801
|
Myeku N, Figueiredo-Pereira ME. Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. J Biol Chem 2011; 286:22426-40. [PMID: 21536669 DOI: 10.1074/jbc.m110.149252] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteotoxicity resulting from accumulation of damaged/unwanted proteins contributes prominently to cellular aging and neurodegeneration. Proteasomal removal of these proteins upon covalent polyubiquitination is highly regulated. Recent reports proposed a role for autophagy in clearance of diffuse ubiquitinated proteins delivered by p62/SQSTM1. Here, we compared the turnover dynamics of endogenous ubiquitinated proteins by proteasomes and autophagy by assessing the effect of their inhibitors. Autophagy inhibitors bafilomycin A1, ammonium chloride, and 3-methyladenine failed to increase ubiquitinated protein levels. The proteasome inhibitor epoxomicin raised ubiquitinated protein levels at least 3-fold higher than the lysosomotropic agent chloroquine. These trends were observed in SK-N-SH cells under serum or serum-free conditions and in WT or Atg5(-/-) mouse embryonic fibroblasts (MEFs). Notably, chloroquine considerably inhibited proteasomes in SK-N-SH cells and MEFs. In these cells, elevation of p62/SQSTM1 was greater upon proteasome inhibition than with all autophagy inhibitors tested and was reduced in Atg5(-/-) MEFs. With epoxomicin, soluble p62/SQSTM1 associated with proteasomes and p62/SQSTM1 aggregates contained inactive proteasomes, ubiquitinated proteins, and autophagosomes. Prolonged autophagy inhibition (96 h) failed to elevate ubiquitinated proteins in rat cortical neurons, although epoxomicin did. Moreover, prolonged autophagy inhibition in cortical neurons markedly increased p62/SQSTM1, supporting its degradation mainly by autophagy and not by proteasomes. In conclusion, we clearly demonstrate that pharmacologic or genetic inhibition of autophagy fails to elevate ubiquitinated proteins unless the proteasome is affected. We also provide strong evidence that p62/SQSTM1 associates with proteasomes and that autophagy degrades p62/SQSTM1. Overall, the function of p62/SQSTM1 in the proteasomal pathway and autophagy requires further elucidation.
Collapse
Affiliation(s)
- Natura Myeku
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York 10065, USA
| | | |
Collapse
|
802
|
Abstract
PURPOSE OF REVIEW Reticulocyte remodeling has emerged as an important model for the understanding of vesicular trafficking and selective autophagy in mammalian cells. This review covers recent advances in our understanding of these processes in reticulocytes and the role of these processes in erythroid development. RECENT FINDINGS Enucleation is caused by the coalescence of vesicles at the nuclear-cytoplasmic junction and microfilament contraction. Mitochondrial elimination is achieved through selective autophagy, in which mitochondria are targeted to autophagosomes, and undergo subsequent degradation and exocytosis. The mechanism involves an integral mitochondrial outer membrane protein and general autophagy pathways. Plasma membrane remodeling, and the elimination of certain intracellular organelles occur through the exosomal pathway. SUMMARY Vesicular trafficking and selective autophagy have emerged as central processes in cellular remodeling. In reticulocytes, this includes enucleation and the elimination of all membrane-bound organelles and ribosomes. Ubiquitin-like conjugation pathways, which are required for autophagy in yeast, are not essential for mitochondrial clearance in reticulocytes. Thus, in higher eukaryotes, there appears to be redundancy between these pathways and other processes, such as vesicular nucleation. Future studies will address the relationship between autophagy and vesicular trafficking, and the significance of both for cellular remodeling.
Collapse
Affiliation(s)
- Paul A Ney
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
803
|
O'Donovan TR, O'Sullivan GC, McKenna SL. Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy 2011; 7:509-24. [PMID: 21325880 DOI: 10.4161/auto.7.6.15066] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We investigated the cell-death mechanisms induced in esophageal cancer cells in response to the chemotherapeutic drugs, 5-fluorouracil (5-FU) and cisplatin. Chemosensitive cell lines exhibited apoptosis whereas chemoresistant populations exhibited autophagy and a morphology resembling type II programmed cell death (PCD). Cell populations that respond with autophagy are more resistant and will recover following withdrawal of the chemotherapeutic agents. Specific inhibition of early autophagy induction with siRNA targeted to Beclin 1 and ATG7 significantly enhanced the effect of 5-FU and reduced the recovery of drug-treated cells. Pharmacological inhibitors of autophagy were evaluated for their ability to improve chemotherapeutic effect. The PtdIns 3-kinase inhibitor 3-methyladenine did not enhance the cytotoxicity of 5-FU. Disruption of lysosomal activity with bafilomycin A 1 or chloroquine caused extensive vesicular accumulation but did not improve chemotherapeutic effect. These observations suggest that an autophagic response to chemotherapy is a survival mechanism that promotes chemoresistance and recovery and that selective inhibition of autophagy regulators has the potential to improve chemotherapeutic regimes. Currently available indirect inhibitors of autophagy are, however, ineffective at modulating chemosensitivity in these esophageal cancer cell lines.
Collapse
Affiliation(s)
- Tracey R O'Donovan
- Leslie C. Quick Laboratory, Cork Cancer Research Centre, BioSciences Institute, University College Cork and Mercy University Hospital, Cork, Ireland
| | | | | |
Collapse
|
804
|
Chemali M, Radtke K, Desjardins M, English L. Alternative pathways for MHC class I presentation: a new function for autophagy. Cell Mol Life Sci 2011; 68:1533-41. [PMID: 21390546 PMCID: PMC11114914 DOI: 10.1007/s00018-011-0660-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 12/16/2022]
Abstract
The classical view that endogenous antigens are processed by the proteasome and loaded on MHC class I molecules in the endoplasmic reticulum, while exogenous antigens taken up by endocytosis or phagocytosis are degraded and loaded on MHC class II in lysosome-derived organelles, has evolved along with the improvement of our understanding of the cell biology of antigen-presenting cells. In recent years, evidence for alternative presentation pathways has emerged. Exogenous antigens can be processed by the proteasome and loaded on MHC class I through a pathway called cross-presentation. Moreover, endogenous antigens can be targeted to lytic organelles for presentation on MHC class II through autophagy, a highly conserved cellular process of self-eating. Recent evidence indicates that the vacuolar degradation of endogenous antigens is also beneficial for presentation on MHC class I molecules. This review focuses on how various forms of autophagy participate to presentation of these antigens on MHC class I.
Collapse
Affiliation(s)
- Magali Chemali
- Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, Canada
| | - Kerstin Radtke
- Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, Canada
| | - Michel Desjardins
- Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montreal, Canada
| | - Luc English
- Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, Canada
| |
Collapse
|
805
|
Kageyama S, Omori H, Saitoh T, Sone T, Guan JL, Akira S, Imamoto F, Noda T, Yoshimori T. The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol Biol Cell 2011; 22:2290-300. [PMID: 21525242 PMCID: PMC3128531 DOI: 10.1091/mbc.e10-11-0893] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
When Salmonella invade mammalian epithelial cells, some populations are surrounded by the autophagy protein LC3. We found that LC3 was recruited in proximity to Salmonella independently of both Atg9L1 and FIP200, which are required for formation of autophagosomes. The dynamics of the ULK1 complex and Atg9L1 were dependent on one another. Salmonella develops into resident bacteria in epithelial cells, and the autophagic machinery (Atg) is thought to play an important role in this process. In this paper, we show that an autophagosome-like double-membrane structure surrounds the Salmonella still residing within the Salmonella-containing vacuole (SCV). This double membrane is defective in Atg9L1- and FAK family-interacting protein of 200 kDa (FIP200)-deficient cells. Atg9L1 and FIP200 are important for autophagy-specific recruitment of the phosphatidylinositol 3-kinase (PI3K) complex. However, in the absence of Atg9L1, FIP200, and the PI3K complex, LC3 and its E3-like enzyme, the Atg16L complex, are still recruited to Salmonella. We propose that the LC3 system is recruited through a mechanism that is independent of isolation membrane generation.
Collapse
Affiliation(s)
- Shun Kageyama
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
806
|
Separovic D, Joseph N, Breen P, Bielawski J, Pierce JS, Buren EV, Bhatti G, Saad ZH, Bai A, Bielawska A. Combining anticancer agents photodynamic therapy and LCL85 leads to distinct changes in the sphingolipid profile, autophagy, caspase-3 activation in the absence of cell death, and long-term sensitization. Biochem Biophys Res Commun 2011; 409:372-7. [PMID: 21545791 DOI: 10.1016/j.bbrc.2011.04.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 04/19/2011] [Indexed: 11/18/2022]
Abstract
Two anticancer agents, LCL85 and photodynamic therapy (PDT) were combined to test whether the combination PDT/LCL85 evokes changes in the sphingolipid (SL) profile and promotes cell death. Treatment of SCCVII mouse squamous carcinoma cells using the silicone phthalocyanine Pc 4 for PDT induced increases in the prodeath global ceramides/dihydroceramides (DHceramides), and no changes in the prosurvival sphingosine-1-phosphate (S1P). In contrast, after LCL85, the levels of most ceramides and DHceramides were reduced, whereas the levels of S1P were increased. After PDT/LCL85 the levels of global ceramides and DHceramides, and of S1P, were restored to resting levels. PDT/LCL85 also enhanced the levels of C18-, C20-, and C20:1-ceramide, and C18-DHceramide. Treatment with PDT, with or without LCL85, led to substantial reductions in sphingosine levels. PDT/LCL85 induced enhanced autophagy and caspase-3 activation. None of the treatments affected short-term viability of cells. In contrast, long-term clonogenic survival was reduced not only after PDT or LCL85, but even more after PDT/LCL85. Overall, our data show that short-term exposure to PDT/LCL85 led to distinct signature effects on the SL profile, enhanced autophagy, and caspase-3 activation without cell death. Long-term exposure to PDT/LCL85 enhanced overall cell killing, supporting translational potential of PDT/LCL85.
Collapse
Affiliation(s)
- Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
807
|
Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell Death Differ 2011; 18:1598-607. [PMID: 21475306 PMCID: PMC3172118 DOI: 10.1038/cdd.2011.33] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In yeast, activation of ATG1/ATG13 kinase complex initiates autophagy. This mechanism of autophagy initiation is conserved, as unc-51-like kinase 1 (ULK1) and unc-51-like kinase 2 (ULK2) are two mammalian functional homologues of ATG1 and form similar complex with mammalian ATG13. Here, we report that both ULK1 and ULK2 are transcriptional targets of tumor suppressor p53. In response to DNA damage, ULK1 and ULK2 are upregulated by p53. The upregulation of ULK1 (ULK2)/ATG13 complex by p53 is necessary for the sustained autophagy activity induced by DNA damage. In this context, elevated autophagy contributes to subsequent cell death. These findings suggest that ULK1 and ULK2 may mediate part of tumor suppression activity in mammalian cells and contribute to the efficacy of genotoxic chemotherapeutic drugs.
Collapse
|
808
|
Chu CT. Autophagy in different flavors: dysregulated protein degradation in neurological diseases. Neurobiol Dis 2011; 43:1-3. [PMID: 21463680 DOI: 10.1016/j.nbd.2011.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
809
|
Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011; 18:571-80. [PMID: 21311563 PMCID: PMC3131912 DOI: 10.1038/cdd.2010.191] [Citation(s) in RCA: 1817] [Impact Index Per Article: 139.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/02/2010] [Accepted: 12/13/2010] [Indexed: 02/06/2023] Open
Abstract
Beclin 1, the mammalian orthologue of yeast Atg6, has a central role in autophagy, a process of programmed cell survival, which is increased during periods of cell stress and extinguished during the cell cycle. It interacts with several cofactors (Atg14L, UVRAG, Bif-1, Rubicon, Ambra1, HMGB1, nPIST, VMP1, SLAM, IP(3)R, PINK and survivin) to regulate the lipid kinase Vps-34 protein and promote formation of Beclin 1-Vps34-Vps15 core complexes, thereby inducing autophagy. In contrast, the BH3 domain of Beclin 1 is bound to, and inhibited by Bcl-2 or Bcl-XL. This interaction can be disrupted by phosphorylation of Bcl-2 and Beclin 1, or ubiquitination of Beclin 1. Interestingly, caspase-mediated cleavage of Beclin 1 promotes crosstalk between apoptosis and autophagy. Beclin 1 dysfunction has been implicated in many disorders, including cancer and neurodegeneration. Here, we summarize new findings regarding the organization and function of the Beclin 1 network in cellular homeostasis, focusing on the cross-regulation between apoptosis and autophagy.
Collapse
Affiliation(s)
- R Kang
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - H J Zeh
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - M T Lotze
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Tang
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
810
|
Jia W, He YW. Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. THE JOURNAL OF IMMUNOLOGY 2011; 186:5313-22. [PMID: 21421856 DOI: 10.4049/jimmunol.1002404] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The highly conserved self-degradation pathway known as autophagy plays important roles in regulating T lymphocyte homeostasis. Recently, we found that T lymphocytes lacking the autophagy-related gene Atg5 or Atg7 have defective survival and contain expanded mitochondria and endoplasmic reticulum (ER); however, whether these defects are caused by impaired autophagy or by defects in their autophagy-independent signaling capacity of Atg5 or Atg7 in T lymphocytes remains unknown. Furthermore, the function of the microtubule-associated protein L chain 3 (LC3) conjugation system in T lymphocytes remains unclear. To address these questions, we generated conditional knockout mice with specific deletion of Atg3, a ubiquitin enzyme E2-like molecule involved in the LC3 conjugation system, in T lymphocytes. Atg3-deficient T lymphocytes displayed a phenotype similar to those of Atg7- and Atg5-deficient T cells. The survival of Atg3-deficient naive CD4(+) and CD8(+) T cells was defective. Furthermore, the mitochondria and ER were expanded in Atg3-deficient T cells. Interestingly, mitochondrial and ER content did not change instantly upon inducible deletion of Atg3 in mature T lymphocytes in vitro. Instead, it began to expand 10 d after inducible deletion of Atg3 in mature T lymphocytes, and mitochondrial content continued to increase on day 18. Cell death began to increase 24 d after inducible deletion of Atg3. These data show that the LC3 conjugation system is essential for autophagy in T lymphocytes. Our data suggest that autophagy promotes T lymphocyte survival by regulating organelle homeostasis and that the decreased survival of autophagy-deficient T cells is due to the temporal accumulation of these autophagy-related defects.
Collapse
Affiliation(s)
- Wei Jia
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
811
|
Mechanisms underlying the cellular clearance of antitrypsin Z: lessons from yeast expression systems. Ann Am Thorac Soc 2011; 7:363-7. [PMID: 21030514 DOI: 10.1513/pats.201001-007aw] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The most frequent cause of α(1)-antitrypsin (here referred to as AT) deficiency is homozygosity for the AT-Z allele, which encodes AT-Z. Such individuals are at increased risk for liver disease due to the accumulation of aggregation-prone AT-Z in the endoplasmic reticulum of hepatocytes. However, the penetrance and severity of liver dysfunction in AT deficiency is variable, indicating that unknown genetic and environmental factors contribute to its occurrence. There is evidence that the rate of AT-Z degradation may be one such contributing factor. Through the use of several AT-Z model systems, it is now becoming appreciated that AT-Z can be degraded through at least two independent pathways. One model system that has contributed significantly to our understanding of the AT-Z disposal pathway is the yeast, Saccharomyces cerevisiae.
Collapse
|
812
|
Kanamori H, Takemura G, Goto K, Maruyama R, Tsujimoto A, Ogino A, Takeyama T, Kawaguchi T, Watanabe T, Fujiwara T, Fujiwara H, Seishima M, Minatoguchi S. The role of autophagy emerging in postinfarction cardiac remodelling. Cardiovasc Res 2011; 91:330-9. [PMID: 21406597 DOI: 10.1093/cvr/cvr073] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS Autophagy is activated in cardiomyocytes in ischaemic heart disease, but its dynamics and functional roles remain unclear after myocardial infarction. We observed the dynamics of cardiomyocyte autophagy and examined its role during postinfarction cardiac remodelling. METHODS AND RESULTS Myocardial infarction was induced in mice by ligating the left coronary artery. During both the subacute and chronic stages (1 and 3 weeks postinfarction, respectively), autophagy was found to be activated in surviving cardiomyocytes, as demonstrated by the up-regulated expression of microtubule-associated protein-1 light chain 3-II (LC3-II), p62 and cathepsin D, and by electron microscopic findings. Activation of autophagy, specifically the digestion step, was prominent in cardiomyocytes 1 week postinfarction, especially in those bordering the infarct area, while the formation of autophagosomes was prominent 3 weeks postinfarction. Bafilomycin A1 (an autophagy inhibitor) significantly aggravated postinfarction cardiac dysfunction and remodelling. Cardiac hypertrophy was exacerbated in this group and was accompanied by augmented ventricular expression of atrial natriuretic peptide. In these hearts, autophagic findings (i.e. expression of LC3-II and the presence of autophagosomes) were diminished, and activation of AMP-activated protein kinase was enhanced. Treatment with rapamycin (an autophagy enhancer) brought about opposite outcomes, including mitigation of cardiac dysfunction and adverse remodelling. A combined treatment with bafilomycin A1 and rapamycin offset each effect on cardiomyocyte autophagy and cardiac remodelling in the postinfarction heart. CONCLUSION These findings suggest that cardiomyocyte autophagy is an innate mechanism that protects against progression of postinfarction cardiac remodelling, implying that augmenting autophagy could be a therapeutic strategy.
Collapse
Affiliation(s)
- Hiromitsu Kanamori
- Department of Cardiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
813
|
Ch'en IL, Tsau JS, Molkentin JD, Komatsu M, Hedrick SM. Mechanisms of necroptosis in T cells. ACTA ACUST UNITED AC 2011; 208:633-41. [PMID: 21402742 PMCID: PMC3135356 DOI: 10.1084/jem.20110251] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In caspase 8-deficient mouse T cells, necroptosis occurs via a Ripk3- and Ripk1-dependent pathway independent of autophagy and programmed necrosis. Cell populations are regulated in size by at least two forms of apoptosis. More recently, necroptosis, a parallel, nonapoptotic pathway of cell death, has been described, and this pathway is invoked in the absence of caspase 8. In caspase 8–deficient T cells, necroptosis occurs as the result of antigen receptor–mediated activation. Here, through a genetic analysis, we show that necroptosis in caspase 8–deficient T cells is related neither to the programmed necrosis as defined by the requirement for mitochondrial cyclophilin D nor to autophagy as defined by the requirement for autophagy-related protein 7. Rather, survival of caspase 8–defective T cells can be completely rescued by loss of receptor-interacting serine-threonine kinase (Ripk) 3. Additionally, complementation of a T cell–specific caspase 8 deficiency with a loss of Ripk3 gives rise to lymphoproliferative disease reminiscent of lpr or gld mice. In conjunction with previous work, we conclude that necroptosis in antigen-stimulated caspase 8–deficient T cells is the result of a novel Ripk1- and Ripk3-mediated pathway of cell death.
Collapse
Affiliation(s)
- Irene L Ch'en
- Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
814
|
Raben N, Schreiner C, Baum R, Takikita S, Xu S, Xie T, Myerowitz R, Komatsu M, Van der Meulen JH, Nagaraju K, Ralston E, Plotz PH. Suppression of autophagy permits successful enzyme replacement therapy in a lysosomal storage disorder--murine Pompe disease. Autophagy 2011; 6:1078-89. [PMID: 20861693 DOI: 10.4161/auto.6.8.13378] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autophagy, an intracellular system for delivering portions of cytoplasm and damaged organelles to lysosomes for degradation/recycling, plays a role in many physiological processes and is disturbed in many diseases. We recently provided evidence for the role of autophagy in Pompe disease, a lysosomal storage disorder in which acid alphaglucosidase, the enzyme involved in the breakdown of glycogen, is deficient or absent. Clinically the disease manifests as a cardiac and skeletal muscle myopathy. The current enzyme replacement therapy (ERT) clears lysosomal glycogen effectively from the heart but less so from skeletal muscle. In our Pompe model, the poor muscle response to therapy is associated with the presence of pools of autophagic debris. To clear the fibers of the autophagic debris, we have generated a Pompe model in which an autophagy gene, Atg7, is inactivated in muscle. Suppression of autophagy alone reduced the glycogen level by 50–60%. Following ERT, muscle glycogen was reduced to normal levels, an outcome not observed in Pompe mice with genetically intact autophagy. The suppression of autophagy, which has proven successful in the Pompe model, is a novel therapeutic approach that may be useful in other diseases with disturbed autophagy.
Collapse
Affiliation(s)
- Nina Raben
- Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
815
|
Sciarretta S, Hariharan N, Monden Y, Zablocki D, Sadoshima J. Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr Cardiol 2011; 32:275-81. [PMID: 21170742 PMCID: PMC3261079 DOI: 10.1007/s00246-010-9855-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 12/03/2010] [Indexed: 12/23/2022]
Abstract
Autophagy is a catabolic process that degrades long-lived proteins and damaged organelles by sequestering them into double membrane structures termed "autophagosomes" and fusing them with lysosomes. Autophagy is active in the heart at baseline and further stimulated under stress conditions including starvation, ischemia/reperfusion, and heart failure. It plays an adaptive role in the heart at baseline, thereby maintaining cardiac structure and function and inhibiting age-related cardiac abnormalities. Autophagy is activated by ischemia and nutrient starvation in the heart through Sirt1-FoxO- and adenosine monophosphate (AMP)-activated protein kinase (AMPK)-dependent mechanisms, respectively. Activation of autophagy during ischemia is essential for cell survival and maintenance of cardiac function. Autophagy is strongly activated in the heart during reperfusion after ischemia. Activation of autophagy during reperfusion could be either protective or detrimental, depending on the experimental model. However, strong induction of autophagy accompanied by robust upregulation of Beclin1 could cause autophagic cell death, thereby proving to be detrimental. This review provides an overview regarding both protective and detrimental functions of autophagy in the heart and discusses possible applications of current knowledge to the treatment of heart disease.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Nirmala Hariharan
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Yoshiya Monden
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Daniela Zablocki
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Junichi Sadoshima
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA,Address correspondence to: Junichi Sadoshima, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Medical Science Building G-609, Newark, New Jersey 07103, USA. Phone: (973) 972-8619; Fax: (973) 972-8919;
| |
Collapse
|
816
|
Abstract
ESCRT complexes are implicated in mediating membrane protein degradation, whereas hsc70 mediates cytosolic protein degradation via chaperone-mediated autophagy. In this issue of Developmental Cell, Sahu et al. (2011) describe in mammalian cells the involvement of ESCRT complexes and hsc70 in the degradation of cytosolic proteins in a process resembling microautophagy.
Collapse
Affiliation(s)
- Tomer Shpilka
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
817
|
Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W, DiPaola RS, Lotze MT, White E. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 2011; 17:654-66. [PMID: 21325294 PMCID: PMC3075808 DOI: 10.1158/1078-0432.ccr-10-2634] [Citation(s) in RCA: 693] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is an evolutionarily conserved, intracellular self-defense mechanism in which organelles and proteins are sequestered into autophagic vesicles that are subsequently degraded through fusion with lysosomes. Cells, thereby, prevent the toxic accumulation of damaged or unnecessary components, but also recycle these components to sustain metabolic homoeostasis. Heightened autophagy is a mechanism of resistance for cancer cells faced with metabolic and therapeutic stress, revealing opportunities for exploitation as a therapeutic target in cancer. We summarize recent developments in the field of autophagy and cancer and build upon the results presented at the Cancer Therapy Evaluation Program (CTEP) Early Drug Development meeting in March 2010. Herein, we describe our current understanding of the core components of the autophagy machinery and the functional relevance of autophagy within the tumor microenvironment, and we outline how this knowledge has informed preclinical investigations combining the autophagy inhibitor hydroxychloroquine (HCQ) with chemotherapy, targeted therapy, and immunotherapy. Finally, we describe ongoing clinical trials involving HCQ as a first generation autophagy inhibitor, as well as strategies for the development of novel, more potent, and specific inhibitors of autophagy.
Collapse
Affiliation(s)
- Ravi K Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
818
|
Pei Y, Chen ZP, Ju HQ, Komatsu M, Ji YH, Liu G, Guo CW, Zhang YJ, Yang CR, Wang YF, Kitazato K. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro. Biochem Biophys Res Commun 2011; 405:186-91. [DOI: 10.1016/j.bbrc.2011.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 01/02/2011] [Indexed: 10/18/2022]
|
819
|
Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS. Delivery of prolamins to the protein storage vacuole in maize aleurone cells. THE PLANT CELL 2011; 23:769-84. [PMID: 21343414 PMCID: PMC3077793 DOI: 10.1105/tpc.110.082156] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/28/2011] [Accepted: 02/12/2011] [Indexed: 05/18/2023]
Abstract
Zeins, the prolamin storage proteins found in maize (Zea mays), accumulate in accretions called protein bodies inside the endoplasmic reticulum (ER) of starchy endosperm cells. We found that genes encoding zeins, α-globulin, and legumin-1 are transcribed not only in the starchy endosperm but also in aleurone cells. Unlike the starchy endosperm, aleurone cells accumulate these storage proteins inside protein storage vacuoles (PSVs) instead of the ER. Aleurone PSVs contain zein-rich protein inclusions, a matrix, and a large system of intravacuolar membranes. After being assembled in the ER, zeins are delivered to the aleurone PSVs in atypical prevacuolar compartments that seem to arise at least partially by autophagy and consist of multilayered membranes and engulfed cytoplasmic material. The zein-containing prevacuolar compartments are neither surrounded by a double membrane nor decorated by AUTOPHAGY RELATED8 protein, suggesting that they are not typical autophagosomes. The PSV matrix contains glycoproteins that are trafficked through a Golgi-multivesicular body (MVB) pathway. MVBs likely fuse with the multilayered, autophagic compartments before merging with the PSV. The presence of similar PSVs also containing prolamins and large systems of intravacuolar membranes in wheat (Triticum aestivum) and barley (Hordeum vulgare) starchy endosperm suggests that this trafficking mechanism may be common among cereals.
Collapse
Affiliation(s)
| | - Taijoon Chung
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - David Holding
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588-0665
| | - Rudolf Jung
- Pioneer Hi-Bred International, a DuPont Company, Johnston, Iowa 50131
| | - Richard Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Marisa S. Otegui
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
- Address correspondence to
| |
Collapse
|
820
|
Cui T, Fan C, Gu L, Gao H, Liu Q, Zhang T, Qi Z, Zhao C, Zhao H, Cai Q, Yang H. Silencing of PINK1 induces mitophagy via mitochondrial permeability transition in dopaminergic MN9D cells. Brain Res 2011; 1394:1-13. [PMID: 21262209 DOI: 10.1016/j.brainres.2011.01.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/07/2023]
Abstract
Accumulation of dysfunctional Mitochondria has been implicated in the pathogenesis of Parkinson's disease (PD). Mutations in PTEN-induced kinase 1 (PINK1), which encodes a putative mitochondrial serine/threonine kinase, have been identified in early-onset forms of PD. Recent data showed that the loss of PINK1 function led to oxidative stress, mitochondrial damage and autophagic elimination of damaged mitochondria. But the precise mechanism of autophagy induced by loss of PINK1 is unclear. In this study, we found that in mouse dopaminergic MN9D cells, down-regulation of PINK1 by RNA interference resulted in induction of mitochondrial autophagy (mitophagy), abnormal mitochondrial morphology, partial loss of mitochondrial membrane potential and increased production of reactive oxygen species (ROS). Mitophagy in these cells was associated with the up-regulation of autophagy activator Beclin 1 and opening of mitochondrial permeability transition (MPT) pore. These findings suggest that PINK1 may regulate mitophagy through controlling MPT pore opening and general autophagy regulators.
Collapse
Affiliation(s)
- Tao Cui
- Beijing Institute for Neuroscience, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing 100069, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
821
|
Jounai N, Kobiyama K, Shiina M, Ogata K, Ishii KJ, Takeshita F. NLRP4 negatively regulates autophagic processes through an association with beclin1. THE JOURNAL OF IMMUNOLOGY 2011; 186:1646-55. [PMID: 21209283 DOI: 10.4049/jimmunol.1001654] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although more than 20 putative members have been assigned to the nucleotide-binding and oligomerization domain-like receptor (NLR) family, their physiological and biological roles, with the exception of the inflammasome, are not fully understood. In this article, we show that NLR members, such as NLRC4, NLRP3, NLRP4, and NLRP10 interact with Beclin1, an important regulator of autophagy, through their neuronal apoptosis inhibitory protein, MHC class II transcription activator, incompatibility locus protein from Podospora anserina, and telomerase-associated protein domain. Among such NLRs, NLRP4 had a strong affinity to the Beclin1 evolutionally conserved domain. Compromising NLRP4 via RNA interference resulted in upregulation of the autophagic process under physiological conditions and upon invasive bacterial infections, leading to enhancement of the autophagic bactericidal process of group A streptococcus. NLRP4 recruited to the subplasma membrane phagosomes containing group A streptococcus and transiently dissociated from Beclin1, suggesting that NLRP4 senses bacterial infection and permits the initiation of Beclin1-mediated autophagic responses. In addition to a role as a negative regulator of the autophagic process, NLRP4 physically associates with the class C vacuolar protein-sorting complex, thereby negatively regulating maturation of the autophagosome and endosome. Collectively, these results provide novel evidence that NLRP4, and possibly other members of the NLR family, plays a crucial role in biogenesis of the autophagosome and its maturation by the association with regulatory molecules, such as Beclin1 and the class C vacuolar protein-sorting complex.
Collapse
Affiliation(s)
- Nao Jounai
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | |
Collapse
|
822
|
Takahashi Y, Meyerkord CL, Hori T, Runkle K, Fox TE, Kester M, Loughran TP, Wang HG. Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy 2011; 7:61-73. [PMID: 21068542 DOI: 10.4161/auto.7.1.14015] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Atg9 is a transmembrane protein essential for autophagy which cycles between the Golgi network, late endosomes and LC3-positive autophagosomes in mammalian cells during starvation through a mechanism that is dependent on ULK1 and requires the activity of the class III phosphatidylinositol-3-kinase (PI3KC3). In this study, we demonstrate that the N-BAR-containing protein, Bif-1, is required for Atg9 trafficking and the fission of Golgi membranes during the induction of autophagy. Upon starvation, Atg9-positive membranes undergo continuous tubulation and fragmentation to produce cytoplasmic punctate structures that are positive for Rab5, Atg16L and LC3. Loss of Bif-1 or inhibition of the PI3KC3 complex II suppresses starvation-induced fission of Golgi membranes and peripheral cytoplasmic redistribution of Atg9. Moreover, Bif-1 mutants, which lack the functional regions of the N-BAR domain that are responsible for membrane binding and/or bending activity, fail to restore the fission of Golgi membranes as well as the formation of Atg9 foci and autophagosomes in Bif-1-deficient cells starved of nutrients. Taken together, these findings suggest that Bif-1 acts as a critical regulator of Atg9 puncta formation presumably by mediating Golgi fission for autophagosome biogenesis during starvation.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
823
|
Abstract
Autophagy is a major catabolic pathway in eukaryotes, which is required for the lysosomal/vacuolar degradation of cytoplasmic proteins and organelles. Interest in the autophagy pathway has recently gained momentum largely owing to identification of multiple autophagy-related genes and recognition of its involvement in various physiological conditions. Here we review current knowledge of the molecular mechanisms regulating autophagy in mammals and yeast, specifically the biogenesis of autophagosomes and the selectivity of their cargo recruitment. We discuss the different steps of autophagy, from the signal transduction events that regulate it to the completion of this pathway by fusion with the lysosome/vacuole. We also review research on the origin of the autophagic membrane, the molecular mechanism of autophagosome formation, and the roles of two ubiquitin-like protein families and other structural elements that are essential for this process. Finally, we discuss the various modes of autophagy and highlight their functional relevance for selective degradation of specific cargos.
Collapse
Affiliation(s)
- Hilla Weidberg
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
824
|
Hayward AP, Dinesh-Kumar SP. What can plant autophagy do for an innate immune response? ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:557-76. [PMID: 21370973 DOI: 10.1146/annurev-phyto-072910-095333] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Autophagy plays an established role in the execution of senescence, starvation, and stress responses in plants. More recently, an emerging role for autophagy has been discovered during the plant innate immune response. Recent papers have shown autophagy to restrict, and conversely, to also promote programmed cell death (PCD) at the site of pathogen infection. These initial studies have piqued our excitement, but they have also revealed gaps in our understanding of plant autophagy regulation, in our ability to monitor autophagy in plant cells, and in our ability to manipulate autophagic activity. In this review, we present the most pressing questions now facing the field of plant autophagy in general, with specific focus on autophagy as it occurs during a plant-pathogen interaction. To begin to answer these questions, we place recent findings in the context of studies of autophagy and immunity in other systems, and in the context of the mammalian immune response in particular.
Collapse
Affiliation(s)
- Andrew P Hayward
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
825
|
Grasso D, Ropolo A, Lo Ré A, Boggio V, Molejón MI, Iovanna JL, Gonzalez CD, Urrutia R, Vaccaro MI. Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J Biol Chem 2010; 286:8308-8324. [PMID: 21173155 DOI: 10.1074/jbc.m110.197301] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Autophagy has recently elicited significant attention as a mechanism that either protects or promotes cell death, although different autophagy pathways, and the cellular context in which they occur, remain to be elucidated. We report a thorough cellular and biochemical characterization of a novel selective autophagy that works as a protective cell response. This new selective autophagy is activated in pancreatic acinar cells during pancreatitis-induced vesicular transport alteration to sequester and degrade potentially deleterious activated zymogen granules. We have coined the term "zymophagy" to refer to this process. The autophagy-related protein VMP1, the ubiquitin-protease USP9x, and the ubiquitin-binding protein p62 mediate zymophagy. Moreover, VMP1 interacts with USP9x, indicating that there is a close cooperation between the autophagy pathway and the ubiquitin recognition machinery required for selective autophagosome formation. Zymophagy is activated by experimental pancreatitis in genetically engineered mice and cultured pancreatic acinar cells and by acute pancreatitis in humans. Furthermore, zymophagy has pathophysiological relevance by controlling pancreatitis-induced intracellular zymogen activation and helping to prevent cell death. Together, these data reveal a novel selective form of autophagy mediated by the VMP1-USP9x-p62 pathway, as a cellular protective response.
Collapse
Affiliation(s)
- Daniel Grasso
- From the Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina
| | - Alejandro Ropolo
- From the Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina
| | - Andrea Lo Ré
- From the Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina
| | - Verónica Boggio
- From the Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina
| | - María I Molejón
- From the Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina
| | | | - Claudio D Gonzalez
- From the Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina
| | - Raúl Urrutia
- the Chromatin Dynamics and Epigenetic Laboratory, Mayo Clinic, Rochester, Minnesota 55905
| | - María I Vaccaro
- From the Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina,.
| |
Collapse
|
826
|
Nassif M, Matus S, Castillo K, Hetz C. Amyotrophic lateral sclerosis pathogenesis: a journey through the secretory pathway. Antioxid Redox Signal 2010; 13:1955-89. [PMID: 20560784 DOI: 10.1089/ars.2009.2991] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motoneuron degenerative disease characterized by the selective loss of motoneurons in the spinal ventral horn, most brainstem nuclei, and the cerebral cortex. Although approximately 90% of ALS cases are sporadic (sALS), analyses of familial ALS (fALS)-causative genes have generated relevant insight into molecular events involved in the pathology. Here we overview an emerging concept indicating the occurrence of secretory pathway stress in the disease process. These alterations include a failure in the protein folding machinery at the endoplasmic reticulum (ER), engagement of the unfolded protein response (UPR), modifications of the Golgi apparatus network, impaired vesicular trafficking, inhibition of protein quality control mechanisms, oxidative damage to ER proteins, and sustained activation of degradative pathways such as autophagy. A common feature predicted for most of these alterations is abnormal protein homeostasis associated with the accumulation of misfolded proteins at the ER, possibly leading to chronic ER stress and neuronal dysfunction. Signs of ER stress are observed even during presymptomatic stages in fALS mouse models, and pharmacological strategies to alleviate protein misfolding slow disease progression. Because the secretory pathway stress occurs in both sALS and several forms of fALS, it may offer a unique common target for possible therapeutic strategies to treat this devastating disease.
Collapse
Affiliation(s)
- Melissa Nassif
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences , Faculty of Medicine, NEMO Millennium Nucleus, Santiago, Chile
| | | | | | | |
Collapse
|
827
|
Smith D, Patel S, Raffoul F, Haller E, Mills GB, Nanjundan M. Arsenic trioxide induces a beclin-1-independent autophagic pathway via modulation of SnoN/SkiL expression in ovarian carcinoma cells. Cell Death Differ 2010; 17:1867-81. [PMID: 20508647 PMCID: PMC2932795 DOI: 10.1038/cdd.2010.53] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Arsenic trioxide (As(2)O(3)), used to treat promyelocytic leukemia, triggers cell death through unknown mechanisms. To further our understanding of As(2)O(3)-induced death, we analyzed its effects on transforming growth factor-β (TGFβ) signaling mediators in ovarian cells. Dysregulated TGFβ signaling is a characteristic of ovarian cancers. As(2)O(3) reduced the protein expression of EVI1, TAK1, SMAD2/3, and TGFβRII while increasing SnoN/SkiL. EVI1 protein was modulated by treatment with the proteasome inhibitors, MG132 and PS-341/Velcade, suggesting that degradation occurs through the ubiquitin-proteasome pathway. The sensitivity of ovarian cells to As(2)O(3)-induced apoptosis correlated with expression of multidrug resistance protein 1. Interestingly, expression of SnoN was similar to LC3-II (autophagy marker), which increased with induction of cytoplasmic vacuolation preceding apoptosis. These vesicles were identified as autophagosomes based on transmission electron microscopy and immunofluorescence staining with EGFP-LC3. The addition of N-acetyl-L-cysteine (ROS scavenger) to As(2)O(3)-treated cells reversed changes in SnoN protein and the autophagic/apoptotic response. In contrast to beclin-1 knockdown, siRNA targeting ATG5, ATG7, and hVps34 markedly reduced autophagy in As(2)O(3)-treated ovarian carcinoma cells. Further, treatment with SnoN siRNA markedly decreased LC3-II levels and increased PARP degradation (an apoptosis marker). Collectively, these findings suggest that As(2)O(3) induces a beclin-1-independent autophagic pathway in ovarian carcinoma cells and implicates SnoN in promoting As(2)O(3)-mediated autophagic cell survival.
Collapse
Affiliation(s)
- Dawn Smith
- University of South Florida, Department of Cell Biology, Microbiology, and Molecular Biology, 4202 East Fowler Avenue, BSF218, Tampa, Florida
| | - Shetal Patel
- University of South Florida, Department of Cell Biology, Microbiology, and Molecular Biology, 4202 East Fowler Avenue, BSF218, Tampa, Florida
| | - Fadi Raffoul
- University of South Florida, Department of Cell Biology, Microbiology, and Molecular Biology, 4202 East Fowler Avenue, BSF218, Tampa, Florida
| | - Edward Haller
- University of South Florida, Department of Integrative Biology, 4202 East Fowler Avenue, Tampa, Florida
| | - Gordon B. Mills
- University of Texas, MD Anderson Cancer Center, Department of Systems Biology, 1515 Holcombe Boulevard, Box 950, Houston, Texas
| | - Meera Nanjundan
- University of South Florida, Department of Cell Biology, Microbiology, and Molecular Biology, 4202 East Fowler Avenue, BSF218, Tampa, Florida
| |
Collapse
|
828
|
Abstract
Autophagy is an evolutionarily conserved catabolic process that involves the invagination and degradation of cytoplasmic components through an autophagosomelysosome track. Autophagy functions as a quality control of cellular milieu and is implicated in a wide variety of pathological conditions. However, excessive or imbalanced autophagic flux may also be associated with cellular toxicity and may potentially contribute to the development of pathological conditions. Just as all membrane trafficking systems need to constantly strike a balance in their level of activation and inhibition to ensure proper spatial and temporal delivery of their cargo, autophagy must also be tightly regulated. Here, we provide an overview of the current knowledge regarding the negative regulation of mammalian autophagy in an effort to understand its physiological relevance and potential clinical importance.
Collapse
|
829
|
Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DCO, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010; 90:1383-435. [PMID: 20959619 DOI: 10.1152/physrev.00030.2009] [Citation(s) in RCA: 1344] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
(Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.
Collapse
Affiliation(s)
- Brinda Ravikumar
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
830
|
Chen X, Yin XM. Coordination of autophagy and the proteasome in resolving endoplasmic reticulum stress. Vet Pathol 2010; 48:245-53. [PMID: 21062910 DOI: 10.1177/0300985810385154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macroautophagy is a cellular degradation mechanism that involves the delivery of cytosolic components (macromolecules or organelles) by the autophagosome to the lysosome for degradation. In mammalian cells, macroautophagy and the ubiquitin proteasome system are 2 major mechanisms to eliminate abnormal proteins accumulated in pathological conditions. Here, the coordination of the 2 pathways to alleviate endoplasmic reticulum stress is reviewed. Also discussed is the regulatory role of macroautophagy and proteasome activity in cell survival and death, as well as the recent discoveries leading to novel strategies of simultaneous control of the proteasome and autophagy activity in anticancer treatment.
Collapse
Affiliation(s)
- X Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 350 West 11th Street, Indianapolis, IN 46202, USA
| | | |
Collapse
|
831
|
Abstract
Programmed cell death (PCD) occurs widely in species from every kingdom of life. It has been shown to be an integral aspect of development in multicellular organisms, and it is an essential component of the immune response to infectious agents. An analysis of the phylogenetic origin of PCD now shows that it evolved independently several times, and it is fundamental to basic cellular physiology. Undoubtedly, PCD pervades all life at every scale of analysis. These considerations provide a backdrop for understanding the complexity of intertwined, but independent, cell death programs that operate within the immune system. In particular, the contributions of apoptosis, autophagy, and necrosis in the resolution of an immune response are considered.
Collapse
Affiliation(s)
- Stephen M Hedrick
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0377, USA.
| | | | | |
Collapse
|
832
|
Walsh CM, Edinger AL. The complex interplay between autophagy, apoptosis, and necrotic signals promotes T-cell homeostasis. Immunol Rev 2010; 236:95-109. [PMID: 20636811 DOI: 10.1111/j.1600-065x.2010.00919.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intense research efforts over the last two decades have focused on establishing the significance of apoptotic signaling in adaptive immunity. Without doubt, caspase-dependent apoptosis plays vital roles in many immune processes, including lymphocyte development, positive and negative selection, homeostasis, and self-tolerance. Cell biologists have developed new insights into cell death, establishing that other modes of cell death exist, such as programmed necrosis and type II/autophagic cell death. Additionally, immunologists have identified a number of immunological processes that are highly dependent upon cellular autophagy, including antigen presentation, lymphocyte development and function, pathogen recognition and destruction, and inflammatory regulation. In this review, we provide detailed mechanistic descriptions of cellular autophagy and programmed necrosis induced in response to death receptor ligation, including methods to identify them, and compare and contrast these processes with apoptosis. The crosstalk between these three processes is emphasized as newly formulated evidence suggests that this interplay is vital for efficient T-cell clonal expansion. This new evidence indicates that in addition to apoptosis, autophagy and programmed necrosis play significant roles in the termination of T-cell-dependent immune responses.
Collapse
Affiliation(s)
- Craig M Walsh
- Institute for Immunology and the Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA.
| | | |
Collapse
|
833
|
Abstract
It has been known for many decades that autophagy, a conserved lysosomal degradation pathway, is highly active during differentiation and development. However, until the discovery of the autophagy-related (ATG) genes in the 1990s, the functional significance of this activity was unknown. Initially, genetic knockout studies of ATG genes in lower eukaryotes revealed an essential role for the autophagy pathway in differentiation and development. In recent years, the analyses of systemic and tissue-specific knockout models of ATG genes in mice has led to an explosion of knowledge about the functions of autophagy in mammalian development and differentiation. Here we review the main advances in our understanding of these functions.
Collapse
|
834
|
Abstract
The paper reviews the rapidly expanding pool of information on cellular and molecular mechanisms of autophagy, including autophagy types, macroautophagy induction, formation of autophagosomes and cross-talk between autophagy and apoptosis. Special attention is given to generation of reactive oxygen species (ROS) in various cellular compartments of cells under stress conditions inducing autophagy. The roles of hydrogen peroxide and superoxide in autophagy are analysed based on the recent experimental work. The relation between ROS and life span prolongation is briefly discussed, with the final conclusion that the paradox of dual role of ROS in life and death may be solved to a considerable extent due to research on autophagy.
Collapse
Affiliation(s)
- Irena Szumiel
- Center of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland.
| |
Collapse
|
835
|
Hou W, Han J, Lu C, Goldstein LA, Rabinowich H. Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 2010; 6:891-900. [PMID: 20724831 DOI: 10.4161/auto.6.7.13038] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Apoptotic defects endow tumor cells with survival advantages. Such defects allow the cellular stress response to take the path of cytoprotective autophagy, which either precedes or effectively blocks an apoptotic cascade. Inhibition of the cytoprotective autophagic response shifts the cells toward apoptosis, by interfering with an underlying molecular mechanism of cytoprotection. The current study has identified such a mechanism that is centered on the regulation of caspase-8 activity. The study took advantage of Bax(-/-) Hct116 cells that are TRAIL-resistant despite significant DISC processing of caspase-8, and of the availability of a caspase-8-specific antibody that exclusively detects the caspase-8 large subunit or its processed precursor. Utilizing these biological tools, we investigated the expression pattern and subcellular localization of active caspase-8 in TRAIL-mediated autophagy and in the autophagy-to-apoptosis shift upon autophagy inhibition. Our results suggest that the TRAIL-mediated autophagic response counter-balances the TRAIL-mediated apoptotic response by the continuous sequestration of the large caspase-8 subunit in autophagosomes and its subsequent elimination in lysosomes. The current findings are the first to provide evidence for regulation of caspase activity by autophagy and thus broaden the molecular basis for the observed polarization between autophagy and apoptosis.
Collapse
Affiliation(s)
- Wen Hou
- Department of Pathology, The University of Pittsburgh School of Medicine, and The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
836
|
Abstract
Autophagy, a ubiquitous catabolic pathway involved in both cell survival and cell death, has been implicated in many age-associated diseases. Recent findings have shown autophagy to be crucial for proper insulin secretion and β-cell viability. Transgenic mice lacking autophagy in their β-cells showed decreased β-cell mass and suppressed glucose-stimulated insulin secretion. Several studies showed that stress can stimulate autophagy in β-cells: the number of autophagosomes is increased in different in vivo models for diabetes, such as db/db mice, mice fed high-fat diet, pdx-1 knockout mice, as well as in in vitro models of glucotoxicity and lipotoxicity. Pharmacological and molecular inhibition of autophagy increases the susceptibility to cell stress, suggesting that autophagy protects against diabetes-relevant stresses. Recent findings, however, question these conclusions. Pancreases of diabetics and β-cells exposed to fatty acids show accumulation of abnormal autophagosome morphology and suppression of lysosomal gene expression suggesting impairment in autophagic turnover. In this review we attempt to give an overview of the data generated by others and by us in view of the possible role of autophagy in diabetes, a role which depending on the conditions, could be beneficial or detrimental in coping with stress.
Collapse
Affiliation(s)
- G Las
- Department of Medicine, Section of Molecular Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
837
|
Batlevi Y, La Spada AR. Mitochondrial autophagy in neural function, neurodegenerative disease, neuron cell death, and aging. Neurobiol Dis 2010; 43:46-51. [PMID: 20887789 DOI: 10.1016/j.nbd.2010.09.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/08/2010] [Accepted: 09/19/2010] [Indexed: 11/26/2022] Open
Abstract
Macroautophagy is a cellular process by which cytosolic components and organelles are degraded in double-membrane bound structures upon fusion with lysosomes. A pathway for selective degradation of mitochondria by autophagy, known as mitophagy, has been described, and is of particular importance to neurons, because of the constant need for high levels of energy production in this cell type. Although much remains to be learned about mitophagy, it appears that the regulation of mitophagy shares key steps with the macroautophagy pathway, while exhibiting distinct regulatory steps specific for mitochondrial autophagic turnover. Mitophagy is emerging as an important pathway in neurodegenerative disease, and has been linked to the pathogenesis of Parkinson's disease through the study of recessively inherited forms of this disorder, involving PINK1 and Parkin. Recent work indicates that PINK1 and Parkin together maintain mitochondrial quality control by regulating mitophagy. In the Purkinje cell degeneration (pcd) mouse, altered mitophagy may contribute to the dramatic neuron cell death observed in the cerebellum, suggesting that over-active mitophagy or insufficient mitophagy can both be deleterious. Finally, mitophagy has been linked to aging, as impaired macroautophagy over time promotes mitochondrial dysfunction associated with the aging process. Understanding the role of mitophagy in neural function, neurodegenerative disease, and aging represents an essential goal for future research in the autophagy field. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
Affiliation(s)
- Yakup Batlevi
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0642, USA
| | | |
Collapse
|
838
|
When autophagy meets viruses: a double-edged sword with functions in defense and offense. Semin Immunopathol 2010; 32:323-41. [PMID: 20865416 DOI: 10.1007/s00281-010-0226-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/29/2010] [Indexed: 10/19/2022]
Abstract
Autophagy is a ubiquitous catabolic process that ensures organism's well-being by sequestering a wide array of undesired intracellular constituents into double-membrane vesicles termed autophagosomes for lysosomal degradation. Interest in autophagy research has recently gained momentum as it is increasingly being recognized to play fundamental roles in diverse aspects of human pathophysiology including virus infection and its subsequent complications. This review discusses recent advances in autophagy studies with respect to virus infection and pathogenesis. A growing body of evidence suggests that the autophagy pathway and/or autophagy genes play pleiotropic functions in the host's intrinsic, innate, and adaptive immune response against viruses. However, some viruses have evolved to encode virulence factors that evade or counteract the execution of autophagy. Furthermore, certain viruses are equipped to enhance autophagy or exploit the autophagy machinery for their replication and pathogenesis. A comprehensive understanding of the roles of autophagy pathway and autophagy genes during viral infection may enable the discovery of novel antiviral drug targets.
Collapse
|
839
|
Xavier S, Gilbert V, Rastaldi MP, Krick S, Kollins D, Reddy A, Bottinger E, Cohen CD, Schlondorff D. BAMBI is expressed in endothelial cells and is regulated by lysosomal/autolysosomal degradation. PLoS One 2010; 5:e12995. [PMID: 20886049 PMCID: PMC2945319 DOI: 10.1371/journal.pone.0012995] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 08/31/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND BAMBI (BMP and Activin Membrane Bound Inhibitor) is considered to influence TGFβ and Wnt signaling, and thereby fibrosis. Surprisingly data on cell type-specific expression of BAMBI are not available. We therefore examined the localization, gene regulation, and protein turnover of BAMBI in kidneys. METHODOLOGY/PRINCIPAL FINDINGS By immunofluorescence microscopy and by mRNA expression, BAMBI is restricted to endothelial cells of the glomerular and some peritubular capillaries and of arteries and veins in both murine and human kidneys. TGFβ upregulated mRNA of BAMBI in murine glomerular endothelial cells (mGEC). LPS did not downregulate mRNA for BAMBI in mGEC or in HUVECs. BAMBI mRNA had a half-life of only 60 minutes and was stabilized by cycloheximide, indicating post-transcriptional regulation due to AU-rich elements, which we identified in the 3' untranslated sequence of both the human and murine BAMBI gene. BAMBI protein turnover was studied in HUVECs with BAMBI overexpression using a lentiviral system. Serum starvation as an inducer of autophagy caused marked BAMBI degradation, which could be totally prevented by inhibition of lysosomal and autolysosomal degradation with bafilomycin, and partially by inhibition of autophagy with 3-methyladenine, but not by proteasomal inhibitors. Rapamycin activates autophagy by inhibiting TOR, and resulted in BAMBI protein degradation. Both serum starvation and rapamycin increased the conversion of the autophagy marker LC3 from LC3-I to LC3-II and also enhanced co-staining for BAMBI and LC3 in autolysosomal vesicles. CONCLUSIONS/SIGNIFICANCE 1. BAMBI localizes to endothelial cells in the kidney and to HUVECs. 2. BAMBI mRNA is regulated by post-transcriptional mechanisms. 3. BAMBI protein is regulated by lysosomal and autolysosomal degradation. The endothelial localization and the quick turnover of BAMBI may indicate novel, yet to be defined functions of this modulator for TGFβ and Wnt protein actions in the renal vascular endothelium in health and disease.
Collapse
Affiliation(s)
- Sandhya Xavier
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Victoria Gilbert
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Maria Pia Rastaldi
- Renal Immunopathology Laboratory, Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Stefanie Krick
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Dmitrij Kollins
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Anand Reddy
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Erwin Bottinger
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Clemens D. Cohen
- Division of Nephrology and Institute of Physiology with Center of Integrative Human Physiology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Detlef Schlondorff
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
840
|
Reggiori F, Monastyrska I, Verheije MH, Calì T, Ulasli M, Bianchi S, Bernasconi R, de Haan CAM, Molinari M. Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 2010; 7:500-8. [PMID: 20542253 PMCID: PMC7103375 DOI: 10.1016/j.chom.2010.05.013] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 04/09/2010] [Accepted: 05/11/2010] [Indexed: 12/21/2022]
Abstract
Coronaviruses (CoV), including SARS and mouse hepatitis virus (MHV), are enveloped RNA viruses that induce formation of double-membrane vesicles (DMVs) and target their replication and transcription complexes (RTCs) on the DMV-limiting membranes. The DMV biogenesis has been connected with the early secretory pathway. CoV-induced DMVs, however, lack conventional endoplasmic reticulum (ER) or Golgi protein markers, leaving their membrane origins in question. We show that MHV co-opts the host cell machinery for COPII-independent vesicular ER export of a short-living regulator of ER-associated degradation (ERAD), EDEM1, to derive cellular membranes for replication. MHV infection causes accumulation of EDEM1 and OS-9, another short-living ER chaperone, in the DMVs. DMVs are coated with the nonlipidated LC3/Atg8 autophagy marker. Downregulation of LC3, but not inactivation of host cell autophagy, protects cells from CoV infection. Our study identifies the host cellular pathway hijacked for supplying CoV replication membranes and describes an autophagy-independent role for nonlipidated LC3-I.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Cell Biology, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
841
|
Vos MJ, Zijlstra MP, Kanon B, van Waarde-Verhagen MA, Brunt ER, Oosterveld-Hut HM, Carra S, Sibon OC, Kampinga HH. HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 2010; 19:4677-93. [DOI: 10.1093/hmg/ddq398] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
842
|
Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X. A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer's disease. J Alzheimers Dis 2010; 20 Suppl 2:S401-12. [PMID: 20463393 DOI: 10.3233/jad-2010-100666] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD), the most common form of dementia in the elderly, can have a late-onset sporadic or an early-onset familial origin. In both cases, the neuropathological hallmarks are the same: senile plaques and neurofibrillary tangles. Despite AD having a proteinopathic nature, there is strong evidence for an organelle dysfunction-related neuropathology, namely dysfunctional mitochondria. In this regard, dysfunctional mitochondria and associated exacerbated generation of reactive oxygen species are among the earliest events in the progression of the disease. Since the maintenance of a healthy mitochondrial pool is essential given the central role of this organelle in several determinant cellular processes, mitochondrial dysfunction in AD would be predicted to have profound pluripotent deleterious consequences. Mechanistically, recent reports suggest that mitochondrial fission/fusion and mitophagy are altered in AD and in in vitro models of disease, and since both processes are reported to be protective, this review will discuss the role of mitochondrial fission/fusion and mitophagy in the pathogenesis of AD.
Collapse
Affiliation(s)
- Renato X Santos
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
843
|
Matsunaga K, Morita E, Saitoh T, Akira S, Ktistakis NT, Izumi T, Noda T, Yoshimori T. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol 2010; 190:511-21. [PMID: 20713597 PMCID: PMC2928018 DOI: 10.1083/jcb.200911141] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a catabolic process that allows cells to digest their cytoplasmic constituents via autophagosome formation and lysosomal degradation. Recently, an autophagy-specific phosphatidylinositol 3-kinase (PI3-kinase) complex, consisting of hVps34, hVps15, Beclin-1, and Atg14L, has been identified in mammalian cells. Atg14L is specific to this autophagy complex and localizes to the endoplasmic reticulum (ER). Knockdown of Atg14L leads to the disappearance of the DFCP1-positive omegasome, which is a membranous structure closely associated with both the autophagosome and the ER. A point mutation in Atg14L resulting in defective ER localization was also defective in the induction of autophagy. The addition of the ER-targeting motif of DFCP1 to this mutant fully complemented the autophagic defect in Atg14L knockout embryonic stem cells. Thus, Atg14L recruits a subset of class III PI3-kinase to the ER, where otherwise phosphatidylinositol 3-phosphate (PI3P) is essentially absent. The Atg14L-dependent appearance of PI3P in the ER makes this organelle the platform for autophagosome formation.
Collapse
Affiliation(s)
- Kohichi Matsunaga
- Department of Genetics, Graduate School of Medicine, Department of Cellular Regulation and Department of Host Defense, Research Institute for Microbial Diseases
- Laboratory of Molecular Endocrinology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Eiji Morita
- Department of Genetics, Graduate School of Medicine, Department of Cellular Regulation and Department of Host Defense, Research Institute for Microbial Diseases
| | - Tatsuya Saitoh
- Department of Genetics, Graduate School of Medicine, Department of Cellular Regulation and Department of Host Defense, Research Institute for Microbial Diseases
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shizuo Akira
- Department of Genetics, Graduate School of Medicine, Department of Cellular Regulation and Department of Host Defense, Research Institute for Microbial Diseases
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Takeshi Noda
- Department of Genetics, Graduate School of Medicine, Department of Cellular Regulation and Department of Host Defense, Research Institute for Microbial Diseases
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Department of Cellular Regulation and Department of Host Defense, Research Institute for Microbial Diseases
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
844
|
Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 2010; 36:30-8. [PMID: 20728362 DOI: 10.1016/j.tibs.2010.07.007] [Citation(s) in RCA: 972] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are small and highly reactive molecules that can oxidize proteins, lipids and DNA. When tightly controlled, ROS serve as signaling molecules by modulating the activity of the oxidized targets. Accumulating data point to an essential role for ROS in the activation of autophagy. Be the outcome of autophagy survival or death and the initiation conditions starvation, pathogens or death receptors, ROS are invariably involved. The nature of this involvement, however, remains unclear. Moreover, although connections between ROS and autophagy are observed in diverse pathological conditions, the mode of activation of autophagy and its potential protective role remain incompletely understood. Notably, recent advances in the field of redox regulation of autophagy focus on the role of mitochondria as a source of ROS and on mitophagy as a means for clearance of ROS.
Collapse
Affiliation(s)
- Ruth Scherz-Shouval
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | |
Collapse
|
845
|
Yamamoto A, Simonsen A. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiol Dis 2010; 43:17-28. [PMID: 20732422 DOI: 10.1016/j.nbd.2010.08.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 12/21/2022] Open
Abstract
The presence of ubiquitinated protein inclusions is a hallmark of most adult onset neurodegenerative disorders. Although the toxicity of these structures remains controversial, their prolonged presence in neurons is indicative of some failure in fundamental cellular processes. It therefore may be possible that driving the elimination of inclusions can help re-establish normal cellular function. There is growing evidence that macroautophagy has two roles; first, as a non-selective degradative response to cellular stress such as starvation, and the other as a highly selective quality control mechanism whose basal levels are important to maintain cellular health. One particular form of macroautophagy, aggrephagy, may have particular relevance in neurodegeneration, as it is responsible for the selective elimination of accumulated and aggregated ubiquitinated proteins. In this review, we will discuss the molecular mechanisms and role of protein aggregation in neurodegeneration, as well as the molecular mechanism of aggrephagy and how it may impact disease. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
Affiliation(s)
- Ai Yamamoto
- Dept of Neurology, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
846
|
FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood 2010; 116:4806-14. [PMID: 20716775 DOI: 10.1182/blood-2010-06-288589] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Little is known about whether autophagic mechanisms are active in hematopoietic stem cells (HSCs) or how they are regulated. FIP200 (200-kDa FAK-family interacting protein) plays important roles in mammalian autophagy and other cellular functions, but its role in hematopoietic cells has not been examined. Here we show that conditional deletion of FIP200 in hematopoietic cells leads to perinatal lethality and severe anemia. FIP200 was cell-autonomously required for the maintenance and function of fetal HSCs. FIP200-deficient HSC were unable to reconstitute lethally irradiated recipients. FIP200 ablation did not result in increased HSC apoptosis, but it did increase the rate of HSC proliferation. Consistent with an essential role for FIP200 in autophagy, FIP200-null fetal HSCs exhibited both increased mitochondrial mass and reactive oxygen species. These data identify FIP200 as a key intrinsic regulator of fetal HSCs and implicate a potential role for autophagy in the maintenance of fetal hematopoiesis and HSCs.
Collapse
|
847
|
Abstract
Mitochondria are critical for supplying energy to the cell, but during catabolism this organelle also produces reactive oxygen species that can cause oxidative damage. Accordingly, quality control of mitochondria is important to maintain cellular homeostasis. It has been assumed that autophagy is the pathway for mitochondrial recycling, and that the selective degradation of mitochondria via autophagy (mitophagy) is the primary mechanism for mitochondrial quality control, although there is little experimental evidence to support this idea. Recent studies in yeast identified several mitophagy-related genes and have uncovered components involved in the molecular mechanism and regulation of mitophagy. Similarly, studies of Parkinson disease and reticulocyte maturation reveal that Parkin and Nix, respectively, are required for mitophagy in mammalian cells, and these analyses have revealed important physiological roles for mitophagy. Here, we review the current knowledge on mitophagy, in particular on the molecular mechanism and regulation of mitophagy in yeast. We also discuss some of the differences between yeast and mammalian mitophagy.
Collapse
Affiliation(s)
- Tomotake Kanki
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | | |
Collapse
|
848
|
Abstract
Autophagy is essential for neuronal homeostasis, and its dysfunction has been directly linked to a growing number of neurodegenerative disorders. The reasons behind autophagic failure in degenerating neurons can be very diverse because of the different steps required for autophagy and the characterization of the molecular players involved in each of them. Understanding the step(s) affected in the autophagic process in each disorder could explain differences in the course of these pathologies and will be essential to developing targeted therapeutic approaches for each disease based on modulation of autophagy. Here we present examples of different types of autophagic dysfunction described in common neurodegenerative disorders and discuss the prospect of exploring some of the recently identified autophagic variants and the interactions among autophagic and non-autophagic proteolytic systems as possible future therapeutic targets.
Collapse
|
849
|
Signaling pathways in mitochondrial dysfunction and aging. Mech Ageing Dev 2010; 131:536-43. [PMID: 20655326 DOI: 10.1016/j.mad.2010.07.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 07/01/2010] [Accepted: 07/14/2010] [Indexed: 12/23/2022]
Abstract
Mitochondria are central players in the determination of cell life and death. They are essential for energy production, since most cellular ATP is produced in their matrix by the oxidative phosphorylation pathway. At the same time, mitochondria are the main regulators of apoptotic cell death, mediating both extrinsic (cell-surface receptor mediated) and intrinsic apoptotic pathways. Reactive oxygen species (ROS) accumulate as side products of the electron transport chain, causing mitochondrial damage. Non-functional mitochondria accumulate in aged individuals, and cell homeostasis is maintained by removing damaged mitochondria by an autophagic process called "mitophagy". In addition, mitochondrial ROS represent signaling molecules leading to autophagy, consisting in the bulk degradation of cytosolic portions. When cell homeostasis is perturbed, and cytosolic components are damaged, autophagy represents a defense mechanism aimed at removing non-functional proteins and organelles. If this is not sufficient, cell death occurs with distinct morphological hallmarks from apoptosis. This binary choice integrates a number of critical information converging on a number of common regulatory elements. In this review, the focus will be placed on the central role of mitochondria in the cross-talk between autophagy and apoptosis, highlighting the signaling pathways and molecular machinery impinging on these organelles.
Collapse
|
850
|
Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase. Proc Natl Acad Sci U S A 2010; 107:13836-41. [PMID: 20643922 DOI: 10.1073/pnas.1008366107] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Myc protein and proteins that participate in mitosis represent attractive targets for cancer therapy. However, their potential is presently compromised by the threat of side effects and by a lack of pharmacological inhibitors of Myc. Here we report that a circumscribed exposure to the aurora kinase inhibitor, VX-680, selectively kills cells that overexpress Myc. This synthetic lethal interaction is attributable to inhibition of aurora-B kinase, with consequent disabling of the chromosomal passenger protein complex (CPPC) and ensuing DNA replication in the absence of cell division; executed by sequential apoptosis and autophagy; not reliant on the tumor suppressor protein p53; and effective against mouse models for B-cell and T-cell lymphomas initiated by transgenes of MYC. Our findings cast light on how inhibitors of aurora-B kinase may kill tumor cells, implicate Myc in the induction of a lethal form of autophagy, indicate that expression of Myc be a useful biomarker for sensitivity of tumor cells to inhibition of the CPPC, dramatize the virtue of bimodal killing by a single therapeutic agent, and suggest a therapeutic strategy for killing tumor cells that overexpress Myc while sparing normal cells.
Collapse
|