801
|
Dogar AM, Towbin H, Hall J. Suppression of latent transforming growth factor (TGF)-beta1 restores growth inhibitory TGF-beta signaling through microRNAs. J Biol Chem 2011; 286:16447-58. [PMID: 21402698 PMCID: PMC3091250 DOI: 10.1074/jbc.m110.208652] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/09/2011] [Indexed: 12/19/2022] Open
Abstract
Cancer cells secreting excess latent TGF-β are often resistant to TGF-β induced growth inhibition. We observed that RNAi against TGF-β1 led to apoptotic death in such cell lines with features that were, paradoxically, reminiscent of TGF-β signaling activity and that included transiently enhanced SMAD2 and AKT phosphorylation. A comprehensive search in Hela cells for potential microRNA drivers of this mechanism revealed that RNAi against TGF-β1 led to induction of pro-apoptotic miR-34a and to a globally decreased oncomir expression. The reduced levels of the oncomirs miR-18a and miR-24 accounted for the observed derepression of two TGF-β1 processing factors, thrombospondin-1, and furin, respectively. Our data suggest a novel mechanism in which latent TGF-β1, thrombospondin 1, and furin form a microRNA-mediated regulatory feedback loop. For cells with high levels of latent TGF-β, this provides a potentially widespread mechanism of escape from TGF-β-mediated growth arrest at the earliest point in the signaling pathway, TGF-β processing.
Collapse
Affiliation(s)
- Afzal M. Dogar
- From the Department of Chemistry and Applied Biosciences, Institute
of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Harry Towbin
- From the Department of Chemistry and Applied Biosciences, Institute
of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jonathan Hall
- From the Department of Chemistry and Applied Biosciences, Institute
of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
802
|
Payne CM, Crowley-Skillicorn C, Bernstein C, Holubec H, Bernstein H. Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis. Clin Exp Gastroenterol 2011; 4:75-119. [PMID: 21753893 PMCID: PMC3132853 DOI: 10.2147/ceg.s17114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Indexed: 11/23/2022] Open
Abstract
Chromosomal instability is a major pathway of sporadic colon carcinogenesis. Chromosome arm 1p appears to be one of the "hot spots" in the non-neoplastic mucosa that, when deleted, is associated with the initiation of carcinogenesis. Chromosome arm 1p contains genes associated with DNA repair, spindle checkpoint function, apoptosis, multiple microRNAs, the Wnt signaling pathway, tumor suppression, antioxidant activities, and defense against environmental toxins. Loss of 1p is dangerous since it would likely contribute to genomic instability leading to tumorigenesis. The 1p deletion-associated colon carcinogenesis pathways are reviewed at the molecular and cellular levels. Sporadic colon cancer is strongly linked to a high-fat/low-vegetable/low-micronutrient, Western-style diet. We also consider how selected dietary-related compounds (eg, excess hydrophobic bile acids, and low levels of folic acid, niacin, plant-derived antioxidants, and other modulatory compounds) might affect processes leading to chromosomal deletions, and to the molecular and cellular pathways specifically altered by chromosome 1p loss.
Collapse
Affiliation(s)
- Claire M Payne
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USA
| | | | - Carol Bernstein
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USA
| | - Hana Holubec
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USA
| | - Harris Bernstein
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USA
| |
Collapse
|
803
|
The full-length transcripts and promoter analysis of intergenic microRNAs in Drosophila melanogaster. Genomics 2011; 97:294-303. [DOI: 10.1016/j.ygeno.2011.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/23/2010] [Accepted: 02/04/2011] [Indexed: 01/14/2023]
|
804
|
Teitz T, Stanke JJ, Federico S, Bradley CL, Brennan R, Zhang J, Johnson MD, Sedlacik J, Inoue M, Zhang ZM, Frase S, Rehg JE, Hillenbrand CM, Finkelstein D, Calabrese C, Dyer MA, Lahti JM. Preclinical models for neuroblastoma: establishing a baseline for treatment. PLoS One 2011; 6:e19133. [PMID: 21559450 PMCID: PMC3084749 DOI: 10.1371/journal.pone.0019133] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/16/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Preclinical models of pediatric cancers are essential for testing new chemotherapeutic combinations for clinical trials. The most widely used genetic model for preclinical testing of neuroblastoma is the TH-MYCN mouse. This neuroblastoma-prone mouse recapitulates many of the features of human neuroblastoma. Limitations of this model include the low frequency of bone marrow metastasis, the lack of information on whether the gene expression patterns in this system parallels human neuroblastomas, the relatively slow rate of tumor formation and variability in tumor penetrance on different genetic backgrounds. As an alternative, preclinical studies are frequently performed using human cell lines xenografted into immunocompromised mice, either as flank implant or orthtotopically. Drawbacks of this system include the use of cell lines that have been in culture for years, the inappropriate microenvironment of the flank or difficult, time consuming surgery for orthotopic transplants and the absence of an intact immune system. PRINCIPAL FINDINGS Here we characterize and optimize both systems to increase their utility for preclinical studies. We show that TH-MYCN mice develop tumors in the paraspinal ganglia, but not in the adrenal, with cellular and gene expression patterns similar to human NB. In addition, we present a new ultrasound guided, minimally invasive orthotopic xenograft method. This injection technique is rapid, provides accurate targeting of the injected cells and leads to efficient engraftment. We also demonstrate that tumors can be detected, monitored and quantified prior to visualization using ultrasound, MRI and bioluminescence. Finally we develop and test a "standard of care" chemotherapy regimen. This protocol, which is based on current treatments for neuroblastoma, provides a baseline for comparison of new therapeutic agents. SIGNIFICANCE The studies suggest that use of both the TH-NMYC model of neuroblastoma and the orthotopic xenograft model provide the optimal combination for testing new chemotherapies for this devastating childhood cancer.
Collapse
Affiliation(s)
- Tal Teitz
- Department of Tumor Cell Biology, St. Jude Children's Research
Hospital, Memphis, Tennessee, United States of America
| | - Jennifer J. Stanke
- Department of Tumor Cell Biology, St. Jude Children's Research
Hospital, Memphis, Tennessee, United States of America
- Department of Developmental Neurobiology, St. Jude Children's
Research Hospital, Memphis, Tennessee, United States of America
| | - Sara Federico
- Department of Developmental Neurobiology, St. Jude Children's
Research Hospital, Memphis, Tennessee, United States of America
- Department of Hematology/Oncology, St. Jude Children's Research
Hospital, Memphis, Tennessee, United States of America
| | - Cori L. Bradley
- Department of Developmental Neurobiology, St. Jude Children's
Research Hospital, Memphis, Tennessee, United States of America
| | - Rachel Brennan
- Department of Developmental Neurobiology, St. Jude Children's
Research Hospital, Memphis, Tennessee, United States of America
| | - Jiakun Zhang
- Department of Developmental Neurobiology, St. Jude Children's
Research Hospital, Memphis, Tennessee, United States of America
| | - Melissa D. Johnson
- Animal Imaging Center, St. Jude Children's Research Hospital,
Memphis, Tennessee, United States of America
| | - Jan Sedlacik
- Department of Radiological Sciences, St. Jude Children's Research
Hospital, Memphis, Tennessee, United States of America
| | - Madoka Inoue
- Department of Tumor Cell Biology, St. Jude Children's Research
Hospital, Memphis, Tennessee, United States of America
| | - Ziwei M. Zhang
- Animal Imaging Center, St. Jude Children's Research Hospital,
Memphis, Tennessee, United States of America
| | - Sharon Frase
- Cell and Tissue Imaging, St. Jude Children's Research Hospital,
Memphis, Tennessee, United States of America
| | - Jerold E. Rehg
- Department of Pathology, St. Jude Children's Research Hospital,
Memphis, Tennessee, United States of America
| | - Claudia M. Hillenbrand
- Department of Radiological Sciences, St. Jude Children's Research
Hospital, Memphis, Tennessee, United States of America
| | - David Finkelstein
- Information Sciences, St. Jude Children's Research Hospital,
Memphis, Tennessee, United States of America
| | - Christopher Calabrese
- Animal Imaging Center, St. Jude Children's Research Hospital,
Memphis, Tennessee, United States of America
| | - Michael A. Dyer
- Department of Developmental Neurobiology, St. Jude Children's
Research Hospital, Memphis, Tennessee, United States of America
- Department of Ophthalmology, University of Tennessee Health Science
Center, Memphis, Tennessee, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of
America
| | - Jill M. Lahti
- Department of Tumor Cell Biology, St. Jude Children's Research
Hospital, Memphis, Tennessee, United States of America
- Department of Molecular Sciences, University of Tennessee Health Science
Center, Memphis, Tennessee, United States of America
| |
Collapse
|
805
|
Post-transcriptional fine-tuning of COP9 signalosome subunit biosynthesis is regulated by the c-Myc/Lin28B/let-7 pathway. J Mol Biol 2011; 409:710-21. [PMID: 21530537 DOI: 10.1016/j.jmb.2011.04.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 01/30/2023]
Abstract
The COP9 signalosome (CSN) complex controls protein degradation via the ubiquitin (Ub) proteasome system (UPS) in eukaryotes. In mammalian cells, the multimeric CSN is composed of eight subunits (CSN1 - CSN8). It regulates cullin-RING Ub ligases (CRLs), which target essential regulatory proteins for ubiquitination and subsequent degradation. Thereby, the CSN cooperates with the UPS in a variety of essential cellular functions, including DNA repair, cell cycle and differentiation. Although functions of the CSN have been elucidated, mechanisms and regulatory principles of its de novo formation are completely unknown. Here, we show that there is a fundamental mechanism that allows a coordinated expression of all CSN subunits, a prerequisite for CSN assembly. CSN subunit mRNAs are targets of miRNAs of the let-7 family suppressing CSN subunit expression in human cells. Factors that reduce or block let-7 miRNAs induce the coordinated expression of CSN subunits. For instance, over-expression of CSN1 specifically traps let-7a-1 miRNA and elevates CSN subunit levels by two- to fourfold in a coordinated manner. CSN subunit expression is also increased by specific miRNA inhibitors or by interferon (IFN)-mediated induction of STAT1 and c-Myc reducing levels of let-7 miRNAs. Activation of STAT1 by IFNα or IFNγ induces c-Myc, which increases CSN subunit expression via the Lin28B/let-7 regulatory pathway. By contrast, a let-7a-1 mimic reduces CSN subunit expression. Our data show that let-7 miRNAs control the fine-tuning and coordinated expression of subunits for CSN de novo formation, presumably a general regulatory principle for other Zomes complexes as well.
Collapse
|
806
|
Abstract
MicroRNA (miRNA; miR) is a class of small regulatory RNA molecules, the aberrant expression of which can lead to the development of cancer. We recently reported that overexpression of miR-21 and/or miR-155 leads to activation of the phosphoinositide 3-kinase (PI3K)-AKT pathway in malignant lymphomas expressing CD3(-)CD56(+) natural killer (NK) cell antigen. Through expression analysis, we show in this study that in both NK/T-cell lymphoma lines and samples of primary lymphoma, levels of miR-150 expression are significantly lower than in normal NK cells. To examine its role in lymphomagenesis, we transduced miR-150 into NK/T-cell lymphoma cells, which increased the incidence of apoptosis and reduced cell proliferation. Moreover, the miR-150 transductants appeared senescent and showed lower telomerase activity, resulting in shortened telomeric DNA. We also found that miR-150 directly downregulated expression of DKC1 and AKT2, reduced levels of phosphorylated AKT(ser473/4) and increased levels of tumor suppressors such as Bim and p53. Collectively, these results suggest that miR-150 functions as a tumor suppressor, and that its aberrant downregulation induces continuous activation of the PI3K-AKT pathway, leading to telomerase activation and immortalization of cancer cells. These findings provide new insight into the pathogenesis of malignant lymphoma.
Collapse
|
807
|
Sotillo E, Thomas-Tikhonenko A. Shielding the messenger (RNA): microRNA-based anticancer therapies. Pharmacol Ther 2011; 131:18-32. [PMID: 21514318 DOI: 10.1016/j.pharmthera.2011.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 03/29/2011] [Indexed: 02/08/2023]
Abstract
It has been a decade since scientists realized that microRNAs (miRNAs) are not an oddity invented by worms to regulate gene expression at post-transcriptional levels. Rather, many of these 21-22-nucleotide-short RNAs exist in invertebrates and vertebrates alike and some of them are in fact highly conserved. miRNAs are now recognized as an important class of non-coding small RNAs that inhibit gene expression by targeting mRNA stability and translation. In the last ten years, our knowledge of the miRNAs world was expanding at vertiginous speed, propelled by the development of computational engines for miRNA identification and target prediction, biochemical tools and techniques to modulate miRNA activity, and last but not least, the emergence of miRNA-centric animal models. One important conclusion that has emerged from this effort is that many microRNAs and their cognate targets are strongly implicated in cancer, either as oncogenes or tumor and metastasis suppressors. In this review we will discuss the diverse role that miRNAs play in cancer initiation and progression and also the tools with which miRNA expression could be corrected in vivo. While the idea of targeting microRNAs towards therapeutic ends is getting considerable traction, basic, translational, and clinical research done in the next few years will tell whether this promise is well-founded.
Collapse
Affiliation(s)
- Elena Sotillo
- Division of Cancer Pathobiology, Department of Pathology & Laboratory Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
808
|
Abstract
Many mammalian transcripts contain target sites for multiple miRNAs, although it is not clear to what extent miRNAs may coordinately regulate single genes. We have mapped the interactions between down-regulated miRNAs and overexpressed target protein-coding genes in murine and human lymphomas. Myc, one of the hallmark oncogenes in these lymphomas, stands out as the up-regulated gene with the highest number of genetic interactions with down-regulated miRNAs in mouse lymphomas. The regulation of Myc by several of these miRNAs is confirmed by cellular and reporter assays. The same approach identifies MYC and multiple Myc targets as a preferential target of down-regulated miRNAs in human Burkitt lymphoma, a pathology characterized by translocated MYC oncogenes. These results indicate that several miRNAs must be coordinately down-regulated to enhance critical oncogenes, such as Myc. Some of these Myc-targeting miRNAs are repressed by Myc, suggesting that these tumors are a consequence of the unbalanced activity of Myc versus miRNAs.
Collapse
|
809
|
Myc-mediated repression of microRNA-34a promotes high-grade transformation of B-cell lymphoma by dysregulation of FoxP1. Blood 2011; 117:6227-36. [PMID: 21460242 DOI: 10.1182/blood-2010-10-312231] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric marginal zone B-cell lymphoma of MALT type (MALT lymphoma) arises in the context of chronic inflammation induced by the bacterial pathogen Helicobacter pylori. Although generally considered an indolent disease, MALT lymphoma may transform to gastric diffuse large B-cell lymphoma (gDLBCL) through mechanisms that remain poorly understood. By comparing microRNA expression profiles of gastric MALT lymphoma and gDLBCL, we have identified a signature of 27 deregulated microRNAs(miRNAs) that share the characteristic of being transcriptionally repressed by Myc. Myc overexpression was consequently detected in 80% of gDLBCL but only 20% of MALT lymphomas spotted on a tissue microarray. A highly similar signature of Myc-repressed miRNAs was further detected in nodal DLBCL. Small interfering RNA-mediated knock-down of Myc blocked proliferation of DLBCL cell lines. Of the Myc-repressed miRNAs down-regulated in malignant lymphoma, miR-34a showed the strongest antiproliferative properties when overexpressed in DLBCL cells. We could further attribute miR-34a's tumor-suppressive effects to deregulation of its target FoxP1. FoxP1 overexpression was detected in gDLBCL but not in gastric MALT lymphoma; FoxP1 knock-down efficiently blocked DLBCL proliferation. In conclusion, our results elucidate a novel Myc- and FoxP1-dependent pathway of malignant transformation and suggest miR-34a replacement therapy as a promising strategy in lymphoma treatment.
Collapse
|
810
|
Liu X, Sempere LF, Guo Y, Korc M, Kauppinen S, Freemantle SJ, Dmitrovsky E. Involvement of microRNAs in lung cancer biology and therapy. Transl Res 2011; 157:200-8. [PMID: 21420030 PMCID: PMC3072599 DOI: 10.1016/j.trsl.2011.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. Expression profiles of specific miRNAs have improved cancer diagnosis and classification as well as provided prognostic information in many human cancers, including lung cancer. Tumor-suppressive and oncogenic miRNAs were uncovered in lung carcinogenesis. The biological functions of these miRNAs in lung cancer were validated recently in well-characterized cellular, murine transgenic as well as transplantable lung cancer models, and in human paired normal-malignant lung tissue banks and tissue arrays. Tumor-suppressive and oncogenic miRNAs that were identified in lung cancer will be reviewed here. Emphasis is placed on highlighting those functionally validated miRNAs that are not only biomarkers of lung carcinogenesis but also candidate pharmacologic targets. How these miRNA findings advance an understanding of lung cancer biology and how they could improve lung cancer therapy are discussed in this article.
Collapse
Affiliation(s)
- Xi Liu
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | |
Collapse
|
811
|
Melo SA, Esteller M. A precursor microRNA in a cancer cell nucleus: get me out of here! Cell Cycle 2011; 10:922-5. [PMID: 21346411 DOI: 10.4161/cc.10.6.15119] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In line with their broad-based effects, microRNAs (miRNAs), small non-coding RNA molecules ~22 nucleotides long that silence target mRNAs, are thought to act as oncogenes or tumor suppressor genes based on their inhibition of tumor-suppressive and oncogenic mRNAs, respectively. We and others previously showed that global downregulation of miRNAs, a common feature of human tumors, is functionally relevant to oncogenesis as impairment of miRNA biogenesis enhanced transformation in both cancer cells and a K-Ras-driven model of lung cancer. The dysregulation of miRNA biosynthesis in cancer emerges as a cancer-specific mechanism that enhances its tumorigenic capacity. These observations are further supported by the fact that frameshift mutations of TARBP2 occur in sporadic and hereditary carcinomas with microsatellite instability and that DICER1 mutations are associated with familial pleuropulmonary blastoma. Accordingly, it was reported that reduced expression of miRNA-processing factors is associated with poor prognosis in lung cancer and ovarian cancer. Recently we have also demonstrated the presence of Exportin 5 (XPO5) inactivating mutations in tumors with microsatellite instability. This observed genetic defect is responsible for nuclear retention of pre-miRNAs, thereby reducing miRNA processing. The characterized mutant form of the XPO5 protein lacks a C-terminal region that contributes to the formation of the pre-miRNA/XPO5/Ran-GTP ternary complex and the protein itself, as well as pre-miRNAs accumulating in the nucleus of cancer cells. Most importantly, the restoration of XPO5 function reverses the impaired export of pre-miRNAs and has tumor suppressor features. Our data suggest a cancer-specific mechanism to guide the subcellular distribution of miRNA precursors and prevent them from being processed to the active mature miRNA. The control of the miRNA biosynthesis pathway is emerging as an important mechanism in defining the spatiotemporal pattern of miRNA expression in cancer cells.
Collapse
Affiliation(s)
- Sonia A Melo
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | | |
Collapse
|
812
|
Le Béchec A, Portales-Casamar E, Vetter G, Moes M, Zindy PJ, Saumet A, Arenillas D, Theillet C, Wasserman WW, Lecellier CH, Friederich E. MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model. BMC Bioinformatics 2011; 12:67. [PMID: 21375730 PMCID: PMC3061897 DOI: 10.1186/1471-2105-12-67] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 03/04/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To understand biological processes and diseases, it is crucial to unravel the concerted interplay of transcription factors (TFs), microRNAs (miRNAs) and their targets within regulatory networks and fundamental sub-networks. An integrative computational resource generating a comprehensive view of these regulatory molecular interactions at a genome-wide scale would be of great interest to biologists, but is not available to date. RESULTS To identify and analyze molecular interaction networks, we developed MIR@NT@N, an integrative approach based on a meta-regulation network model and a large-scale database. MIR@NT@N uses a graph-based approach to predict novel molecular actors across multiple regulatory processes (i.e. TFs acting on protein-coding or miRNA genes, or miRNAs acting on messenger RNAs). Exploiting these predictions, the user can generate networks and further analyze them to identify sub-networks, including motifs such as feedback and feedforward loops (FBL and FFL). In addition, networks can be built from lists of molecular actors with an a priori role in a given biological process to predict novel and unanticipated interactions. Analyses can be contextualized and filtered by integrating additional information such as microarray expression data. All results, including generated graphs, can be visualized, saved and exported into various formats. MIR@NT@N performances have been evaluated using published data and then applied to the regulatory program underlying epithelium to mesenchyme transition (EMT), an evolutionary-conserved process which is implicated in embryonic development and disease. CONCLUSIONS MIR@NT@N is an effective computational approach to identify novel molecular regulations and to predict gene regulatory networks and sub-networks including conserved motifs within a given biological context. Taking advantage of the M@IA environment, MIR@NT@N is a user-friendly web resource freely available at http://mironton.uni.lu which will be updated on a regular basis.
Collapse
Affiliation(s)
- Antony Le Béchec
- Cytoskeleton and Cell Plasticity Lab, Life Sciences Research Unit-FSCT, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
813
|
Smith K, Dalton S. Myc transcription factors: key regulators behind establishment and maintenance of pluripotency. Regen Med 2011; 5:947-59. [PMID: 21082893 DOI: 10.2217/rme.10.79] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interplay between transcription factors, epigenetic modifiers, chromatin remodelers and miRNAs form the foundation of a complex regulatory network required for establishment and maintenance of the pluripotent state. Recent work indicates that Myc transcription factors are essential elements of this regulatory system. However, despite numerous studies, aspects of how Myc controls self-renewal and pluripotency remain obscure. This article reviews evidence supporting the placement of Myc as a central regulator of the pluripotent state and discusses possible mechanisms of action.
Collapse
Affiliation(s)
- Keriayn Smith
- Paul D Coverdell Center for Biomedical & Health Sciences, Department of Biochemistry & Molecular Biology, University of Georgia, 500 DW Brooks Drive, Athens, GA 30602, USA
| | | |
Collapse
|
814
|
Vincenti S, Brillante N, Lanza V, Bozzoni I, Presutti C, Chiani F, Etna MP, Negri R. HUVEC respond to radiation by inducing the expression of pro-angiogenic microRNAs. Radiat Res 2011; 175:535-46. [PMID: 21361781 DOI: 10.1667/rr2200.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by targeting mRNAs and triggering either repression of translation or RNA degradation. They have been shown to be involved in a variety of biological processes such as development, differentiation and cell cycle control, but little is known about their involvement in the response to irradiation. We showed here that in human umbilical vein endothelial cells (HUVEC) some miRNAs previously shown to have a crucial role in vascular biology are transiently modulated in response to a clinically relevant dose of ionizing radiation. In particular we identified an early transcriptional induction of several members of the microRNA cluster 17-92 and other microRNAs already known to be related to angiogenesis. At the same time we observed a peculiar behavior of the miR-221/222 cluster, suggesting an important role of these microRNAs in HUVEC homeostasis. We observed an increased efficiency in the formation of capillary-like structures in irradiated HUVEC. These results could lead to a new interpretation of the effect of ionizing radiation on endothelial cells and on the response of tumor endothelial bed cells to radiotherapy.
Collapse
Affiliation(s)
- Sara Vincenti
- Dipartimento di Biologia e Biotecnologie C. Darwin, Laboratorio di Genomica Funzionale e Proteomica dei Sistemi Modello, University "La Sapienza", Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
815
|
Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc Natl Acad Sci U S A 2011; 108:4394-9. [PMID: 21368194 DOI: 10.1073/pnas.1014720108] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression at the posttranscriptional level and are critical for many cellular pathways. The disruption of miRNAs and their processing machineries also contributes to the development of human tumors. A common scenario for miRNA expression in carcinogenesis is emerging that shows that impaired miRNA production and/or down-regulation of these transcripts occurs in many neoplasms. Several of these lost miRNAs have tumor-suppressor features, so strategies to restore their expression globally in malignancies would be a welcome addition to the current therapeutic arsenal against cancer. Herein, we show that the small molecule enoxacin, a fluoroquinolone used as an antibacterial compound, enhances the production of miRNAs with tumor suppressor functions by binding to the miRNA biosynthesis protein TAR RNA-binding protein 2 (TRBP). The use of enoxacin in human cell cultures and xenografted, orthotopic, and metastatic mouse models reveals a TRBP-dependent and cancer-specific growth-inhibitory effect of the drug. These results highlight the key role of disrupted miRNA expression patterns in tumorigenesis, and suggest a unique strategy for restoring the distorted microRNAome of cancer cells to a more physiological setting.
Collapse
|
816
|
MicroRNAs and the cell cycle. Biochim Biophys Acta Mol Basis Dis 2011; 1812:592-601. [PMID: 21315819 DOI: 10.1016/j.bbadis.2011.02.002] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 12/11/2022]
Abstract
The control of cell proliferation by microRNAs (miRNAs) is well established and the alteration of these small, non-coding RNAs may contribute to tumor development by perturbing critical cell cycle regulators. Oncogenic miRNAs may facilitate cell cycle entry and progression by targeting CDK inhibitors or transcriptional repressors of the retinoblastoma family. On the other hand, tumor suppressor miRNAs induce cell cycle arrest by downregulating multiple components of the cell cycle machinery. Recent data also suggest that miRNAs act co-ordinately with transcriptional factors involved in cell cycle regulation such as c-MYC, E2F or p53. These miRNAs not only can potentiate the function of these factors but they may also limit the excessive translation of cell cycle proteins upon mitogenic or oncogenic stimuli to protect cells from replicative stress. The implications of these regulatory networks in cell proliferation and human disease are discussed.
Collapse
|
817
|
Krutovskikh VA, Herceg Z. Oncogenic microRNAs (OncomiRs) as a new class of cancer biomarkers. Bioessays 2011; 32:894-904. [PMID: 21105295 DOI: 10.1002/bies.201000040] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small non-coding RNAs (microRNAs or miRs) represent one of the most fertile areas of cancer research and recent advances in the field have prompted us to reconsider the traditional concept of cancer. Some miRs exert negative control over the expression of numerous oncoproteins in normal cells and consequently their deregulation is believed to be an important mechanism underlying cancer development and progression. Owing to their distinct patterns of expression associated with cancer type, remarkable stability and presence in blood and other body fluids, miRs are considered to be highly promising cancer biomarkers. The identification of "miR signatures" associating cancer cell phenotypes with disease outcome and specific risk factor exposures will undoubtedly open new avenues for early diagnosis and therapy of cancer, as well as for the development of novel strategies for cancer prevention.
Collapse
|
818
|
Conacci-Sorrell M, Eisenman RN. Post-translational control of Myc function during differentiation. Cell Cycle 2011; 10:604-10. [PMID: 21293188 DOI: 10.4161/cc.10.4.14794] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Myc proteins are deeply involved in multiple biological processes including cell proliferation, growth, metabolism, apoptosis, differentiation, and tumorigenesis. Paradoxically, Myc proteins have been found to be capable of both inhibiting and facilitating differentiation depending on the biological context. Recently we identified a new mode of Myc regulation in differentiating muscle cells in which c-Myc protein is proteolytically cleaved by calcium-dependent calpains in the cytoplasm. This cleavage serves two purposes. First, it inactivates the transcriptional function of Myc by removing its C-terminus, a region responsible for the interaction of Myc with Max and DNA. Second, it alters cytoskeletal architecture and accelerates muscle differentiation through the activity of the remaining N-terminal cleavage product (termed Myc-nick). Here we discuss the roles and regulation of full-length Myc and Myc-nick in terminal differentiation and propose a model in which calpain-mediated cleavage of Myc operates as a functional switch.
Collapse
|
819
|
Boominathan L. The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer Metastasis Rev 2011; 29:613-39. [PMID: 20922462 DOI: 10.1007/s10555-010-9257-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tumor suppressor p53 homologues, TA-p73, and p63 have been shown to function as tumor suppressors. However, how they function as tumor suppressors remains elusive. Here, I propose a number of tumor suppressor pathways that illustrate how the TA-p73 and p63 could function as negative regulators of invasion, metastasis, and cancer stem cells (CSCs) proliferation. Furthermore, I provide molecular insights into how TA-p73 and p63 could function as tumor suppressors. Remarkably, the guardians--p53, p73, and p63--of the genome are in control of most of the known tumor suppressor miRNAs, tumor suppressor genes, and metastasis suppressors by suppressing c-myc through miR-145/let-7/miR-34/TRIM32/PTEN/FBXW7. In particular, p53 and TA-p73/p63 appear to upregulate the expression of (1) tumor suppressor miRNAs, such as let-7, miR-34, miR-15/16a, miR-145, miR-29, miR-26, miR-30, and miR-146a; (2) tumor suppressor genes, such as PTEN, RBs, CDKN1a/b/c, and CDKN2a/b/c/d; (3) metastasis suppressors, such as Raf kinase inhibitory protein, CycG2, and DEC2, and thereby they enlarge their tumor suppressor network to inhibit tumorigenesis, invasion, angiogenesis, migration, metastasis, and CSCs proliferation.
Collapse
|
820
|
Epigenetic regulation of cancer-associated genes in ovarian cancer. Int J Mol Sci 2011; 12:983-1008. [PMID: 21541038 PMCID: PMC3083685 DOI: 10.3390/ijms12020983] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/19/2011] [Accepted: 01/28/2011] [Indexed: 02/08/2023] Open
Abstract
The involvement of epigenetic aberrations in the development and progression of tumors is now well established. However, most studies have focused on the epigenetic inactivation of tumor suppressor genes during tumorigenesis and little is known about the epigenetic activation of cancer-associated genes, except for the DNA hypomethylation of some genes. Recently, we reported that the overexpression of cancer-promoting genes in ovarian cancer is associated with the loss of repressive histone modifications. This discovery suggested that epigenetic derepression may contribute to ovarian tumorigenesis by constituting a possible mechanism for the overexpression of oncogenes or cancer-promoting genes in tumors. The emerging importance of epigenetic aberrations in tumor initiation and in the regulation of cancer-initiating cells, suggests that epigenetically regulated genes may be promising therapeutic targets and biomarkers. Given that the current challenges in ovarian cancer include the identification of biomarkers for early cancer detection and the discovery of novel therapeutic targets for patients with recurrent malignancies undergoing chemotherapy, understanding the epigenetic changes that occur in ovarian cancer is crucial. This review looks at epigenetic mechanisms involved in the regulation of cancer-associated genes, including the contribution of epigenetic derepression to the activation of cancer-associated genes in ovarian cancer. In addition, possible epigenetic therapies targeting epigenetically dysregulated genes are discussed. A better understanding of the epigenetic changes in ovarian cancer will contribute to the improvement of patient outcomes.
Collapse
|
821
|
MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS One 2011. [PMID: 21305051 DOI: 10.1371/journal.pone.0016509.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND miRNAs are now recognized as key regulator elements in gene expression. Although they have been associated with a number of human diseases, their implication in acute and chronic asthma and their association with lung remodelling have never been thoroughly investigated. METHODOLOGY/PRINCIPAL FINDINGS In order to establish a miRNAs expression profile in lung tissue, mice were sensitized and challenged with ovalbumin mimicking acute, intermediate and chronic human asthma. Levels of lung miRNAs were profiled by microarray and in silico analyses were performed to identify potential mRNA targets and to point out signalling pathways and biological processes regulated by miRNA-dependent mechanisms. Fifty-eight, 66 and 75 miRNAs were found to be significantly modulated at short-, intermediate- and long-term challenge, respectively. Inverse correlation with the expression of potential mRNA targets identified mmu-miR-146b, -223, -29b, -29c, -483, -574-5p, -672 and -690 as the best candidates for an active implication in asthma pathogenesis. A functional validation assay was performed by cotransfecting in human lung fibroblasts (WI26) synthetic miRNAs and engineered expression constructs containing the coding sequence of luciferase upstream of the 3'UTR of various potential mRNA targets. The bioinformatics analysis identified miRNA-linked regulation of several signalling pathways, as matrix metalloproteinases, inflammatory response and TGF-β signalling, and biological processes, including apoptosis and inflammation. CONCLUSIONS/SIGNIFICANCE This study highlights that specific miRNAs are likely to be involved in asthma disease and could represent a valuable resource both for biological makers identification and for unveiling mechanisms underlying the pathogenesis of asthma.
Collapse
|
822
|
Garbacki N, Di Valentin E, Huynh-Thu VA, Geurts P, Irrthum A, Crahay C, Arnould T, Deroanne C, Piette J, Cataldo D, Colige A. MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS One 2011; 6:e16509. [PMID: 21305051 PMCID: PMC3030602 DOI: 10.1371/journal.pone.0016509] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 01/03/2011] [Indexed: 12/16/2022] Open
Abstract
Background miRNAs are now recognized as key regulator elements in gene expression. Although they have been associated with a number of human diseases, their implication in acute and chronic asthma and their association with lung remodelling have never been thoroughly investigated. Methodology/Principal Findings In order to establish a miRNAs expression profile in lung tissue, mice were sensitized and challenged with ovalbumin mimicking acute, intermediate and chronic human asthma. Levels of lung miRNAs were profiled by microarray and in silico analyses were performed to identify potential mRNA targets and to point out signalling pathways and biological processes regulated by miRNA-dependent mechanisms. Fifty-eight, 66 and 75 miRNAs were found to be significantly modulated at short-, intermediate- and long-term challenge, respectively. Inverse correlation with the expression of potential mRNA targets identified mmu-miR-146b, -223, -29b, -29c, -483, -574-5p, -672 and -690 as the best candidates for an active implication in asthma pathogenesis. A functional validation assay was performed by cotransfecting in human lung fibroblasts (WI26) synthetic miRNAs and engineered expression constructs containing the coding sequence of luciferase upstream of the 3′UTR of various potential mRNA targets. The bioinformatics analysis identified miRNA-linked regulation of several signalling pathways, as matrix metalloproteinases, inflammatory response and TGF-β signalling, and biological processes, including apoptosis and inflammation. Conclusions/Significance This study highlights that specific miRNAs are likely to be involved in asthma disease and could represent a valuable resource both for biological makers identification and for unveiling mechanisms underlying the pathogenesis of asthma.
Collapse
Affiliation(s)
- Nancy Garbacki
- GIGA-Research, Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium
| | - Emmanuel Di Valentin
- GIGA-Research, Laboratory of Virology and Immunology, University of Liège, Liège, Belgium
| | - Vân Anh Huynh-Thu
- GIGA-Research, Systems and modeling, University of Liège, Liège, Belgium
| | - Pierre Geurts
- GIGA-Research, Systems and modeling, University of Liège, Liège, Belgium
| | - Alexandre Irrthum
- GIGA-Research, Systems and modeling, University of Liège, Liège, Belgium
| | - Céline Crahay
- GIGA-Research, Laboratory of Biology of Tumours and Development, University of Liège, Liège, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology, University of Namur, Namur, Belgium
| | - Christophe Deroanne
- GIGA-Research, Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium
| | - Jacques Piette
- GIGA-Research, Laboratory of Virology and Immunology, University of Liège, Liège, Belgium
| | - Didier Cataldo
- GIGA-Research, Laboratory of Biology of Tumours and Development, University of Liège, Liège, Belgium
| | - Alain Colige
- GIGA-Research, Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
823
|
Kumar M, Zhao X, Wang XW. Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: one step closer to personalized medicine? Cell Biosci 2011. [PMID: 21711594 DOI: 10.1186/2045-3701-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the two major forms of primary liver cancers (PLC), accounting for approximately 90% and 5% respectively. The incidence of each is increasing rapidly in the western world, however our knowledge of the underlying mechanisms remains limited and the outcome, dismal. The etiologies of each vary geographically; nevertheless, chronic inflammation has been identified in more than 80% of the cases and appears to be a key mediator in altering the liver microenvironment, increasing the risk of carcinogenesis. However, since not all HCC and especially ICC cases have a recognized risk factor, there are currently two proposed models for liver carcinogenesis. The clonal evolution model demonstrates a multi-step process of tumor development from precancerous lesions to metastatic carcinoma, arising from the accumulation of genetic and epigenetic changes in a cell in the setting of chronic inflammation. While the majority of cases do occur as a consequence of chronic inflammation, most individuals with chronic infection do not develop PLC, suggesting the involvement of individual genetic and environmental factors. Further, since hepatocytes and cholangiocytes both have regenerative potential and arise from the same bi-potential progenitor cell, the more recently proposed cancer stem cell model is gaining its due attention. The integration of these models and the constant improvement in molecular profiling platforms is enabling a broader understanding of the mechanisms underlying these two devastating malignancies, perhaps moving us closer to a new world of molecularly-informed personalized medicine.
Collapse
Affiliation(s)
- Mia Kumar
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
824
|
Kumar M, Zhao X, Wang XW. Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: one step closer to personalized medicine? Cell Biosci 2011; 1:5. [PMID: 21711594 PMCID: PMC3116244 DOI: 10.1186/2045-3701-1-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/24/2011] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the two major forms of primary liver cancers (PLC), accounting for approximately 90% and 5% respectively. The incidence of each is increasing rapidly in the western world, however our knowledge of the underlying mechanisms remains limited and the outcome, dismal. The etiologies of each vary geographically; nevertheless, chronic inflammation has been identified in more than 80% of the cases and appears to be a key mediator in altering the liver microenvironment, increasing the risk of carcinogenesis. However, since not all HCC and especially ICC cases have a recognized risk factor, there are currently two proposed models for liver carcinogenesis. The clonal evolution model demonstrates a multi-step process of tumor development from precancerous lesions to metastatic carcinoma, arising from the accumulation of genetic and epigenetic changes in a cell in the setting of chronic inflammation. While the majority of cases do occur as a consequence of chronic inflammation, most individuals with chronic infection do not develop PLC, suggesting the involvement of individual genetic and environmental factors. Further, since hepatocytes and cholangiocytes both have regenerative potential and arise from the same bi-potential progenitor cell, the more recently proposed cancer stem cell model is gaining its due attention. The integration of these models and the constant improvement in molecular profiling platforms is enabling a broader understanding of the mechanisms underlying these two devastating malignancies, perhaps moving us closer to a new world of molecularly-informed personalized medicine.
Collapse
Affiliation(s)
- Mia Kumar
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
825
|
miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Med Oncol 2011; 29:384-91. [PMID: 21258880 DOI: 10.1007/s12032-010-9797-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/20/2010] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules, which posttranscriptionally regulate genes expression and play crucial roles in diverse biological processes, such as development, differentiation, apoptosis, and proliferation. Here, we investigated the possible role of miRNAs in the development of multidrug resistance (MDR) in human gastric and lung cancer cell lines. We found that miR-497 was downregulated in both multidrug-resistant human gastric cancer cell line SGC7901/vincristine (VCR) and multidrug-resistant human lung cancer cell line A549/cisplatin (CDDP) and the downregulation of miR-497 was concurrent with the upregulation of BCL2 protein, compared with the parental SGC7901 and A549 cell lines, respectively. In vitro drug sensitivity assay demonstrated that overexpression of miR-497 sensitized SGC7901/VCR and A549/CDDP cells to anticancer drugs, respectively. The luciferase activity of BCL2 3'-untranslated region-based reporter constructed in SGC7901/VCR and A549/CDDP cells suggested that BCL2 was the direct target gene of miR-497. Enforced miR-497 expression reduced BCL2 protein level and sensitized SGC7901/VCR and A549/CDDP cells to VCR-induced and CDDP-induced apoptosis, respectively. Taken together, our findings first suggested that has-miR-497 could play a role in both gastric and lung cancer cell lines at least in part by modulation of apoptosis via targeting BCL2.
Collapse
|
826
|
Mongroo PS, Noubissi FK, Cuatrecasas M, Kalabis J, King CE, Johnstone CN, Bowser MJ, Castells A, Spiegelman VS, Rustgi AK. IMP-1 displays cross-talk with K-Ras and modulates colon cancer cell survival through the novel proapoptotic protein CYFIP2. Cancer Res 2011; 71:2172-82. [PMID: 21252116 DOI: 10.1158/0008-5472.can-10-3295] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding protein-1 (IMP-1) is an oncofetal protein that binds directly to and stabilizes oncogenic c-Myc and regulates, in turn, its posttranscriptional expression and translation. In contrast to normal adult tissue, IMP-1 is reexpressed and/or overexpressed in human cancers. We show that knockdown of c-Myc in human colon cancer cell lines increases the expression of mature let-7 miRNA family members and downregulates several of its mRNA targets: IMP-1, Cdc34, and K-Ras. We further show that loss of IMP-1 inhibits Cdc34, Lin-28B, and K-Ras, suppresses SW-480 cell proliferation and anchorage-independent growth, and promotes caspase- and lamin-mediated cell death. We also found that IMP-1 binds to the coding region and 3'UTR of K-Ras mRNA. RNA microarray profiling and validation by reverse transcription PCR reveals that the p53-inducible proapoptotic protein CYFIP2 is upregulated in IMP-1 knockdown SW480 cells, a novel finding. We also show that overexpression of IMP-1 increases c-Myc and K-Ras expression and LIM2405 cell proliferation. Furthermore, we show that loss of IMP-1 induces Caspase-3- and PARP-mediated apoptosis, and inhibits K-Ras expression in SW480 cells, which is rescued by CYFIP2 knockdown. Importantly, analysis of 228 patients with colon cancers reveals that IMP-1 is significantly upregulated in differentiated colon tumors (P ≤ 0.0001) and correlates with K-Ras expression (r = 0.35, P ≤ 0.0001) relative to adjacent normal mucosa. These findings indicate that IMP-1, interrelated with c-Myc, acts upstream of K-Ras to promote survival through a novel mechanism that may be important in colon cancer pathogenesis.
Collapse
Affiliation(s)
- Perry S Mongroo
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
827
|
Galardi S, Mercatelli N, Farace MG, Ciafrè SA. NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res 2011; 39:3892-902. [PMID: 21245048 PMCID: PMC3089483 DOI: 10.1093/nar/gkr006] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are potent negative regulators of gene expression involved in all aspects of cell biology. They finely modulate virtually all physiological pathways in metazoans, and are deeply implicated in all main pathologies, among which cancer. Mir-221 and miR-222, two closely related miRNAs encoded in cluster from a genomic region on chromosome X, are strongly upregulated in several forms of human tumours. In this work, we report that the ectopic modulation of NF-kB modifies miR-221/222 expression in prostate carcinoma and glioblastoma cell lines, where we had previously shown their oncogenic activity. We identify two separate distal regions upstream of miR-221/222 promoter which are bound by the NF-kB subunit p65 and drive efficient transcription in luciferase reporter assays; consistently, the site-directed mutagenesis disrupting p65 binding sites or the ectopical inhibition of NF-kB activity significantly reduce luciferase activity. In the most distal enhancer region, we also define a binding site for c-Jun, and we show that the binding of this factor cooperates with that of p65, fully accounting for the observed upregulation of miR-221/222. Thus our work uncovers an additional mechanism through which NF-kB and c-Jun, two transcription factors deeply involved in cancer onset and progression, contribute to oncogenesis, by inducing miR-221/222 transcription.
Collapse
Affiliation(s)
- Silvia Galardi
- Department of Experimental Medicine and Biochemical Sciences, University of Rome 'Tor Vergata', 00133 Rome, Italy.
| | | | | | | |
Collapse
|
828
|
Osada H, Takahashi T. let-7 and miR-17-92: small-sized major players in lung cancer development. Cancer Sci 2011; 102:9-17. [PMID: 20735434 DOI: 10.1111/j.1349-7006.2010.01707.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA)-encoding small non-coding RNA have been recognized as important regulators of a number of biological processes that inhibit the expression of hundreds of genes. Accumulating evidence also indicates the involvement of miRNA alterations in various types of human cancer, including lung cancer, which has long been the leading cause of cancer death in economically well-developed countries, including Japan. We previously found that downregulation of members of the tumor-suppressive let-7 miRNA family and overexpression of the oncogenic miR-17-92 miRNA cluster frequently occur in lung cancers, and molecular insight into how these miRNA alterations may contribute to tumor development has been rapidly accumulating. The present review summarizes recent advances in elucidation of the molecular functions of these miRNA in relation to their roles in the pathogenesis of lung cancer. Given the crucial roles of miRNA alterations, additional studies are expected to provide a better understanding of the underlying molecular mechanisms of disease development, as well as a foundation for novel strategies for cancer diagnosis and treatment of this devastating disease.
Collapse
Affiliation(s)
- Hirotaka Osada
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | |
Collapse
|
829
|
Myc/miR-378/TOB2/cyclin D1 functional module regulates oncogenic transformation. Oncogene 2011; 30:2242-51. [DOI: 10.1038/onc.2010.602] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
830
|
Aigner A. MicroRNAs (miRNAs) in cancer invasion and metastasis: therapeutic approaches based on metastasis-related miRNAs. J Mol Med (Berl) 2011; 89:445-57. [PMID: 21234533 DOI: 10.1007/s00109-010-0716-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/07/2010] [Accepted: 12/20/2010] [Indexed: 12/12/2022]
Abstract
The management of tumor cell invasion and metastasis is instrumental in cancer therapy, since metastases are the prime reason for cancer patient mortality. Various cellular mechanisms and underlying molecular pathways relevant for metastasis have been identified so far, providing a basis for antimetastatic drugs. MicroRNAs (miRNAs) are highly conserved, small noncoding RNA molecules that have been shown to regulate various cellular processes by interfering with protein expression through posttranscriptional repression or mRNA degradation. More importantly, beyond their roles in physiological processes, many miRNAs are aberrantly expressed in various pathologies including cancer and regulate tumor- and metastasis-associated genes. Their pivotal role in metastasis has emerged only recently. After an introduction into the mechanisms of miRNA action, this review article describes the roles of miRNAs in cancer invasion and metastasis. Various miRNAs are discussed with regard to their upstream regulators, downstream target genes, and pro-/antimetastatic effects. A table provides a comprehensive overview of miRNAs that are misregulated/relevant in metastasis and the current knowledge regarding their underlying molecular effects. Furthermore, therapeutic approaches based on miRNAs, either as drugs or as therapeutic targets, are described prior to the discussion of the delivery of miRNA-based therapeutics as novel strategy in antimetastatic treatment.
Collapse
Affiliation(s)
- Achim Aigner
- Institute of Pharmacology, Faculty of Medicine, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, Marburg, Germany.
| |
Collapse
|
831
|
miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci U S A 2010; 108:522-7. [PMID: 21187425 DOI: 10.1073/pnas.1017346108] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence is a form of irreversible growth arrest and a major tumor suppressor mechanism. We show here that the miR-29 and miR-30 microRNA families are up-regulated during induced and replicative senescence and that up-regulation requires activation of the Rb pathway. Expression of a reporter construct containing the 3'UTR of the B-Myb oncogene is repressed during senescence, and repression is blocked by mutations in conserved miR-29 and miR-30 binding sites in the B-Myb 3'UTR. In proliferating cells, transfection of miR-29 and miR-30 represses a reporter construct containing the wild-type but not the mutant B-Myb 3'UTR, and repression of the mutant 3'UTR is reinstituted by compensatory mutations in miR-29 and miR-30 that restore binding to the mutant sites. miR-29 and miR-30 introduction also represses expression of endogenous B-Myb and inhibits cellular DNA synthesis. Finally, interference with miR-29 and miR-30 expression inhibits senescence. These findings demonstrate that miR-29 and miR-30 regulate B-Myb expression by binding to its 3'UTR and suggest that these microRNAs play an important role in Rb-driven cellular senescence.
Collapse
|
832
|
Yang Y, Ago T, Zhai P, Abdellatif M, Sadoshima J. Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ Res 2010; 108:305-13. [PMID: 21183740 DOI: 10.1161/circresaha.110.228437] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
RATIONALE Thioredoxin (Trx)1 inhibits pathological cardiac hypertrophy. MicroRNAs (miRNAs) are small noncoding RNAs that downregulate posttranscriptional expression of target molecules. OBJECTIVES We investigated the role of miRNAs in mediating the antihypertrophic effect of Trx1 on angiotensin II (Ang II)-induced cardiac hypertrophy. METHODS AND RESULTS Microarray analyses of mature rodent microRNAs and quantitative RT-PCR/Northern blot analyses showed that Trx1 upregulates members of the let-7 family, including miR-98, in the heart and the cardiomyocytes therein. Adenovirus-mediated expression of miR-98 in cardiomyocytes reduced cell size both at baseline and in response to Ang II. Knockdown of miR-98, and of other members of the let-7 family, augmented Ang II-induced cardiac hypertrophy, and attenuated Trx1-mediated inhibition of Ang II-induced cardiac hypertrophy, suggesting that endogenous miR-98/let-7 mediates the antihypertrophic effect of Trx1. Cyclin D2 is one of the predicted targets of miR-98. Ang II significantly upregulated cyclin D2, which in turn plays an essential role in mediating Ang II-induced cardiac hypertrophy, whereas overexpression of Trx1 inhibited Ang II-induced upregulation of cyclin D2. miR-98 decreased both expression of cyclin D2 and the activity of a cyclin D2 3'UTR luciferase reporter, suggesting that both Trx1 and miR-98 negatively regulate cyclin D2. Overexpression of cyclin D2 attenuated the suppression of Ang II-induced cardiac hypertrophy by miR-98, suggesting that the antihypertrophic actions of miR-98 are mediated in part by downregulation of cyclin D2. CONCLUSIONS These results suggest that Trx1 upregulates expression of the let-7 family, including miR-98, which in turn inhibits cardiac hypertrophy, in part through downregulation of cyclin D2.
Collapse
Affiliation(s)
- Yanfei Yang
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, NJ 07103, USA
| | | | | | | | | |
Collapse
|
833
|
Human polynucleotide phosphorylase (hPNPase(old-35)): an evolutionary conserved gene with an expanding repertoire of RNA degradation functions. Oncogene 2010; 30:1733-43. [PMID: 21151174 PMCID: PMC4955827 DOI: 10.1038/onc.2010.572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human polynucleotide phosphorylase (hPNPase(old-35)) is an evolutionary conserved RNA-processing enzyme with expanding roles in regulating cellular physiology. hPNPase(old-35) was cloned using an innovative 'overlapping pathway screening' strategy designed to identify genes coordinately regulated during the processes of cellular differentiation and senescence. Although hPNPase(old-35) structurally and biochemically resembles PNPase of other species, overexpression and inhibition studies reveal that hPNPase(old-35) has evolved to serve more specialized and diversified functions in humans. Targeting specific mRNA or non-coding small microRNA, hPNPase(old-35) modulates gene expression that in turn has a pivotal role in regulating normal physiological and pathological processes. In these contexts, targeted overexpression of hPNPase(old-35) represents a novel strategy to selectively downregulate RNA expression and consequently intervene in a variety of pathophysiological conditions.
Collapse
|
834
|
Wiklund ED, Kjems J, Clark SJ. Epigenetic architecture and miRNA: reciprocal regulators. Epigenomics 2010; 2:823-40. [DOI: 10.2217/epi.10.51] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Deregulation of epigenetic and miRNA pathways are emerging as key events in carcinogenesis. miRNA genes can be epigenetically regulated and miRNAs can themselves repress key enzymes that drive epigenetic remodeling. Epigenetic and miRNA functions are thus tightly interconnected and crucial for maintaining correct local and global genomic architecture as well as gene-expression patterns, yet the underlying molecular mechanisms and their widespread effects remain poorly understood. Owing to the tissue specificity, versatility and relative stability of miRNAs, these small ncRNAs are considered especially promising in clinical applications, and their biogenesis and function is subject of active research. In this article, the current status of epigenetic miRNA regulation is summarized and future therapeutic prospects in the field are discussed with a focus on cancer.
Collapse
Affiliation(s)
| | - Jørgen Kjems
- Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Susan J Clark
- Cancer Research Program, Garvan Institute of Medical Research, 2010 Darlinghurst NSW, Australia
| |
Collapse
|
835
|
Abstract
Preconditioning (PC) of the heart by sublethal ischemia, mild heat shock, or hypoxia has evolved as a powerful experimental tool to discover novel signaling mechanisms in cardioprotection. The ultimate goal is to determine novel therapeutic targets for potential application in humans to protect the heart against ischemia-related injuries. In recent years, there has been a tremendous interest in understanding the role of small noncoding RNAs, microRNAs (miRs), in cardiovascular diseases. miRs have been recognized as regulators of gene expression by destabilization and translational inhibition of target messenger RNAs. Studies have shown that several miRs, including miR-1, miR-133, miR-21, miR-126, miR-320, miR-92a, and miR-199a, are regulated after preconditioning and play an active role in protecting the heart against ischemia/reperfusion injury. These miRs also drive the synthesis of important cardioprotective proteins including heat shock protein (HSP)-70, endothelial nitric oxide synthase, inducible nitric oxide synthase, HSP-20, Sirt1, and hypoxia-inducible factor 1a. We believe that identification and targeted delivery of miR(s) in the heart could have an immense therapeutic potential in reducing myocardial infarction in patients suffering from heart disease.
Collapse
Affiliation(s)
- Fadi N Salloum
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall St, Richmond, VA 23298, USA
| | | | | |
Collapse
|
836
|
Abstract
In many B-cell lymphomas, chromosomal translocations are biologic and diagnostic hallmarks of disease. An intriguing subset is formed by the so-called double- hit (DH) lymphomas that are defined by a chromosomal breakpoint affecting the MYC/8q24 locus in combination with another recurrent breakpoint, mainly a t(14;18)(q32;q21) involving BCL2. Recently, these lymphomas have received increased attention, which contributed to the introduction of a novel category of lymphomas in the 2008 WHO classification, "B cell lymphoma unclassifiable with features intermediate between DLBCL and BL." In this review we explore the existing literature for the most recurrent types of DH B-cell lymphomas and the involved genes with their functions, as well as their pathology and clinical aspects including therapy and prognosis. The incidence of aggressive B-cell lymphomas other than Burkitt lymphoma with a MYC breakpoint and in particular a double hit is difficult to assess, because screening by methods like FISH has not been applied on large, unselected series, and the published cytogenetic data may be biased to specific categories of lymphomas. DH lymphomas have been classified heterogeneously but mostly as DLBCL, the majority having a germinal center phenotype and expression of BCL2. Patients with DH lymphomas often present with poor prognostic parameters, including elevated LDH, bone marrow and CNS involvement, and a high IPI score. All studies on larger series of patients suggest a poor prognosis, also if treated with RCHOP or high-intensity treatment modalities. Importantly, this poor outcome cannot be accounted for by the mere presence of a MYC/8q24 breakpoint. Likely, the combination of MYC and BCL2 expression and/or a related high genomic complexity are more important. Compared to these DH lymphomas, BCL6(+)/MYC(+) DH lymphomas are far less common, and in fact most of these cases represent BCL2(+)/BCL6(+)/MYC(+) triple-hit lymphomas with involvement of BCL2 as well. CCND1(+)/MYC(+) DH lymphomas with involvement of 11q13 may also be relatively frequent, the great majority being classified as aggressive variants of mantle cell lymphoma. This suggests that activation of MYC might be an important progression pathway in mantle cell lymphoma as well. Based on clinical significance and the fact that no other solid diagnostic tools are available to identify DH lymphomas, it seems advisable to test all diffuse large B-cell and related lymphomas for MYC and other breakpoints.
Collapse
|
837
|
Abstract
B-cell lymphomas are a heterogeneous group of diseases that can arise at different stages of B-cell development, often as a result of errors in the cells' unique ontogeny. Common oncogenic features are often observed, including chromosomal rearrangements, somatic mutations and transcriptional change. Disruption of translation regulation is also frequently implicated in both B-cell lymphoma development and progression. Deregulation of translation in lymphomagenesis can arise through changes to the proteins constituting the translational machinery or to their regulators, and to changes in miRNA (microRNA) expression.
Collapse
|
838
|
Abstract
Embryonic stem cells and induced pluripotent stem cells are characterized by their ability to self-renew and differentiate into any cell type. The molecular mechanism behind this process is a complex interplay between the transcriptional factors with epigenetic regulators and signaling pathways. miRNAs are an integral part of this regulatory network, with essential roles in pluripotent maintenance, proliferation and differentiation. miRNAs are a class of small noncoding RNAs that target protein-encoding mRNA to inhibit translation and protein synthesis. Discovered close to 20 years ago, miRNAs have rapidly emerged as key regulatory molecules in several critical cellular processes across species. Recent studies have begun to clarify the specific role of miRNA in regulatory circuitries that control self-renewal and pluripotency of both embryonic stem cells and induced pluripotent stem cells. These advances suggest a critical role for miRNAs in the process of reprogramming somatic cells to pluripotent cells.
Collapse
Affiliation(s)
- Uma Lakshmipathy
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
839
|
Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME. Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem 2010; 110:1155-64. [PMID: 20564213 DOI: 10.1002/jcb.22630] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs regulate pathways contributing to oncogenesis, and thus the mechanisms causing dysregulation of microRNA expression in cancer are of significant interest. Mature mir-29b levels are decreased in malignant cells, and this alteration promotes the malignant phenotype, including apoptosis resistance. However, the mechanism responsible for mir-29b suppression is unknown. Here, we examined mir-29 expression from chromosome 7q32 using cholangiocarcinoma cells as a model for mir-29b downregulation. Using 5' rapid amplification of cDNA ends, the transcriptional start site was identified for this microRNA locus. Computational analysis revealed the presence of two putative E-box (Myc-binding) sites, a Gli-binding site, and four NF-kappaB-binding sites in the region flanking the transcriptional start site. Promoter activity in cholangiocarcinoma cells was repressed by transfection with c-Myc, consistent with reports in other cell types. Treatment with the hedgehog inhibitor cyclopamine, which blocks smoothened signaling, increased the activity of the promoter and expression of mature mir-29b. Mutagenesis analysis and gel shift data are consistent with a direct binding of Gli to the mir-29 promoter. Finally, activation of NF-kappaB signaling, via ligation of Toll-like receptors, also repressed mir-29b expression and promoter function. Of note, activation of hedgehog, Toll-like receptor, and c-Myc signaling protected cholangiocytes from TRAIL-induced apoptosis. Thus, in addition to c-Myc, mir-29 expression can be suppressed by hedgehog signaling and inflammatory pathways, both commonly activated in the genesis of human malignancies.
Collapse
Affiliation(s)
- Justin L Mott
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
840
|
Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci U S A 2010; 107:20471-6. [PMID: 21059911 DOI: 10.1073/pnas.1009009107] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Myc activation has been implicated in the pathogenesis of hepatoblastoma (HB), a rare embryonal neoplasm derived from liver progenitor cells. Here, microRNA (miR) expression profiling of 65 HBs evidenced differential patterns related to developmental stage and Myc activity. Undifferentiated aggressive HBs overexpressed the miR-371-3 cluster with concomitant down-regulation of the miR-100/let-7a-2/miR-125b-1 cluster, evoking an ES cell expression profile. ChIP and Myc inhibition assays in hepatoma cells demonstrated that both miR clusters are regulated by Myc in an opposite manner. We show that the two miR clusters exert antagonistic effects on cell proliferation and tumorigenicity. Moreover, their combined deregulation cooperated in modulating the hepatic tumor phenotype, implicating stem cell-like regulation of Myc-dependent miRs in poorly differentiated HBs. Importantly, a four-miR signature representative of these clusters efficiently stratified HB patients, and when applied to 241 hepatocellular carcinomas (HCCs), it identified invasive tumors with a poor prognosis. Our data argue that Myc-driven reprogramming of miR expression patterns contributes to the aggressive phenotype of liver tumors originating from hepatic progenitor cells.
Collapse
|
841
|
Control of EVI-1 oncogene expression in metastatic breast cancer cells through microRNA miR-22. Oncogene 2010; 30:1290-301. [PMID: 21057539 DOI: 10.1038/onc.2010.510] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metastasis in breast cancer carries a disproportionately worse prognosis than localized primary disease. To identify microRNAs (miRNA) involved in metastasis, the expression of 254 miRNAs was measured across the following cell lines using microarray analysis: MDA-MB-231 breast cancer cells, cells that grew as a tumor in the mammary fat pad of nude mice (TMD-231), metastatic disease to the lungs (LMD-231), bone (BMD-231) and adrenal gland (ADMD-231). A brain-seeking variant of this cell line (231-BR) was used additionally in validation studies. Twenty miRNAs were upregulated and seven were downregulated in metastatic cancer cells compared with TMD-231 cells. The expression of the tumor suppressor miRNAs let-7 and miR-22 was consistently downregulated in metastatic cancer cells. These metastatic cells expressed higher levels of putative/proven miR-22 target oncogenes ERBB3, CDC25C and EVI-1. Introduction of miR-22 into cancer cells reduced the levels of ERBB3 and EVI-1 as well as phospho-AKT, an EVI-1 downstream target. The miR-22 primary transcript is located in the 5'-untranslated region of an open reading frame C17orf91, and the promoter/enhancer of C17orf91 drives miR-22 expression. We observed elevated C17orf91 expression in non-basal subtype compared with basal subtype breast cancers. In contrast, elevated expression of EVI-1 was observed in basal subtype and was associated with poor outcome in estrogen receptor-negative breast cancer patients. These results suggest that metastatic cancer cells increase specific oncogenic signaling proteins through downregulation of miRNAs. Identifying such metastasis-specific oncogenic pathways may help to manipulate tumor behavior and aid in the design of more effective targeted therapies.
Collapse
|
842
|
Stik G, Laurent S, Coupeau D, Coutaud B, Dambrine G, Rasschaert D, Muylkens B. A p53-dependent promoter associated with polymorphic tandem repeats controls the expression of a viral transcript encoding clustered microRNAs. RNA (NEW YORK, N.Y.) 2010; 16:2263-2276. [PMID: 20881002 PMCID: PMC2957064 DOI: 10.1261/rna.2121210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 08/13/2010] [Indexed: 05/29/2023]
Abstract
The tumor suppressor protein p53 plays a role in cellular responses to cancer-initiating events by regulating progress through the cell cycle. Several recent studies have shown that p53 transactivates expression of the members of the proapoptotic microRNA-34 family, which are underexpressed in several cancers. We demonstrate here that the latency-associated cluster of microRNAs (miRNA) encoded by an oncogenic herpesvirus, gallid herpesvirus 2 (GaHV-2), is a direct target of p53. Robust transcriptional activity was induced in three avian cell lines by a sequence mapping 600 base pairs (bp) upstream of the cluster of miRNAs. We found transcription start sites for the pri-miRNA transcript at the 3' end of this transcription-inducing sequence. The promoter has no consensus core promoter element, but is organized into a variable number of tandem repeats of 60-bp harboring p53-responsive elements (RE). The minimal functional construct consists of two tandem repeats. Mutagenesis to change the sequence of the p53 RE abolished transcriptional activity, whereas p53 induction enhanced mature miRNA expression. The identification of a viral miRNA promoter regulated by p53 is biologically significant, because all avirulent GaHV-2 strains described to date lack the corresponding regulatory sequence, whereas all virulent, very virulent, and hypervirulent strains possess at least two tandem repeats harboring the p53 RE.
Collapse
Affiliation(s)
- Grégoire Stik
- Transcription, Lymphome Viro-Induit, University François Rabelais, UFR Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| | | | | | | | | | | | | |
Collapse
|
843
|
Chou YT, Lin HH, Lien YC, Wang YH, Hong CF, Kao YR, Lin SC, Chang YC, Lin SY, Chen SJ, Chen HC, Yeh SD, Wu CW. EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res 2010; 70:8822-31. [PMID: 20978205 DOI: 10.1158/0008-5472.can-10-0638] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miRNA) mediate distinct gene regulatory pathways triggered by epidermal growth factor receptor (EGFR) activation, which occurs commonly in lung cancers with poor prognosis. In this study, we report the discovery and mechanistic characterization of the miRNA miR-7 as an oncogenic "oncomiR" and its role as a key mediator of EGFR signaling in lung cancer cells. EGFR activation or ectopic expression of Ras as well as c-Myc stimulated miR-7 expression in an extracellular signal-regulated kinase (ERK)-dependent manner, suggesting that EGFR induces miR-7 expression through a Ras/ERK/Myc pathway. In support of this likelihood, c-Myc bound to the miR-7 promoter and enhanced its activity. Ectopic miR-7 promoted cell growth and tumor formation in lung cancer cells, significantly increasing the mortality of nude mice hosts, which were orthotopically implanted with lung cancers. Quantitative proteomic analysis revealed that miR-7 decreased levels of the Ets2 transcriptional repression factor ERF, the coding sequence of which was found to contain a miR-7 complementary sequence. Indeed, ectopic miR-7 inhibited production of ERF messages with a wild-type but not a silently mutated coding sequence, and ectopic miR-7 rescued growth arrest produced by wild-type but not mutated ERF. Together, these results identified that ERF is a direct target of miR-7 in lung cancer. Our findings suggest that miR-7 may act as an important modulator of EGFR-mediated oncogenesis, with potential applications as a novel prognostic biomarker and therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Yu-Ting Chou
- Institute of Biomedical Sciences and NRPGM Core Facilities for Proteomics and Glycomcis and Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
844
|
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that regulate gene expression. Early studies have shown that miRNA expression is deregulated in cancer and experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression. Based on these observations, miRNA-based anticancer therapies are being developed, either alone or in combination with current targeted therapies, with the goal to improve disease response and increase cure rates. The advantage of using miRNA approaches is based on its ability to concurrently target multiple effectors of pathways involved in cell differentiation, proliferation and survival. In this Review, we describe the role of miRNAs in tumorigenesis and critically discuss the rationale, the strategies and the challenges for the therapeutic targeting of miRNAs in cancer.
Collapse
|
845
|
Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R, Fernandez AF, Davalos V, Villanueva A, Montoya G, Yamamoto H, Schwartz S, Esteller M. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 2010; 18:303-15. [PMID: 20951941 DOI: 10.1016/j.ccr.2010.09.007] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/28/2010] [Accepted: 08/18/2010] [Indexed: 12/13/2022]
Abstract
The global impairment of mature microRNAs (miRNAs) is emerging as a common feature of human tumors. One interesting scenario is that defects in the nuclear export of precursor miRNAs (pre-miRNAs) might occur in transformed cells. Exportin 5 (XPO5) mediates pre-miRNA nuclear export and herein we demonstrate the presence of XPO5-inactivating mutations in a subset of human tumors with microsatellite instability. The XPO5 genetic defect traps pre-miRNAs in the nucleus, reduces miRNA processing, and diminishes miRNA-target inhibition. The XPO5 mutant form lacks a C-terminal region that contributes to the formation of the pre-miRNA/XPO5/Ran-GTP ternary complex and pre-miRNAs accumulate in the nucleus. Most importantly, the restoration of XPO5 functions reverses the impaired export of pre-miRNAs and has tumor-suppressor features.
Collapse
Affiliation(s)
- Sonia A Melo
- Bellvitge Biomedical Research Institute, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
846
|
Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, Santhanam R, Wenchao Z, Benson DM, Hofmainster C, Alder H, Garofalo M, Di Leva G, Volinia S, Lin HJ, Perrotti D, Kuehl M, Aqeilan RI, Palumbo A, Croce CM. RETRACTED: Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 2010; 18:367-81. [PMID: 20951946 PMCID: PMC3561766 DOI: 10.1016/j.ccr.2010.09.005] [Citation(s) in RCA: 347] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/16/2010] [Accepted: 08/09/2010] [Indexed: 01/24/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the editors. This article was published on October 19, 2010, and Figures 4A and 7A were later corrected on August 8, 2016. In January 2021, The Ohio State University notified the Cancer Cell editors that an internal investigation concluded that Figures 1E, 4A, 4D, 5A, and 7A were falsified and that part of Figure 1E of the article is the same as part of Figure 1F in the correction of another article (Pichiorri et al., 2017, J. Exp. Med., 214, 1557, https://doi.org/10.1084/jem.2012095001172017c) and recommended retraction of the article. The editors no longer have confidence in the validity of the data and are retracting the article. S.-S. S. agrees with the retraction, and F.P., C.H., A.P., and C.M.C. disagree with the retraction; all other authors couldn't be reached or didn't respond.
Collapse
Affiliation(s)
- Flavia Pichiorri
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
- IMRIC-The Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Sung-Suk Suh
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
- IMRIC-The Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Alberto Rocci
- Division of Hematology, University of Turin, Turin, Italy, 10149
| | - Luciana De Luca
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
- Molecular Oncology Unit, IRCCS, Referral Cancer Center of Basilicata –Crob, Rionero in Vulture (PZ), Italy, 85028
| | - Cristian Taccioli
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
- Cancer Institute - University College London, London WC1E
| | - Ramasamy Santhanam
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
| | - Zhou Wenchao
- Medical Technology Division, School of Allied Medical Professions, The Ohio state University, Columbus, OH 43210
| | - Don M. Benson
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, The Ohio state University, Columbus, OH 43210
| | - Craig Hofmainster
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, The Ohio state University, Columbus, OH 43210
| | - Hansjuerg Alder
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
| | - Michela Garofalo
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
| | - Gianpiero Di Leva
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
| | - Stefano Volinia
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
- Telethon Facility-Data Mining for Analysis of DNA Microarrays, Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy
| | - Huey-Jen Lin
- Medical Technology Division, School of Allied Medical Professions, The Ohio state University, Columbus, OH 43210
| | - Danilo Perrotti
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
| | - Michael Kuehl
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20889-5105
| | - Rami I. Aqeilan
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
- IMRIC-The Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Antonio Palumbo
- Division of Hematology, University of Turin, Turin, Italy, 10149
| | - Carlo M. Croce
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
| |
Collapse
|
847
|
Frezzetti D, De Menna M, Zoppoli P, Guerra C, Ferraro A, Bello AM, De Luca P, Calabrese C, Fusco A, Ceccarelli M, Zollo M, Barbacid M, Di Lauro R, De Vita G. Upregulation of miR-21 by Ras in vivo and its role in tumor growth. Oncogene 2010; 30:275-86. [PMID: 20956945 DOI: 10.1038/onc.2010.416] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
miR-21 is a microRNA (miRNA) frequently overexpressed in human cancers. Here we show that miR-21 is upregulated both in vitro and in vivo by oncogenic Ras, thus linking this miRNA to one of the most frequently activated oncogenes in human cancers. Ras regulation of miR-21 occurs with a delayed kinetic and requires at least two Ras downstream pathways. A screen of human thyroid cancers and non-small-cell lung cancers for the expression of miR-21 reveals that it is overexpressed mainly in anaplastic thyroid carcinomas, the most aggressive form of thyroid cancer, whereas in lung its overexpression appears to be inversely correlated with tumor progression. We also show that a LNA directed against miR-21 slows down tumor growth in mice. Consistently, a search for mRNAs downregulated by miR-21 shows an enrichment for mRNAs encoding cell cycle checkpoints regulators, suggesting an important role for miR-21 in oncogenic Ras-induced cell proliferation.
Collapse
|
848
|
Dews M, Fox JL, Hultine S, Sundaram P, Wang W, Liu YY, Furth E, Enders GH, El-Deiry W, Schelter JM, Cleary MA, Thomas-Tikhonenko A. The myc-miR-17~92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. Cancer Res 2010; 70:8233-46. [PMID: 20940405 DOI: 10.1158/0008-5472.can-10-2412] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
c-Myc stimulates angiogenesis in tumors through mechanisms that remain incompletely understood. Recent work indicates that c-Myc upregulates the miR-17∼92 microRNA cluster and downregulates the angiogenesis inhibitor thrombospondin-1, along with other members of the thrombospondin type 1 repeat superfamily. Here, we show that downregulation of the thrombospondin type 1 repeat protein clusterin in cells overexpressing c-Myc and miR-17∼92 promotes angiogenesis and tumor growth. However, clusterin downregulation by miR-17∼92 is indirect. It occurs as a result of reduced transforming growth factor-β (TGFβ) signaling caused by targeting of several regulatory components in this signaling pathway. Specifically, miR-17-5p and miR-20 reduce the expression of the type II TGFβ receptor and miR-18 limits the expression of Smad4. Supporting these results, in human cancer cell lines, levels of the miR-17∼92 primary transcript MIR17HG negatively correlate with those of many TGFβ-induced genes that are not direct targets of miR-17∼92 (e.g., clusterin and angiopoietin-like 4). Furthermore, enforced expression of miR-17∼92 in MIR17HG(low) cell lines (e.g., glioblastoma) results in impaired gene activation by TGFβ. Together, our results define a pathway in which c-Myc activation of miR-17∼92 attenuates the TGFβ signaling pathway to shut down clusterin expression, thereby stimulating angiogenesis and tumor cell growth.
Collapse
Affiliation(s)
- Michael Dews
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
849
|
Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010; 9:775-89. [PMID: 20885409 PMCID: PMC3904431 DOI: 10.1038/nrd3179] [Citation(s) in RCA: 1188] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that regulate gene expression. Early studies have shown that miRNA expression is deregulated in cancer and experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression. Based on these observations, miRNA-based anticancer therapies are being developed, either alone or in combination with current targeted therapies, with the goal to improve disease response and increase cure rates. The advantage of using miRNA approaches is based on its ability to concurrently target multiple effectors of pathways involved in cell differentiation, proliferation and survival. In this Review, we describe the role of miRNAs in tumorigenesis and critically discuss the rationale, the strategies and the challenges for the therapeutic targeting of miRNAs in cancer.
Collapse
Affiliation(s)
- Ramiro Garzon
- Division of Hematology and Oncology, Department of Medicine and Comprehensive Cancer Center, The Ohio State University
| | - Guido Marcucci
- Division of Hematology and Oncology, Department of Medicine and Comprehensive Cancer Center, The Ohio State University
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University
| |
Collapse
|
850
|
Zhou L, Picard D, Ra YS, Li M, Northcott PA, Hu Y, Stearns D, Hawkins C, Taylor MD, Rutka J, Der SD, Huang A. Silencing of thrombospondin-1 is critical for myc-induced metastatic phenotypes in medulloblastoma. Cancer Res 2010; 70:8199-210. [PMID: 20876797 DOI: 10.1158/0008-5472.can-09-4562] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mechanisms by which c-Myc (Myc) amplification confers aggressive medulloblastoma phenotypes are poorly defined. Here, we show using orthotopic models that high Myc expression promotes cell migration/invasion and induces metastatic tumors, which recapitulate aggressive histologic features of Myc-amplified primary human medulloblastoma. Using ChIP-chip analysis, we identified cell migration and adhesion genes, including Tsp-1/THBS1, ING4, PVRL3, and PPAP2B, as Myc-bound loci in medulloblastoma cells. Expression of Tsp-1 was most consistently and robustly diminished in medulloblastoma cell lines and primary human tumors with high Myc expression (n = 101, P = 0.032). Strikingly, stable Tsp-1 expression significantly attenuated in vitro transformation and invasive/migratory properties of high Myc-expressing medulloblastoma cells without altering cell proliferation, whereas RNA interference-mediated Myc knockdown was consistently accompanied by increased Tsp-1 levels and reduced cell migration and invasion in medulloblastoma cells. Chromatin immunoprecipitation (ChIP) assays revealed colocalization of Myc and obligate partner Max and correlated diminished RNA polymerase II occupancy (∼3-fold decrease, P < 0.01) with increased Myc binding at a core Tsp-1 promoter. Reporter gene and/or gel shift assays confirmed direct repression of Tsp-1 transcription by Myc and also identified JPO2, a Myc interactor associated with metastatic medulloblastoma, as a cofactor in Myc-mediated Tsp-1 repression. These findings indicate the Myc-regulatory network targets Tsp-1 via multiple mechanisms in medulloblastoma transformation, and highlight a novel critical role for Tsp-1 in Myc-mediated aggressive medulloblastoma phenotypes.
Collapse
Affiliation(s)
- Limei Zhou
- Sonia and Arthur Labatt Brain Tumor Research Centre, Hospital for Sick Children, University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|