DOI: 10.1007/s10014-016-0261-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/07/2016] [Indexed: 12/14/2022]
Abstract
The formation of tumor vasculature and cell invasion along white matter tracts have pivotal roles in the development and progression of glioma. A better understanding of the mechanisms of angiogenesis and invasion in glioma will aid the development of novel therapeutic strategies. The processes of angiogenesis and invasion cause the production of an array of adhesion molecules and extracellular matrix (ECM) components. This review focuses on the role of adhesion molecules and the ECM in malignant glioma. The results of clinical trials using drugs targeted against adhesion molecules and the ECM for glioma are also discussed.
Collapse
|
764
|
Stasiak M, Boncela J, Perreau C, Karamanou K, Chatron-Colliet A, Proult I, Przygodzka P, Chakravarti S, Maquart FX, Kowalska MA, Wegrowski Y, Brézillon S. Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity. PLoS One 2016; 11:e0150226. [PMID: 26930497 PMCID: PMC4773148 DOI: 10.1371/journal.pone.0150226] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/10/2016] [Indexed: 01/22/2023] Open
Abstract
Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment.
Collapse
Affiliation(s)
- Marta Stasiak
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et de Biologie Moléculaire, Reims, France
- Department of Cytobiology and Proteomics, Medical University of Lodz, Lodz, Poland
| | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Corinne Perreau
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et de Biologie Moléculaire, Reims, France
| | - Konstantina Karamanou
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et de Biologie Moléculaire, Reims, France
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Aurore Chatron-Colliet
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et de Biologie Moléculaire, Reims, France
| | - Isabelle Proult
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et de Biologie Moléculaire, Reims, France
| | | | - Shukti Chakravarti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - François-Xavier Maquart
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et de Biologie Moléculaire, Reims, France
- CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - M. Anna Kowalska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Yanusz Wegrowski
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et de Biologie Moléculaire, Reims, France
| | - Stéphane Brézillon
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et de Biologie Moléculaire, Reims, France
- * E-mail:
| |
Collapse
|
765
|
How Muscle Structure and Composition Influence Meat and Flesh Quality. ScientificWorldJournal 2016; 2016:3182746. [PMID: 27022618 PMCID: PMC4789028 DOI: 10.1155/2016/3182746] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 11/30/2022] Open
Abstract
Skeletal muscle consists of several tissues, such as muscle fibers and connective and adipose tissues. This review aims to describe the features of these various muscle components and their relationships with the technological, nutritional, and sensory properties of meat/flesh from different livestock and fish species. Thus, the contractile and metabolic types, size and number of muscle fibers, the content, composition and distribution of the connective tissue, and the content and lipid composition of intramuscular fat play a role in the determination of meat/flesh appearance, color, tenderness, juiciness, flavor, and technological value. Interestingly, the biochemical and structural characteristics of muscle fibers, intramuscular connective tissue, and intramuscular fat appear to play independent role, which suggests that the properties of these various muscle components can be independently modulated by genetics or environmental factors to achieve production efficiency and improve meat/flesh quality.
Collapse
|
766
|
Ricard-Blum S, Vallet SD. Matricryptins Network with Matricellular Receptors at the Surface of Endothelial and Tumor Cells. Front Pharmacol 2016; 7:11. [PMID: 26869928 PMCID: PMC4740388 DOI: 10.3389/fphar.2016.00011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a source of bioactive fragments called matricryptins or matrikines resulting from the proteolytic cleavage of extracellular proteins (e.g., collagens, elastin, and laminins) and proteoglycans (e.g., perlecan). Matrix metalloproteinases (MMPs), cathepsins, and bone-morphogenetic protein-1 release fragments, which regulate physiopathological processes including tumor growth, metastasis, and angiogenesis, a pre-requisite for tumor growth. A number of matricryptins, and/or synthetic peptides derived from them, are currently investigated as potential anti-cancer drugs both in vitro and in animal models. Modifications aiming at improving their efficiency and their delivery to their target cells are studied. However, their use as drugs is not straightforward. The biological activities of these fragments are mediated by several receptor families. Several matricryptins may bind to the same matricellular receptor, and a single matricryptin may bind to two different receptors belonging or not to the same family such as integrins and growth factor receptors. Furthermore, some matricryptins interact with each other, integrins and growth factor receptors crosstalk and a signaling pathway may be regulated by several matricryptins. This forms an intricate 3D interaction network at the surface of tumor and endothelial cells, which is tightly associated with other cell-surface associated molecules such as heparan sulfate, caveolin, and nucleolin. Deciphering the molecular mechanisms underlying the behavior of this network is required in order to optimize the development of matricryptins as anti-cancer agents.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, UMR 5246 Centre National de la Recherche Scientifique - University Lyon 1 - Institut National des Sciences Appliquées de Lyon - École Supérieure de Chimie Physique Électronique de Lyon Villeurbanne, France
| | - Sylvain D Vallet
- University Claude Bernard Lyon 1, UMR 5246 Centre National de la Recherche Scientifique - University Lyon 1 - Institut National des Sciences Appliquées de Lyon - École Supérieure de Chimie Physique Électronique de Lyon Villeurbanne, France
| |
Collapse
|
767
|
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97:4-27. [PMID: 26562801 DOI: 10.1016/j.addr.2015.11.001] [Citation(s) in RCA: 1371] [Impact Index Per Article: 171.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Chrysostomi Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece; Division of Medical Protein Chemistry, Department of Translational Medicine Malmö, Lund University, S-20502 Malmö, Sweden
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
768
|
Special issue: Extracellular matrix: Therapeutic tools and targets in cancer treatment. Adv Drug Deliv Rev 2016; 97:1-3. [PMID: 26872878 DOI: 10.1016/j.addr.2016.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extracellular matrix (ECM) constituents play not only structural roles during development and tissue homeostasis, but also many biological functions throughout life. Molecular diversity and a vast interactome provide the basis for this multi-functionality. Moreover, native or processed ECM molecules interact with various receptors, thereby activating signaling pathways that control cell differentiation, proliferation, adhesion and migration, all relevant to tumor biology. Thus, there is an emerging field focused on exploiting ECM components as novel therapeutic targets in the treatment of cancer and other diseases, providing potent tools to advance drug delivery and tissue penetration. In this special issue we provide a critical appraisal of this emerging field focusing on: 1) ECM proteins (matricellular proteins, collagen, elastin, fibronectin, proteoglycans), integrins, and protease-facilitated drug delivery; 2) ECM-derived therapeutics (hyaluronan, heparin, heparan sulfate), 3) ECM-like biomaterials, and 4) ECM as critical determinant in drug efficacy, with special emphasis on applications in tumor treatment.
Collapse
|
769
|
Lian H, Zheng H. Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer's disease. J Neurochem 2016; 136:475-91. [PMID: 26546579 PMCID: PMC4720533 DOI: 10.1111/jnc.13424] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Astrocytes are the most abundant cells in the central nervous system. They play critical roles in neuronal homeostasis through their physical properties and neuron-glia signaling pathways. Astrocytes become reactive in response to neuronal injury and this process, referred to as reactive astrogliosis, is a common feature accompanying neurodegenerative conditions, particularly Alzheimer's disease. Reactive astrogliosis represents a continuum of pathobiological processes and is associated with morphological, functional, and gene expression changes of varying degrees. There has been a substantial growth of knowledge regarding the signaling pathways regulating glial biology and pathophysiology in recent years. Here, we attempt to provide an unbiased review of some of the well-known players, namely calcium, proteoglycan, transforming growth factor β, NFκB, and complement, in mediating neuron-glia interaction under physiological conditions as well as in Alzheimer's disease. This review discusses the role of astrocytic NFκB and calcium as well as astroglial secreted factors, including proteoglycans, TGFβ, and complement in mediating neuronal function and AD pathogenesis through direct interaction with neurons and through cooperation with microglia.
Collapse
Affiliation(s)
- Hong Lian
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Neuroscience, Xiamen University College of Medicine, Xiamen, Fujian 361102, China
| |
Collapse
|
770
|
Neill T, Schaefer L, Iozzo RV. Decorin as a multivalent therapeutic agent against cancer. Adv Drug Deliv Rev 2016; 97:174-85. [PMID: 26522384 DOI: 10.1016/j.addr.2015.10.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
Decorin is a prototypical small leucine-rich proteoglycan that epitomizes the multifunctional nature of this critical gene family. Soluble decorin engages multiple receptor tyrosine kinases within the target-rich environment of the tumor stroma and tumor parenchyma. Upon receptor binding, decorin initiates signaling pathways within endothelial cells downstream of VEGFR2 that ultimately culminate in a Peg3/Beclin 1/LC3-dependent autophagic program. Concomitant with autophagic induction, decorin blunts capillary morphogenesis and endothelial cell migration, thereby significantly compromising tumor angiogenesis. In parallel within the tumor proper, decorin binds multiple RTKs with high affinity, including Met, for a multitude of oncosuppressive functions including growth inhibition, tumor cell mitophagy, and angiostasis. Decorin is also pro-inflammatory by modulating macrophage function and cytokine secretion. Decorin suppresses tumorigenic growth, angiogenesis, and prevents metastatic lesions in a variety of in vitro and in vivo tumor models. Therefore, decorin would be an ideal therapeutic candidate for combating solid malignancies.
Collapse
|
771
|
Poluzzi C, Iozzo RV, Schaefer L. Endostatin and endorepellin: A common route of action for similar angiostatic cancer avengers. Adv Drug Deliv Rev 2016; 97:156-73. [PMID: 26518982 DOI: 10.1016/j.addr.2015.10.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/17/2022]
Abstract
Traditional cancer therapy typically targets the tumor proper. However, newly-formed vasculature exerts a major role in cancer development and progression. Autophagy, as a biological mechanism for clearing damaged proteins and oxidative stress products released in the tumor milieu, could help in tumor resolution by rescuing cells undergoing modifications or inducing autophagic-cell death of tumor blood vessels. Cleaved fragments of extracellular matrix proteoglycans are emerging as key players in the modulation of angiogenesis and endothelial cell autophagy. An essential characteristic of cancer progression is the remodeling of the basement membrane and the release of processed forms of its constituents. Endostatin, generated from collagen XVIII, and endorepellin, the C-terminal segment of the large proteoglycan perlecan, possess a dual activity as modifiers of both angiogenesis and endothelial cell autophagy. Manipulation of these endogenously-processed forms, located in the basement membrane within tumors, could represent new therapeutic approaches for cancer eradication.
Collapse
Affiliation(s)
- Chiara Poluzzi
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
772
|
Rosenbloom J, Ren S, Macarak E. New frontiers in fibrotic disease therapies: The focus of the Joan and Joel Rosenbloom Center for Fibrotic Diseases at Thomas Jefferson University. Matrix Biol 2016; 51:14-25. [PMID: 26807756 DOI: 10.1016/j.matbio.2016.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fibrotic diseases constitute a world-wide major health problem, but research support remains inadequate in comparison to the need. Although considerable understanding of the pathogenesis of fibrotic reactions has been attained, no completely effective therapies exist. Although fibrotic disorders are diverse, it is universally appreciated that a particular cell type with unique characteristics, the myofibroblast, is responsible for replacement of functioning tissue with non-functional scar tissue. Understanding the cellular and molecular mechanisms responsible for the creation of myofibroblasts and their activities is central to the development of therapies. Critical signaling cascades, initiated primarily by TGF-β, but also involving other cytokines which stimulate pro-fibrotic reactions in the myofibroblast, offer potential therapeutic targets. However, because of the multiplicity and complex interactions of these signaling pathways, it is very unlikely that any single drug will be successful in modifying a major fibrotic disease. Therefore, we have chosen to examine the effectiveness of administration of several drug combinations in a mouse pneumoconiosis model. Such treatment proved to be effective. Because fibrotic diseases that tend to be chronic, are difficult to monitor, and are patient variable, implementation of clinical trials is difficult and expensive. Therefore, we have made efforts to identify and validate non-invasive biomarkers found in urine and blood. We describe the potential utility of five such markers: (i) the EDA form of fibronectin (Fn(EDA)), (ii) lysyl oxidase (LOX), (iii) lysyl oxidase-like protein 2 (LoxL2), (iv) connective tissue growth factor (CTGF, CCNII), and (v) the N-terminal propeptide of type III procollagen (PIIINP).
Collapse
Affiliation(s)
- Joel Rosenbloom
- Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Shumei Ren
- Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Edward Macarak
- Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
773
|
Binch ALA, Shapiro IM, Risbud MV. Syndecan-4 in intervertebral disc and cartilage: Saint or synner? Matrix Biol 2016; 52-54:355-362. [PMID: 26796346 DOI: 10.1016/j.matbio.2016.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/01/2023]
Abstract
The ECM of the intervertebral disc and articular cartilage contains a highly organised network of collagens and proteoglycans which resist compressive forces applied to these tissues. A pathological hallmark of the intervertebral disc is the imbalance between production of anabolic and catabolic factors by the resident cells. This process is thought to be mediated by pro-inflammatory cytokines, predominantly TNF-α and IL-1β, which upregulate expression of matrix degrading enzymes such as MMPs and ADAMTSs. This imbalance ultimately results in tissue degeneration causing failure of the biomechanical function of the tissues. A similar cascade of events is thought to occur in articular cartilage during development of osteoarthritis. Within these skeletal tissues a small, cell surface heparan sulphate proteoglycan; syndecan-4 (SDC4) has been implicated in maintaining physiological functions. However in the degenerating niche of the intervertebral disc and cartilage, dysregulated activities of this molecule may exacerbate pathological changes. Studies in recent years have elucidated a role for SDC4 in mediating matrix degradation in both intervertebral discs and cartilage by controlling ADAMTS-5 function and MMP3 expression. Discourse presented in this review highlights the potential of SDC4 as a possible therapeutic target in slowing the progression of ECM degradation in both degenerative disc disease and osteoarthritis.
Collapse
Affiliation(s)
- Abbie L A Binch
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, USA.
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, USA.
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
774
|
Raspanti M, Caravà E, Sgambato A, Natalello A, Russo L, Cipolla L. The collaggrecan: Synthesis and visualization of an artificial proteoglycan. Int J Biol Macromol 2016; 86:65-70. [PMID: 26797224 DOI: 10.1016/j.ijbiomac.2016.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/01/2015] [Accepted: 01/14/2016] [Indexed: 11/17/2022]
Abstract
An artificial aggrecan-like proteoglycan has been designed and synthesized in vitro. At variance with natural proteoglycans, whose glycosaminoglycan chains are always O-linked via a tetrasaccharide bridge to the serine residues of a specific protein core, the present structure consists of chondroitin-6-sulfate chains directly bound to the lysine and hydroxylysine residues of a collagen molecule backbone. The resulting macromolecule has been characterized by histochemistry, atomic force microscopy and FTIR. The number of variables involved (e.g., length and type of the collagen backbone, glycosaminoglycan species, sulfation type and pattern, molecular weight, number and length of side chains, etc.) makes possible to conceive an almost endless variety of artificial proteoglycans, each precisely tailored to a specific functional role. In addition to their use as biomaterials, glycated collagens interact with cells in complex ways and a previous study has already shown the ability of a glycated collagen to redirect fibroblastoma cells from proliferation to differentiation. The research is still underway.
Collapse
Affiliation(s)
- Mario Raspanti
- Department of Surgical & Morphological Sciences, Insubria University, Via Monte Generoso 71, 21100 Varese, Italy.
| | - Elena Caravà
- Department of Surgical & Morphological Sciences, Insubria University, Via Monte Generoso 71, 21100 Varese, Italy
| | - Antonella Sgambato
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
775
|
One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior. Matrix Biol 2016; 52-54:426-441. [PMID: 26780725 DOI: 10.1016/j.matbio.2016.01.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/21/2022]
Abstract
For more than 100years, cells and tissues have been studied in vitro using glass and plastic surfaces. Over the last 10-20years, a great body of research has shown that cells are acutely sensitive to their local environment (extracellular matrix, ECM) which contains both chemical and physical cues that influence cell behavior. These observations suggest that modern cell culture systems, using tissue culture polystyrene (TCP) surfaces, may fail to reproduce authentic cell behavior in vitro, resulting in "artificial outcomes." In the current study, we use bone marrow (BM)- and adipose (AD)-derived stromal cells to prepare BM-ECM and AD-ECM, which are decellularized after synthesis by the cells, to mimic the cellular niche for each of these tissues. Each ECM was characterized for its ability to affect BM- and AD-mesenchymal stem cell (MSC) proliferation, as well as proliferation of three cancer cell lines (HeLa, MCF-7, and MDA-MB-231), modulate cell spreading, and direct differentiation relative to standard TCP surfaces. We found that both ECMs promoted the proliferation of MSCs, but that this effect was enhanced when the tissue-origin of the cells matched that of the ECM (i.e. BM-ECM promoted the proliferation of BM-MSCs over AD-MSCs, and vice versa). Moreover, BM- and AD-ECM were shown to preferentially direct MSC differentiation towards either osteogenic or adipogenic lineage, respectively, suggesting that the effects of the ECM were tissue-specific. Further, each ECM influenced cell morphology (i.e. circularity), irrespective of the origin of the MSCs, lending more support to the idea that effects were tissue specific. Interestingly, unlike MSCs, these ECMs did not promote the proliferation of the cancer cells. In an effort to further understand how these three culture substrates influence cell behavior, we evaluated the chemical (protein composition) and physical properties (architecture and mechanical) of the two ECMs. While many structural proteins (e.g. collagen and fibronectin) were found at equivalent levels in both BM- and AD-ECM, the architecture (i.e. fiber orientation; surface roughness) and physical properties (storage modulus, surface energy) of each were unique. These results, demonstrating differences in cell behavior when cultured on the three different substrates (BM- and AD-ECM and TCP) with differences in chemical and physical properties, provide evidence that the two ECMs may recapitulate specific elements of the native stem cell niche for bone marrow and adipose tissues. More broadly, it could be argued that ECMs, elaborated by cells ex vivo, serve as an ideal starting point for developing tissue-specific culture environments. In contrast to TCP, which relies on the "one size fits all" paradigm, native tissue-specific ECM may be a more rational model to approach engineering 3D tissue-specific culture systems to replicate the in vivo niche. We suggest that this approach will provide more meaningful information for basic research studies of cell behavior as well as cell-based therapeutics.
Collapse
|
776
|
Piacentino ML, Zuch DT, Fishman J, Rose S, Speranza EE, Li C, Yu J, Chung O, Ramachandran J, Ferrell P, Patel V, Reyna A, Hameeduddin H, Chaves J, Hewitt FB, Bardot E, Lee D, Core AB, Hogan JD, Keenan JL, Luo L, Coulombe-Huntington J, Blute TA, Oleinik E, Ibn-Salem J, Poustka AJ, Bradham CA. RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins. Development 2016; 143:703-14. [PMID: 26755701 DOI: 10.1242/dev.129312] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
Abstract
The sea urchin larval skeleton offers a simple model for formation of developmental patterns. The calcium carbonate skeleton is secreted by primary mesenchyme cells (PMCs) in response to largely unknown patterning cues expressed by the ectoderm. To discover novel ectodermal cues, we performed an unbiased RNA-Seq-based screen and functionally tested candidates; we thereby identified several novel skeletal patterning cues. Among these, we show that SLC26a2/7 is a ventrally expressed sulfate transporter that promotes a ventral accumulation of sulfated proteoglycans, which is required for ventral PMC positioning and skeletal patterning. We show that the effects of SLC perturbation are mimicked by manipulation of either external sulfate levels or proteoglycan sulfation. These results identify novel skeletal patterning genes and demonstrate that ventral proteoglycan sulfation serves as a positional cue for sea urchin skeletal patterning.
Collapse
Affiliation(s)
- Michael L Piacentino
- Department of Biology, Boston University, Boston, MA 02215, USA Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Daniel T Zuch
- Department of Biology, Boston University, Boston, MA 02215, USA Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Julie Fishman
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sviatlana Rose
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Emily E Speranza
- Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | - Christy Li
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jia Yu
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Oliver Chung
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Patrick Ferrell
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Vijeta Patel
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Arlene Reyna
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - James Chaves
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Evan Bardot
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - David Lee
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Amanda B Core
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - John D Hogan
- Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | - Jessica L Keenan
- Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | - Lingqi Luo
- Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | | | - Todd A Blute
- Department of Biology, Boston University, Boston, MA 02215, USA Proteomics and Imaging Core Facility, Boston University, Boston, MA 02215, USA
| | - Ekaterina Oleinik
- Scientific Computing and Visualization Group, Boston University, Boston, MA 02215 USA
| | - Jonas Ibn-Salem
- Max-Planck Institute for Molecular Genetics, Evolution and Development Group, Ihnestrasse 73, Berlin 14195, Germany
| | - Albert J Poustka
- Max-Planck Institute for Molecular Genetics, Evolution and Development Group, Ihnestrasse 73, Berlin 14195, Germany Dahlem Center for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Fabeckstraße 60-62, Berlin 14195, Germany
| | - Cynthia A Bradham
- Department of Biology, Boston University, Boston, MA 02215, USA Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| |
Collapse
|
777
|
Baghy K, Tátrai P, Regős E, Kovalszky I. Proteoglycans in liver cancer. World J Gastroenterol 2016; 22:379-393. [PMID: 26755884 PMCID: PMC4698501 DOI: 10.3748/wjg.v22.i1.379] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/14/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
Proteoglycans are a group of molecules that contain at least one glycosaminoglycan chain, such as a heparan, dermatan, chondroitin, or keratan sulfate, covalently attached to the protein core. These molecules are categorized based on their structure, localization, and function, and can be found in the extracellular matrix, on the cell surface, and in the cytoplasm. Cell-surface heparan sulfate proteoglycans, such as syndecans, are the primary type present in healthy liver tissue. However, deterioration of the liver results in overproduction of other proteoglycan types. The purpose of this article is to provide a current summary of the most relevant data implicating proteoglycans in the development and progression of human and experimental liver cancer. A review of our work and other studies in the literature indicate that deterioration of liver function is accompanied by an increase in the amount of chondroitin sulfate proteoglycans. The alteration of proteoglycan composition interferes with the physiologic function of the liver on several levels. This article details and discusses the roles of syndecan-1, glypicans, agrin, perlecan, collagen XVIII/endostatin, endocan, serglycin, decorin, biglycan, asporin, fibromodulin, lumican, and versican in liver function. Specifically, glypicans, agrin, and versican play significant roles in the development of liver cancer. Conversely, the presence of decorin could potentially provide protective effects.
Collapse
|
778
|
Neuron-Glia Interactions in Neural Plasticity: Contributions of Neural Extracellular Matrix and Perineuronal Nets. Neural Plast 2016; 2016:5214961. [PMID: 26881114 PMCID: PMC4736403 DOI: 10.1155/2016/5214961] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/10/2015] [Indexed: 11/17/2022] Open
Abstract
Synapses are specialized structures that mediate rapid and efficient signal transmission between neurons and are surrounded by glial cells. Astrocytes develop an intimate association with synapses in the central nervous system (CNS) and contribute to the regulation of ion and neurotransmitter concentrations. Together with neurons, they shape intercellular space to provide a stable milieu for neuronal activity. Extracellular matrix (ECM) components are synthesized by both neurons and astrocytes and play an important role in the formation, maintenance, and function of synapses in the CNS. The components of the ECM have been detected near glial processes, which abut onto the CNS synaptic unit, where they are part of the specialized macromolecular assemblies, termed perineuronal nets (PNNs). PNNs have originally been discovered by Golgi and represent a molecular scaffold deposited in the interface between the astrocyte and subsets of neurons in the vicinity of the synapse. Recent reports strongly suggest that PNNs are tightly involved in the regulation of synaptic plasticity. Moreover, several studies have implicated PNNs and the neural ECM in neuropsychiatric diseases. Here, we highlight current concepts relating to neural ECM and PNNs and describe an in vitro approach that allows for the investigation of ECM functions for synaptogenesis.
Collapse
|
779
|
Zsila F. The anticancer agent ellipticine binds to glycosaminoglycans at mildly acidic pH characteristic of the extracellular matrix of tumor tissues. RSC Adv 2016. [DOI: 10.1039/c5ra23437a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This communication demonstrates the pH dependent glycosaminoglycan binding of the anticancer plant alkaloid ellipticine.
Collapse
Affiliation(s)
- Ferenc Zsila
- Biomolecular Self-Assembly Group
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest
| |
Collapse
|
780
|
Sun Q, Zhao J, Zhang Y, Yang H, Zhou P. A natural hyperbranched proteoglycan inhibits IAPP amyloid fibrillation and attenuates β-cell apoptosis. RSC Adv 2016. [DOI: 10.1039/c6ra23429a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A natural amphiphilic hyperbranched proteoglycan efficiently inhibits IAPP fibrillation and attenuates β-cell apoptosis for type 2 diabetes treatment.
Collapse
Affiliation(s)
- Qing Sun
- Department of Macromolecular Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| | - Juan Zhao
- Department of Macromolecular Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| | - Yuan Zhang
- Department of Medicine
- St Vincent's Hospital
- The University of Melbourne
- Fitzroy
- Australia
| | - Hongjie Yang
- Yueyang Hospital of Integrated Chinese and Western Medicine
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Ping Zhou
- Department of Macromolecular Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| |
Collapse
|
781
|
Monneau Y, Arenzana-Seisdedos F, Lortat-Jacob H. The sweet spot: how GAGs help chemokines guide migrating cells. J Leukoc Biol 2015; 99:935-53. [DOI: 10.1189/jlb.3mr0915-440r] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/24/2015] [Indexed: 12/19/2022] Open
|
782
|
Bimodal role of NADPH oxidases in the regulation of biglycan-triggered IL-1β synthesis. Matrix Biol 2015; 49:61-81. [PMID: 26689330 DOI: 10.1016/j.matbio.2015.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/19/2015] [Accepted: 12/10/2015] [Indexed: 12/17/2022]
Abstract
Biglycan, a ubiquitous proteoglycan, acts as a danger signal when released from the extracellular matrix. As such, biglycan triggers the synthesis and maturation of interleukin-1β (IL-1β) in a Toll-like receptor (TLR) 2-, TLR4-, and reactive oxygen species (ROS)-dependent manner. Here, we discovered that biglycan autonomously regulates the balance in IL-1β production in vitro and in vivo by modulating expression, activity and stability of NADPH oxidase (NOX) 1, 2 and 4 enzymes via different TLR pathways. In primary murine macrophages, biglycan triggered NOX1/4-mediated ROS generation, thereby enhancing IL-1β expression. Surprisingly, biglycan inhibited IL-1β due to enhancement of NOX2 synthesis and activation, by selectively interacting with TLR4. Synthesis of NOX2 was mediated by adaptor molecule Toll/IL-1R domain-containing adaptor inducing IFN-β (TRIF). Via myeloid differentiation primary response protein (MyD88) as well as Rac1 activation and Erk phosphorylation, biglycan triggered translocation of the cytosolic NOX2 subunit p47(phox) to the plasma membrane, an obligatory step for NOX2 activation. In contrast, by engaging TLR2, soluble biglycan stimulated the expression of heat shock protein (HSP) 70, which bound to NOX2, and consequently impaired the inhibitory function of NOX2 on IL-1β expression. Notably, a genetic background lacking biglycan reduced HSP70 expression, rescued the enhanced renal IL-1β production and improved kidney function of Nox2(-/y) mice in a model of renal ischemia reperfusion injury. Here, we provide a novel mechanism where the danger molecule biglycan influences NOX2 synthesis and activation via different TLR pathways, thereby regulating inflammation severity. Thus, selective inhibition of biglycan-TLR2 or biglycan-TLR4 signaling could be a novel therapeutic approach in ROS-mediated inflammatory diseases.
Collapse
|
783
|
Schminke B, Frese J, Bode C, Goldring MB, Miosge N. Laminins and Nidogens in the Pericellular Matrix of Chondrocytes: Their Role in Osteoarthritis and Chondrogenic Differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:410-8. [PMID: 26683663 DOI: 10.1016/j.ajpath.2015.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
Abstract
The aim of this study was to investigate the role of laminins and nidogen-2 in osteoarthritis (OA) and their potential to support chondrogenic differentiation. We applied immunohistochemistry, electron microscopy, siRNA, quantitative RT-PCR, Western blot, and proteome analysis for the investigation of cartilage tissue and isolated chondrocytes in three-dimensional culture obtained from patients with late-stage knee OA and nidogen-2 knockout mice. We demonstrate that subunits of laminins appear in OA cartilage and that nidogen-2-null mice exhibit typical osteoarthritic features. Chondrogenic progenitor cells (CPCs) produced high levels of laminin-α1, laminin-α5, and nidogen-2 in their pericellular matrix, and laminin-α1 enhanced collagen type II and reduced collagen type I expression by cultured CPCs. Nidogen-2 increased SOX9 gene expression. Knockdown of nidogen-2 reduced SOX9 expression, whereas it up-regulated RUNX2 expression. This study reveals that the influence of the pericellular matrix on CPCs is important for the expression of the major regulator transcription factors, SOX9 and RUNX2. Our novel findings that laminins and nidogen-2 drive CPCs toward chondrogenesis may help in the elucidation of new treatment strategies for cartilage tissue regeneration.
Collapse
Affiliation(s)
- Boris Schminke
- Department of Prosthodontics, Tissue Regeneration Work Group, Georg August University, Göttingen, Germany
| | - Jenny Frese
- Clinic of Nephrology and Rheumatology, Georg August University, Göttingen, Germany
| | - Christa Bode
- Department of Prosthodontics, Tissue Regeneration Work Group, Georg August University, Göttingen, Germany
| | - Mary B Goldring
- Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
| | - Nicolai Miosge
- Department of Prosthodontics, Tissue Regeneration Work Group, Georg August University, Göttingen, Germany.
| |
Collapse
|
784
|
Mechanistic and therapeutic overview of glycosaminoglycans: the unsung heroes of biomolecular signaling. Glycoconj J 2015; 33:1-17. [DOI: 10.1007/s10719-015-9642-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
|
785
|
Wiese S, Faissner A. The role of extracellular matrix in spinal cord development. Exp Neurol 2015; 274:90-9. [DOI: 10.1016/j.expneurol.2015.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/13/2015] [Accepted: 05/25/2015] [Indexed: 01/06/2023]
|
786
|
Shawky MS, Ricciardelli C, Lord M, Whitelock J, Ferro V, Britt K, Thompson EW. Proteoglycans: Potential Agents in Mammographic Density and the Associated Breast Cancer Risk. J Mammary Gland Biol Neoplasia 2015; 20:121-31. [PMID: 26501889 DOI: 10.1007/s10911-015-9346-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022] Open
Abstract
Although increased mammographic density (MD) has been well established as a marker for increased breast cancer (BC) risk, its pathobiology is far from understood. Altered proteoglycan (PG) composition may underpin the physical properties of MD, and may contribute to the associated increase in BC risk. Numerous studies have investigated PGs, which are a major stromal matrix component, in relation to MD and BC and reported results that are sometimes discordant. Our review summarises these results and highlights discrepancies between PG associations with BC and MD, thus serving as a guide for identifying PGs that warrant further research towards developing chemo-preventive or therapeutic agents targeting preinvasive or invasive breast lesions, respectively.
Collapse
|
787
|
Yang Y, Xu W, Neill T, Hu Z, Wang CH, Xiao X, Stock SR, Guise T, Yun CO, Brendler CB, Iozzo RV, Seth P. Systemic Delivery of an Oncolytic Adenovirus Expressing Decorin for the Treatment of Breast Cancer Bone Metastases. Hum Gene Ther 2015; 26:813-25. [PMID: 26467629 DOI: 10.1089/hum.2015.098] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The development of novel therapies for breast cancer bone metastasis is a major unmet medical need. Toward that end, we have constructed an oncolytic adenovirus, Ad.dcn, and a nonreplicating adenovirus, Ad(E1-).dcn, both containing the human decorin gene. Our in vitro studies showed that Ad.dcn produced high levels of viral replication and the decorin protein in the breast tumor cells. Ad(E1-).dcn-mediated decorin expression in MDA-MB-231 cells downregulated the expression of Met, β-catenin, and vascular endothelial growth factor A, all of which are recognized decorin targets and play pivotal roles in the progression of breast tumor growth and metastasis. Adenoviral-mediated decorin expression inhibited cell migration and induced mitochondrial autophagy in MDA-MB-231 cells. Mice bearing MDA-MB-231-luc skeletal metastases were systemically administered with the viral vectors, and skeletal tumor growth was monitored over time. The results of bioluminescence imaging and X-ray radiography indicated that Ad.dcn and Ad(E1-).dcn significantly inhibited the progression of bone metastases. At the terminal time point, histomorphometric analysis, micro-computed tomography, and bone destruction biomarkers showed that Ad.dcn and Ad(E1-).dcn reduced tumor burden and inhibited bone destruction. A nonreplicating adenovirus Ad(E1-).luc expressing the luciferase 2 gene had no significant effect on inhibiting bone metastases, and in several assays, Ad.dcn and Ad(E1-).dcn were better than Ad.luc, a replicating virus expressing the luciferase 2 gene. Our data suggest that adenoviral replication coupled with decorin expression could produce effective antitumor responses in a MDA-MB-231 bone metastasis model of breast cancer. Thus, Ad.dcn could potentially be developed as a candidate gene therapy vector for treating breast cancer bone metastases.
Collapse
Affiliation(s)
- Yuefeng Yang
- 1 Gene Therapy Program, Department of Medicine, NorthShore Research Institute, An Affiliate of the University of Chicago , Evanston, Illinois
| | - Weidong Xu
- 1 Gene Therapy Program, Department of Medicine, NorthShore Research Institute, An Affiliate of the University of Chicago , Evanston, Illinois
| | - Thomas Neill
- 2 Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Zebin Hu
- 3 1st Division of In Vitro Diagnostic Reagents, National Institutes for Food and Drug Control , Beijing, China
| | - Chi-Hsiung Wang
- 4 Department of Surgery, NorthShore Research Institute , Evanston, Illinois
| | - Xianghui Xiao
- 5 Advanced Photon Source, Argonne National Lab. , Argonne, Illinois
| | - Stuart R Stock
- 6 Department of Cell and Molecular Biology, Northwestern University , Chicago, Illinois
| | - Theresa Guise
- 7 Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Chae-Ok Yun
- 8 Department of Bioengineering, Hanyang University , Seoul, Korea
| | - Charles B Brendler
- 4 Department of Surgery, NorthShore Research Institute , Evanston, Illinois
| | - Renato V Iozzo
- 2 Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Prem Seth
- 1 Gene Therapy Program, Department of Medicine, NorthShore Research Institute, An Affiliate of the University of Chicago , Evanston, Illinois
| |
Collapse
|
788
|
Wijeratne SS, Martinez JR, Grindel BJ, Frey EW, Li J, Wang L, Farach-Carson MC, Kiang CH. Single molecule force measurements of perlecan/HSPG2: A key component of the osteocyte pericellular matrix. Matrix Biol 2015; 50:27-38. [PMID: 26546708 DOI: 10.1016/j.matbio.2015.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 12/30/2022]
Abstract
Perlecan/HSPG2, a large, monomeric heparan sulfate proteoglycan (HSPG), is a key component of the lacunar canalicular system (LCS) of cortical bone, where it is part of the mechanosensing pericellular matrix (PCM) surrounding the osteocytic processes and serves as a tethering element that connects the osteocyte cell body to the bone matrix. Within the pericellular space surrounding the osteocyte cell body, perlecan can experience physiological fluid flow drag force and in that capacity function as a sensor to relay external stimuli to the osteocyte cell membrane. We previously showed that a reduction in perlecan secretion alters the PCM fiber composition and interferes with bone's response to a mechanical loading in vivo. To test our hypothesis that perlecan core protein can sustain tensile forces without unfolding under physiological loading conditions, atomic force microscopy (AFM) was used to capture images of perlecan monomers at nanoscale resolution and to perform single molecule force measurement (SMFMs). We found that the core protein of purified full-length human perlecan is of suitable size to span the pericellular space of the LCS, with a measured end-to-end length of 170±20 nm and a diameter of 2-4 nm. Force pulling revealed a strong protein core that can withstand over 100 pN of tension well over the drag forces that are estimated to be exerted on the individual osteocyte tethers. Data fitting with an extensible worm-like chain model showed that the perlecan protein core has a mean elastic constant of 890 pN and a corresponding Young's modulus of 71 MPa. We conclude that perlecan has physical properties that would allow it to act as a strong but elastic tether in the LCS.
Collapse
Affiliation(s)
- Sithara S Wijeratne
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | | | - Brian J Grindel
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Eric W Frey
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Jingqiang Li
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Mary C Farach-Carson
- Department of BioSciences, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| | - Ching-Hwa Kiang
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
789
|
Cho A, Howell VM, Colvin EK. The Extracellular Matrix in Epithelial Ovarian Cancer - A Piece of a Puzzle. Front Oncol 2015; 5:245. [PMID: 26579497 PMCID: PMC4629462 DOI: 10.3389/fonc.2015.00245] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/15/2015] [Indexed: 02/04/2023] Open
Abstract
Epithelial ovarian cancer is the fifth leading cause of cancer-related deaths in women and the most lethal gynecological malignancy. Extracellular matrix (ECM) is an integral component of both the normal and tumor microenvironment. ECM composition varies between tissues and is crucial for maintaining normal function and homeostasis. Dysregulation and aberrant deposition or loss of ECM components is implicated in ovarian cancer progression. The mechanisms by which tumor cells induce ECM remodeling to promote a malignant phenotype are yet to be elucidated. A thorough understanding of the role of the ECM in ovarian cancer is needed for the development of effective biomarkers and new therapies.
Collapse
Affiliation(s)
- Angela Cho
- School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW, Australia
| | - Viive M. Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| | - Emily K. Colvin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
790
|
Increased Expression of Serglycin in Specific Carcinomas and Aggressive Cancer Cell Lines. BIOMED RESEARCH INTERNATIONAL 2015; 2015:690721. [PMID: 26581653 PMCID: PMC4637082 DOI: 10.1155/2015/690721] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 12/15/2022]
Abstract
In the present pilot study, we examined the presence of serglycin in lung, breast, prostate, and colon cancer and evaluated its expression in cell lines and tissues. We found that serglycin was expressed and constitutively secreted in culture medium in high levels in more aggressive cancer cells. It is worth noticing that aggressive cancer cells that harbor KRAS or EGFR mutations secreted serglycin constitutively in elevated levels. Furthermore, we detected the transcription of an alternative splice variant of serglycin lacking exon 2 in specific cell lines. In a limited number of tissue samples analyzed, serglycin was detected in normal epithelium but was also expressed in higher levels in advanced grade tumors as shown by immunohistochemistry. Serglycin staining was diffuse, granular, and mainly cytoplasmic. In some cancer cells serglycin also exhibited membrane and/or nuclear immunolocalization. Interestingly, the stromal cells of the reactive tumor stroma were positive for serglycin, suggesting an enhanced biosynthesis for this proteoglycan in activated tumor microenvironment. Our study investigated for first time the distribution of serglycin in normal epithelial and cancerous lesions in most common cancer types. The elevated levels of serglycin in aggressive cancer and stromal cells may suggest a key role for serglycin in disease progression.
Collapse
|
791
|
Stachtea XN, Tykesson E, van Kuppevelt TH, Feinstein R, Malmström A, Reijmers RM, Maccarana M. Dermatan Sulfate-Free Mice Display Embryological Defects and Are Neonatal Lethal Despite Normal Lymphoid and Non-Lymphoid Organogenesis. PLoS One 2015; 10:e0140279. [PMID: 26488883 PMCID: PMC4619018 DOI: 10.1371/journal.pone.0140279] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 09/23/2015] [Indexed: 01/01/2023] Open
Abstract
The epimerization of glucuronic acid into iduronic acid adds structural variability to chondroitin/dermatan sulfate polysaccharides. Iduronic acid-containing domains play essential roles in processes such as coagulation, chemokine and morphogen modulation, collagen maturation, and neurite sprouting. Therefore, we generated and characterized, for the first time, mice deficient in dermatan sulfate epimerase 1 and 2, two enzymes uniquely involved in dermatan sulfate biosynthesis. The resulting mice, termed DKO mice, were completely devoid of iduronic acid, and the resulting chondroitin sulfate chains were structurally different from the wild type chains, from which a different protein binding specificity can be expected. As a consequence, a vast majority of the DKO mice died perinatally, with greatly variable phenotypes at birth or late embryological stages such as umbilical hernia, exencephaly and a kinked tail. However, a minority of embryos were histologically unaffected, with apparently normal lung and bone/cartilage features. Interestingly, the binding of the chemokine CXCL13, an important modulator of lymphoid organogenesis, to mouse DKO embryonic fibroblasts was impaired. Nevertheless, the development of the secondary lymphoid organs, including the lymph nodes and spleen, was normal. Altogether, our results indicate an important role of dermatan sulfate in embryological development and perinatal survival.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Carbohydrate Epimerases/deficiency
- Carbohydrate Epimerases/genetics
- Cells, Cultured
- Chemokine CXCL13/metabolism
- Chondroitin Sulfates/metabolism
- Dermatan Sulfate/metabolism
- Disaccharides/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Lymphoid Tissue/growth & development
- Lymphoid Tissue/metabolism
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence
- Organogenesis
- Protein Binding
Collapse
Affiliation(s)
- Xanthi N. Stachtea
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Emil Tykesson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Toin H. van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ricardo Feinstein
- Department of Pathology, The National Veterinary Institute (SVA), SE 75189, Uppsala, Sweden
| | - Anders Malmström
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rogier M. Reijmers
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Marco Maccarana
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
792
|
Karus M, Ulc A, Ehrlich M, Czopka T, Hennen E, Fischer J, Mizhorova M, Qamar N, Brüstle O, Faissner A. Regulation of oligodendrocyte precursor maintenance by chondroitin sulphate glycosaminoglycans. Glia 2015; 64:270-86. [PMID: 26454153 DOI: 10.1002/glia.22928] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 09/16/2015] [Indexed: 01/06/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) have been proven to inhibit morphological maturation of oligodendrocytes as well as their myelination capabilities. Yet, it remained unclear, whether CSPGs and/or their respective chondroitin sulfate glycosaminoglycan (CS-GAG) side chains also regulate the oligodendrocyte lineage progression. Here, we initially show that CS-GAGs detected by the monoclonal antibody 473HD are expressed by primary rat NG2-positive oligodendrocyte precursor cells (OPCs) and O4-positive immature oligodendrocytes. CS-GAGs become down-regulated with ongoing oligodendrocyte differentiation. Enzymatic removal of the CS-GAG chains by the bacterial enzyme Chondroitinase ABC (ChABC) promoted spontaneous differentiation of proliferating rat OPCs toward O4-positive immature oligodendrocytes. Upon forced differentiation, the enzymatic removal of the CS-GAGs accelerated oligodendrocyte differentiation toward both MBP-positive and membrane forming oligodendrocytes. These processes were attenuated on enriched CSPG fractions, mainly consisting of Phosphacan/RPTPβ/ζ and to less extent of Brevican and NG2. To qualify CS-GAGs as universal regulators of oligodendrocyte biology, we finally tested the effect of CS-GAG removal on OPCs from different sources such as mouse cortical oligospheres, mouse spinal cord neurospheres, and most importantly human-induced pluripotent stem cell-derived radial glia-like neural precursor cells. For all culture systems used, we observed a similar inhibitory effect of CS-GAGs on oligodendrocyte differentiation. In conclusion, this study clearly suggests an important fundamental principle for complex CS-GAGs to regulate the oligodendrocyte lineage progression. Moreover, the use of ChABC in order to promote oligodendrocyte differentiation toward myelin gene expressing cells might be an applicable therapeutic option to enhance white matter repair.
Collapse
Affiliation(s)
- Michael Karus
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, Germany.,Institute of Reconstructive Neurobiology, LIFE&BRAIN Center, Bonn, Germany
| | - Annika Ulc
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Marc Ehrlich
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Tim Czopka
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Eva Hennen
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Julia Fischer
- Institute of Reconstructive Neurobiology, LIFE&BRAIN Center, Bonn, Germany
| | - Marija Mizhorova
- Institute of Reconstructive Neurobiology, LIFE&BRAIN Center, Bonn, Germany
| | - Naila Qamar
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE&BRAIN Center, Bonn, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
793
|
Ricard-Blum S, Vallet SD. Proteases decode the extracellular matrix cryptome. Biochimie 2015; 122:300-13. [PMID: 26382969 DOI: 10.1016/j.biochi.2015.09.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/11/2015] [Indexed: 12/24/2022]
Abstract
The extracellular matrix is comprised of 1100 core-matrisome and matrisome-associated proteins and of glycosaminoglycans. This structural scaffold contributes to the organization and mechanical properties of tissues and modulates cell behavior. The extracellular matrix is dynamic and undergoes constant remodeling, which leads to diseases if uncontrolled. Bioactive fragments, called matricryptins, are released from the extracellular proteins by limited proteolysis and have biological activities on their own. They regulate numerous physiological and pathological processes such as angiogenesis, cancer, diabetes, wound healing, fibrosis and infectious diseases and either improve or worsen the course of diseases depending on the matricryptins and on the molecular and biological contexts. Several protease families release matricryptins from core-matrisome and matrisome-associated proteins both in vitro and in vivo. The major proteases, which decrypt the extracellular matrix, are zinc metalloproteinases of the metzincin superfamily (matrixins, adamalysins and astacins), cysteine proteinases and serine proteases. Some matricryptins act as enzyme inhibitors, further connecting protease and matricryptin fates and providing intricate regulation of major physiopathological processes such as angiogenesis and tumorigenesis. They strengthen the role of the extracellular matrix as a key player in tissue failure and core-matrisome and matrisome-associated proteins as important therapeutic targets.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- UMR 5086 CNRS - Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| | - Sylvain D Vallet
- UMR 5086 CNRS - Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
794
|
TNF-α-stimulated fibroblasts secrete lumican to promote fibrocyte differentiation. Proc Natl Acad Sci U S A 2015; 112:11929-34. [PMID: 26351669 DOI: 10.1073/pnas.1507387112] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In healing wounds and fibrotic lesions, fibroblasts and monocyte-derived fibroblast-like cells called fibrocytes help to form scar tissue. Although fibrocytes promote collagen production by fibroblasts, little is known about signaling from fibroblasts to fibrocytes. In this report, we show that fibroblasts stimulated with the fibrocyte-secreted inflammatory signal tumor necrosis factor-α secrete the small leucine-rich proteoglycan lumican, and that lumican, but not the related proteoglycan decorin, promotes human fibrocyte differentiation. Lumican competes with the serum fibrocyte differentiation inhibitor serum amyloid P, but dominates over the fibroblast-secreted fibrocyte inhibitor Slit2. Lumican acts directly on monocytes, and unlike other factors that affect fibrocyte differentiation, lumican has no detectable effect on macrophage differentiation or polarization. α2β1, αMβ2, and αXβ2 integrins are needed for lumican-induced fibrocyte differentiation. In lung tissue from pulmonary fibrosis patients with relatively normal lung function, lumican is present at low levels throughout the tissue, whereas patients with advanced disease have pronounced lumican expression in the fibrotic lesions. These data may explain why fibrocytes are increased in fibrotic tissues, suggest that the levels of lumican in tissues may have a significant effect on the decision of monocytes to differentiate into fibrocytes, and indicate that modulating lumican signaling may be useful as a therapeutic for fibrosis.
Collapse
|
795
|
Gubbiotti MA, Neill T, Frey H, Schaefer L, Iozzo RV. Decorin is an autophagy-inducible proteoglycan and is required for proper in vivo autophagy. Matrix Biol 2015; 48:14-25. [PMID: 26344480 DOI: 10.1016/j.matbio.2015.09.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022]
Abstract
We have recently discovered that soluble extracellular matrix constituents regulate autophagy via an outside-in signaling pathway. Decorin, a secreted proteoglycan, evokes autophagy in endothelial cells and mitophagy in breast carcinoma cells. However, it is not known whether decorin expression can be regulated by autophagic stimuli such as mTOR inhibition or nutrient deprivation. Thus, we tested whether pro-autophagic stimuli could affect decorin expression in mouse cardiac tissue and whether the absence of decorin could disrupt the in vivo autophagic response. We found that nutrient deprivation induced decorin at the mRNA and protein level in vivo and in vitro, a process regulated at the transcriptional level by inhibiting the canonical mTOR pathway. Moreover, Dcn-/- mice displayed an aberrant response to fasting compared to wild-type mice. Our study establishes a new role for an extracellular matrix proteoglycan and provides a mechanistic role for soluble decorin in regulating a fundamental intracellular catabolic process.
Collapse
Affiliation(s)
- Maria A Gubbiotti
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Helena Frey
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
796
|
Acharjee UK, Gejima R, Felemban Athary Abdulhaleem M, Riyadh MA, Tanaka H, Ohta K. Tsukushi expression is dependent on Notch signaling and oscillated in the presomitic mesoderm during chick somitogenesis. Biochem Biophys Res Commun 2015; 465:625-30. [DOI: 10.1016/j.bbrc.2015.08.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022]
|
797
|
Ning L, Xu Z, Furuya N, Nonaka R, Yamada Y, Arikawa-Hirasawa E. Perlecan inhibits autophagy to maintain muscle homeostasis in mouse soleus muscle. Matrix Biol 2015; 48:26-35. [PMID: 26319110 DOI: 10.1016/j.matbio.2015.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/19/2015] [Accepted: 08/22/2015] [Indexed: 11/26/2022]
Abstract
The autophagy-lysosome system is essential for muscle protein synthesis and degradation equilibrium, and its dysfunction has been linked to various muscle disorders. It has been reported that a diverse collection of extracellular matrix constituents, including decorin, collagen VI, laminin α2, endorepellin, and endostatin, can modulate autophagic signaling pathways. However, the association between autophagy and perlecan in muscle homeostasis remains unclear. The mechanical unloading of perlecan-deficient soleus muscles resulted in significantly decreased wet weights and cross-section fiber area compared with those of control mice. We found that perlecan deficiency in slow-twitch soleus muscles enhanced autophagic activity. This was accompanied by a decrease in autophagic substrates, such as p62, and an increase in LC3II levels. Furthermore, perlecan deficiency caused a reduction in the phosphorylation levels of p70S6k and Akt and increased the phosphorylation of AMPKα. Our findings suggested that perlecan inhibits the autophagic process through the activation of the mTORC1 pathway. This autophagic response may be a novel target for enhancing the efficacy of skeletal muscle atrophy treatment.
Collapse
Affiliation(s)
- Liang Ning
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Zhuo Xu
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Norihiko Furuya
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Risa Nonaka
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yoshihiko Yamada
- National Institute of Dental and Craniofacial Research, NIH, Bethesda 90814, USA
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
798
|
Prydz K. Determinants of Glycosaminoglycan (GAG) Structure. Biomolecules 2015; 5:2003-22. [PMID: 26308067 PMCID: PMC4598785 DOI: 10.3390/biom5032003] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/05/2023] Open
Abstract
Proteoglycans (PGs) are glycosylated proteins of biological importance at cell surfaces, in the extracellular matrix, and in the circulation. PGs are produced and modified by glycosaminoglycan (GAG) chains in the secretory pathway of animal cells. The most common GAG attachment site is a serine residue followed by a glycine (-ser-gly-), from which a linker tetrasaccharide extends and may continue as a heparan sulfate, a heparin, a chondroitin sulfate, or a dermatan sulfate GAG chain. Which type of GAG chain becomes attached to the linker tetrasaccharide is influenced by the structure of the protein core, modifications occurring to the linker tetrasaccharide itself, and the biochemical environment of the Golgi apparatus, where GAG polymerization and modification by sulfation and epimerization take place. The same cell type may produce different GAG chains that vary, depending on the extent of epimerization and sulfation. However, it is not known to what extent these differences are caused by compartmental segregation of protein cores en route through the secretory pathway or by differential recruitment of modifying enzymes during synthesis of different PGs. The topic of this review is how different aspects of protein structure, cellular biochemistry, and compartmentalization may influence GAG synthesis.
Collapse
Affiliation(s)
- Kristian Prydz
- Department of Biosciences, University of Oslo, Box 1066, Blindern OSLO 0316, Norway.
| |
Collapse
|
799
|
Neill T, Schaefer L, Iozzo RV. Decoding the Matrix: Instructive Roles of Proteoglycan Receptors. Biochemistry 2015; 54:4583-98. [PMID: 26177309 DOI: 10.1021/acs.biochem.5b00653] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The extracellular matrix is a dynamic repository harboring instructive cues that embody substantial regulatory dominance over many evolutionarily conserved intracellular activities, including proliferation, apoptosis, migration, motility, and autophagy. The matrix also coordinates and parses hierarchical information, such as angiogenesis, tumorigenesis, and immunological responses, typically providing the critical determinants driving each outcome. We provide the first comprehensive review focused on proteoglycan receptors, that is, signaling transmembrane proteins that use secreted proteoglycans as ligands, in addition to their natural ligands. The majority of these receptors belong to an exclusive subset of receptor tyrosine kinases and assorted cell surface receptors that specifically bind, transduce, and modulate fundamental cellular processes following interactions with proteoglycans. The class of small leucine-rich proteoglycans is the most studied so far and constitutes the best understood example of proteoglycan-receptor interactions. Decorin and biglycan evoke autophagy and immunological responses that deter, suppress, or exacerbate pathological conditions such as tumorigenesis, angiogenesis, and chronic inflammatory disease. Basement membrane-associated heparan sulfate proteoglycans (perlecan, agrin, and collagen XVIII) represent a unique cohort and provide proteolytically cleaved bioactive fragments for modulating cellular behavior. The receptors that bind the genuinely multifactorial and multivalent proteoglycans represent a nexus in understanding basic biological pathways and open new avenues for therapeutic and pharmacological intervention.
Collapse
Affiliation(s)
- Thomas Neill
- †Department of Pathology, Anatomy and Cell Biology and Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Liliana Schaefer
- ‡Department of Pharmacology, Goethe University, 60590 Frankfurt, Germany
| | - Renato V Iozzo
- †Department of Pathology, Anatomy and Cell Biology and Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| |
Collapse
|
800
|
Wang Y, Geldres C, Ferrone S, Dotti G. Chondroitin sulfate proteoglycan 4 as a target for chimeric antigen receptor-based T-cell immunotherapy of solid tumors. Expert Opin Ther Targets 2015; 19:1339-50. [DOI: 10.1517/14728222.2015.1068759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|