751
|
Augeri AL, Tsongalis GJ, Van Heest JL, Maresh CM, Thompson PD, Pescatello LS. The endothelial nitric oxide synthase −786 T>C polymorphism and the exercise-induced blood pressure and nitric oxide responses among men with elevated blood pressure. Atherosclerosis 2009; 204:e28-34. [DOI: 10.1016/j.atherosclerosis.2008.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 10/30/2008] [Accepted: 12/08/2008] [Indexed: 10/21/2022]
|
752
|
Stokes KY, Dugas TR, Tang Y, Garg H, Guidry E, Bryan NS. Dietary nitrite prevents hypercholesterolemic microvascular inflammation and reverses endothelial dysfunction. Am J Physiol Heart Circ Physiol 2009; 296:H1281-8. [PMID: 19252084 DOI: 10.1152/ajpheart.01291.2008] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nitrite anion is an endogenous product of mammalian nitric oxide (NO) metabolism, a key intermediate in the nitrogen cycle in plants, and a constituent of many foods. Research over the past 6 years has revealed surprising biological and cytoprotective activity of this anion. Hypercholesterolemia causes a proinflammatory phenotype in the microcirculation. This phenotype appears to result from a decline in NO bioavailability that results from a reduction in NO biosynthesis, inactivation of NO by superoxide, or both. Since nitrite has been shown to be potently cytoprotective and restore NO biochemical homeostasis, we investigated if supplemental nitrite could attenuate microvascular inflammation caused by a high cholesterol diet. C57Bl/6J mice were fed either a normal diet or a high cholesterol diet for 3 wk to induce microvascular inflammation. Mice on the high cholesterol diet received either nitrite-free drinking water or supplemental nitrite at 33 or 99 mg/l ad libitum in their drinking water. The results from this investigation reveal that mice fed a cholesterol-enriched diet exhibited significantly elevated leukocyte adhesion to and emigration through the venular endothelium as well as impaired endothelium-dependent relaxation in arterioles. Administration of nitrite in the drinking water inhibited the leukocyte adhesion and emigration and prevented the arteriolar dysfunction. This was associated with sparing of reduced tetrahydrobiopterin and decreased levels of C-reactive protein. These data reveal novel anti-inflammatory properties of nitrite and implicate the use of nitrite as a new natural therapy for microvascular inflammation and endothelial dysfunction associated with hypercholesterolemia.
Collapse
Affiliation(s)
- Karen Y Stokes
- Department of Molecular and Cellular Physiology, Brown Foundation Institute of Molecular Medicine, The Univ. of Texas-Houston Health Science Center, 1825 Pressler St., SRB 530B, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
753
|
Petersson J, Carlström M, Schreiber O, Phillipson M, Christoffersson G, Jägare A, Roos S, Jansson EA, Persson AEG, Lundberg JO, Holm L. Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash. Free Radic Biol Med 2009; 46:1068-75. [PMID: 19439233 DOI: 10.1016/j.freeradbiomed.2009.01.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/09/2009] [Accepted: 01/09/2009] [Indexed: 12/20/2022]
Abstract
Recently, it has been suggested that the supposedly inert nitrite anion is reduced in vivo to form bioactive nitric oxide with physiological and therapeutic implications in the gastrointestinal and cardiovascular systems. Intake of nitrate-rich food such as vegetables results in increased levels of circulating nitrite in a process suggested to involve nitrate-reducing bacteria in the oral cavity. Here we investigated the importance of the oral microflora and dietary nitrate in regulation of gastric mucosal defense and blood pressure. Rats were treated twice daily with a commercial antiseptic mouthwash while they were given nitrate-supplemented drinking water. The mouthwash greatly reduced the number of nitrate-reducing oral bacteria and as a consequence, nitrate-induced increases in gastric NO and circulating nitrite levels were markedly reduced. With the mouthwash the observed nitrate-induced increase in gastric mucus thickness was attenuated and the gastroprotective effect against an ulcerogenic compound was lost. Furthermore, the decrease in systemic blood pressure seen during nitrate supplementation was now absent. These results suggest that oral symbiotic bacteria modulate gastrointestinal and cardiovascular function via bioactivation of salivary nitrate. Excessive use of antiseptic mouthwashes may attenuate the bioactivity of dietary nitrate.
Collapse
Affiliation(s)
- Joel Petersson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
754
|
|
755
|
Nitrite mediates cytoprotection after ischemia/reperfusion by modulating mitochondrial function. Basic Res Cardiol 2009; 104:113-9. [PMID: 19242636 DOI: 10.1007/s00395-009-0009-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 02/02/2009] [Accepted: 02/04/2009] [Indexed: 12/27/2022]
Abstract
Nitrite, once thought to be an inert biomarker of NO formation, is now recognized as an endocrine storage pool of bioactive NO. While nitrite mediates a number of hypoxic responses, one of its most robust effects is its ability to confer cytoprotection after ischemia/reperfusion in a number of organs and models. The mechanism of this cytoprotection appears to be mediated at the level of the mitochondrion. Here we review the studies demonstrating that nitrite is cytoprotective in the heart and describe the mechanism of this cytoprotection, which involves the post-translational modification of complex I leading to the modulation of mitochondrial reactive oxygen species generation at reperfusion. The mechanism of nitrite-dependent cytoprotection will be compared to other cytoprotective agents including NO and ischemic preconditioning.
Collapse
|
756
|
Garg HK, Bryan NS. Dietary sources of nitrite as a modulator of ischemia/reperfusion injury. Kidney Int 2009; 75:1140-1144. [PMID: 19212422 DOI: 10.1038/ki.2009.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nitrite anion is an endogenous product of nitric oxide (NO) metabolism, a key intermediate in the nitrogen cycle in plants and bacteria, and a constituent of many foods. Research over the past 6 years has revealed a surprising biological and cytoprotective activity of this anion. Its ability to restore NO homeostasis throughout the physiological oxygen gradient in vivo has transformed this once-thought to be inert anion into a critical molecule in health and disease. Ischemia-reperfusion (I/R) injury is a major clinical problem worldwide. NO has been shown to be one of the most important molecules for the prevention of injury from I/R. Paradoxically, however, enzymatic NO formation from NO synthase (NOS) is inactive during conditions of inadequate oxygen and substrate delivery, such as in ischemia. Nitrite has emerged as a viable alternative source of NO under ischemic conditions. As nitrite is known to be derived not only from the oxidation of NO but also through diet, understanding nitrite metabolism and mechanisms of cytoprotection may offer novel and natural means to prevent disease or at least limit injury from an I/R event. Here, we review the current body of knowledge regarding dietary sources of nitrite and its modulation of cytoprotection in an I/R injury.
Collapse
Affiliation(s)
- Harsha K Garg
- Brown Foundation Institute of Molecular Medicine, The University of Texas-Houston Health Sciences Center, Houston, Texas, USA
| | - Nathan S Bryan
- Brown Foundation Institute of Molecular Medicine, The University of Texas-Houston Health Sciences Center, Houston, Texas, USA.
| |
Collapse
|
757
|
Vlasova EA, Hessenauer-Ilicheva N, Salnikov DS, Kudrik EV, Makarov SV, van Eldik R. Kinetics and mechanism of the Co(II)-assisted oxidation of l-ascorbic acid by dioxygen and nitrite in aqueous solution. Dalton Trans 2009:10541-9. [DOI: 10.1039/b906478h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
758
|
Myocardial protection by nitrite: evidence that this reperfusion therapeutic will not be lost in translation. Trends Cardiovasc Med 2008; 18:163-72. [PMID: 18790386 DOI: 10.1016/j.tcm.2008.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/05/2008] [Accepted: 05/07/2008] [Indexed: 01/05/2023]
Abstract
The circulating anion nitrite (NO(2)(-)), previously thought to be an inert product of nitric oxide (NO) oxidation, has now been identified as an important storage reservoir of bioavailable NO in the blood and tissues. Reduction of NO(2)(-) to NO over the physiologic pH and oxygen gradient by deoxyhemoglobin, myoglobin, xanthine oxidoreductase, and by nonenzymatic acidic disproportionation has been demonstrated to confer cytoprotection against ischemia-reperfusion injury in the heart, liver, brain, and kidney. Here, we review the mechanisms that have been established to regulate hypoxic NO(2)(-) reduction to NO, analyze the preclinical and clinical evidence supporting NO(2)(-)-mediated cytoprotection after ischemia-reperfusion injury, and examine the therapeutic potential of NO(2)(-) for cardiovascular disease. Evidence is accumulating that suggests NO(2)(-) has surmounted many of the direct challenges to reperfusion therapeutics summarized by the National Heart, Lung, and Blood Institute Working Group in "Myocardial protection at a crossroads: the need for translation into clinical therapy." In this context, we discuss important considerations in designing human clinical trials to test the efficacy of NO(2)(-) in the setting of ischemia-reperfusion injury, with particular attention to the study of ST-segment elevation myocardial infarction.
Collapse
|
759
|
Risk–benefit health assessment of food – Food fortification and nitrate in vegetables. Trends Food Sci Technol 2008. [DOI: 10.1016/j.tifs.2008.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
760
|
Webb AJ, Milsom AB, Rathod KS, Chu WL, Qureshi S, Lovell MJ, Lecomte FMJ, Perrett D, Raimondo C, Khoshbin E, Ahmed Z, Uppal R, Benjamin N, Hobbs AJ, Ahluwalia A. Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia: role for xanthine oxidoreductase and endothelial nitric oxide synthase. Circ Res 2008; 103:957-64. [PMID: 18818408 PMCID: PMC2841343 DOI: 10.1161/circresaha.108.175810] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reduction of nitrite (NO(2)(-)) provides a major source of nitric oxide (NO) in the circulation, especially in hypoxemic conditions. Our previous studies suggest that xanthine oxidoreductase (XOR) is an important nitrite reductase in the heart and kidney. Herein, we have demonstrated that conversion of nitrite to NO by blood vessels and RBCs was enhanced in the presence of the XOR substrate xanthine (10 micromol/L) and attenuated by the XOR inhibitor allopurinol (100 micromol/L) in acidic and hypoxic conditions only. Whereas endothelial nitric oxide synthase (eNOS) inhibition had no effect on vascular nitrite reductase activity, in RBCs L-NAME, L-NMMA, and L-arginine inhibited nitrite-derived NO production by >50% (P<0.01) at pH 7.4 and 6.8 under hypoxic conditions. Western blot and immunohistochemical analysis of RBC membranes confirmed the presence of eNOS and abundant XOR on whole RBCs. Thus, XOR and eNOS are ideally situated on the membranes of RBCs and blood vessels to generate intravascular vasodilator NO from nitrite during ischemic episodes. In addition to the proposed role of deoxyhemoglobin, our findings suggest that the nitrite reductase activity within the circulation, under hypoxic conditions (at physiological pH), is mediated by eNOS; however, as acidosis develops, a substantial role for XOR becomes evident.
Collapse
Affiliation(s)
- Andrew J Webb
- William Harvey Research Institute, Centre for Clinical Pharmacology, Barts and the London, Charterhouse Square, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
761
|
Wimalawansa SJ. Nitric oxide: new evidence for novel therapeutic indications. Expert Opin Pharmacother 2008; 9:1935-54. [PMID: 18627331 DOI: 10.1517/14656566.9.11.1935] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Nitric oxide (NO) deficiency is implicated in many pathophysiological processes in mammals. NO is a ubiquitous molecule involved in multiple cellular functions. Uncontrolled or inappropriate production of NO may lead to several disease states including septic shock, rheumatoid and inflammatory arthropathies, and expansion of cerebral damage after stroke. However, to date, there are no therapeutic agents available that can overcome these conditions. Similarly, underproduction of NO by NO synthase or enhanced breakdown of NO also leads to diseases such as hypertension, ischemic conditions, pre-eclampsia, premature delivery, among others. NO donor therapies are indicated in these conditions. RESULTS Nitroglycerin and nitrates (NO donors) have been used as therapeutic agents for the past century, particularly to treat vascular disease, and the only significant adverse effects are headaches. NO donors are highly cost-effective and have beneficial effects in multiple body systems. When the body cannot generate NO via NO synthase or due to rapid turnover leading to inadequate amounts of NO available for biological homeostasis, administration of exogenous NO, or prolongation of the actions of endogenous NO, are practical ways to supplement NO. CONCLUSION Recipients of such therapy include patients with angina pectoris, coronary artery disease, hypertension, osteoporosis, gastrointestinal motility disorders, pregnancy-related disorders including premature delivery, pre-eclampsia, vulvodynia, and erectile dysfunction in men. Postmenopausal NO deficiency is rectified with hormone replacement therapy, which enhances local production of NO. Declining local NO production secondary to estrogen deficiency in postmenopausal women and perhaps in older men could be one of the reasons for age-related increased incidences of cardiovascular events and sexual dysfunction. Thus, in addition to supplementation of NO compounds in acute situations like alleviating angina and erectile dysfunction, chronic NO therapy is cost-effective in decreasing cardiovascular events, and improving the urogenital system and skeletal health.
Collapse
Affiliation(s)
- Sunil J Wimalawansa
- Robert Wood Johnson Medical School, Department of Medicine, New Brunswick, NJ 08903, USA.
| |
Collapse
|
762
|
Wink DA, Ridnour LA, Hussain SP, Harris CC. The reemergence of nitric oxide and cancer. Nitric Oxide 2008; 19:65-7. [PMID: 18638716 PMCID: PMC2565861 DOI: 10.1016/j.niox.2008.05.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 01/19/2023]
Affiliation(s)
- David A Wink
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
763
|
Govoni M, Jansson EA, Weitzberg E, Lundberg JO. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide 2008; 19:333-7. [PMID: 18793740 DOI: 10.1016/j.niox.2008.08.003] [Citation(s) in RCA: 449] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/20/2008] [Accepted: 08/21/2008] [Indexed: 01/29/2023]
Abstract
Recent studies surprisingly show that dietary inorganic nitrate, abundant in vegetables, can be metabolized in vivo to form nitrite and then bioactive nitric oxide. A reduction in blood pressure was recently noted in healthy volunteers after dietary supplementation with nitrate; an effect consistent with formation of vasodilatory nitric oxide. Oral bacteria have been suggested to play a role in bioactivation of nitrate by first reducing it to the more reactive anion nitrite. In a cross-over designed study in seven healthy volunteers we examined the effects of a commercially available chlorhexidine-containing antibacterial mouthwash on salivary and plasma levels of nitrite measured after an oral intake of sodium nitrate (10mg/kg dissolved in water). In the control situation the salivary and plasma levels of nitrate and nitrite increased greatly after the nitrate load. Rinsing the mouth with the antibacterial mouthwash prior to the nitrate load had no effect on nitrate accumulation in saliva or plasma but abolished its conversion to nitrite in saliva and markedly attenuated the rise in plasma nitrite. We conclude that the acute increase in plasma nitrite seen after a nitrate load is critically dependent on nitrate reduction in the oral cavity by commensal bacteria. The removal of these bacteria with an antibacterial mouthwash will very likely attenuate the NO-dependent biological effects of dietary nitrate.
Collapse
Affiliation(s)
- Mirco Govoni
- Department of Physiology and Pharmacology, Karolinska Institutet, Nanna Svartz väg 2, S-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
764
|
Bryan NS, Calvert JW, Gundewar S, Lefer DJ. Dietary nitrite restores NO homeostasis and is cardioprotective in endothelial nitric oxide synthase-deficient mice. Free Radic Biol Med 2008; 45:468-74. [PMID: 18501719 PMCID: PMC2662396 DOI: 10.1016/j.freeradbiomed.2008.04.040] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/03/2008] [Accepted: 04/23/2008] [Indexed: 11/26/2022]
Abstract
Endothelial production of nitric oxide (NO) is critical for vascular homeostasis. Nitrite and nitrate are formed endogenously by the stepwise oxidation of NO and have, for years, been regarded as inactive degradation products. As a result, both anions are routinely used as surrogate markers of NO production, with nitrite as a more sensitive marker. However, both nitrite and nitrate are derived from dietary sources. We sought to determine how exogenous nitrite affects steady-state concentrations of NO metabolites thought to originate from nitric oxide synthase (NOS)-derived NO as well as blood pressure and myocardial ischemia-reperfusion (I/R) injury. Mice deficient in endothelial nitric oxide synthase (eNOS-/-) demonstrated decreased blood and tissue nitrite, nitrate, and nitroso proteins, which were further reduced by low-nitrite (NOx) diet for 1 week. Nitrite supplementation (50 mg/L) in the drinking water for 1 week restored NO homeostasis in eNOS-/- mice and protected against I/R injury. Nitrite failed to alter heart rate or mean arterial blood pressure at the protective dose. These data demonstrate the significant influence of dietary nitrite intake on the maintenance of steady-state NO levels. Dietary nitrite and nitrate may serve as essential nutrients for optimal cardiovascular health and may provide a novel prevention/treatment modality for disease associated with NO insufficiency.
Collapse
Affiliation(s)
- Nathan S. Bryan
- Institute of Molecular Medicine, The University of Texas-Houston Health Sciences Center, Houston, TX 77030, USA
| | - John W. Calvert
- Department of Medicine, Division of Cardiology and the Department of Pathology, Albert Einstein School of Medicine, Bronx, NY 10461, USA
| | - Susheel Gundewar
- Department of Medicine, Division of Cardiology and the Department of Pathology, Albert Einstein School of Medicine, Bronx, NY 10461, USA
| | - David J. Lefer
- Department of Medicine, Division of Cardiology and the Department of Pathology, Albert Einstein School of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
765
|
|
766
|
|
767
|
A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis. Nat Chem Biol 2008; 4:411-7. [PMID: 18516050 DOI: 10.1038/nchembio.92] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 05/08/2008] [Indexed: 11/09/2022]
Abstract
Inorganic nitrite (NO(2)(-)) is emerging as a regulator of physiological functions and tissue responses to ischemia, whereas the more stable nitrate anion (NO(3)(-)) is generally considered to be biologically inert. Bacteria express nitrate reductases that produce nitrite, but mammals lack these specific enzymes. Here we report on nitrate reductase activity in rodent and human tissues that results in formation of nitrite and nitric oxide (NO) and is attenuated by the xanthine oxidoreductase inhibitor allopurinol. Nitrate administration to normoxic rats resulted in elevated levels of circulating nitrite that were again attenuated by allopurinol. Similar effects of nitrate were seen in endothelial NO synthase-deficient and germ-free mice, thereby excluding vascular NO synthase activation and bacteria as the source of nitrite. Nitrate pretreatment attenuated the increase in systemic blood pressure caused by NO synthase inhibition and enhanced blood flow during post-ischemic reperfusion. Our findings suggest a role for mammalian nitrate reduction in regulation of nitrite and NO homeostasis.
Collapse
|
768
|
Wink DA, Paolocci N. Mother was right: eat your vegetables and do not spit! When oral nitrate helps with high blood pressure. Hypertension 2008; 51:617-9. [PMID: 18250359 DOI: 10.1161/hypertensionaha.107.106617] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
769
|
Kato GJ. Novel small molecule therapeutics for sickle cell disease: nitric oxide, carbon monoxide, nitrite, and apolipoprotein A-I. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2008; 2008:186-92. [PMID: 19074079 PMCID: PMC2778246 DOI: 10.1182/asheducation-2008.1.186] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A hemolysis-linked subphenotype of sickle cell disease (SCD), characterized by pulmonary hypertension, stroke, priapism and leg ulcers, is associated with decreased nitric oxide bioavailability and vasculopathy. Vasculopathy appears to have a multifactorial etiology, including mechanisms primarily that involve deficient nitric oxide (NO) signaling, but also involving altered function of NO synthase related to substrate availability and cooperating factors such as apolipoproteins. Improved understanding of the vascular pathophysiology of SCD has led to new vascular targets for translational research in SCD. This growing vascular therapeutics field in SCD is complementary to the ongoing efforts to reduce the morbidity of vaso-occlusive pain crisis. This presentation will review the current biology and translational clinical development of novel small molecules targeting sickle cell vasculopathy. Strategies targeting the hemeoxygenase-carbon monoxide pathway, the arginine-NO synthase-cGMP-phosphodiesterase 5 pathway, the nitrate-nitrite-NO pathway, and the apolipoprotein A-I pathways will be reviewed. In this context, current clinical trials of inhaled NO, CO, nitrite, sildenafil and apoA-I mimetics will be discussed.
Collapse
Affiliation(s)
- Gregory J Kato
- Critical Care Medicine Department, Clinical Center and the Pulmonary and Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892-1476, USA
| |
Collapse
|