801
|
Mira-Pascual L, Cabrera-Rubio R, Ocon S, Costales P, Parra A, Suarez A, Moris F, Rodrigo L, Mira A, Collado MC. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J Gastroenterol 2015; 50:167-79. [PMID: 24811328 DOI: 10.1007/s00535-014-0963-x] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/11/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Epidemiological studies demonstrate a link between gastrointestinal cancers and environmental factors such as diet. It has been suggested that environmental cancer risk is determined by the interaction between diet and microbes. Thus, the purpose of this study was to examine the hypothesis that microbiota composition during colorectal cancer (CRC) progression might differ depending on the stage of the disease. METHODS A total of 28 age-matched and sex-matched subjects, seven with CRC adenocarcinoma, 11 with tubular adenomas and ten healthy subjects with intact colon, were included into the study. Microbiomes from mucosal and fecal samples were analyzed with 16S ribosomal RNA gene pyrosequencing, together with quantitative PCR of specific bacteria and archaea. RESULTS The principal coordinates analysis clearly separated healthy tissue samples from polyps and tumors, supporting the presence of specific bacterial consortia that are associated with affected sites and that can serve as potential biomarkers of CRC progression. A higher presence of Fusobacterium nucleatum and Enterobacteriaceae was found by qPCR in samples from CRC compared to healthy controls. We observed a correlation between CRC process development and levels of Methanobacteriales (R = 0.537, P = 0.007) and Methanobrevibacterium (R = 0.574, P = 0.03) in fecal samples. CONCLUSION Differences in microbial and archaeal composition between mucosal samples from healthy and disease tissues were observed in tubular adenoma and adenocarcinoma. In addition, microbiota from mucosal samples represented the underlying dysbiosis, whereas fecal samples seem not to be appropriate to detect shifts in microbial composition. CRC risk is influenced by microbial composition, showing differences according to disease progression step and tumor severity.
Collapse
Affiliation(s)
- L Mira-Pascual
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 49860, Paterna, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
802
|
Tomasello G, Tralongo P, Damiani P, Sinagra E, Trapani BD, Zeenny MN, Hussein IH, Jurjus A, Leone A. Dismicrobism in inflammatory bowel disease and colorectal cancer: Changes in response of colocytes. World J Gastroenterol 2014; 20:18121-18130. [PMID: 25561781 PMCID: PMC4277951 DOI: 10.3748/wjg.v20.i48.18121] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/10/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
Patients with inflammatory bowel disease (IBD) have an increased risk of 10%-15% developing colorectal cancer (CRC) that is a common disease of high economic costs in developed countries. The CRC has been increasing in recent years and its mortality rates are very high. Multiple biological and biochemical factors are responsible for the onset and progression of this pathology. Moreover, it appears absolutely necessary to investigate the environmental factors favoring the onset of CRC and the promotion of colonic health. The gut microflora, or microbiota, has an extensive diversity both quantitatively and qualitatively. In utero, the intestine of the mammalian fetus is sterile. At birth, the intestinal microbiota is acquired by ingesting maternal anal or vaginal organisms, ultimately developing into a stable community, with marked variations in microbial composition between individuals. The development of IBD is often associated with qualitative and quantitative disorders of the intestinal microbial flora (dysbiosis). The healthy human gut harbours about 10 different bacterial species distributed in colony forming units which colonize the gastrointestinal tract. The intestinal microbiota plays a fundamental role in health and in the progression of diseases such as IBD and CRC. In healthy subjects, the main control of intestinal bacterial colonization occurs through gastric acidity but other factors such as endoluminal temperature, competition between different bacterial strains, peristalsis and drugs can influence the intestinal microenvironment. The microbiota exerts diverse physiological functions to include: growth inhibition of pathogenic microorganisms, synthesis of compounds useful for the trophism of colonic mucosa, regulation of intestinal lymphoid tissue and synthesis of amino acids. Furthermore, mucus seems to play an important role in protecting the intestinal mucosa and maintaining its integrity. Changes in the microbiota composition are mainly influenced by diet and age, as well as genetic factors. Increasing evidence indicates that dysbiosis favors the production of genotoxins and metabolites associated with carcinogenesis and induces dysregulation of the immune response which promotes and sustains inflammation in IBD leading to carcinogenesis. A disequilibrium in gut microflora composition leads to the specific activation of gut associated lymphoid tissue. The associated chronic inflammatory process associated increases the risk of developing CRC. Ulcerative colitis and Crohn’s disease are the two major IBDs characterized by an early onset and extraintestinal manifestations, such as rheumatoid arthritis. The pathogenesis of both diseases is complex and not yet fully known. However, it is widely accepted that an inappropriate immune response to microbial flora can play a pivotal role in IBD pathogenesis.
Collapse
|
803
|
Xu X, Zhang X. Effects of cyclophosphamide on immune system and gut microbiota in mice. Microbiol Res 2014; 171:97-106. [PMID: 25553830 DOI: 10.1016/j.micres.2014.11.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/17/2014] [Accepted: 11/22/2014] [Indexed: 02/07/2023]
Abstract
Cyclophosphamide (CP) is the most commonly used drug in autoimmune disease, cancer, blood and marrow transplantation. Recent data revealed that therapy efficacy of CP is gut microbiota-dependent. So, it is very important to understand how CP affects intestinal microbiota and immune function. In this study, the effects of CP on mice immuno-activity were firstly evaluated, then, the fecal microbiota from normal and CP-treated mice was compared, and the characteristic bacterial diversity and compositions were identified, using 454 pyrosequencing technology. The results showed that CP reduced the diversity and shifted the fecal microbiota composition. Specifically, CP treatment decreased the proportion of Bacteroidetes while increased the proportion of Firmictutes in the microbial community. Most importantly, specific microbiota signatures belonging to Bacteroides acidifaciens, Streptococcaceae and Alistipes were also identified, which would provide new insight into the efficacy and side effects in clinical usage of CP. This should be helpful for further demonstration of CP's action mechanism, development of personalized therapy strategies, and prediction of potential side effects related to various treatment regimens of CP.
Collapse
Affiliation(s)
- Xiaofei Xu
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xuewu Zhang
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
804
|
Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635-45. [PMID: 25118885 DOI: 10.1038/nrmicro3330] [Citation(s) in RCA: 1509] [Impact Index Per Article: 150.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Publicly available sequence databases of the small subunit ribosomal RNA gene, also known as 16S rRNA in bacteria and archaea, are growing rapidly, and the number of entries currently exceeds 4 million. However, a unified classification and nomenclature framework for all bacteria and archaea does not yet exist. In this Analysis article, we propose rational taxonomic boundaries for high taxa of bacteria and archaea on the basis of 16S rRNA gene sequence identities and suggest a rationale for the circumscription of uncultured taxa that is compatible with the taxonomy of cultured bacteria and archaea. Our analyses show that only nearly complete 16S rRNA sequences give accurate measures of taxonomic diversity. In addition, our analyses suggest that most of the 16S rRNA sequences of the high taxa will be discovered in environmental surveys by the end of the current decade.
Collapse
Affiliation(s)
- Pablo Yarza
- 1] Marine Microbiology Group, Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (Spanish National Research Council (CSIC)-University of the Balearic Islands (UIB)), E-07190 Esporles, Balearic Islands, Spain. [2] Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany. [3] Ribocon GmbH, Fahrenheitstrasse 1, D-28359 Bremen, Germany
| | - Pelin Yilmaz
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Elmar Pruesse
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Frank Oliver Glöckner
- 1] Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany. [2] Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Wolfgang Ludwig
- Lehrstuhl für Mikrobiologie, Technische Universität München, D-85350 Freising, Germany
| | - Karl-Heinz Schleifer
- Lehrstuhl für Mikrobiologie, Technische Universität München, D-85350 Freising, Germany
| | - William B Whitman
- Department of Microbiology, University of Georgia, 527 Biological Sciences Building, Athens, Georgia 30605-2605, USA
| | - Jean Euzéby
- Société de Bactériologie Systématique et Vétérinaire (SBSV) and École Nationale Vétérinaire de Toulouse (ENVT), F-31076 Toulouse cedex 03, France
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (Spanish National Research Council (CSIC)-University of the Balearic Islands (UIB)), E-07190 Esporles, Balearic Islands, Spain
| |
Collapse
|
805
|
Xu J, Lian F, Zhao L, Zhao Y, Chen X, Zhang X, Guo Y, Zhang C, Zhou Q, Xue Z, Pang X, Zhao L, Tong X. Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME JOURNAL 2014; 9:552-62. [PMID: 25279787 PMCID: PMC4331591 DOI: 10.1038/ismej.2014.177] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 06/18/2014] [Accepted: 08/15/2014] [Indexed: 12/22/2022]
Abstract
The gut microbiota is hypothesized to have a critical role in metabolic diseases, including type 2 diabetes (T2D). A traditional Chinese herbal formula, Gegen Qinlian Decoction (GQD), can alleviate T2D. To find out whether GQD modulates the composition of the gut microbiota during T2D treatment, 187 T2D patients were randomly allocated to receive high (HD, n=44), moderate (MD, n=52), low dose GQD (LD, n=50) or the placebo (n=41) for 12 weeks in a double-blinded trial. Patients who received the HD or MD demonstrated significant reductions in adjusted mean changes from baseline of fasting blood glucose (FBG) and glycated hemoglobin (HbA1c) compared with the placebo and LD groups. Pyrosequencing of the V3 regions of 16S rRNA genes revealed a dose-dependent deviation of gut microbiota in response to GQD treatment. This deviation occurred before significant improvement of T2D symptoms was observed. Redundancy analysis identified 47 GQD-enriched species level phylotypes, 17 of which were negatively correlated with FBG and 9 with HbA1c. Real-time quantitative PCR confirmed that GQD significantly enriched Faecalibacterium prausnitzii, which was negatively correlated with FBG, HbA1c and 2-h postprandial blood glucose levels and positively correlated with homeostasis model assessment of β-cell function. Therefore, these data indicate that structural changes of gut microbiota are induced by Chinese herbal formula GQD. Specifically, GQD treatment may enrich the amounts of beneficial bacteria, such as Faecalibacterium spp. In conclusion, changes in the gut microbiota are associated with the anti-diabetic effects of GQD.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Linhua Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Yufeng Zhao
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinyan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Xu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yun Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qiang Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Zhengsheng Xue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaoyan Pang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Liping Zhao
- 1] State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China [2] Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
806
|
Sun Z, Liu W, Bao Q, Zhang J, Hou Q, Kwok L, Sun T, Zhang H. Investigation of bacterial and fungal diversity in tarag using high-throughput sequencing. J Dairy Sci 2014; 97:6085-96. [DOI: 10.3168/jds.2014-8360] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/28/2014] [Indexed: 11/19/2022]
|
807
|
Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 2014; 12:661-72. [PMID: 25198138 DOI: 10.1038/nrmicro3344] [Citation(s) in RCA: 1793] [Impact Index Per Article: 179.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that the human intestinal microbiota contributes to the aetiology of colorectal cancer (CRC), not only via the pro-carcinogenic activities of specific pathogens but also via the influence of the wider microbial community, particularly its metabolome. Recent data have shown that the short-chain fatty acids acetate, propionate and butyrate function in the suppression of inflammation and cancer, whereas other microbial metabolites, such as secondary bile acids, promote carcinogenesis. In this Review, we discuss the relationship between diet, microbial metabolism and CRC and argue that the cumulative effects of microbial metabolites should be considered in order to better predict and prevent cancer progression.
Collapse
Affiliation(s)
- Petra Louis
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Georgina L Hold
- Gastrointestinal Research Group, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Harry J Flint
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
808
|
Donohoe DR, Holley D, Collins LB, Montgomery SA, Whitmore AC, Hillhouse A, Curry KP, Renner SW, Greenwalt A, Ryan EP, Godfrey V, Heise MT, Threadgill DS, Han A, Swenberg JA, Threadgill DW, Bultman SJ. A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov 2014; 4:1387-97. [PMID: 25266735 DOI: 10.1158/2159-8290.cd-14-0501] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UNLABELLED Whether dietary fiber protects against colorectal cancer is controversial because of conflicting results from human epidemiologic studies. However, these studies and mouse models of colorectal cancer have not controlled the composition of gut microbiota, which ferment fiber into short-chain fatty acids such as butyrate. Butyrate is noteworthy because it has energetic and epigenetic functions in colonocytes and tumor-suppressive properties in colorectal cancer cell lines. We used gnotobiotic mouse models colonized with wild-type or mutant strains of a butyrate-producing bacterium to demonstrate that fiber does have a potent tumor-suppressive effect but in a microbiota- and butyrate-dependent manner. Furthermore, due to the Warburg effect, butyrate was metabolized less in tumors where it accumulated and functioned as a histone deacetylase (HDAC) inhibitor to stimulate histone acetylation and affect apoptosis and cell proliferation. To support the relevance of this mechanism in human cancer, we demonstrate that butyrate and histone-acetylation levels are elevated in colorectal adenocarcinomas compared with normal colonic tissues. SIGNIFICANCE These results, which link diet and microbiota to a tumor-suppressive metabolite, provide insight into conflicting epidemiologic findings and suggest that probiotic/prebiotic strategies can modulate an endogenous HDAC inhibitor for anticancer chemoprevention without the adverse effects associated with synthetic HDAC inhibitors used in chemotherapy.
Collapse
Affiliation(s)
- Dallas R Donohoe
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Darcy Holley
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Leonard B Collins
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Stephanie A Montgomery
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Alan C Whitmore
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina. Carolina Vaccine Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Andrew Hillhouse
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas
| | - Kaitlin P Curry
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Sarah W Renner
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Alicia Greenwalt
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health, Colorado State University, Fort Collins, Colorado
| | - Virginia Godfrey
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Mark T Heise
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina. Carolina Vaccine Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Deborah S Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Anna Han
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee
| | - James A Swenberg
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas. Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Scott J Bultman
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
809
|
Microbiota in the Throat and Risk Factors for Laryngeal Carcinoma. Appl Environ Microbiol 2014; 80:7356-63. [PMID: 25239901 DOI: 10.1128/aem.02329-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/15/2014] [Indexed: 01/05/2023] Open
Abstract
The compositions and abundances of the microbiota in the ecological niche of the human throat and the possible relationship between the microbiota and laryngeal cancer are poorly understood. To obtain insight into this, we enrolled 27 laryngeal carcinoma patients and 28 subjects with vocal cord polyps as controls. For each subject, we simultaneously collected swab samples from the upper throat near the epiglottis (site I) and tissue samples from the vestibulum laryngis to the subglottic region (site II). The microbiota of the throat were fully characterized by pyrosequencing of barcoded 16S rRNA genes. We found 14 phyla, 20 classes, 38 orders, 85 families, and 218 genera in the throats of enrolled subjects. The main phyla were Firmicutes (54.7%), Fusobacteria (14.8%), Bacteroidetes (12.7%), and Proteobacteria (10.6%). Streptococcus (37.3%), Fusobacterium (11.3%), and Prevotella (10.6%) were identified as the three most predominant genera in the throat. The relative abundances of 23 bacterial genera in site I were significantly different from those in site II (P < 0.05). The relative proportions of 12 genera largely varied between laryngeal cancer patients and control subjects (P < 0.05). Collectively, this study outlined the spatial structure of microbial communities in the human throat. The spatial structure of bacterial communities significantly varied in two anatomical sites of the throat. The bacterial profiles of the throat of laryngeal cancer patients were strongly different from those of control subjects, and several of these microorganisms may be related to laryngeal carcinoma.
Collapse
|
810
|
Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 2014; 38:996-1047. [PMID: 24861948 PMCID: PMC4262072 DOI: 10.1111/1574-6976.12075] [Citation(s) in RCA: 731] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/29/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023] Open
Abstract
The microorganisms that inhabit the human gastrointestinal tract comprise a complex ecosystem with functions that significantly contribute to our systemic metabolism and have an impact on health and disease. In line with its importance, the human gastrointestinal microbiota has been extensively studied. Despite the fact that a significant part of the intestinal microorganisms has not yet been cultured, presently over 1000 different microbial species that can reside in the human gastrointestinal tract have been identified. This review provides a systematic overview and detailed references of the total of 1057 intestinal species of Eukarya (92), Archaea (8) and Bacteria (957), based on the phylogenetic framework of their small subunit ribosomal RNA gene sequences. Moreover, it unifies knowledge about the prevalence, abundance, stability, physiology, genetics and the association with human health of these gastrointestinal microorganisms, which is currently scattered over a vast amount of literature published in the last 150 years. This detailed physiological and genetic information is expected to be instrumental in advancing our knowledge of the gastrointestinal microbiota. Moreover, it opens avenues for future comparative and functional metagenomic and other high-throughput approaches that need a systematic and physiological basis to have an impact.
Collapse
Affiliation(s)
- Mirjana Rajilić-Stojanović
- Department for Biotechnology and Biochemical Engineering, Faculty of Technology and Metallurgy, University of BelgradeBelgrade, Serbia
- Laboratory of Microbiology, Wageningen UniversityWageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen UniversityWageningen, The Netherlands
- Departments of Bacteriology and Immunology, and Veterinary Biosciences, University of HelsinkiHelsinki, Finland
| |
Collapse
|
811
|
Martinez-Medina M, Garcia-Gil LJ. Escherichia coli in chronic inflammatory bowel diseases: An update on adherent invasive Escherichia coli pathogenicity. World J Gastrointest Pathophysiol 2014; 5:213-227. [PMID: 25133024 PMCID: PMC4133521 DOI: 10.4291/wjgp.v5.i3.213] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/08/2014] [Accepted: 05/29/2014] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli (E. coli), and particularly the adherent invasive E. coli (AIEC) pathotype, has been increasingly implicated in the ethiopathogenesis of Crohn’s disease (CD). E. coli strains with similar pathogenic features to AIEC have been associated with other intestinal disorders such as ulcerative colitis, colorectal cancer, and coeliac disease, but AIEC prevalence in these diseases remains largely unexplored. Since AIEC was described one decade ago, substantial progress has been made in deciphering its mechanisms of pathogenicity. However, the molecular bases that characterize the phenotypic properties of this pathotype are still not well resolved. A review of studies focused on E. coli populations in inflammatory bowel disease (IBD) is presented here and we discuss about the putative role of this species on each IBD subtype. Given the relevance of AIEC in CD pathogenesis, we present the latest research findings concerning AIEC host-microbe interactions and pathogenicity. We also review the existing data regarding the prevalence and abundance of AIEC in CD and its association with other intestinal diseases from humans and animals, in order to discuss the AIEC disease- and host-specificity. Finally, we highlight the fact that dietary components frequently found in industrialized countries may enhance AIEC colonization in the gut, which merits further investigation and the implementation of preventative measures.
Collapse
|
812
|
Ni Y, Xie G, Jia W. Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery. J Proteome Res 2014; 13:3857-70. [PMID: 25105552 DOI: 10.1021/pr500443c] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in the world, having both high prevalence and mortality. It is usually diagnosed at advanced stages due to the limitations of current screening methods used in the clinic. There is an urgent need to develop new biomarkers and modalities to detect, diagnose, and monitor the disease. Metabonomics, an approach that involves the comprehensive profiling of the full complement of endogenous metabolites in a biological system, has demonstrated its great potential for use in the early diagnosis and personalized treatment of various cancers including CRC. By applying advanced analytical techniques and bioinformatics tools, the metabolome is mined for biomarkers that are associated with carcinogenesis and prognosis. This review provides an overview of the metabonomics workflow and studies, with a focus on recent advances and findings in biomarker discovery for the early diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Yan Ni
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China
| | | | | |
Collapse
|
813
|
Zackular JP, Rogers MAM, Ruffin MT, Schloss PD. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res (Phila) 2014; 7:1112-21. [PMID: 25104642 DOI: 10.1158/1940-6207.capr-14-0129] [Citation(s) in RCA: 369] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies have suggested that the gut microbiome may be an important factor in the development of colorectal cancer. Abnormalities in the gut microbiome have been reported in patients with colorectal cancer; however, this microbial community has not been explored as a potential screen for early-stage disease. We characterized the gut microbiome in patients from three clinical groups representing the stages of colorectal cancer development: healthy, adenoma, and carcinoma. Analysis of the gut microbiome from stool samples revealed both an enrichment and depletion of several bacterial populations associated with adenomas and carcinomas. Combined with known clinical risk factors of colorectal cancer (e.g., BMI, age, race), data from the gut microbiome significantly improved the ability to differentiate between healthy, adenoma, and carcinoma clinical groups relative to risk factors alone. Using Bayesian methods, we determined that using gut microbiome data as a screening tool improved the pretest to posttest probability of adenoma more than 50-fold. For example, the pretest probability in a 65-year-old was 0.17% and, after using the microbiome data, this increased to 10.67% (1 in 9 chance of having an adenoma). Taken together, the results of our study demonstrate the feasibility of using the composition of the gut microbiome to detect the presence of precancerous and cancerous lesions. Furthermore, these results support the need for more cross-sectional studies with diverse populations and linkage to other stool markers, dietary data, and personal health information.
Collapse
Affiliation(s)
- Joseph P Zackular
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Mary A M Rogers
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Mack T Ruffin
- Department of Family Medicine, University of Michigan, Ann Arbor, Michigan
| | - Patrick D Schloss
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
814
|
Greiner AK, Papineni RVL, Umar S. Chemoprevention in gastrointestinal physiology and disease. Natural products and microbiome. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1-15. [PMID: 24789206 PMCID: PMC4080166 DOI: 10.1152/ajpgi.00044.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human intestinal tract harbors a complex ecosystem of commensal bacteria that play a fundamental role in the well-being of their host. There is a general consensus that diet rich in plant-based foods has many advantages in relation to the health and well-being of an individual. In adults, diets that have a high proportion of fruit and vegetables and a low consumption of meat are associated with a highly diverse microbiota and are defined by a greater abundance of Prevotella compared with Bacteroides, whereas the reverse is associated with a diet that contains a low proportion of plant-based foods. In a philosophical term, our consumption of processed foods, widespread use of antibiotics and disinfectants, and our modern lifestyle may have forever altered our ancient gut microbiome. We may never be able to identify or restore our microbiomes to their ancestral state, but dietary modulation to manipulate specific gut microbial species or groups of species may offer new therapeutic approaches to conditions that are prevalent in modern society, such as functional gastrointestinal disorders, obesity, and age-related nutritional deficiency. We believe that this will become an increasingly important area of health research.
Collapse
Affiliation(s)
- Allen K. Greiner
- 1Departments of Molecular and Integrative Physiology and Family Medicine Research Division, University of Kansas Medical Center, Kansas City, Kansas;
| | - Rao V. L. Papineni
- 1Departments of Molecular and Integrative Physiology and Family Medicine Research Division, University of Kansas Medical Center, Kansas City, Kansas; ,2PACT and Health, Branford, Connecticut; and ,3Precision X-Ray Inc., North Branford, Connecticut
| | - Shahid Umar
- Departments of Molecular and Integrative Physiology and Family Medicine Research Division, University of Kansas Medical Center, Kansas City, Kansas;
| |
Collapse
|
815
|
Geng J, Song Q, Tang X, Liang X, Fan H, Peng H, Guo Q, Zhang Z. Co-occurrence of driver and passenger bacteria in human colorectal cancer. Gut Pathog 2014; 6:26. [PMID: 24995042 PMCID: PMC4080773 DOI: 10.1186/1757-4749-6-26] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 06/22/2014] [Indexed: 02/07/2023] Open
Abstract
Background Both genetic and epigenetic alterations have been reported to act as driving forces of tumorigenesis in colorectal cancer (CRC), but a growing body of evidence suggests that intestinal microbiota may be an aetiological factor in the initiation and progression of CRC. Recently, the “driver-passenger” model for CRC has connected these different factors, but little has been done to characterize the CRC gut microbiome. Findings Building on the driver-passenger model, we used 454 pyrosequencing of bacterial 16S rRNA genes associated with 10 normal, 10 adenoma, and 8 tumor biopsy samples, and found 7 potential driver bacterial genera and 12 potential passenger bacterial genera (7 being pro-inflammatory and 5 anti-inflammatory). Further analysis also showed certain co-expression patterns among different clusters of bacteria that may potentially be related to the promotion or progression of gut cancers. Conclusions The present findings provide preliminary experimental evidence supporting the proposition of bacterial “driver-passenger model” for CRC, and identified potentially novel microbial agents that may be connected to risk of CRC in a Han Chinese population.
Collapse
Affiliation(s)
- Jiawei Geng
- Department of Infectious Diseases, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Qingfang Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaodan Tang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Xiao Liang
- Department of Infectious Diseases, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Hong Fan
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Hailing Peng
- Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Qiang Guo
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Zhigang Zhang
- State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary & Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
816
|
Kim JM. [Roles of enteric microbial composition and metabolism in health and diseases]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2014; 62:191-205. [PMID: 24162706 DOI: 10.4166/kjg.2013.62.4.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A complex microbiota colonizes mucosal layers in different regions of the human gut. In the healthy state, the microbial communities provide nutrients and energy to the host via fermentation of non-digestible dietary components in the large intestine. In contrast, they can play roles in inflammation and infection, including gastrointestinal diseases and metabolic syndrome such as obesity. However, because of the complexity of the microbial community, the functional connections between the enteric microbiota and metabolism are less well understood. Nevertheless, major progress has been made in defining dominant bacterial species, community profiles, and systemic characteristics that produce stable microbiota beneficial to health, and in identifying their roles in enteric metabolism. Through studies in both mice and humans, we are recently in a better position to understand what effect the enteric microbiota has on the metabolism by improving energy yield from food and modulating dietary components. Achieving better knowledge of this information may provide insights into new possibilities that reconstitution of enteric microbiota via diet can provide the maintenance of healthy state and therapeutic/preventive strategies against metabolic syndrome such as obesity. This review focuses on enteric microbial composition and metabolism on healthy and diseased states.
Collapse
Affiliation(s)
- Jung Mogg Kim
- Department of Microbiology, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
817
|
Fusobacterium and Enterobacteriaceae: important players for CRC? Immunol Lett 2014; 162:54-61. [PMID: 24972311 DOI: 10.1016/j.imlet.2014.05.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 12/13/2022]
Abstract
The gut microbiota plays an essential role in regulating intestinal homeostasis through its capacity to modulate various biological activities ranging from barrier, immunity and metabolic function. Not surprisingly, microbial dysbiosis is associated with numerous intestinal disorders including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). In this piece, we will review recent evidence that gut microbial dysbiosis can influence intestinal disease, including colitis and CRC. We will discuss the biological events implicated in the development of microbial dysbiosis and the emergence of CRC-associated microorganisms, focusing on Escherichia coli and Fusobacterium nucleatum. Finally, the mechanisms by which E. coli and F. nucleatum exert potentially carcinogenic effects on the host will be reviewed.
Collapse
|
818
|
Abstract
Human gastrointestinal bacteria often share their environment with parasitic worms, allowing physical and physiological interaction between the two groups. Such associations have the potential to affect host health as well as the bacterial and helminth populations. Although still in its early stages, research on the interaction between the microbiome and parasitic helminths in humans offers the potential to improve health by manipulating the microbiome. Previously, supplementation with various nutritional compounds has been found to increase the abundance of potentially beneficial gut commensal bacteria. Thus, nutritional microbiome manipulation to produce an environment which may decrease malnutrition associated with helminth infection and/or aid host recovery from disease is conceivable. This review discusses the influence of the gut microbiota and helminths on host nutrition and immunity and the subsequent effects on the human host's overall health. It also discusses changes occurring in the microbiota upon helminth infections and the underlying mechanisms leading to these changes. There are still significant knowledge gaps which need to be filled before meaningful progress can be made in translating knowledge from studying the human gut microbiome into therapeutic strategies. Ultimately this review aims to discuss our current knowledge as well as highlight areas requiring further investigation.
Collapse
|
819
|
Ferreyra JA, Ng KM, Sonnenburg JL. The Enteric Two-Step: nutritional strategies of bacterial pathogens within the gut. Cell Microbiol 2014; 16:993-1003. [PMID: 24720567 DOI: 10.1111/cmi.12300] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2014] [Indexed: 01/20/2023]
Abstract
The gut microbiota is a dense and diverse microbial community governed by dynamic microbe-microbe and microbe-host interactions, the status of which influences whether enteric pathogens can cause disease. Here we review recent insights into the key roles that nutrients play in bacterial pathogen exploitation of the gut microbial ecosystem. We synthesize recent findings to support a five-stage model describing the transition between a healthy microbiota and one dominated by a pathogen and disease. Within this five-stage model, two stages are critical to the pathogen: (i) an initial expansion phase that must occur in the absence of pathogen-induced inflammation, followed by (ii) pathogen-promoting physiological changes such as inflammation and diarrhoea. We discuss how this emerging paradigm of pathogen life within the lumen of the gut is giving rise to novel therapeutic strategies.
Collapse
Affiliation(s)
- Jessica A Ferreyra
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | | |
Collapse
|
820
|
Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuño MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol 2014; 5:190. [PMID: 24808896 PMCID: PMC4010744 DOI: 10.3389/fmicb.2014.00190] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/08/2014] [Indexed: 12/21/2022] Open
Abstract
Obesity and its associated disorders are a major public health concern. Although obesity has been mainly related with perturbations of the balance between food intake and energy expenditure, other factors must nevertheless be considered. Recent insight suggests that an altered composition and diversity of gut microbiota could play an important role in the development of metabolic disorders. This review discusses research aimed at understanding the role of gut microbiota in the pathogenesis of obesity and type 2 diabetes mellitus (TDM2). The establishment of gut microbiota is dependent on the type of birth. With effect from this point, gut microbiota remain quite stable, although changes take place between birth and adulthood due to external influences, such as diet, disease and environment. Understand these changes is important to predict diseases and develop therapies. A new theory suggests that gut microbiota contribute to the regulation of energy homeostasis, provoking the development of an impairment in energy homeostasis and causing metabolic diseases, such as insulin resistance or TDM2. The metabolic endotoxemia, modifications in the secretion of incretins and butyrate production might explain the influence of the microbiota in these diseases.
Collapse
Affiliation(s)
- Isabel Moreno-Indias
- Unidad de Gestion Clínica de Endocrinología y Nutrición, Laboratorio del Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga (Virgen de la Victoria) Málaga, Spain ; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición Madrid, Spain
| | - Fernando Cardona
- Unidad de Gestion Clínica de Endocrinología y Nutrición, Laboratorio del Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga (Virgen de la Victoria) Málaga, Spain ; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición Madrid, Spain
| | - Francisco J Tinahones
- Unidad de Gestion Clínica de Endocrinología y Nutrición, Laboratorio del Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga (Virgen de la Victoria) Málaga, Spain ; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición Madrid, Spain
| | - María Isabel Queipo-Ortuño
- Unidad de Gestion Clínica de Endocrinología y Nutrición, Laboratorio del Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga (Virgen de la Victoria) Málaga, Spain ; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición Madrid, Spain
| |
Collapse
|
821
|
Serban DE. Gastrointestinal cancers: influence of gut microbiota, probiotics and prebiotics. Cancer Lett 2014; 345:258-70. [PMID: 23981580 DOI: 10.1016/j.canlet.2013.08.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 02/07/2023]
Abstract
Cancers of the gastrointestinal (GI) tract continue to represent a major health problem, despite progress in therapy. Gut microbiota is a key element related to the genesis of GI cancers, countless papers addressing this burning issue across the world. We provide an updated knowledge of the involvement of gut microbiota in GI tumorigenesis, including its underlying mechanisms. We present also a comprehensive review of the evidence from animal and clinical studies using probiotics and/or prebiotics in the prevention and/or therapy of GI tumours, of GI cancer therapy-related toxicity and of post-operative complications. We summarize the anticarcinogenic mechanisms of these biotherapeutics from in vitro, animal and clinical interventions. More research is required to reveal the interactions of microflora with genetic, epigenetic and immunologic factors, diet and age, before any firm conclusion be drawn. Well-designed, randomized, double blind, placebo-controlled human studies using probiotics and/or prebiotics, with adequate follow-up are necessary in order to formulate directions for prevention and therapy.
Collapse
Affiliation(s)
- Daniela Elena Serban
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Second Pediatric Clinic, Emergency Children's Hospital, Cluj-Napoca, Romania.
| |
Collapse
|
822
|
Irrazábal T, Belcheva A, Girardin S, Martin A, Philpott D. The Multifaceted Role of the Intestinal Microbiota in Colon Cancer. Mol Cell 2014; 54:309-20. [DOI: 10.1016/j.molcel.2014.03.039] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
823
|
Wang ZK, Yang YS, Stefka AT, Sun G, Peng LH. Review article: fungal microbiota and digestive diseases. Aliment Pharmacol Ther 2014; 39:751-66. [PMID: 24612332 DOI: 10.1111/apt.12665] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/16/2013] [Accepted: 01/29/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of the fungal microbiota in digestive diseases is poorly defined, but is becoming better understood due to advances in metagenomics. AIM To review the gastrointestinal fungal microbiota and its relationship with digestive diseases. METHODS Search of the literature using PubMed and MEDLINE databases. Subject headings including 'fungal-bacterial interactions', 'mycotoxins', 'immunity to fungi', 'fungal infection', 'fungal microbiota', 'mycobiome' and 'digestive diseases' were used. RESULTS The fungal microbiota is an integral part of the gastrointestinal microecosystem with up to 10(6) microorganisms per gram of faeces. Next-generation sequencing of the fungal 18S rRNA gene has allowed better characterisation of the gastrointestinal mycobiome. Numerous interactions between fungi and bacteria and the complex immune response to gastrointestinal commensal or pathogenic fungi all impact on the pathophysiology of inflammatory bowel disease and other gastrointestinal inflammatory entities such as peptic ulcers. Mycotoxins generated as fungal metabolites contribute to disturbances of gastrointestinal barrier and immune functions and are associated with chronic intestinal inflammatory conditions as well as hepatocellular and oesophagogastric cancer. Systemic and gastrointestinal disease can also lead to secondary fungal infections. Fungal genomic databases and methodologies need to be further developed and will allow a much better understanding of the diversity and function of the mycobiome in gastrointestinal inflammation, tumourigenesis, liver cirrhosis and transplantation, and its alteration as a consequence of antibiotic therapy and chemotherapy. CONCLUSIONS The fungal microbiota and its metabolites impact gastrointestinal function and contribute to the pathogenesis of digestive diseases. Further metagenomic analyses of the gastrointestinal mycobiome in health and disease is needed.
Collapse
Affiliation(s)
- Z K Wang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Chinese PLA Medical Academy, Beijing, China
| | | | | | | | | |
Collapse
|
824
|
Walsh CJ, Guinane CM, O'Toole PW, Cotter PD. Beneficial modulation of the gut microbiota. FEBS Lett 2014; 588:4120-30. [PMID: 24681100 DOI: 10.1016/j.febslet.2014.03.035] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 12/21/2022]
Abstract
The human gut microbiota comprises approximately 100 trillion microbial cells and has a significant effect on many aspects of human physiology including metabolism, nutrient absorption and immune function. Disruption of this population has been implicated in many conditions and diseases, including examples such as obesity, inflammatory bowel disease and colorectal cancer that are highlighted in this review. A logical extension of these observations suggests that the manipulation of the gut microbiota can be employed to prevent or treat these conditions. Thus, here we highlight a variety of options, including the use of changes in diet (including the use of prebiotics), antimicrobial-based intervention, probiotics and faecal microbiota transplantation, and discuss their relative merits with respect to modulating the intestinal community in a beneficial way.
Collapse
Affiliation(s)
- Calum J Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; Department of Microbiology, University College Cork, Cork, Ireland
| | | | - Paul W O'Toole
- Department of Microbiology, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
825
|
Zhu Q, Jin Z, Wu W, Gao R, Guo B, Gao Z, Yang Y, Qin H. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer. PLoS One 2014; 9:e90849. [PMID: 24603888 PMCID: PMC3946251 DOI: 10.1371/journal.pone.0090849] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/30/2014] [Indexed: 12/25/2022] Open
Abstract
Recent reports have suggested that multiple factors such as host genetics, environment and diet can promote the progression of healthy mucosa towards sporadic colorectal carcinoma. Accumulating evidence has additionally associated intestinal bacteria with disease initiation and progression. In order to examine and analyze the composition of gut microbiota in the absence of confounding influences, we have established an animal model of 1, 2-dimethylhydrazine (DMH)-induced colon cancer. Using this model, we have performed pyrosequencing of the V3 region of the 16S rRNA genes in this study to determine the diversity and breadth of the intestinal microbial species. Our findings indicate that the microbial composition of the intestinal lumen differs significantly between control and tumor groups. The abundance of Firmicutes was elevated whereas the abundance of Bacteroidetes and Spirochetes was reduced in the lumen of CRC rats. Fusobacteria was not detected in any of the healthy rats and there was no significant difference in observed Proteobacteria species when comparing the bacterial communities between our two groups. Interestingly, the abundance of Proteobacteria was higher in CRC rats. At the genus level, Bacteroides exhibited a relatively higher abundance in CRC rats compared to controls (14.92% vs. 9.22%, p<0.001). Meanwhile, Prevotella (55.22% vs. 26.19%), Lactobacillus (3.71% vs. 2.32%) and Treponema (3.04% vs. 2.43%), were found to be significantly more abundant in healthy rats than CRC rats (p<0.001, respectively). We also demonstrate a significant reduction of butyrate-producing bacteria such as Roseburia and Eubacterium in the gut microbiota of CRC rats. Furthermore, a significant increase in Desulfovibrio, Erysipelotrichaceae and Fusobacterium was also observed in the tumor group. A decrease in probiotic species such as Ruminococcus and Lactobacillus was likewise observed in the tumor group. Collectively, we can conclude that a significant difference in intestinal bacterial flora exists between healthy rats and CRC rats.
Collapse
Affiliation(s)
- Qingchao Zhu
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zhiming Jin
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Wen Wu
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Renyuan Gao
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Bomin Guo
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zhiguang Gao
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yongzhi Yang
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Huanlong Qin
- Department of Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
826
|
Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis 2014; 33:1381-90. [PMID: 24599709 DOI: 10.1007/s10096-014-2081-3] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/12/2014] [Indexed: 02/06/2023]
Abstract
Commensal bacteria in the colon may play a role in colorectal cancer (CRC) development. Recent studies from North America showed that Fusobacterium nucleatum (Fn) infection is over-represented in disease tissue versus matched normal tissue in CRC patients. Using quantitative real-time polymerase chain reaction (qPCR) of DNA extracted from colorectal tissue biopsies and surgical resections of three European cohorts totalling 122 CRC patients, we found an over-abundance of Fn in cancerous compared to matched normal tissue (p < 0.0001). To determine whether Fn infection is an early event in CRC development, we assayed Fn in colorectal adenoma (CRA) tissue from 52 Irish patients. While for all CRAs the Fn level was not statistically significantly higher in disease versus normal tissue (p = 0.06), it was significantly higher for high-grade dysplasia (p = 0.015). As a secondary objective, we determined that CRC patients with low Fn levels had a significantly longer overall survival time than patients with moderate and high levels of the bacterium (p = 0.008). The investigation of Fn as a potential non-invasive biomarker for CRC screening showed that, while Fn was more abundant in stool samples from CRC patients compared to adenomas or controls, the levels in stool did not correlate with cancer or adenoma tissue levels from the same individuals. This is the first study examining Fn in the colonic tissue and stool of European CRC and CRA patients, and suggests Fn as a novel risk factor for disease progression from adenoma to cancer, possibly affecting patient survival outcomes. Our results highlight the potential of Fn detection as a diagnostic and prognostic determinant in CRC patients.
Collapse
|
827
|
Bultman SJ. Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin Cancer Res 2014; 20:799-803. [PMID: 24270685 PMCID: PMC3944646 DOI: 10.1158/1078-0432.ccr-13-2483] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gene-environment interactions are so numerous and biologically complicated that it can be challenging to understand their role in cancer. However, dietary fiber and colorectal cancer prevention may represent a tractable model system. Fiber is fermented by colonic bacteria into short-chain fatty acids such as butyrate. One molecular pathway that has emerged involves butyrate having differential effects depending on its concentration and the metabolic state of the cell. Low-moderate concentrations, which are present near the base of colonic crypts, are readily metabolized in the mitochondria to stimulate cell proliferation via energetics. Higher concentrations, which are present near the lumen, exceed the metabolic capacity of the colonocyte. Unmetabolized butyrate enters the nucleus and functions as a histone deacetylase (HDAC) inhibitor that epigenetically regulates gene expression to inhibit cell proliferation and induce apoptosis as the colonocytes exfoliate into the lumen. Butyrate may therefore play a role in normal homeostasis by promoting turnover of the colonic epithelium. Because cancerous colonocytes undergo the Warburg effect, their preferred energy source is glucose instead of butyrate. Consequently, even moderate concentrations of butyrate accumulate in cancerous colonocytes and function as HDAC inhibitors to inhibit cell proliferation and induce apoptosis. These findings implicate a bacterial metabolite with metaboloepigenetic properties in tumor suppression.
Collapse
Affiliation(s)
- Scott J. Bultman
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
828
|
Abstract
Although we know there is considerable variation in gut microbial composition within host species, little is known about how this variation is shaped and why such variation exists. In humans, obesity is associated with the relative abundance of two dominant bacterial phyla: an increase in the proportion of Firmicutes and a decrease in the proportion of Bacteroidetes. As there is evidence that humans have adapted to colder climates by increasing their body mass (e.g. Bergmann's rule), we tested whether Firmicutes increase and Bacteroidetes decrease with latitude, using 1020 healthy individuals drawn from 23 populations and six published studies. We found a positive correlation between Firmicutes and latitude and a negative correlation between Bacteroidetes and latitude. The overall pattern appears robust to sex, age and bacterial detection methods. Comparisons between African Americans and native Africans and between European Americans and native Europeans suggest no evidence of host genotype explaining the observed patterns. The variation of gut microbial composition described here is consistent with the pattern expected by Bergmann's rule. This surprising link between large-scale geography and human gut microbial composition merits further investigation.
Collapse
Affiliation(s)
- Taichi A Suzuki
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California Berkeley, , 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | | |
Collapse
|
829
|
Zhang C, Li S, Yang L, Huang P, Li W, Wang S, Zhao G, Zhang M, Pang X, Yan Z, Liu Y, Zhao L. Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 2014; 4:2163. [PMID: 23860099 PMCID: PMC3717500 DOI: 10.1038/ncomms3163] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/17/2013] [Indexed: 12/16/2022] Open
Abstract
Calorie restriction has been regarded as the only experimental regimen that can effectively lengthen lifespan in various animal models, but the actual mechanism remains controversial. The gut microbiota has been shown to have a pivotal role in host health, and its structure is mostly shaped by diet. Here we show that life-long calorie restriction on both high-fat or low-fat diet, but not voluntary exercise, significantly changes the overall structure of the gut microbiota of C57BL/6 J mice. Calorie restriction enriches phylotypes positively correlated with lifespan, for example, the genus Lactobacillus on low-fat diet, and reduces phylotypes negatively correlated with lifespan. These calorie restriction-induced changes in the gut microbiota are concomitant with significantly reduced serum levels of lipopolysaccharide-binding protein, suggesting that animals under calorie restriction can establish a structurally balanced architecture of gut microbiota that may exert a health benefit to the host via reduction of antigen load from the gut. Calorie restriction has been shown to extend lifespan in diverse model systems, however, the mechanisms underlying this effect remain unclear. Zhang et al. show that calorie restriction changes the structure of the gut microbiota in mice, enriching for phylotypes positively correlated with lifespan.
Collapse
Affiliation(s)
- Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
830
|
Phua LC, Chue XP, Koh PK, Cheah PY, Ho HK, Chan ECY. Non-invasive fecal metabonomic detection of colorectal cancer. Cancer Biol Ther 2014; 15:389-97. [PMID: 24424155 DOI: 10.4161/cbt.27625] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is a major cause of mortality in many developed countries. Effective screening strategies were called for to facilitate timely detection and to promote a better clinical outcome. In this study, the role of fecal metabonomics in the non-invasive detection of CRC was investigated. Gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) was utilized for the metabolic profiling of feces obtained from 11 CRC patients and 10 healthy subjects. Concurrently, matched tumor and normal mucosae surgically excised from CRC patients were profiled. CRC patients were differentiated clearly from healthy subjects based on their fecal metabonomic profiles (orthogonal partial least squares discriminant analysis [OPLS-DA], 1 predictive and 3 Y-orthogonal components, R (2)X = 0.373, R (2)Y = 0.995, Q (2) [cumulative] = 0.215). The robustness of the OPLS-DA model was demonstrated by an area of 1 under the receiver operator characteristic curve. OPLS-DA revealed fecal marker metabolites (e.g., fructose, linoleic acid, and nicotinic acid) that provided novel insights into the tumorigenesis of CRC. Interestingly, a disparate set of CRC-related metabolic aberrations occurred at the tissue level, implying the contribution of processes beyond the direct shedding of tumor cells to the fecal metabotype. In summary, this work established proof-of-principle for GC/TOFMS-based fecal metabonomic detection of CRC and offered new perspectives on the underlying mechanisms.
Collapse
Affiliation(s)
- Lee Cheng Phua
- Department of Pharmacy; Faculty of Science; National University of Singapore; Singapore
| | - Xiu Ping Chue
- Department of Pharmacy; Faculty of Science; National University of Singapore; Singapore
| | - Poh Koon Koh
- Department of Colorectal Surgery; Singapore General Hospital; Singapore
| | - Peh Yean Cheah
- Department of Colorectal Surgery; Singapore General Hospital; Singapore; Saw Swee Hock School of Public Health; National University of Singapore; Singapore; Duke-NUS Graduate Medical School; National University of Singapore; Singapore
| | - Han Kiat Ho
- Department of Pharmacy; Faculty of Science; National University of Singapore; Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy; Faculty of Science; National University of Singapore; Singapore
| |
Collapse
|
831
|
The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats. PLoS One 2014; 9:e83644. [PMID: 24454707 PMCID: PMC3891650 DOI: 10.1371/journal.pone.0083644] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/06/2013] [Indexed: 01/10/2023] Open
Abstract
CPT-11 is a drug used as chemotherapy for colorectal cancer. CPT-11 causes toxic side-effects in patients. CPT-11 toxicity has been attributed to the activity of intestinal microbiota, however, intestinal microbiota may also have protective effects in CP!-11 chemotherapy. This study aimed to elucidate mechanisms through which microbiota and dietary fibres could modify host health. Rats bearing a Ward colon carcinoma were treated with a two-cycle CPT-11/5-fluorouracil therapy recapitulating clinical therapy of colorectal cancer. Animals were fed with a semi-purified diet or a semi-purified diet was supplemented with non-digestible carbohydrates (isomalto-oligosaccharides, resistant starch, fructo-oligosaccharides, or inulin) in 3 independent experiments. Changes in intestinal microbiota, bacteria translocating to mesenteric lymphnodes, cecal GUD activity, and cecal SCFA production, and the intestinal concentration of CPT-11 and its metabolites were analysed. Non-digestible carbohydrates significantly influenced feed intake, body weight and other indicators of animal health. The identification of translocating bacteria and their quantification in cecal microbiota indicated that overgrowth of the intestine by opportunistic pathogens was not a major contributor to CPT-11 toxicity. Remarkably, fecal GUD activity positively correlated to body weight and feed intake but negatively correlated to cecal SN-38 concentrations and IL1-β. The reduction in CPT-11 toxicity by non-digestible carbohydrates did not correlate to stimulation of specific bacterial taxa. However, cecal butyrate concentrations and feed intake were highly correlated. The protective role of intestinal butyrate production was substantiated by a positive correlation of the host expression of MCT1 (monocarboxylate transporter 1) with body weight as well as a positive correlation of the abundance of bacterial butyryl-CoA gene with cecal butyrate concentrations. These correlations support the interpretation that the influence of dietary fibre on CPT-11 toxicity is partially mediated by an increased cecal production of butyrate.
Collapse
|
832
|
Chiu CM, Lin FM, Chang TH, Huang WC, Liang C, Yang T, Wu WY, Yang TL, Weng SL, Huang HD. Clinical detection of human probiotics and human pathogenic bacteria by using a novel high-throughput platform based on next generation sequencing. J Clin Bioinforma 2014; 4:1. [PMID: 24418497 PMCID: PMC3901789 DOI: 10.1186/2043-9113-4-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 12/13/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The human body plays host to a vast array of bacteria, found in oral cavities, skin, gastrointestinal tract and the vagina. Some bacteria are harmful while others are beneficial to the host. Despite the availability of many methods to identify bacteria, most of them are only applicable to specific and cultivable bacteria and are also tedious. Based on high throughput sequencing technology, this work derives 16S rRNA sequences of bacteria and analyzes probiotics and pathogens species. RESULTS We constructed a database that recorded the species of probiotics and pathogens from literature, along with a modified Smith-Waterman algorithm for assigning the taxonomy of the sequenced 16S rRNA sequences. We also constructed a bacteria disease risk model for seven diseases based on 98 samples. Applicability of the proposed platform is demonstrated by collecting the microbiome in human gut of 13 samples. CONCLUSIONS The proposed platform provides a relatively easy means of identifying a certain amount of bacteria and their species (including uncultivable pathogens) for clinical microbiology applications. That is, detecting how probiotics and pathogens inhabit humans and how affect their health can significantly contribute to develop a diagnosis and treatment method.
Collapse
Affiliation(s)
- Chih-Min Chiu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Feng-Mao Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chih Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Chao Liang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Ting Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Wei-Yun Wu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Tzu-Ling Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Shun-Long Weng
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan.,Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan.,Mackay Medicine, Nursing and Management College, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| |
Collapse
|
833
|
Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014; 40:128-39. [PMID: 24412617 DOI: 10.1016/j.immuni.2013.12.007] [Citation(s) in RCA: 1537] [Impact Index Per Article: 153.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 10/28/2013] [Indexed: 02/07/2023]
Abstract
Commensal gut microflora and dietary fiber protect against colonic inflammation and colon cancer through unknown targets. Butyrate, a bacterial product from fermentation of dietary fiber in the colon, has been implicated in this process. GPR109A (encoded by Niacr1) is a receptor for butyrate in the colon. GPR109A is also a receptor for niacin, which is also produced by gut microbiota and suppresses intestinal inflammation. Here we showed that Gpr109a signaling promoted anti-inflammatory properties in colonic macrophages and dendritic cells and enabled them to induce differentiation of Treg cells and IL-10-producing T cells. Moreover, Gpr109a was essential for butyrate-mediated induction of IL-18 in colonic epithelium. Consequently, Niacr1(-/-) mice were susceptible to development of colonic inflammation and colon cancer. Niacin, a pharmacological Gpr109a agonist, suppressed colitis and colon cancer in a Gpr109a-dependent manner. Thus, Gpr10a has an essential role in mediating the beneficial effects of gut microbiota and dietary fiber in colon.
Collapse
|
834
|
Hanshew AS, Jetté ME, Thibeault SL. Characterization and comparison of bacterial communities in benign vocal fold lesions. MICROBIOME 2014; 2:43. [PMID: 25671105 PMCID: PMC4323261 DOI: 10.1186/2049-2618-2-43] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/20/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Benign vocal fold lesions, including cysts, nodules, polyps, and Reinke's edema, are common causes of hoarseness and subsequent voice disorders. Given the prevalence of these lesions, disease etiology and pathophysiology remain unclear and their microbiota has not been studied to date secondary to the paucity of available biopsies for investigation. We sought to characterize and compare the bacterial communities in biopsies of cysts, nodules, polyps, and Reinke's edema collected from patients in Germany and Wisconsin. These samples were then compared to the communities found in healthy saliva and throat samples from the Human Microbiome Project (HMP). RESULTS 454 pyrosequencing of the V3-V5 regions of the 16S rRNA gene revealed five phyla that explained most of the bacterial diversity, including Firmicutes (73.8%), Proteobacteria (12.7%), Bacteroidetes (9.2%), Actinobacteria (2.1%), and Fusobacteria (1.9%). Every lesion sample, regardless of diagnosis, had operational taxonomic units (OTUs) identified as Streptococcus, with a mean abundance of 68.7%. Most of the lesions, 31 out of 44, were indistinguishable in a principal coordinates analysis (PCoA) due to dominance by OTUs phylogenetically similar to Streptococcus pseudopneumoniae. Thirteen lesions not dominated by S. pseudopneumoniae were more similar to HMP throat and saliva samples, though 12 of them contained Pseudomonas, which was not present in any of the HMP samples. Community structure and abundance could not be correlated with lesion diagnosis or any other documented patient factor, including age, sex, or country of origin. CONCLUSIONS Dominance by S. pseudopneumoniae could be a factor in disease etiology, as could the presence of Pseudomonas in some samples. Likewise, decreased diversity, as compared to healthy saliva and throat samples, may be associated with disease, similar to disease models in other mucosal sites.
Collapse
Affiliation(s)
- Alissa S Hanshew
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, Madison, 53705 Wisconsin USA
| | - Marie E Jetté
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, Madison, 53705 Wisconsin USA
| | - Susan L Thibeault
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, Madison, 53705 Wisconsin USA
| |
Collapse
|
835
|
Baxter NT, Zackular JP, Chen GY, Schloss PD. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. MICROBIOME 2014; 2:20. [PMID: 24967088 PMCID: PMC4070349 DOI: 10.1186/2049-2618-2-20] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/04/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND A growing body of evidence indicates that the gut microbiome plays a role in the development of colorectal cancer (CRC). Patients with CRC harbor gut microbiomes that are structurally distinct from those of healthy individuals; however, without the ability to track individuals during disease progression, it has not been possible to observe changes in the microbiome over the course of tumorigenesis. Mouse models have demonstrated that these changes can further promote colonic tumorigenesis. However, these models have relied upon mouse-adapted bacterial populations and so it remains unclear which human-adapted bacterial populations are responsible for modulating tumorigenesis. RESULTS We transplanted fecal microbiota from three CRC patients and three healthy individuals into germ-free mice, resulting in six structurally distinct microbial communities. Subjecting these mice to a chemically induced model of CRC resulted in different levels of tumorigenesis between mice. Differences in the number of tumors were strongly associated with the baseline microbiome structure in mice, but not with the cancer status of the human donors. Partitioning of baseline communities into enterotypes by Dirichlet multinomial mixture modeling resulted in three enterotypes that corresponded with tumor burden. The taxa most strongly positively correlated with increased tumor burden were members of the Bacteroides, Parabacteroides, Alistipes, and Akkermansia, all of which are Gram-negative. Members of the Gram-positive Clostridiales, including multiple members of Clostridium Group XIVa, were strongly negatively correlated with tumors. Analysis of the inferred metagenome of each community revealed a negative correlation between tumor count and the potential for butyrate production, and a positive correlation between tumor count and the capacity for host glycan degradation. Despite harboring distinct gut communities, all mice underwent conserved structural changes over the course of the model. The extent of these changes was also correlated with tumor incidence. CONCLUSION Our results suggest that the initial structure of the microbiome determines susceptibility to colonic tumorigenesis. There appear to be opposing roles for certain Gram-negative (Bacteroidales and Verrucomicrobia) and Gram-positive (Clostridiales) bacteria in tumor susceptibility. Thus, the impact of community structure is potentially mediated by the balance between protective, butyrate-producing populations and inflammatory, mucin-degrading populations.
Collapse
Affiliation(s)
- Nielson T Baxter
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph P Zackular
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Grace Y Chen
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick D Schloss
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
836
|
Abstract
Gene-environment interactions underlie cancer susceptibility and progression. Yet, we still have limited knowledge of which environmental factors are important and how they function during tumorigenesis. In this respect, the microbial communities that inhabit our gastrointestinal tract and other body sites have been unappreciated until recently. However, our microbiota are environmental factors that we are exposed to continuously, and human microbiome studies have revealed significant differences in the relative abundance of certain microbes in cancer cases compared with controls. To characterize the function of microbiota in carcinogenesis, mouse models of cancer have been treated with antibiotics. They have also been maintained in a germfree state or have been colonized with specific bacteria in specialized (gnotobiotic) facilities. These studies demonstrate that microbiota can increase or decrease cancer susceptibility and progression by diverse mechanisms such as by modulating inflammation, influencing the genomic stability of host cells and producing metabolites that function as histone deacetylase inhibitors to epigenetically regulate host gene expression. One might consider microbiota as tractable environmental factors because they are highly quantifiable and relatively stable within an individual compared with our exposures to external agents. At the same time, however, diet can modulate the composition of microbial communities within our gut, and this supports the idea that probiotics and prebiotics can be effective chemoprevention strategies. The trajectory of where the current work is headed suggests that microbiota will continue to provide insight into the basic mechanisms of carcinogenesis and that microbiota will also become targets for therapeutic intervention.
Collapse
Affiliation(s)
- Scott J Bultman
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, 120 Mason Farm Road, Genetic Medicine Building Room 5060, Chapel Hill, NC 27599-7264, USA
| |
Collapse
|
837
|
Levy M, Thaiss CA, Elinav E. The Microbiota: A New Player in the Etiology of Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0196-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
838
|
Chan YK, Estaki M, Gibson DL. Clinical consequences of diet-induced dysbiosis. ANNALS OF NUTRITION AND METABOLISM 2013; 63 Suppl 2:28-40. [PMID: 24217034 DOI: 10.1159/000354902] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various disease states are associated with an imbalance of protective and pathogenic bacteria in the gut, termed dysbiosis. Current evidence reveals that dietary factors affect the microbial ecosystem in the gut. Changes to community structure of the intestinal microbiota are not without consequence considering the wide effects that the microbes have on both local and systemic immunity. The goal of this review is to give insight into the importance of gut microbiota in disease development and the possible therapeutic interventions in clinical settings. We introduce the complex tripartite relationship between diet, microbes and the gut epithelium. This is followed by a summary of clinical evidence of diet-induced dysbiosis as a contributing factor in the development of gastrointestinal diseases like inflammatory bowel disease, irritable bowel syndrome and colorectal cancer, as well as systemic diseases like obesity, diabetes, atherosclerosis and nonalcoholic fatty liver disease. Finally, the current dietary and microbial interventions to promote a healthy microbial profile will be reviewed.
Collapse
Affiliation(s)
- Yee Kwan Chan
- Department of Biology, University of British Columbia Okanagan, Kelowna, B.C., Canada
| | | | | |
Collapse
|
839
|
Abstract
Recent studies have shown that individuals with colorectal cancer have an altered gut microbiome compared to healthy controls. It remains unclear whether these differences are a response to tumorigenesis or actively drive tumorigenesis. To determine the role of the gut microbiome in the development of colorectal cancer, we characterized the gut microbiome in a murine model of inflammation-associated colorectal cancer that mirrors what is seen in humans. We followed the development of an abnormal microbial community structure associated with inflammation and tumorigenesis in the colon. Tumor-bearing mice showed enrichment in operational taxonomic units (OTUs) affiliated with members of the Bacteroides, Odoribacter, and Akkermansia genera and decreases in OTUs affiliated with members of the Prevotellaceae and Porphyromonadaceae families. Conventionalization of germfree mice with microbiota from tumor-bearing mice significantly increased tumorigenesis in the colon compared to that for animals colonized with a healthy gut microbiome from untreated mice. Furthermore, at the end of the model, germfree mice colonized with microbiota from tumor-bearing mice harbored a higher relative abundance of populations associated with tumor formation in conventional animals. Manipulation of the gut microbiome with antibiotics resulted in a dramatic decrease in both the number and size of tumors. Our results demonstrate that changes in the gut microbiome associated with inflammation and tumorigenesis directly contribute to tumorigenesis and suggest that interventions affecting the composition of the microbiome may be a strategy to prevent the development of colon cancer. The trillions of bacteria that live in the gut, known collectively as the gut microbiome, are important for normal functioning of the intestine. There is now growing evidence that disruptive changes in the gut microbiome are strongly associated with the development colorectal cancer. However, how the gut microbiome changes with time during tumorigenesis and whether these changes directly contribute to disease have not been determined. We demonstrate using a mouse model of inflammation-driven colon cancer that there are dramatic, continual alterations in the microbiome during the development of tumors, which are directly responsible for tumor development. Our results suggest that interventions that target these changes in the microbiome may be an effective strategy for preventing the development of colorectal cancer.
Collapse
|
840
|
Abstract
Microbiota and host form a complex 'super-organism' in which symbiotic relationships confer benefits to the host in many key aspects of life. However, defects in the regulatory circuits of the host that control bacterial sensing and homeostasis, or alterations of the microbiome, through environmental changes (infection, diet or lifestyle), may disturb this symbiotic relationship and promote disease. Increasing evidence indicates a key role for the bacterial microbiota in carcinogenesis. In this Opinion article, we discuss links between the bacterial microbiota and cancer, with a particular focus on immune responses, dysbiosis, genotoxicity, metabolism and strategies to target the microbiome for cancer prevention.
Collapse
Affiliation(s)
- Robert F. Schwabe
- Department of Medicine, and Institute of Human Nutrition, Columbia University, College of Physicians and Surgeons, New York 10032, USA
| | - Christian Jobin
- Department of Medicine and Department of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
841
|
Fenton JI, Hord NG, Ghosh S, Gurzell EA. Immunomodulation by dietary long chain omega-3 fatty acids and the potential for adverse health outcomes. Prostaglandins Leukot Essent Fatty Acids 2013; 89:379-90. [PMID: 24183073 PMCID: PMC3912985 DOI: 10.1016/j.plefa.2013.09.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 01/07/2023]
Abstract
Recommendations to consume fish for prevention of cardiovascular disease (CVD), along with the U.S. Food and Drug Administration-approved generally recognized as safe (GRAS) status for long chain omega-3 fatty acids, may have had the unanticipated consequence of encouraging long-chain omega-3 (ω-3) fatty acid [(eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] supplementation and fortification practices. While there is evidence supporting a protective role for EPA/DHA supplementation in reducing sudden cardiac events, the safety and efficacy of supplementation with LCω-3PUFA in the context of other disease outcomes is unclear. Recent studies of bacterial, viral, and fungal infections in animal models of infectious disease demonstrate that LCω-3PUFA intake dampens immunity and alters pathogen clearance and can result in reduced survival. The same physiological properties of EPA/DHA that are responsible for the amelioration of inflammation associated with chronic cardiovascular pathology or autoimmune states, may impair pathogen clearance during acute infections by decreasing host resistance or interfere with tumor surveillance resulting in adverse health outcomes. Recent observations that high serum LCω-3PUFA levels are associated with higher risk of prostate cancer and atrial fibrillation raise concern for adverse outcomes. Given the widespread use of supplements and fortification of common food items with LCω-3PUFA, this review focuses on the immunomodulatory effects of the dietary LCω-3PUFAs, EPA and DHA, the mechanistic basis for potential negative health outcomes, and calls for biomarker development and validation as rational first steps towards setting recommended dietary intake levels.
Collapse
Affiliation(s)
- Jenifer I Fenton
- Department of Food Science and Human, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States; College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, United States.
| | | | | | | |
Collapse
|
842
|
Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME JOURNAL 2013; 8:541-551. [PMID: 24132079 DOI: 10.1038/ismej.2013.181] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/15/2013] [Accepted: 09/17/2013] [Indexed: 12/21/2022]
Abstract
Gut microbiota of invasive Asian silver carp (SVCP) and indigenous planktivorous gizzard shad (GZSD) in Mississippi river basin were compared using 16S rRNA gene pyrosequencing. Analysis of more than 440 000 quality-filtered sequences obtained from the foregut and hindgut of GZSD and SVCP revealed high microbial diversity in these samples. GZSD hindgut (GZSD_H) samples (n=23) with >7000 operational taxonomy units (OTUs) exhibited the highest alpha-diversity indices followed by SVCP foregut (n=15), GZSD foregut (n=9) and SVCP hindgut (SVCP_H) (n=24). UniFrac distance-based non-metric multidimensional scaling (NMDS) analysis showed that the microbiota of GZSD_H and SVCP_H were clearly separated into two clusters: samples in the GZSD cluster were observed to vary by sampling location and samples in the SVCP cluster by sampling date. NMDS further revealed distinct microbial community between foregut to hindgut for individual GZSD and SVCP. Cyanobacteria, Proteobacteria, Actinobacteria and Bacteroidetes were detected as the predominant phyla regardless of fish or gut type. The high abundance of Cyanobacteria observed was possibly supported by their role as the fish's major food source. Furthermore, unique and shared OTUs and OTUs in each gut type were identified, three OTUs from the order Bacteroidales, the genus Bacillariophyta and the genus Clostridium were found significantly more abundant in GZSD_H (14.9-22.8%) than in SVCP_H (0.13-4.1%) samples. These differences were presumably caused by the differences in the type of food sources including bacteria ingested, the gut morphology and digestion, and the physiological behavior between GZSD and SVCP.
Collapse
|
843
|
Arthur JC, Gharaibeh RZ, Uronis JM, Perez-Chanona E, Sha W, Tomkovich S, Mühlbauer M, Fodor AA, Jobin C. VSL#3 probiotic modifies mucosal microbial composition but does not reduce colitis-associated colorectal cancer. Sci Rep 2013; 3:2868. [PMID: 24100376 PMCID: PMC3792409 DOI: 10.1038/srep02868] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/18/2013] [Indexed: 02/07/2023] Open
Abstract
Although probiotics have shown success in preventing the development of experimental colitis-associated colorectal cancer (CRC), beneficial effects of interventional treatment are relatively unknown. Here we show that interventional treatment with VSL#3 probiotic alters the luminal and mucosally-adherent microbiota, but does not protect against inflammation or tumorigenesis in the azoxymethane (AOM)/Il10⁻/⁻ mouse model of colitis-associated CRC. VSL#3 (10⁹ CFU/animal/day) significantly enhanced tumor penetrance, multiplicity, histologic dysplasia scores, and adenocarcinoma invasion relative to VSL#3-untreated mice. Illumina 16S sequencing demonstrated that VSL#3 significantly decreased (16-fold) the abundance of a bacterial taxon assigned to genus Clostridium in the mucosally-adherent microbiota. Mediation analysis by linear models suggested that this taxon was a contributing factor to increased tumorigenesis in VSL#3-fed mice. We conclude that VSL#3 interventional therapy can alter microbial community composition and enhance tumorigenesis in the AOM/Il10⁻/⁻ model.
Collapse
Affiliation(s)
| | - Raad Z. Gharaibeh
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC 28081, USA
| | | | | | - Wei Sha
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC 28081, USA
| | - Sarah Tomkovich
- Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Christian Jobin
- Department of Medicine, Chapel Hill, NC 27599, USA
- Pharmacology, Chapel Hill, NC 27599, USA
- Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, University of Florida at Gainesville, Gainesville, FL32611, USA
- Department of Infectious Diseases and Pathology, University of Florida at Gainesville, Gainesville, FL32611, USA
| |
Collapse
|
844
|
Angelberger S, Reinisch W, Makristathis A, Lichtenberger C, Dejaco C, Papay P, Novacek G, Trauner M, Loy A, Berry D. Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am J Gastroenterol 2013; 108:1620-30. [PMID: 24060759 DOI: 10.1038/ajg.2013.257] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/22/2013] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Fecal microbiota transplantation (FMT) from healthy donors, which is an effective alternative for treatment of Clostridium difficile-associated disease, is being considered for several disorders such as inflammatory bowel disease, irritable bowel syndrome, and metabolic syndrome. Disease remission upon FMT is thought to be facilitated by an efficient colonization of healthy donor microbiota, but knowledge of the composition and temporal stability of patient microbiota after FMT is lacking. METHODS Five patients with moderately to severely active ulcerative colitis (Mayo score ≥6) and refractory to standard therapy received FMT via nasojejunal tube and enema. In addition to clinical activity and adverse events, the patients' fecal bacterial communities were monitored at multiple time points for up to 12 weeks using 16S rRNA gene-targeted pyrosequencing. RESULTS FMT elicited fever and a temporary increase of C-reactive protein. Abundant bacteria from donors established in recipients, but the efficiency and stability of donor microbiota colonization varied greatly. A positive clinical response was observed after 12 weeks in one patient whose microbiota had been effectively augmented by FMT. This augmentation was marked by successive colonization of donor-derived phylotypes including the anti-inflammatory and/or short-chain fatty acid-producing Faecalibacterium prausnitzii, Rosebura faecis, and Bacteroides ovatus. Disease severity (as measured by the Mayo score) was associated with an overrepresentation of Enterobacteriaceae and an underrepresentation of Lachnospiraceae. CONCLUSIONS This study highlights the value of characterizing temporally resolved microbiota dynamics for a better understanding of FMT efficacy and provides potentially useful diagnostic indicators for monitoring FMT success in the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Sieglinde Angelberger
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University Vienna, Wien, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
845
|
Abstract
At a simplistic level, colorectal cancer arises from mutations in various proto-oncogenes and tumor suppressor genes. Aside from genetically inherited factors, environmental, lifestyle, and dietary habits have all been identified as risk agents promoting mutational events leading to the development of colorectal cancer. This "In Focus" presents evidence that the intestinal endogenous bacterial community represents a risk factor for the development of colorectal cancer.
Collapse
Affiliation(s)
- Christian Jobin
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
846
|
Abstract
The human colon plays host to a diverse and metabolically complex community of microorganisms. While the colonic microbiome has been suggested to contribute to the development of colorectal cancer (CRC), a definitive link has not been made. The role in which the colon microflora could contribute to the initiation and/or progression of CRC is explored in this review. Potential mechanisms of bacterial oncogenesis are presented, along with lines of evidence derived from animal models of microbially induced CRC. Particular focus is given to the oncogenic capabilities of enterotoxigenic Bacteroides fragilis. Recent progress in defining the microbiome of CRC in the human population is evaluated, and the future challenges of linking specific etiologic agents to CRC are emphasized.
Collapse
Affiliation(s)
- Christine Dejea
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
847
|
Luo YH, Peng HW, Wright ADG, Bai SP, Ding XM, Zeng QF, Li H, Zheng P, Su ZW, Cui RY, Zhang KY. Broilers fed dietary vitamins harbor higher diversity of cecal bacteria and higher ratio of Clostridium, Faecalibacterium, and Lactobacillus than broilers with no dietary vitamins revealed by 16S rRNA gene clone libraries. Poult Sci 2013; 92:2358-66. [DOI: 10.3382/ps.2012-02935] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
848
|
Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, Chen Y, Ji L. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 2013; 8:e71108. [PMID: 24013136 PMCID: PMC3754967 DOI: 10.1371/journal.pone.0071108] [Citation(s) in RCA: 576] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/25/2013] [Indexed: 12/18/2022] Open
Abstract
To explore the relationship of gut microbiota with the development of type 2 diabetes (T2DM), we analyzed 121 subjects who were divided into 3 groups based on their glucose intolerance status: normal glucose tolerance (NGT; n = 44), prediabetes (Pre-DM; n = 64), or newly diagnosed T2DM (n = 13). Gut microbiota characterizations were determined with 16S rDNA-based high-throughput sequencing. T2DM-related dysbiosis was observed, including the separation of microbial communities and a change of alpha diversity between the different glucose intolerance statuses. To assess the correlation between metabolic parameters and microbiota diversity, clinical characteristics were also measured and a significant association between metabolic parameters (FPG, CRP) and gut microbiota was found. In addition, a total of 28 operational taxonomic units (OTUs) were found to be related to T2DM status by the Kruskal-Wallis H test, most of which were enriched in the T2DM group. Butyrate-producing bacteria (e.g. Akkermansia muciniphila ATCCBAA-835, and Faecalibacterium prausnitzii L2-6) had a higher abundance in the NGT group than in the pre-DM group. At genus level, the abundance of Bacteroides in the T2DM group was only half that of the NGT and Pre-DM groups. Previously reported T2DM-related markers were also compared with the data in this study, and some inconsistencies were noted. We found that Verrucomicrobiae may be a potential marker of T2DM as it had a significantly lower abundance in both the pre-DM and T2DM groups. In conclusion, this research provides further evidence of the structural modulation of gut microbiota in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China
| | | | | | | | | | - Chunfang Zhang
- Department of Clinical Epidemiology, Peking University People's Hospital, Beijing, China
| | - Yingli Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China
- * E-mail:
| |
Collapse
|
849
|
Abstract
The gut microbiota has been linked with chronic diseases such as obesity in humans. However, the demonstration of causality between constituents of the microbiota and specific diseases remains an important challenge in the field. In this Opinion article, using Koch's postulates as a conceptual framework, I explore the chain of causation from alterations in the gut microbiota, particularly of the endotoxin-producing members, to the development of obesity in both rodents and humans. I then propose a strategy for identifying the causative agents of obesity in the human microbiota through a combination of microbiome-wide association studies, mechanistic analysis of host responses and the reproduction of diseases in gnotobiotic animals.
Collapse
|
850
|
Wu N, Yang X, Zhang R, Li J, Xiao X, Hu Y, Chen Y, Yang F, Lu N, Wang Z, Luan C, Liu Y, Wang B, Xiang C, Wang Y, Zhao F, Gao GF, Wang S, Li L, Zhang H, Zhu B. Dysbiosis signature of fecal microbiota in colorectal cancer patients. MICROBIAL ECOLOGY 2013; 66:462-70. [PMID: 23733170 DOI: 10.1007/s00248-013-0245-9] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 05/03/2013] [Indexed: 05/09/2023]
Abstract
The human gut microbiota is a complex system that is essential to the health of the host. Increasing evidence suggests that the gut microbiota may play an important role in the pathogenesis of colorectal cancer (CRC). In this study, we used pyrosequencing of the 16S rRNA gene V3 region to characterize the fecal microbiota of 19 patients with CRC and 20 healthy control subjects. The results revealed striking differences in fecal microbial population patterns between these two groups. Partial least-squares discriminant analysis showed that 17 phylotypes closely related to Bacteroides were enriched in the gut microbiota of CRC patients, whereas nine operational taxonomic units, represented by the butyrate-producing genera Faecalibacterium and Roseburia, were significantly less abundant. A positive correlation was observed between the abundance of Bacteroides species and CRC disease status (R = 0.462, P = 0.046 < 0.5). In addition, 16 genera were significantly more abundant in CRC samples than in controls, including potentially pathogenic Fusobacterium and Campylobacter species at genus level. The dysbiosis of fecal microbiota, characterized by the enrichment of potential pathogens and the decrease in butyrate-producing members, may therefore represent a specific microbial signature of CRC. A greater understanding of the dynamics of the fecal microbiota may assist in the development of novel fecal microbiome-related diagnostic tools for CRC.
Collapse
Affiliation(s)
- Na Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|