751
|
Lee H, Kang H, Kim C, Ku JL, Nam S, Lee EK. Long Non-Coding RNA GAS5 Promotes BAX Expression by Competing with microRNA-128-3p in Response to 5-Fluorouracil. Biomedicines 2022; 11:biomedicines11010058. [PMID: 36672566 PMCID: PMC9856034 DOI: 10.3390/biomedicines11010058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
The acquisition of drug resistance is a major hurdle for effective cancer treatment. Although several efforts have been made to overcome drug resistance, the underlying mechanisms have not been fully elucidated. This study investigated the role of long non-coding RNA (lncRNA) growth arrest-specific 5 (GAS5) in drug resistance. GAS5 was found to be downregulated in colon cancer cell lines that are resistant to 5-fluorouracil (5-FU). Downregulation of GAS5 decreased the viability of HCT116 cells and the level of the pro-apoptotic BAX protein, while GAS5 overexpression promoted cell death in response to 5-FU. The interaction between GAS5 and BAX mRNA was investigated using MS2-tagged RNA affinity purification (MS2-trap) followed by RT-qPCR, and the results showed that GAS5 bound to the 3'-untranslated region of BAX mRNA and enhanced its expression by interfering with the inhibitory effect of microRNA-128-3p, a negative regulator of BAX. In addition, ectopic expression of GAS5 increased the sensitivity of resistant cells in response to anti-cancer drugs. These results suggest that GAS5 promoted cell death by interfering with miR-128-3p-mediated BAX downregulation. Therefore, GAS5 overexpression in chemo-resistant cancer cells may be a potential strategy to improve the anti-cancer efficacy of drugs.
Collapse
Affiliation(s)
- Heejin Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hoin Kang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chongtae Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ja-Lok Ku
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Sukwoo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Correspondence: ; Tel.: +82-2-3147-8335; Fax: +82-2-596-4435
| |
Collapse
|
752
|
Construction of a Necroptosis-Related lncRNA Signature for Predicting Prognosis and Immune Response in Kidney Renal Clear Cell Carcinoma. Cells 2022; 12:cells12010066. [PMID: 36611858 PMCID: PMC9818734 DOI: 10.3390/cells12010066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Necroptosis is a new type of programmed cell death and involves the occurrence and development of various cancers. Moreover, the aberrantly expressed lncRNA can also affect tumorigenesis, migration, and invasion. However, there are few types of research on the necroptosis-related lncRNA (NRL), especially in kidney renal clear cell carcinoma (KIRC). In this study, we analyzed the sequencing data obtained from the TGCA-KIRC dataset, then applied the LASSO and COX analysis to identify 6 NRLs (AC124854.1, AL117336.1, DLGAP1-AS2, EPB41L4A-DT, HOXA-AS2, and LINC02100) to construct a risk model. Patients suffering from KIRC were divided into high- and low-risk groups according to the risk score, and the patients in the low-risk group had a longer OS. This signature can be used as an indicator to predict the prognosis of KIRC independent of other clinicopathological features. In addition, the gene set enrichment analysis showed that some tumor and immune-associated pathways were more enriched in a high-risk group. We also found significant differences between the high and low-risk groups in the infiltrating immune cells, immune functions, and expression of immune checkpoint molecules. Finally, we use the "pRRophetic" package to complete the drug sensitivity prediction, and the risk score could reflect patients' response to 8 small molecule compounds. In general, NRLs divided KIRC into two subtypes with different risk scores. Furthermore, this signature based on the 6 NRLs could provide a promising method to predict the prognosis and immune response of KIRC patients. To some extent, our findings helped give a reference for further research between NRLs and KIRC and find more effective therapeutic drugs for KIRC.
Collapse
|
753
|
Wang X, Zhang Y, Lin Q, Zhao K, Zhu D, Hu Y. Mitochondria-localized lncRNA HITT inhibits fusion by attenuating formation of mitofusin-2 homotypic or heterotypic complexes. J Biol Chem 2022; 299:102825. [PMID: 36567017 PMCID: PMC9867983 DOI: 10.1016/j.jbc.2022.102825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as essential players in multiple biological processes. Mitochondrial dynamics, comprising the continuous cycle of fission and fusion, are required for healthy mitochondria that function properly. Despite long-term recognition of its significance in cell-fate control, the mechanism underlying mitochondrial fusion is not completely understood, particularly regarding the involvement of lncRNAs. Here, we show that the lncRNA HITT (HIF-1α inhibitor at translation level) can specifically localize in mitochondria. Cells expressing higher levels of HITT contain fragmented mitochondria. Conversely, we show that HITT knockdown cells have more tubular mitochondria than is present in control cells. Mechanistically, we demonstrate HITT directly binds mitofusin-2 (MFN2), a core component that mediates mitochondrial outer membrane fusion, by the in vitro RNA pull-down and UV-cross-linking RNA-IP assays. In doing so, we found HITT disturbs MFN2 homotypic or heterotypic complex formation, attenuating mitochondrial fusion. Under stress conditions, such as ultraviolet radiation, we in addition show HITT stability increases as a consequence of MiR-205 downregulation, inhibiting MFN2-mediated fusion and leading to apoptosis. Overall, our data provide significant insights into the roles of organelle (mitochondria)-specific resident lncRNAs in regulating mitochondrial fusion and also reveal how such a mechanism controls cellular sensitivity to UV radiation-induced apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China.
| |
Collapse
|
754
|
Yang W, Lyu Y, Xiang R, Yang J. Long Noncoding RNAs in the Pathogenesis of Insulin Resistance. Int J Mol Sci 2022; 23:ijms232416054. [PMID: 36555704 PMCID: PMC9785789 DOI: 10.3390/ijms232416054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Insulin resistance (IR), designated as the blunted response of insulin target tissues to physiological level of insulin, plays crucial roles in the development and progression of diabetes, nonalcoholic fatty liver disease (NAFLD) and other diseases. So far, the distinct mechanism(s) of IR still needs further exploration. Long non-coding RNA (lncRNA) is a class of non-protein coding RNA molecules with a length greater than 200 nucleotides. LncRNAs are widely involved in many biological processes including cell differentiation, proliferation, apoptosis and metabolism. More recently, there has been increasing evidence that lncRNAs participated in the pathogenesis of IR, and the dysregulated lncRNA profile played important roles in the pathogenesis of metabolic diseases including obesity, diabetes and NAFLD. For example, the lncRNAs MEG3, H19, MALAT1, GAS5, lncSHGL and several other lncRNAs have been shown to regulate insulin signaling and glucose/lipid metabolism in various tissues. In this review, we briefly introduced the general features of lncRNA and the methods for lncRNA research, and then summarized and discussed the recent advances on the roles and mechanisms of lncRNAs in IR, particularly focused on liver, skeletal muscle and adipose tissues.
Collapse
Affiliation(s)
- Weili Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yixiang Lyu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
- Correspondence:
| |
Collapse
|
755
|
Context-Dependent Function of Long Noncoding RNA PURPL in Transcriptome Regulation during p53 Activation. Mol Cell Biol 2022; 42:e0028922. [PMID: 36342127 PMCID: PMC9753727 DOI: 10.1128/mcb.00289-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPL is a p53-induced lncRNA that suppresses basal p53 levels. Here, we investigated PURPL upon p53 activation in liver cancer cells, where it is expressed at significantly higher levels than other cell types. Using isoform sequencing, we discovered novel PURPL transcripts that have a retained intron and/or previously unannotated exons. To determine PURPL function upon p53 activation, we performed transcriptome sequencing (RNA-Seq) after depleting PURPL using CRISPR interference (CRISPRi), followed by Nutlin treatment to induce p53. Strikingly, although loss of PURPL in untreated cells altered the expression of only 7 genes, loss of PURPL resulted in altered expression of ~800 genes upon p53 activation, revealing a context-dependent function of PURPL. Pathway analysis suggested that PURPL is important for fine-tuning the expression of specific genes required for mitosis. Consistent with these results, we observed a significant decrease in the percentage of mitotic cells upon PURPL depletion. Collectively, these data identify novel transcripts from the PURPL locus and suggest that PURPL delicately moderates the expression of mitotic genes in the context of p53 activation to control cell cycle arrest.
Collapse
|
756
|
Shi X, Wei W, Zou Y, Dong L, Wu H, Jiang J, Li X, Chen J. LncRNA Taurine Up-Regulated 1 plays a proapoptotic role by regulating nuclear-cytoplasmic shuttle of HuR under the condition of neuronal ischemia. Neuroreport 2022; 33:799-811. [PMID: 36367790 PMCID: PMC9648984 DOI: 10.1097/wnr.0000000000001848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022]
Abstract
The study aimed to identify TUG1 as an essential regulator of apoptosis in HT22 (mouse hippocampal neuronal cells) by direct interaction with the RNA-binding protein HuR. In order to study the role of TUG1 in the context of ischemia, we used mouse hippocampal neuronal cells treated with oxyglucose deprivation to establish an in-vitro ischemia model. A bioinformatic analysis and formaldehyde RNA immunoprecipitation (fRIP) were used to investigate the biological functions. A Western blot assay and reverse transcription polymerase chain reaction were used to explore the expression of the molecules involved. A cell proliferation and cytotoxicity assay was performed to detect neuronal apoptosis. TUG1 exhibits a localization-specific expression pattern in HT22 cells under OGD treatment. The bioinformatics analysis showed a strong correlation between the TUG1 and HuR as predicted, and this interaction was subsequently confirmed by fRIP-qPCR. We found that HuR was translocated from the nucleus to the cytoplasm after ischemia treatment and subsequently targeted and stabilized COX-2 mRNA, which led to elevated COX-2 mRNA levels and apoptosis of the HT22 cells. Furthermore, nuclear-specific disruption of TUG1 prevented the translocation of HuR to the cytoplasm and decreased COX-2 mRNA expression, resulting in increased cell viability and partially reversed apoptosis. In conclusion, it was demonstrated that TUG1 accelerates the process of apoptosis by promoting the transfer of HuR to the cytoplasm and stabilizing COX-2 mRNA. These results provide useful information concerning a therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Xiaocheng Shi
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University
| | - Yichun Zou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lixin Dong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University
| | - Hengping Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University
| | - Jiazhi Jiang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
757
|
Yuan Y, Wang Y, Niu X, Han Y, Li W, Cheng M, Li Z, Tan J, Zhao Y, Wang W. Association of lncRNA H19 polymorphisms with cancer susceptibility: An updated meta-analysis based on 53 studies. Front Genet 2022; 13:1051766. [PMID: 36588790 PMCID: PMC9794744 DOI: 10.3389/fgene.2022.1051766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The association between polymorphisms in lncRNA H19 and cancer susceptibility remains to be inconsistent. This study aimed to provide a more precise estimation of the relationship between lncRNA H19 polymorphisms and the risk of cancer based on all available published studies. 53 studies encompassing 32,376 cases and 43,659 controls were included in our meta-analysis by searching the Pubmed, Embase, Web of Science, WanFang, and China National Knowledge Infrastructure databases. Pooled ORs and their 95% CIs were used to estimate the strength between the SNPs in H19 (rs217727, rs2839698, rs2107425, rs3024270, rs2735971, rs3741216, and rs3741219) and cancer susceptibility. The results showed that H19 rs2839698 polymorphism was associated with increased cancer risk in all participants under three genetic models. However, no significant association was identified between the other six SNPs as well as an overall cancer risk. Stratification by ethnicity showed that rs2839698 mutation indicated to be an important hazardous factor for the Asian population. While rs2107425 mutation had a protective effect on the Caucasian population. Stratification by cancer type identified that rs217727 mutation was linked to increased susceptibility to oral squamous cell carcinoma, lung cancer, and hepatocellular carcinoma; whereas rs2839698 mutation was associated with an elevated risk of hematological tumor and digestive system tumor (p < 0.05). Besides, the rs2735971 mutation was connected with the digestive system tumor. In summary, the rs217727, rs2839698, rs2107425 and rs2735971 polymorphisms in H19 have associations with cancer susceptibility.
Collapse
|
758
|
Duca M, Malagolini N, Dall’Olio F. The Mutual Relationship between Glycosylation and Non-Coding RNAs in Cancer and Other Physio-Pathological Conditions. Int J Mol Sci 2022; 23:ijms232415804. [PMID: 36555445 PMCID: PMC9781064 DOI: 10.3390/ijms232415804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Glycosylation, which consists of the enzymatic addition of sugars to proteins and lipids, is one of the most important post-co-synthetic modifications of these molecules, profoundly affecting their activity. Although the presence of carbohydrate chains is crucial for fine-tuning the interactions between cells and molecules, glycosylation is an intrinsically stochastic process regulated by the relative abundance of biosynthetic (glycosyltransferases) and catabolic (glycosidases) enzymes, as well as sugar carriers and other molecules. Non-coding RNAs, which include microRNAs, long non-coding RNAs and circRNAs, establish a complex network of reciprocally interacting molecules whose final goal is the regulation of mRNA expression. Likewise, these interactions are stochastically regulated by ncRNA abundance. Thus, while protein sequence is deterministically dictated by the DNA/RNA/protein axis, protein abundance and activity are regulated by two stochastic processes acting, respectively, before and after the biosynthesis of the protein axis. Consequently, the worlds of glycosylation and ncRNA are closely interconnected and mutually interacting. In this paper, we will extensively review the many faces of the ncRNA-glycosylation interplay in cancer and other physio-pathological conditions.
Collapse
|
759
|
Chang MW, Yang JH, Tsitsipatis D, Yang X, Martindale J, Munk R, Pandey P, Banskota N, Romero B, Batish M, Piao Y, Mazan-Mamczarz K, De S, Abdelmohsen K, Wilson G, Gorospe M. Enhanced myogenesis through lncFAM-mediated recruitment of HNRNPL to the MYBPC2 promoter. Nucleic Acids Res 2022; 50:13026-13044. [PMID: 36533518 PMCID: PMC9825165 DOI: 10.1093/nar/gkac1174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
The mammalian transcriptome comprises a vast family of long noncoding (lnc)RNAs implicated in physiologic processes such as myogenesis, through which muscle forms during embryonic development and regenerates in the adult. However, the specific molecular mechanisms by which lncRNAs regulate human myogenesis are poorly understood. Here, we identified a novel muscle-specific lncRNA, lncFAM71E1-2:2 (lncFAM), which increased robustly during early human myogenesis. Overexpression of lncFAM promoted differentiation of human myoblasts into myotubes, while silencing lncFAM suppressed this process. As lncFAM resides in the nucleus, chromatin isolation by RNA purification followed by mass spectrometry (ChIRP-MS) analysis was employed to identify the molecular mechanisms whereby it might promote myogenesis. Analysis of lncFAM-interacting proteins revealed that lncFAM recruited the RNA-binding protein HNRNPL to the promoter of MYBPC2, in turn increasing MYBPC2 mRNA transcription and enhancing production of the myogenic protein MYBPC2. These results highlight a mechanism whereby a novel ribonucleoprotein complex, lncFAM-HNRNPL, elevates MYBPC2 expression transcriptionally to promote myogenesis.
Collapse
Affiliation(s)
- Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Nirad Banskota
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
760
|
Xu J, Wang X, Zhu C, Wang K. A review of current evidence about lncRNA MEG3: A tumor suppressor in multiple cancers. Front Cell Dev Biol 2022; 10:997633. [PMID: 36544907 PMCID: PMC9760833 DOI: 10.3389/fcell.2022.997633] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) is a lncRNA located at the DLK1-MEG3 site of human chromosome 14q32.3. The expression of MEG3 in various tumors is substantially lower than that in normal adjacent tissues, and deletion of MEG3 expression is involved in the occurrence of many tumors. The high expression of MEG3 could inhibit the occurrence and development of tumors through several mechanisms, which has become a research hotspot in recent years. As a member of tumor suppressor lncRNAs, MEG3 is expected to be a new target for tumor diagnosis and treatment. This review discusses the molecular mechanisms of MEG3 in different tumors and future challenges for the diagnosis and treatment of cancers through MEG3.
Collapse
Affiliation(s)
- Jie Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Chunming Zhu, ; Kefeng Wang,
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Chunming Zhu, ; Kefeng Wang,
| |
Collapse
|
761
|
Qi D, Li H, Wang S, Wang S, Zheng R, Liu N, Han B, Liu L. Construction of ceRNA network and key gene screening in cervical squamous intraepithelial lesions. Medicine (Baltimore) 2022; 101:e31928. [PMID: 36482542 PMCID: PMC9726336 DOI: 10.1097/md.0000000000031928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to construct an endogenous competition network for cervical squamous intraepithelial lesions using differential gene screening. METHODS GSE149763 was used to screen differentially expressed long non-coding RNAs (lncRNAs) and mRNAs to predict correlated microRNAs (miRNAs). The correlated miRNAs and GSE105409 were used to screen differentially expressed miRNAs for differential co-expression analysis, and the co-expressed differentially expressed miRNAs were used to predict correlated mRNAs. Differentially expressed mRNAs, miRNAs, and lncRNAs were visualized, and differential gene screening, enrichment, and pathway analysis were performed. RESULTS The ceRNA network of cervical squamous intraepithelial was successfully established and a potential differentially expressed network was identified. The key genes were VEGFA and FOS, and the key pathway was the MAPK signaling pathway. CONCLUSIONS The differential expression and potential effects of the lncRNA BACH1-IT1/miR-140-5p/VEGFA axis, key genes, VEGFA and FOS, and MAPK signaling in CIN were clarified, and the occurrence and potential effects of CIN were further clarified. The underlying molecular mechanism provides a certain degree of reference for subsequent treatments and experimental research.
Collapse
Affiliation(s)
- Ding Qi
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Hongmei Li
- The 2nd Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Shuoqi Wang
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Shimeng Wang
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Rui Zheng
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Ning Liu
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Buwei Han
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Li Liu
- The 1st Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
- * Correspondence: Li Liu, Department of Gynecology, The 1st Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150036, China (e-mail: )
| |
Collapse
|
762
|
Unveiling the Vital Role of Long Non-Coding RNAs in Cardiac Oxidative Stress, Cell Death, and Fibrosis in Diabetic Cardiomyopathy. Antioxidants (Basel) 2022; 11:antiox11122391. [PMID: 36552599 PMCID: PMC9774664 DOI: 10.3390/antiox11122391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetes mellitus is a burdensome public health problem. Diabetic cardiomyopathy (DCM) is a major cause of mortality and morbidity in diabetes patients. The pathogenesis of DCM is multifactorial and involves metabolic abnormalities, the accumulation of advanced glycation end products, myocardial cell death, oxidative stress, inflammation, microangiopathy, and cardiac fibrosis. Evidence suggests that various types of cardiomyocyte death act simultaneously as terminal pathways in DCM. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with lengths greater than 200 nucleotides and no apparent coding potential. Emerging studies have shown the critical role of lncRNAs in the pathogenesis of DCM, along with the development of molecular biology technologies. Therefore, we summarize specific lncRNAs that mainly regulate multiple modes of cardiomyopathy death, oxidative stress, and cardiac fibrosis and provide valuable insights into diagnostic and therapeutic biomarkers and strategies for DCM.
Collapse
|
763
|
Fu X, Liu H, Fan Y, Yuan J. Extracellular vesicle-mediated transfer of lncRNA CLDN10-AS1 aggravates low-density lipoprotein-induced vascular endothelial injury. Physiol Genomics 2022; 54:471-485. [PMID: 36250558 DOI: 10.1152/physiolgenomics.00094.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL) stimulation impairs the oxidation-reduction equilibrium in vascular endothelial cells (VECs) and contributes to atherosclerosis (AS). This study probed the mechanisms of extracellular vesicle (EV)-mediated transfer of lncRNA CLDN10 antisense RNA 1 (CLDN10-AS1) in ox-LDL-induced VEC injury. Initially, VEC injury models were established by treating human umbilical vein endothelial cells (HUVECs) with ox-LDL. EVs were isolated from HUVECs (HUVECs-EVs) and identified. CLDN10-AS1, microRNA (miR)-186, and Yin Yang 1 (YY1) expressions in ox-LDL-treated HUVECs and EVs derived from these cells (ox-EVs) were measured. HUVECs were incubated with EVs, after which the cell viability, apoptosis, and concentrations of proinflammatory cytokines and oxidative stress markers were measured. We discovered that CLDN10-AS1 and YY1 were upregulated in ox-LDL-treated HUVECs, whereas miR-186 was downregulated. ox-EVs treatment elevated CLDN10-AS1 expression in HUVECs and ox-EVs overexpressing CLDN10-AS1 promoted VEC injury. Besides, CLDN10-AS1 is competitively bound to miR-186 and promoted YY1 expression. Rescue experiments revealed that miR-186 overexpression or YY1 suppression partially reversed the roles of ox-EVs overexpressing CLDN10-AS1 in ox-LDL-induced VEC injury. Lastly, clinical serum samples were collected for verification. Overall, CLDN10-AS1 carried by HUVECs-EVs into HUVECs competitively bound to miR-186 to elevate YY1 expression, thereby aggravating ox-LDL-induced VEC injury.
Collapse
Affiliation(s)
- Xiaoyang Fu
- Department of Vascular Surgery, Henan Provincial People's Hospital, Zhengzhou, China.,People's Hospital of Zhengzhou University, Zhengzhou, China.,Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China.,School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Heng Liu
- Department of Vascular Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yulong Fan
- Department of Vascular Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ji Yuan
- Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China.,School of Clinical Medicine, Henan University, Zhengzhou, China.,Department of Anaesthesia, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Anaesthesia, Central China Fuwai Hospital, Zhengzhou, China
| |
Collapse
|
764
|
Corral A, Alcala M, Carmen Duran-Ruiz M, Arroba AI, Ponce-Gonzalez JG, Todorčević M, Serra D, Calderon-Dominguez M, Herrero L. Role of long non-coding RNAs in adipose tissue metabolism and associated pathologies. Biochem Pharmacol 2022; 206:115305. [DOI: 10.1016/j.bcp.2022.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
765
|
Guo C, Chen Y, Wang Y, Hao Y. Regulatory roles of noncoding RNAs in intervertebral disc degeneration as potential therapeutic targets (Review). Exp Ther Med 2022; 25:44. [PMID: 36569433 PMCID: PMC9764052 DOI: 10.3892/etm.2022.11743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of lower back pain, which is one of the primary factors that lead to disability and pose a serious economic burden. The key pathological processes involved are extracellular matrix degradation, autophagy, apoptosis, and inflammation of nucleus pulposus cells. Non-coding RNAs (ncRNAs), including microRNAs, long ncRNAs and circular RNAs, are key regulators of the aforementioned processes. ncRNAs are differentially expressed in tissues of the intervertebral disc between healthy individuals and patients and participate in the pathological progression of IDD via a complex pattern of gene regulation. However, the regulatory mechanisms of ncRNAs in IDD remain unclear. The present review summarizes the latest insights into the regulatory role of ncRNAs in IDD and sheds light on potentially novel therapeutic strategies for IDD that may be implemented in the future.
Collapse
Affiliation(s)
- Cunliang Guo
- Department of Orthopedics, First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yungang Chen
- Department of Orthopedics, First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yuhe Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yanke Hao
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China,Correspondence to: Dr Yanke Hao, Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
766
|
Zheng M, Zhou H, Xie J, Zhang H, Shen X, Zhu D. Molecular typing and prognostic model of lung adenocarcinoma based on cuprotosis-related lncRNAs. J Thorac Dis 2022; 14:4828-4845. [PMID: 36647499 PMCID: PMC9840007 DOI: 10.21037/jtd-22-1534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Background Previous research has shown the heterogeneity of lung adenocarcinoma (LUAD) accounts for the different effects and prognoses of the same treatment. Cuprotosis is a newly discovered form of programmed cell death involved in the development of tumors. Therefore, it is important to study the long non-coding RNAs (lncRNAs) that regulate cuprotosis to identify molecular subtypes and predict survival of LUAD. Methods The expression profile, clinical, and mutation data of LUAD were downloaded from The Cancer Genome Atlas (TCGA), and the "ConsensusClusterPlus" package was used to cluster LUADs based on cuprotosis-related lncRNAs (CR-lncRNAs). The least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression were used to construct a prognostic model. CIBERSORT and single-sample gene set enrichment analysis (ssGSEA) were used for assessing immune cells infiltration and immune function. The tumor microenvironment (TME) score was calculated by ESTIMATE, and the tumor mutational burden (TMB) and Tumor Immune Dysfunction and Exclusion (TIDE) were used to evaluate the efficacy of immunotherapy. Results Firstly, 501 CR-lncRNAs were identified based on the co-expression relationship of 19 cuprotosis genes. And univariate Cox further obtained 34 prognosis-related CR-lncRNAs. The unsupervised consensus clustering divided LUAD samples into cluster A and cluster B, and showed cluster A had better prognosis, more immune cells infiltration, stronger immune function, and a higher TME score. Subsequently, we used Lasso Cox regression to construct a prognostic model, and univariate and multivariate Cox analyses showed the risk score could be an independent prognostic indicator. Immune cells infiltration, immune function, and TME score were increased markedly in the low-risk group, while TMB and TIDE suggested the efficacy of immunotherapy might be increased in high-risk group. Conclusions Our research identified two new molecular subtypes and constructed a novel prognostic model of LUAD which could provide new direction for its diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Miaosen Zheng
- Department of Pathology, The People’s Hospital of Rugao, Rugao Hospital Affiliated to Nantong University, Rugao, China
| | - Hao Zhou
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Xie
- Department of Pathology, The People’s Hospital of Rugao, Rugao Hospital Affiliated to Nantong University, Rugao, China
| | - Haifeng Zhang
- Department of Thoracic Surgery, The People’s Hospital of Rugao, Rugao Hospital Affiliated to Nantong University, Rugao, China
| | - Xiaojian Shen
- Department of Pathology, The People’s Hospital of Rugao, Rugao Hospital Affiliated to Nantong University, Rugao, China
| | - Dongbing Zhu
- Department of Pathology, The People’s Hospital of Rugao, Rugao Hospital Affiliated to Nantong University, Rugao, China
| |
Collapse
|
767
|
Han S, Chen X, Huang L. The tumor therapeutic potential of long non-coding RNA delivery and targeting. Acta Pharm Sin B 2022; 13:1371-1382. [PMID: 37139413 PMCID: PMC10149988 DOI: 10.1016/j.apsb.2022.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) is a type of RNA over 200 nt long without any protein coding ability, which has been investigated relating to crucial biological function in cells. There are many key lncRNAs in tumor/normal cells that serve as a biological marker or a new target for tumor treatment. However, compared to some small non-coding RNA, lncRNA-based drugs are limited in clinical application. Different from other non-coding RNA, like microRNAs, most lncRNAs have a high molecular weight and conserved secondary structure, making the delivery of lncRNAs more complex than the small non-coding RNAs. Considering that lncRNAs constitute the most abundant part of the mammalian genome, it is critical to further explore lncRNA delivery and the subsequent functional studies for potential clinical application. In this review, we will discuss the function and mechanism of lncRNAs in diseases, especially cancer, and different approaches for lncRNA transfection using multiple biomaterials.
Collapse
|
768
|
Kim JY, Lee J, Kang MH, Trang TTM, Lee J, Lee H, Jeong H, Lim PO. Dynamic landscape of long noncoding RNAs during leaf aging in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1068163. [PMID: 36531391 PMCID: PMC9753222 DOI: 10.3389/fpls.2022.1068163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Leaf senescence, the last stage of leaf development, is essential for whole-plant fitness as it marks the relocation of nutrients from senescing leaves to reproductive or other developing organs. Temporally coordinated physiological and functional changes along leaf aging are fine-tuned by a highly regulated genetic program involving multi-layered regulatory mechanisms. Long noncoding RNAs (lncRNAs) are newly emerging as hidden players in many biological processes; however, their contribution to leaf senescence has been largely unknown. Here, we performed comprehensive analyses of RNA-seq data representing all developmental stages of leaves to determine the genome-wide lncRNA landscape along leaf aging. A total of 771 lncRNAs, including 232 unannotated lncRNAs, were identified. Time-course analysis revealed 446 among 771 developmental age-related lncRNAs (AR-lncRNAs). Intriguingly, the expression of AR-lncRNAs was regulated more dynamically in senescing leaves than in growing leaves, revealing the relevant contribution of these lncRNAs to leaf senescence. Further analyses enabled us to infer the function of lncRNAs, based on their interacting miRNA or mRNA partners. We considered functionally diverse lncRNAs including antisense lncRNAs (which regulate overlapping protein-coding genes), competitive endogenous RNAs (ceRNAs; which regulate paired mRNAs using miRNAs as anchors), and mRNA-interacting lncRNAs (which affect the stability of mRNAs). Furthermore, we experimentally validated the senescence regulatory function of three novel AR-lncRNAs including one antisense lncRNA and two mRNA-interacting lncRNAs through molecular and phenotypic analyses. Our study provides a valuable resource of AR-lncRNAs and potential regulatory networks that link the function of coding mRNA and AR-lncRNAs. Together, our results reveal AR-lncRNAs as important elements in the leaf senescence process.
Collapse
Affiliation(s)
- Jung Yeon Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Juhyeon Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Myeong Hoon Kang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Tran Thi My Trang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jusung Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Heeho Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Hyobin Jeong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, Heidelberg, Germany
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
769
|
LncRNA TUG1 Promoted Stabilization of BAG5 by Binding DDX3X to Exacerbate Ketamine-Induced Neurotoxicity. Neurotox Res 2022; 40:1989-2000. [PMID: 36151390 DOI: 10.1007/s12640-022-00580-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 12/31/2022]
Abstract
As a clinically widely used anesthetic, ketamine (KET) has been reported to cause neurotoxicity in patients. Our work aimed to probe the function of long-chain non-coding RNA taurine-upregulated gene 1 (lncRNA TUG1) in KET-induced neurotoxicity. HT22 cells were subjected to KET to build the cell model. 3-(4, 5-Dimethylthiazolyl2)-2, 5-diphenyltetrazolium bromide (MTT) assay was employed to determine cell viability. Additionally, cell apoptosis was evaluated by flow cytometry. The binding relationships among TUG1, DEAD-box RNA helicase 3X (DDX3X), and Bcl-2-associated athanogene 5 (BAG5) were verified by RIP and RNA pull-down assays. Cell viability was impaired and cell apoptosis was increased in KET-treated HT22 cells accompanied by increased TUG1, DDX3X, and BAG5 expressions. TUG1 knockdown dramatically enhanced cell viability and repressed the of KET-induced apoptosis in HT22 cells, while TUG1 overexpression presented the opposite effects. In addition, we found that TUG1 promoted DDX3X expression via directly binding with DDX3X. As expected, DDX3X overexpression abolished the palliative effect of TUG1 knockdown on KET-induced neurotoxicity. Further research proved that TUG1 increased the stability of BAG5 through interacting with DDX3X. Finally, as expected, the moderating effect of TUG1 knockdown on KET-induced neuron injury was abolished by BAG5 overexpression. Taken together, TUG1 promoted BAG5 expression by binding DDX3X to exacerbate KET-induced neurotoxicity.
Collapse
|
770
|
Gan X, Ding D, Wang M, Yang Y, Sun D, Li W, Ding W, Yang F, Zhou W, Yuan S. DANCR deletion retards the initiation and progression of hepatocellular carcinoma based on gene knockout and patient-derived xenograft in situ hepatoma mice model. Cancer Lett 2022; 550:215930. [PMID: 36183859 DOI: 10.1016/j.canlet.2022.215930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Abstract
Our previous study has demonstrated that the expression level of long noncoding RNA (lncRNA)-differentiation antagonizing non-protein coding RNA (DANCR) increases in hepatocellular carcinoma (HCC), contributing to the initiation and aggravation of such kind of malignant tumor, which is recognized as a promising therapeutic target for patients with HCC. To further investigate the effect of DANCR on HCC in preclinical models, we generated a Dancr knockout (KO) mice model by Cas9/gRNA technology and a patient-derived xenograft (PDX) in situ hepatoma mice model using immunodeficient mice and utilized adeno-associated virus 8 (AAV8) delivery DANCR-shRNA system to silence the expression of DANCR in xenograft tumor. Here, we reported that Dancr expression mainly occurred in hepatocytes and its depletion significantly alleviated hepatic fibrosis in mice and showed a prospective result with smaller tumor size and fewer number of tumors in HCC preclinical mice model. Additionally, we found that the expression of Dancr in mice cirrhotic liver was positively correlated with the content of Dancr in serum. Overall, DANCR KO can inhibit the occurrence and development of HCC and is a target worthy of further study in patients with HCC.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/genetics
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Gene Knockout Techniques
- Heterografts
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Mice
- MicroRNAs/genetics
- Prospective Studies
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Xiaojie Gan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Dongyang Ding
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Mengchao Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Dapeng Sun
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Wen Li
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Wenbin Ding
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Fu Yang
- The Department of Medical Genetics, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China.
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China.
| |
Collapse
|
771
|
Tang H, Chen H, Yuan H, Jin X, Chen G. Comprehensive analysis of necroptosis-related long noncoding RNA to predict prognosis, immune status, and immunotherapeutic response in clear cell renal cell carcinoma. Transl Cancer Res 2022; 11:4254-4271. [PMID: 36644185 PMCID: PMC9834578 DOI: 10.21037/tcr-22-1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022]
Abstract
Background Necroptosis has been found to be associated with tumorigenesis and tumor progression. However, the prognostic effect of long noncoding RNAs (lncRNAs) associated with necroptosis in clear cell renal cell carcinoma (ccRCC) is still unclear. Methods Pearson correlation analysis was used to identify necroptosis-related genes and lncRNAs obtained from The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) dataset. Least absolute shrinkage and selection operator (LASSO) regression and Cox regression analyses were used to identify a novel necroptosis-associated lncRNAs signature that significantly correlated with survival of ccRCC. Next, single sample gene set enrichment analysis (ssGSEA) was employed to assess the extent of infiltration with immune cells. Analyses to predict the half-maximal inhibitory concentration (IC50) of patients in different risk groups were also conducted. Moreover, follow-up data of an immunotherapy cohort were used to test for differences in the immunotherapeutic efficiency between two risk groups. Finally, patients with ccRCC were divided into two groups based on 6 prognostic lncRNAs. Results We developed a signature of necroptosis-related lncRNAs, which was verified as an independent prognostic factor that can predict prognosis up to 7 years. Patients with higher risk scores were shown to have higher immune suppressive cell infiltration levels and expression of immune checkpoint genes, which suggests that these patients were in a state of immunosuppression. Patients in the low-risk group were found to have an increased response to immunotherapy. A prognostic prediction nomogram was conducted to predict long-term survival of patients. Cluster A tumors were considered hot tumors, since they were correlated with higher levels of immune infiltration and were more sensitive to immunotherapy. Conclusions A comprehensive bioinformatics analysis was conducted, which found that the necroptosis-associated lncRNA signature might be a potent prognostic factor for patients with ccRCC, which could contribute to improved prognosis of these patients.
Collapse
Affiliation(s)
- Haibin Tang
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hualin Chen
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Heng Yuan
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxiang Jin
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Chen
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
772
|
Ma M, Ye T, Wang J, Zhao H, Zhang S, Li P, Zhao G. N6-methyladenosine Modification of Noncoding RNAs: Mechanisms and Clinical Applications in Cancer. Diagnostics (Basel) 2022; 12:diagnostics12122996. [PMID: 36553003 PMCID: PMC9776883 DOI: 10.3390/diagnostics12122996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
N6-methyladenosine (m6A) modification remains the most pivotal epigenetic modification on RNA. As we know, m6A not only affects physiological processes but is also involved in carcinoma. Noncoding RNAs play an indispensable role in the occurrence and development of carcinoma. However, a large amount of research is focused on mRNA currently. Insufficient research has been done on the relationship between noncoding RNA (ncRNA) methylation and cancer. Therefore, this review aims to introduce the theoretical knowledge of m6A modification in noncoding RNA, discuss its function in tumorigenesis and progression, and ultimately summarize its potential clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Peng Li
- Correspondence: (P.L.); (G.Z.)
| | | |
Collapse
|
773
|
Xie H, Wang L, Tang Y, Zhao M, Wang Z, Liu M, Zhao Q, Zhou J, Wu Y. Functional analysis of differently expressed ferroptosis-related genes in patients with mitral valve prolapse. Front Genet 2022; 13:1062212. [PMID: 36523770 PMCID: PMC9745071 DOI: 10.3389/fgene.2022.1062212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/18/2022] [Indexed: 01/06/2025] Open
Abstract
Background: The prevalence of mitral valve prolapse (MVP) in heart valvular diseases is globally increasing. However, the understanding of its etiology and pathogenesis is limited. So far, the relationship between ferroptosis-related genes and long non-coding RNAs (lncRNAs) in MVP remains unexplored. This study investigates the potential pathogenesis of ferroptosis-related genes in MVP and provides a therapeutic target for the disease. Methods: Blood samples from patients with MVP and healthy volunteers were collected for transcriptomic sequencing to analyze the expression of ferroptosis-related differentially expressed genes (DEGs) and differentially expressed long non-coding RNAs (DElncRNAs Co-expression network of ferroptosis-related DEGs and DElncRNAs. Furthermore, this work conducted GO and KEGG enrichment analyses. Results: CDKN2A, SLC1A4, ATF3, and other core genes related to the mitral valve prolapse were screened out. CDKN2A, SLC1A4, and ATF3 genes were at the core position of the network, regulated by numerous lncRNAs. Notably, these genes are primarily involved in the extracellular region and p53 signaling pathway. Conclusion: In summary, CDKN2A, SLC1A4, and ATF3 regulate the pathophysiological process of MVP and are potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jingxin Zhou
- Department of Cardiovascular Surgery, Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Yanhu Wu
- Department of Cardiovascular Surgery, Nanjing Medical University First Affiliated Hospital, Nanjing, China
| |
Collapse
|
774
|
Noncoding RNAs Are Promising Therapeutic Targets for Diabetic Retinopathy: An Updated Review (2017-2022). Biomolecules 2022; 12:biom12121774. [PMID: 36551201 PMCID: PMC9775338 DOI: 10.3390/biom12121774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/10/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes. It is also the main cause of blindness caused by multicellular damage involving retinal endothelial cells, ganglial cells, and pigment epithelial cells in adults worldwide. Currently available drugs for DR do not meet the clinical needs; thus, new therapeutic targets are warranted. Noncoding RNAs (ncRNAs), a new type of biomarkers, have attracted increased attention in recent years owing to their crucial role in the occurrence and development of DR. NcRNAs mainly include microRNAs, long noncoding RNAs, and circular RNAs, all of which regulate gene and protein expression, as well as multiple biological processes in DR. NcRNAs, can regulate the damage caused by various retinal cells; abnormal changes in the aqueous humor, exosomes, blood, tears, and the formation of new blood vessels. This study reviews the different sources of the three ncRNAs-microRNAs, long noncoding RNAs, and circular RNAs-involved in the pathogenesis of DR and the related drug development progress. Overall, this review improves our understanding of the role of ncRNAs in various retinal cells and offers therapeutic directions and targets for DR treatment.
Collapse
|
775
|
Xu Y, Luan G, Li Z, Liu Z, Qin G, Chu Y. Tumour-derived exosomal lncRNA SNHG16 induces telocytes to promote metastasis of hepatocellular carcinoma via the miR-942-3p/MMP9 axis. Cell Oncol (Dordr) 2022; 46:251-264. [PMID: 36434360 DOI: 10.1007/s13402-022-00746-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) cell-derived exosomal LncRNA SNHG16 is highly expressed and associated with poor overall survival of patients. Telocytes (TCs), as novel interstitial cells, have been reported to promote HCC metastasis. Therefore, in our study, we investigated whether a molecular interaction occurred between exosomal LncSNHG16 and TCs in the tumor microenvironment. METHODS LncSNHG16 expression in HCC tissues and cell lines was measured, and bioinformatics analysis was performed. Exosomes were isolated and purified from HCC cells with LncSNHG16 overexpression/knockdown vectors and cocultured with TCs. Then, markers of the LncSNHG16/miR-942-3p/MMP9 axis were tested in TCs. Transwell assays and cell wound healing assays were designed to examine the invasion and migration of HCC cells after coincubation with TCs. RNA immunoprecipitation (RIP) assays and dual-luciferase gene reporter assays were performed to verify the binding effect of LncSNHG16, miR-942-3p, and MMP9 mRNA. In vivo, experimental animal models were established to confirm the effect of exosomal LncSNHG16-induced MMP9 expression on HCC metastasis. RESULTS Exosomal LncSNHG16 was phagocytized by TCs and downregulated miR-942-3p, which induced targeted MMP9 upregulation, and it had specific binding sites with miR-942-3p in TCs to facilitate the migration of HCC cells in vitro and in vivo. Exosomal LncSNHG16 was found to act as a competing endogenous RNA of the miR-942-3p/MMP9 axis in TCs. CONCLUSION Tumour-derived exosomal LncSNHG16 modulates MMP9 via competitively binding to miR-942-3p in TCs, thus promoting the metastasis of HCC.
Collapse
Affiliation(s)
- Ying Xu
- Shandong Cancer Hospital and Institute, Shandong Fist Medical University and Shandong Academy of Medical Science, No 440, Jiyan Road, Ji'nan, Shandong, China.
| | | | - Zhongchao Li
- Shandong Cancer Hospital and Institute, Shandong Fist Medical University and Shandong Academy of Medical Science, No 440, Jiyan Road, Ji'nan, Shandong, China
| | - Ziming Liu
- Shandong Fist Medical University and Shandong Academy of Medical Science, Ji'nan, Shandong, China
| | - Guangyang Qin
- Shandong Fist Medical University and Shandong Academy of Medical Science, Ji'nan, Shandong, China
| | - Yifu Chu
- Shandong Fist Medical University and Shandong Academy of Medical Science, Ji'nan, Shandong, China
| |
Collapse
|
776
|
Liu C, Li Z, Xi H. Bioinformatics analysis and in vivo validation of ferroptosis-related genes in ischemic stroke. Front Pharmacol 2022; 13:940260. [PMID: 36506580 PMCID: PMC9729703 DOI: 10.3389/fphar.2022.940260] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Ischemic stroke (IS) is a neurological condition associated with high mortality and disability rates. Although the molecular mechanisms underlying IS remain unclear, ferroptosis was shown to play an important role in its pathogenesis. Hence, we applied bioinformatics analysis to identify ferroptosis-related therapeutic targets in IS. IS-related microarray data from the GSE61616 dataset were downloaded from the Gene Expression Omnibus (GEO) database and intersected with the FerrDb database. In total, 33 differentially expressed genes (DEGs) were obtained and subjected to functional enrichment and protein-protein interaction (PPI) network analyses. Four candidate genes enriched in the HIF-1 signaling pathway (HMOX1, STAT3, CYBB, and TLR4) were selected based on the hierarchical clustering of the PPI dataset. We also downloaded the IR-related GSE35338 dataset and GSE58294 dataset from the GEO database to verify the expression levels of these four genes. ROC monofactor analysis demonstrated a good performance of HMOX1, STAT3, CYBB, and TLR4 in the diagnosis of ischemic stroke. Transcriptional levels of the above four genes, and translational level of GPX4, the central regulator of ferroptosis, were verified in a mouse model of middle cerebral artery occlusion (MCAO)-induced IS by qRT-PCR and western blotting. Considering the regulation of the HIF-1 signaling pathway, dexmedetomidine was applied to the MCAO mice. We found that expression of these four genes and GPX4 in MCAO mice were significantly reduced, while dexmedetomidine reversed these changes. In addition, dexmedetomidine significantly reduced MCAO-induced cell death, improved neurobehavioral deficits, and reduced the serum and brain levels of inflammatory factors (TNF-α and IL-6) and oxidative stress mediators (MDA and GSSG). Further, we constructed an mRNA-miRNA-lncRNA network based on the four candidate genes and predicted possible transcription factors. In conclusion, we identified four ferroptosis-related candidate genes in IS and proposed, for the first time, a possible mechanism for dexmedetomidine-mediated inhibition of ferroptosis during IS. These findings may help design novel therapeutic strategies for the treatment of IS.
Collapse
Affiliation(s)
- Chang Liu
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China,The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China,Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhixi Li
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China,The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China,Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjie Xi
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China,Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,*Correspondence: Hongjie Xi,
| |
Collapse
|
777
|
Zou X, Liu S, Zou H, Zhou W, Fu H, Wei J, Zhang J, Zeng H, Tan T, Zhou W, Wu H, Chen X, Zhou X. Inflammatory mechanisms of Ginkgo Biloba extract in improving memory functions through lncRNA-COX2/NF-κB pathway in mice with status epilepticus. CNS Neurosci Ther 2022; 29:471-482. [PMID: 36419341 PMCID: PMC9804085 DOI: 10.1111/cns.14019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE This study was to explore whether Ginkgo biloba extract (GBE) improve memory impairment by alleviating neuroinflammation signaling in mice with status epilepticus. METHODS The status epilepticus (SE) mice model was established by pilocarpine and treated with 100 mg / kg of GBE for 14 days. Spontaneous alternation of Y-maze and new object recognition were used to explore memory impairment. To examine glial cell activation, we performed immunohistochemistry and immunofluorescence staining. The activation of NF-κB signaling and the expression level of lncRNA-COX2 were detected by Western blot and qRT-PCR, respectively. Adeno-associated virus lncRNA-COX2 was injected into mice for overexpression of lncRNA-COX2. RESULTS After GBE treatment, the spontaneous alternation rate and the recognition coefficient in SE mice were both increased. Moreover, activation of glial cells, NF-κB signaling and lncRNA-COX2 were significantly decreased in SE mice. In the GBE-treated SE mice with lncRNA-COX2 overexpression, NF-κB signaling was up-regulated again; the reduced level of inflammation factors was reversed; the GBE-rescued spontaneous alternation rate of Y-maze was eliminated. CONCLUSION Our results suggested that GBE reduces the hippocampal inflammation by down-regulating lncRNA-COX2 / NF-κB signaling in the SE mice, leading to the decrease of neuronal damage and the improvement of memory functions.
Collapse
Affiliation(s)
- Xiaopei Zou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Si Liu
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Huihui Zou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Wanfei Zhou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Huaili Fu
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Jiana Wei
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Jiakang Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Haoxuan Zeng
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Tian Tan
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Wenbin Zhou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Heyong Wu
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Xinrun Chen
- Department of Clinical medicineThe First Clinical College of Guangzhou Medical UniversityGuangzhouChina
| | - Xianju Zhou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
778
|
Affiliation(s)
- Xing Chen
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| | - Li Huang
- The Future Laboratory, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
779
|
Noncoding RNA in the Regulation of Acute Aortic Dissection: From Profile to Mechanism. Cardiovasc Ther 2022; 2022:2371401. [PMID: 36474715 PMCID: PMC9699736 DOI: 10.1155/2022/2371401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Aortic dissection is a life-threatening condition caused by a tear in the intimal layer of the aorta or bleeding within the aortic wall, resulting in the separation of the layers of the aortic wall. As Nienaber reported, aortic dissection is most common in people 65-75 years old and has an incidence of 35 cases per 100,000 people per year in this population. Many pathogenic factors are involved in aortic dissection, including hypertension, dyslipidemia, and abnormality of the aortic intima caused by genetic variation. However, with the development of gene sequencing and transgenic technology, genetic methods are being used for the diagnosis and treatment of diseases, including acute aortic dissection. Genetic research on acute aortic dissection began around 2006. Recently, research on acute aortic dissection has mainly focused on microRNA (miRNA). Studies have found that miRNA plays a critical regulatory role in the occurrence and development of acute aortic dissection. By regulating miRNA expression, acute aortic dissection can be prevented and treated.
Collapse
|
780
|
Ye M, Zhao L, Zhang L, Wu S, Li Z, Qin Y, Lin F, Pan L. LncRNA NALT1 promotes colorectal cancer progression via targeting PEG10 by sponging microRNA-574-5p. Cell Death Dis 2022; 13:960. [PMID: 36385135 PMCID: PMC9669023 DOI: 10.1038/s41419-022-05404-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022]
Abstract
Colorectal cancer (CRC) is currently one of the commonest tumors and the main reason for cancer-related deaths worldwide. It has been reported that long non-coding RNAs (lncRNAs) act as important indicators and regulators in various cancers. There is an urgent need to explore new lncRNA biomarkers in CRC, as well as their functions and molecular mechanisms. NALT1 has been implicated in the occurrence of gastric cancer (GC). However, the detailed function and mechanism of NALT1 in CRC progress have not been reported. In this study, RT-qPCR was conducted to detect the expression of NALT1 in 76 CRC patients ranging from stages I through IV. To assess the biological function of NALT1, loss- and gain-of-function experiments were conducted both in vivo and in vitro. Moreover, RNA-seq, bioinformatics analysis, RNA pulldown assay, dual-luciferase reporter, Ago2-RIP, quantitative PCR, Western blot assays, and rescue experiments were performed to reveal the molecular mechanisms of competitive endogenous RNAs (ceRNAs). It was observed that high expression of NALT1 was markedly correlated with advanced cancer stage in the clinic. Functionally, NALT1 downregulation inhibited cell proliferation, migration and invasion, whereas NALT1 overexpression exhibited an opposite trend both in vivo and in vitro. Bioinformatics analysis, RNA pulldown, Ago2-RIP, and luciferase reporter assays showed that miRNA-574-5p was a target of NALT1. Additionally, dual-luciferase reporter assays, Ago2-RIP, and rescue experiments indicated that miRNA-574-5p could target the PEG10 gene directly. Our results suggested that NALT1 promoted CRC proliferation and migration by sponging miRNA-574-5p to upregulate PEG10 expression, and implied that NALT1 might act as a promising biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Mengling Ye
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lu Zhao
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
| | - Lu Zhang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
| | - Siyi Wu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
| | - Zhao Li
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yi Qin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China.
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China.
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China.
| |
Collapse
|
781
|
Zhang H, Liu Y, Wang W, Liu F, Wang W, Su C, Zhu H, Liao Z, Zhang B, Chen X. ALKBH5-mediated m 6A modification of lincRNA LINC02551 enhances the stability of DDX24 to promote hepatocellular carcinoma growth and metastasis. Cell Death Dis 2022; 13:926. [PMID: 36335087 PMCID: PMC9637195 DOI: 10.1038/s41419-022-05386-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022]
Abstract
As the most important RNA epigenetic regulation in eukaryotic cells, N6-metheyladenosine (m6A) modification has been demonstrated to play significant roles in cancer progression. However, this modification in long intergenic non-coding RNAs (lincRNAs) and the corresponding functions remain elusive. Here, we showed a lincRNA LINC02551 was downregulated by AlkB Homolog 5 (ALKBH5) overexpression in a m6A-dependent manner in hepatocellular carcinoma (HCC). Functionally, LINC02551 was required for the growth and metastasis of HCC. Mechanistically, LINC02551, a bona fide m6A target of ALKBH5, acted as a molecular adaptor that blocked the combination between DDX24 and a E3 ligase TRIM27 to decrease the ubiquitination and subsequent degradation of DDX24, ultimately facilitating HCC growth and metastasis. Thus, ALKBH5-mediated LINC02551 m6A methylation was required for HCC growth and metastasis.
Collapse
Affiliation(s)
- Hongwei Zhang
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China
| | - Yachong Liu
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China
| | - Wei Wang
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China
| | - Furong Liu
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China
| | - Weijian Wang
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China
| | - Chen Su
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China
| | - He Zhu
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China
| | - Zhibin Liao
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China
| | - Bixiang Zhang
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China ,Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, 430030 China
| | - Xiaoping Chen
- grid.33199.310000 0004 0368 7223Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030 China ,Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Wuhan, 430030 China
| |
Collapse
|
782
|
Yang J, Li Z, Wang L, Yun X, Zeng Y, Ng JP, Lo H, Wang Y, Zhang K, Law BYK, Wong VKW. The role of non-coding RNAs (miRNA and lncRNA) in the clinical management of rheumatoid arthritis. Pharmacol Res 2022; 186:106549. [DOI: 10.1016/j.phrs.2022.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
783
|
Biogenesis, classification, and role of LncRNAs in tumor angiogenesis: A focus on tumor and its neighbouring cells, and interaction with miRNAs. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
784
|
Han D, Liu Y, Liu C, Jing C, Jia T, Wu Y, Si L, Yin Z, Yang G, Song T. Effect of long noncoding RNA NONHSAT070806 on the apoptosis, proliferation, migration, invasion and tumorigenesis of bladder cancer. Transl Androl Urol 2022; 11:1544-1554. [PMID: 36507479 PMCID: PMC9732701 DOI: 10.21037/tau-22-644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Background Bladder cancer (BC) is the most common malignancy of the urinary tract in China, and the extent of tumor invasion negatively correlates with prognosis. The mechanism of tumor invasion in BC has been unclear until recent studies revealed the critical role of long noncoding RNAs (lncRNAs) in the proliferation and invasion of tumors. Several lncRNAs have been reported to be associated with pathogenesis in BC, but not specifically. Methods We used a microarray to screen the candidate lncRNAs with different expressions in BC. The expression of the lncRNAs in BC tissues or cells was identified by reverse transcription polymerase chain reaction (RT-PCR) or quantitative real-time PCR (qRT-PCR), and their ectopic expressions were measured via transfection experiment. The function of the lncRNAs was investigated by flow cytometry, caspase-3 enzyme linked immunosorbent assay (ELISA), Cell Counting Kit-8 (CCK-8), wound healing, transwell and colony formation experiments in vitro and xenograft experiments in vivo. Results We identified a novel sense lncRNA, NONHSAT070806, that was downregulated in BC tissues and cells and negatively correlated with level of tumor invasion in patients. Furthermore, overexpression of NONHSAT070806 induced apoptosis of T24 and 5637 cells, inhibited the proliferation, migration and invasion of BC cells, and attenuated the tumorigenesis of BC cells both in vitro and in vivo. Conclusions NONHSAT070806 may act as a suppressor of BC and is a potential indicator of the invasiveness of BC.
Collapse
Affiliation(s)
- Dong Han
- Senior Department of Urology, the Third Medical Center of PLA General Hospital, Beijing, China;,Department of Ultrasound Diagnosis, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Yu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chenghua Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chendi Jing
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Tongyu Jia
- Senior Department of Urology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Yangyang Wu
- Senior Department of Urology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Libu Si
- Department of Ultrasound Diagnosis, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Zhaoyang Yin
- Senior Department of Urology, the Third Medical Center of PLA General Hospital, Beijing, China;,Department of Urology, Shandong Provincial Cops Hospital of Chinese People’s Armed Police Force, Jinan, China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tao Song
- Senior Department of Urology, the Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
785
|
Miao L, Batty KR, Jackson AN, Pieno HA, Rhoades MW, Kojima S. Genetic and environmental perturbations alter the rhythmic expression pattern of a circadian long non-coding RNA, Per2AS, in mouse liver. F1000Res 2022; 11:1073. [PMID: 36250003 PMCID: PMC9551389 DOI: 10.12688/f1000research.125628.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) play a wide variety of biological roles without encoding a protein. Although the functions of many lncRNAs have been uncovered in recent years, the regulatory mechanism of lncRNA expression is still poorly understood despite that the expression patterns of lncRNAs are much more specific compared to mRNAs. Here, we investigated the rhythmic expression of Per2AS, a novel lncRNA that regulates circadian rhythms. Given that Per2AS expression is antiphasic to Period2 ( Per2), a core circadian clock gene, and transcribed from the antisense strand of Per2, we hypothesized that the rhythmic Per2AS expression is driven either by its own promoter or by the rhythmic Per2 transcription via transcriptional interference. Methods: We leveraged existing circadian RNA-seq datasets and analyzed the expression patterns of Per2AS and Per2 in response to the genetic or environmental disruption of the circadian rhythm in mouse liver. We tested our hypotheses by comparing the changes in the expression patterns of Per2AS and Per2. Conclusions: We found that, in some cases, Per2AS expression is independently controlled by other circadian transcription factors. In other cases, the pattern of expression change is consistent with both transcriptional interference and independent regulation hypotheses. Although additional experiments will be necessary to distinguish these possibilities, findings from this work contribute to a deeper understanding of the mechanism of how the expression of lncRNA is regulated.
Collapse
Affiliation(s)
- Lin Miao
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kyle R. Batty
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA,Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ayana N. Jackson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Heather A. Pieno
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Maisy W. Rhoades
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shihoko Kojima
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA,Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg, VA, 24061, USA,
| |
Collapse
|
786
|
Lu Q, Liu L, Wang S, Zhang Q, Li L. Comprehensive analysis of m5C-Related lncRNAs in the prognosis and immune landscape of hepatocellular carcinoma. Front Genet 2022; 13:990594. [PMID: 36339006 PMCID: PMC9630339 DOI: 10.3389/fgene.2022.990594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/03/2022] [Indexed: 02/13/2024] Open
Abstract
5-Methyladenosine (m5C) is a type of epigenetic modification involved in the progression of various cancers. To investigate the role of m5C-related long non-coding RNAs (lncRNAs) in the prognosis and immune cell infiltration in hepatocellular carcinoma (HCC), we obtained patients' clinical information and transcriptome data of HCC from the Cancer Genome Atlas (TCGA) database. We applied Pearson correlation analysis to construct an m5C-related lncRNA-messenger RNA (mRNA) co-expression network. Univariate Cox analysis, least absolute shrinkage and selection operator (LASSO), and multivariate Cox analysis were employed to establish an m5C-related lncRNA prognostic risk model. We then verified the model using Kaplan-Meier analysis, principal component analysis, as well as univariate and multivariate Cox analyses. The expression of m5C-related lncRNAs was validated in HCC tissues and different cell lines. Combining the risk score and clinicopathological features, a nomogram was established for predicting the overall survival (OS) of HCC patients. Furthermore, gene set enrichment analysis (GSEA) revealed that some tumor-associated pathways were significantly enriched in the high-risk group. Immune cell infiltration analysis demonstrated that the levels of Treg cells, neutrophils, and M2 macrophages were higher in the high-risk group. In addition, patients with high tumor mutation burden (TMB) had worse OS than those with low TMB. We also assessed the immune checkpoint level and chemotherapeutic agent sensibility. Then in vitro experiments were performed to examine the biological function of MKLN1-AS in HCC cells and found that knockdown of MKLN1-AS suppressed the proliferation, migration, and invasion. In conclusion, m5C-related lncRNAs played a critical role in predicting the prognosis of patients with HCC and may serve as new therapeutic targets for HCC patients.
Collapse
Affiliation(s)
- Qian Lu
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Lianyu Liu
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuai Wang
- The Graduate School, Xuzhou Medical University, Xuzhou, China
| | - Qi Zhang
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Li Li
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
787
|
Glycation-Associated Diabetic Nephropathy and the Role of Long Noncoding RNAs. Biomedicines 2022; 10:biomedicines10102623. [PMID: 36289886 PMCID: PMC9599575 DOI: 10.3390/biomedicines10102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The glycation of various biomolecules is the root cause of many pathological conditions associated with diabetic nephropathy and end-stage kidney disease. Glycation imbalances metabolism and increases renal cell injury. Numerous therapeutic measures have narrowed down the adverse effects of endogenous glycation, but efficient and potent measures are miles away. Recent advances in the identification and characterization of noncoding RNAs, especially the long noncoding RNAs (lncRNAs), have opened a mammon of new biology to explore the mitigations for glycation-associated diabetic nephropathy. Furthermore, tissue-specific distribution and condition-specific expression make lncRNA a promising key for second-generation therapeutic interventions. Though the techniques to identify and exemplify noncoding RNAs are rapidly evolving, the lncRNA study encounters multiple methodological constraints. This review will discuss lncRNAs and their possible involvement in glycation and advanced glycation end products (AGEs) signaling pathways. We further highlight the possible approaches for lncRNA-based therapeutics and their working mechanism for perturbing glycation and conclude our review with lncRNAs biology-related future opportunities.
Collapse
|
788
|
Shi J, Xu C, Wu Z, Bao W, Wu S. Integrated analysis of lncRNA-mediated ceRNA network involved in immune regulation in the spleen of Meishan piglets. Front Vet Sci 2022; 9:1031786. [PMID: 36337195 PMCID: PMC9627291 DOI: 10.3389/fvets.2022.1031786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Meishan pigs are a famous local pig breed in China, with high fertility and early sexual maturity, and stronger immunity compared to other breeds. The spleen is the largest lymphoid organ in pigs and performs essential functions, such as those relating to immunity and haematopoiesis. The invasion of many pathogenic microorganisms in pigs is associated with spleen damage. Long non-coding RNAs participate in a broad range of biological processes and have been demonstrated to be associated with splenic immune regulation. However, the expression network of mRNAs and lncRNAs in the spleen of Meishan pigs remains unclear. This study collected spleen tissues from Meishan piglets at three different ages as a model, and mRNA and lncRNA transcripts were profiled for each sample. Additionally, 1,806 differential mRNAs and 319 differential lncRNAs were identified. A complicated interaction between mRNAs and lncRNAs was identified via WGCNA, demonstrating that lncRNAs are a crucial regulatory component in mRNA. The results show that the modules black and red have similar mRNA and lncRNA transcription patterns and are mainly involved in the process of the immune defense response. The core genes (DHX58 and IFIT1) and key lncRNAs (TCONS-00002102 and TCONS-00012474) of piglet spleen tissue were screened using the ceRNA network. The expression of these genes is related to the immune response of pigs. Our research may contribute to a further understanding of mRNA and lncRNA expression in the spleen of piglets, and provide new ideas to improve the disease resistance of piglets.
Collapse
Affiliation(s)
- Jing Shi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chao Xu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- *Correspondence: Shenglong Wu
| |
Collapse
|
789
|
Han S, Cao Y, Guo T, Lin Q, Luo F. Targeting lncRNA/Wnt axis by flavonoids: A promising therapeutic approach for colorectal cancer. Phytother Res 2022; 36:4024-4040. [PMID: 36227024 DOI: 10.1002/ptr.7550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/β-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/β-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Yunyun Cao
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
790
|
Transcriptome Sequencing Analysis of lncRNA and mRNA Expression Profiles in Bone Nonunion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9110449. [PMID: 36275904 PMCID: PMC9581694 DOI: 10.1155/2022/9110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
Background Bone nonunion is a serious complication of fracture. This study explored the differentially expressed lncRNAs (DELs) and mRNAs (DEGs) and identified potential lncRNA-mRNA interactions in bone nonunion. Methods We extracted total RNA from three bone nonunion and three bone union patient tissue samples. RNA sequencing was performed to detect DELs and DEGs between bone nonunion and union tissue samples. The lncRNAs and genes with absolute log2-fold change (log2FC) > 1 and adjusted p value < 0.05 were further chosen for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. lncRNA and targeted mRNA interaction networks were constructed. Results We observed 179 DELs and 415 DEGs between the bone nonunion and union tissue samples. GO analysis indicated that DELs and DEGs were mainly enriched in the chondroitin sulfate proteoglycan biosynthetic process. DELs and DEGs were enriched in “ECM-receptor interaction” and “Staphylococcus aureus infection” KEGG pathways. Several potential lncRNA-mRNA interactions were also predicted. Conclusions This study identified bone nonunion-associated lncRNAs and mRNAs using deep sequencing that may be useful as potential biomarkers for bone nonunion.
Collapse
|
791
|
LINC00958 Inhibits Autophagy of Bladder Cancer Cells via Sponge Adsorption of miR-625-5p to Promote Tumor Angiogenesis and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2435114. [PMID: 36262285 PMCID: PMC9576423 DOI: 10.1155/2022/2435114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022]
Abstract
Objective This study further explored LINC00958's role in promoting tumor angiogenesis (AG) and oxidative stress (OS) development by inhibiting BC cell autophagy through sponge adsorption of miR-625-5p. Methods BC patients and healthy controls who visited our hospital between June 2017 and February 2019 were selected as the research group (RG) and the control group (CG), respectively, with a total of 133 study subjects. Peripheral blood LINC00958 and miR-625-5p in both cohorts of participants were detected. Additionally, human bladder transitional cell carcinoma cells (T24 and J82) and human normal urothelial cells (SV-HUC-1) were purchased. Alterations in cell biological behavior were observed after transfecting miR-625-5p-mimics, miR-625-5p-inhibition, and miR-625-5p-NC sequences into these cells, respectively. Besides, ELISA was performed to quantify inflammatory factors (IFs), AG indicators, and OS indexes in cells. Subsequently, a double luciferase reporter (DLR) assay was performed to verify the targeting relationship between LINC00958 and miR-625-5p. Finally, BALB/c-nu nude mice were purchased, and T24 cells transfected with silenced LINC00958 and miR-625-5p expression sequences were used to establish subcutaneous tumors to observe tumor growth and pathological changes. Results RG exhibited higher LINC00958 and lower miR-625-5p than CG. LINC00958 and miR-625-5p were strongly linked to myometrial invasion (MI), lymph node metastasis (LNM), distant metastasis (DM), and histology in BC patients, and the increase of LINC00958 and the decrease of miR-625-5p predicted an increased risk of prognostic death in such patients. After miR-625-5p inhibition, the capacity of BC cells to proliferate, invade, and migrate enhanced and the AG, inflammatory response, and OS injury increased, while the apoptosis rate and autophagy ability decreased. The DLR assay revealed inhibited LINC00958WT fluorescence activity by miR-625-5p-mimics, while the biological behavior of BC cells cotransfected with sh-LINC00958 and miR-625-5p-inhibition had no difference with the functions of sh-control and miR-625-5p-NC cotransfected cells. Finally, the nude mouse tumorigenesis experiment showed that the tumor mass, volume, and histopathological features of the sh-LINC00958 group were decreased compared with the sh-control group, while those of the miR-625-5p-inhibition group were increased versus miR-625-5p-NC. Conclusions In BC, LINC00958 is highly expressed while miR-625-5p is underexpressed. LINC00958 can inhibit cell autophagy to enhance cell activity; promote OS, inflammation, and AG; and regulate tumor immunity by targeting miR-625-5p, thus participating in the development of BC.
Collapse
|
792
|
The Crucial Role of AR-V7 in Enzalutamide-Resistance of Castration-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14194877. [PMID: 36230800 PMCID: PMC9563243 DOI: 10.3390/cancers14194877] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Androgen receptor splice variant 7 (AR-V7) has always been considered a key driver for triggering enzalutamide resistance of castration-resistant prostate cancer (CRPC). In recent years, both the homeostasis of AR-V7 protein and AR-V7’s relationship with LncRNAs have gained great attention with in-depth studies. Starting from protein stability and LncRNA, the paper discusses and summarizes the mechanisms and drugs that affect the CRPC patients’ sensitivity to enzalutamide by regulating the protein or transcriptional stability of AR-V7, hoping to provide therapeutic ideas for subsequent research to break through the CRPC therapeutic bottleneck. Abstract Prostate cancer (PCa) has the second highest incidence of malignancies occurring in men worldwide. The first-line therapy of PCa is androgen deprivation therapy (ADT). Nonetheless, most patients progress to castration-resistant prostate cancer (CRPC) after being treated by ADT. As a second-generation androgen receptor (AR) antagonist, enzalutamide (ENZ) is the current mainstay of new endocrine therapies for CRPC in clinical use. However, almost all patients develop resistance during AR antagonist therapy due to various mechanisms. At present, ENZ resistance (ENZR) has become challenging in the clinical treatment of CRPC. AR splice variant 7 (AR-V7) refers to a ligand-independent and constitutively active variant of the AR and is considered a key driver of ENZR in CRPC. In this review, we summarize the mechanisms and biological behaviors of AR-V7 in ENZR of CRPC to contribute novel insights for CRPC therapy.
Collapse
|
793
|
Cen S, Cai M, Wang Y, Lu X, Chen Z, Chen H, Fang Y, Wu C, Qiu S, Liu Z. Aberrant lncRNA–mRNA expression profile and function networks during the adipogenesis of mesenchymal stem cells from patients with ankylosing spondylitis. Front Genet 2022; 13:991875. [PMID: 36246583 PMCID: PMC9563993 DOI: 10.3389/fgene.2022.991875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: We have already demonstrated that mesenchymal stem cells from patients with ankylosing spondylitis (ASMSCs) exhibited greater adipogenic differentiation potential than those from healthy donors (HDMSCs). Here, we further investigated the expression profile of long noncoding RNA (lncRNA) and mRNA, aiming to explore the underlying mechanism of abnormal adipogenic differentiation in ASMSCs.Methods: HDMSCs and ASMSCs were separately isolated and induced with adipogenic differentiation medium for 10 days. Thereafter, lncRNAs and mRNAs that were differentially expressed (DE) between HDMSCs and ASMSCs were identified via high-throughput sequencing and confirmed by quantitative real-time PCR (qRT–PCR) assays. Then, the DE genes were annotated and enriched by GO analysis. In addition, protein interaction network was constructed to evaluate the interactions between DE mRNAs and to find hub nodes and study cliques. Besides, co-expression network analysis was carried out to assess the co-expressions between DE mRNA and DE lncRNAs, and competing endogenous RNA (ceRNA) network analysis were conducted to predict the relationships among lncRNAs, mRNAs and miRNAs. The signaling pathways based on the DE genes and the predicted DE genes were enriched by KEGG analysis.Results: A total of 263 DE lncRNAs and 1376 DE mRNAs were found during adipogenesis in ASMSCs. qRT–PCR indicated that the expression of the top 20 mRNAs and the top 10 lncRNAs was consistent with the high-throughput sequencing data. Several lncRNAs (NR_125386.1, NR_046473.1 and NR_038937.1) and their target genes (SPN and OR1AIP2), together with the significantly co-expressed pairs of DE lncRNAs and DE mRNAs (SLC38A5-ENST00000429588.1, TMEM61-ENST00000400755.3 and C5orf46-ENST00000512300.1), were closely related to the enhanced adipogenesis of ASMSCs by modulating the PPAR signaling pathway.Conclusion: Our study analyzed the expression profiles of DE lncRNAs and DE mRNAs during adipogenesis in ASMSCs and HDMSCs. Several DE lncRNAs, DE mRNAs and signaling pathways that probably participate in the aberrant adipogenesis of ASMSCs were selected for future study. These results will likely provide potential targets for our intervention on fat metaplasia and subsequent new bone formation in patients with AS in the future.
Collapse
Affiliation(s)
- Shuizhong Cen
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mingxi Cai
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yihan Wang
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuyi Lu
- Department of Dermatology, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhipeng Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haobo Chen
- Department of Orthopedics, People’s Hospital of Taishan, Jiangmen, China
| | - Yingdong Fang
- Department of Orthopedics, People’s Hospital of Taishan, Jiangmen, China
| | - Changping Wu
- Department of Orthopedics, People’s Hospital of Taishan, Jiangmen, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Sujun Qiu, ; Zhenhua Liu,
| | - Zhenhua Liu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Sujun Qiu, ; Zhenhua Liu,
| |
Collapse
|
794
|
Zhao H, Li L, Zhao N, Lu A, Lu C, He X. The effect of long non-coding RNAs in joint destruction of rheumatoid arthritis. Front Cell Dev Biol 2022; 10:1011371. [PMID: 36263019 PMCID: PMC9574091 DOI: 10.3389/fcell.2022.1011371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease accompanied with joint destruction. Serious joint destruction will eventually lead to disability and the decline of life quality in RA patients. At present, the therapeutic effect of drugs to alleviate joint destruction in RA is limited. Recently, accumulating evidences have shown that long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of joint diseases. Therefore, this paper reviews the expression change and the action mechanism of lncRNAs in joint destruction of RA in recent years. A more comprehensive understanding of the role of lncRNAs in joint destruction will help the treatment of RA.
Collapse
Affiliation(s)
- Hanxiao Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| |
Collapse
|
795
|
Huang Z, Liu S, Lu N, Xu L, Shen Q, Huang Z, Huang Z, Saw PE, Xu X. Nucleus-specific RNAi nanoplatform for targeted regulation of nuclear lncRNA function and effective cancer therapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20220013. [PMID: 37325502 PMCID: PMC10191018 DOI: 10.1002/exp.20220013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/15/2022] [Indexed: 06/17/2023]
Abstract
In the context of cancer therapy, a recently identified therapeutic target is represented by the essential subtype of RNA transcripts - the long noncoding RNAs (lncRNA). While this is the case, it is especially difficult to successfully regulate the expression of this subtype in vivo, particularly due to the protection granted by the nuclear envelope of nuclear lncRNAs. This study documents the development of a nucleus-specific RNA interference (RNAi) nanoparticle (NP) platform for the targeted regulation of the nuclear lncRNA function, in order to effectuate successful cancer therapy. An NTPA (nucleus-targeting peptide amphiphile) and an endosomal pH-responsive polymer make up the novel RNAi nanoplatform in development, which is capable of complexing siRNA. The nanoplatform is capable of accumulating greatly in the tumor tissues and being internalized by tumor cells, following intravenous administration. The exposed complexes of the NTPA/siRNA may conveniently escape from the endosome with the pH-triggered NP disassociation, following which it can target the nucleus by specifically interacting with the importin α/β heterodimer. In orthotopic and subcutaneous xenograft tumor models, this would result in a notable suppression of the expression of nuclear lncNEAT2 as well as greatly impede the growth of tumors in liver cancer.
Collapse
Affiliation(s)
- Zixian Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Shaomin Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- School of MedicineSun Yat‐sen UniversityShenzhenP. R. China
| | - Nan Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Qian Shen
- The Second Affiliated Hospital, Department of Clinical Pharmacology, Hengyang Medical SchoolUniversity of South ChinaHengyangP. R. China
| | - Zhuoshan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Zhiquan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
- The Second Affiliated Hospital, Department of Clinical Pharmacology, Hengyang Medical SchoolUniversity of South ChinaHengyangP. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
- The Second Affiliated Hospital, Department of Clinical Pharmacology, Hengyang Medical SchoolUniversity of South ChinaHengyangP. R. China
| |
Collapse
|
796
|
Wang Y, Gao Y, Zhang C, Yue J, Wang R, Liu H, Yang X, Zhang Y, Yang R. Tumor Environment Promotes Lnc57Rik-Mediated Suppressive Function of Myeloid-Derived Suppressor Cells. THE JOURNAL OF IMMUNOLOGY 2022; 209:1401-1413. [DOI: 10.4049/jimmunol.2200195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022]
|
797
|
Du H, Huang Z, Zhou X, Kuang X, Long C, Tang H, Zeng J, Huang H, Liu H, Zhu B, Fu L, Hu K, Lin S, Wang H, Zhang Q, Yan J, Shen H. Oxidative stress-induced lncRNA CYLD-AS1 promotes RPE inflammation via Nrf2/miR-134-5p/NF-κB signaling pathway. FASEB J 2022; 36:e22577. [PMID: 36165267 DOI: 10.1096/fj.202200887r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/28/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022]
Abstract
Oxidative stress-induced damage to and dysfunction of retinal pigment epithelium (RPE) cells are important pathogenetic factors of age-related macular degeneration (AMD); however, the underlying molecular mechanism is not fully understood. Long noncoding RNAs (lncRNAs) have important roles in various biological processes. In this study, using an oxidative damage model in RPE cells, we identified a novel oxidation-related lncRNA named CYLD-AS1. We further revealed that the expression of CYLD-AS1 was increased in RPEs during oxidative stress. Depletion of CYLD-AS1 promoted cell proliferation and mitochondrial function and protected RPE cells against hydrogen peroxide (H2 O2 )-induced damage. Mechanistically, CYLD-AS1 also regulated the expression of NRF2, which is related to oxidative stress, and NF-κB signaling pathway members, which are related to inflammation. Remarkably, these two signaling pathways were mediated by the CYLD-AS1 interactor miR-134-5p. Moreover, exosomes secreted by CYLD-AS1 knockdown RPE cells had a lower proinflammatory effect than those secreted by control cells. In summary, our study revealed that CYLD-AS1 affects the oxidative stress-related and inflammatory functions of RPE cells by sponging miR-134-5p to mediate NRF2/NF-κB signaling pathway activity, suggesting that targeting CYLD-AS1 could be a promising strategy for the treatment of AMD and related diseases.
Collapse
Affiliation(s)
- Han Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zixin Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Han Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huijun Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Deparment of Ophthalmology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Binbin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Licheng Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ke Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - ShuiBin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hua Wang
- Department of Intensive Care, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
798
|
Xiang Y, Feng L, Liu H, Liu Y, Li J, Su L, Liao X. SIPA1 Regulates LINC01615 to Promote Metastasis in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14194815. [PMID: 36230738 PMCID: PMC9562673 DOI: 10.3390/cancers14194815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Breast cancer is a malignant tumor that often endangers women. After undergoing surgery and supplementary chemotherapy, however, tumor recurrence has not been well researched. The primary cause is high metastatic rates. Hence, bioinformatic and functional analyses were performed to indicate the effect of LINC01615 on breast cancer. We revealed that LINC01615 is regulated by the transcription factor SIPA1 in promoting breast cancer cell malignancy. Abstract Long non-coding RNAs (lncRNAs) are reported to play an important regulatory effect in carcinogenesis and malignancy. We found by high-throughput sequencing that LINC01615 is upregulated in breast cancer patients and reduces patients’ overall survival. In vivo and in vitro experiments, we clarified that overexpression of LINC01615 can promote breast cancer cell metastasis ability. The expression of LINC01615 is regulated by the transcriptional activator SIPA1, thereby promoting carcinogenesis in breast cancer cells. Our research clarified that LINC01615 can act as an oncogenic factor in promoting the development of breast cancer.
Collapse
Affiliation(s)
- Yuan Xiang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Lingyun Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430081, China
| | - Hui Liu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuhuan Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430081, China
| | - Jiapeng Li
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430081, China
- Correspondence: (L.S.); (X.L.); Tel.: +86-027-8779-2072 (L.S.); +86-027-6889-3590 (X.L.); Fax: +86-027-6889-3590 (X.L.)
| | - Xinghua Liao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
- Correspondence: (L.S.); (X.L.); Tel.: +86-027-8779-2072 (L.S.); +86-027-6889-3590 (X.L.); Fax: +86-027-6889-3590 (X.L.)
| |
Collapse
|
799
|
Zhao Y, Dhani S, Zhivotovsky B. Unveiling caspase-2 regulation by non-coding RNAs. Cell Death Dis 2022; 13:834. [PMID: 36171196 PMCID: PMC9519946 DOI: 10.1038/s41419-022-05270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/23/2023]
Abstract
Non-coding RNAs (ncRNAs) are a group of RNA molecules, such as small nucleolar RNAs, circular RNAs (circRNAs), microRNAs (miRNAs) and long-noncoding RNAs (ncRNAs), that do not encode proteins. Although their biofunctions are not well-understood, many regulatory ncRNAs appear to be highly involved in regulating the transcription and translation of several genes that have essential biological roles including cell differentiation, cell death, metabolism, tumorigenesis and so on. A growing number of studies have revealed the associations between dysregulated ncRNAs and caspases involved in cell death in numerous human diseases. As one of the initiator and executor caspases, caspase-2 is the most evolutionally conserved caspase in mammals, exerting both apoptotic and non-apoptotic functions. A great deal of studies has shown the involvement of caspase-2 as a tumor suppressor in multiple oncogene-driven cancers, and yet a comprehensive understanding of its biological roles remains largely unknown. In this review, we highlight a compilation of studies focused on the interaction between caspase-2 and miRNAs/lncRNAs in the context of different diseases in order to deepen our knowledge on the regulatory biofunctions of caspase-2 and, furthermore, provide more insight into understanding the role that ncRNAs/caspase-2 axis plays in the development of human diseases.
Collapse
Affiliation(s)
- Yun Zhao
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Shanel Dhani
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
800
|
Liu L, Sun B, Zhang F, Zhong Z, Zhang Y, Li F, Zhang T, Khatib H, Wang X. lncRNA MPFAST Promotes Proliferation and Fatty Acid Synthesis of Bovine Mammary Epithelial Cell by Sponging miR-103 Regulating PI3K-AKT Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12004-12013. [PMID: 36112519 DOI: 10.1021/acs.jafc.2c04789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) have an essential role in mammary gland development and lactation. Our earlier study showed that the lncRNA mammary proliferation and fatty acid synthesis-associated transcript (MPFAST) is highly expressed in the Holstein cow mammary gland during the middle lactation period compared to the dry period, which indicates its potential role in lactation. Therefore, gain- and loss-of-function experiments were performed on bovine mammary epithelial cells (BMECs) by cell counting kit 8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), real-time quantitative polymerase chain reaction (RT-qPCR), and western blot. The results indicated that MPFAST promoted the viability and proliferation of BMECs. The oil red O staining and cellular triglyceride assay further showed that MPFAST promoted the number of lipid droplets and cellular triglyceride synthesis in BMECs. Bioinformatics analysis showed that MPFAST could act as a molecular sponge for miR-103, and PIK3R1 was a potential target of miR-103, which was further confirmed by the dual-luciferase reporter assay, RT-qPCR, and western blot. The overexpression of MPFAST promoted the expression of PIK3R1 at mRNA and protein levels. It also significantly increased the mRNA relative expression levels of AKT, mTOR, and SREBP1, and the protein relative expression levels of AKT and p-AKT in the PI3K-AKT signaling pathway. In contrast, the inhibition of MPFAST resulted in the downregulation of the PI3K-AKT signaling pathway genes. These results indicated that MPFAST regulates the expression of the genes in the PI3K-AKT signaling pathway through sponging miR-103 and promotes the proliferation and synthesis of fatty acids of BMECs. Our results would provide a new direction for further exploring the regulatory mechanism of lncRNA in the mammary gland.
Collapse
Affiliation(s)
- Lihua Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bing Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhenyu Zhong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuelang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tongtong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|