801
|
Yuridullah R, Corrow KA, Malley SE, Vizzard MA. Expression of fractalkine and fractalkine receptor in urinary bladder after cyclophosphamide (CYP)-induced cystitis. Auton Neurosci 2006; 126-127:380-9. [PMID: 16651033 PMCID: PMC1475778 DOI: 10.1016/j.autneu.2006.02.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 02/02/2006] [Accepted: 02/27/2006] [Indexed: 01/06/2023]
Abstract
Alterations in the expression of the chemokine, fractalkine (CX3CL1), were examined in the urinary bladder after cyclophosphamide (CYP)-induced cystitis of varying duration: acute (4 h or 48 h), or chronic (10 day). CYP-induced cystitis significantly (p<or=0.01) increased fractalkine protein expression in the urinary bladder with acute (48 h) and chronic CYP treatment. Western blot analysis also demonstrated significantly (p<or=0.01) increased fractalkine expression in the whole urinary bladder with acute (1.5-2.2-fold) and chronic (3-fold) CYP-induced cystitis. Immunohistochemistry for fractalkine-immunoreactivity revealed little fractalkine-IR in control or acute (4 h) CYP-treated rat urinary bladders except in a vascular bed but showed no colocalization with nerve fibers in the suburothelial plexus in any experimental group. However, expression was significantly (p<or=0.001) upregulated in the urothelium with 48 h or chronic CYP treatment. Similarly, fractalkine receptor (CX3CR1)-IR was significantly (p<or=0.001) upregulated in the urothelium with 48 h or chronic CYP treatment. These studies demonstrated upregulation of the chemokine, fractalkine, in the urinary bladder and specifically in the urothelium with CYP-induced cystitis. Chemokines, and specifically, fractalkine, may be another class of neuromodulatory agents upregulated in the urinary bladder that can affect micturition function and sensory processing with cystitis and may represent novel, drug targets for cystitis.
Collapse
Affiliation(s)
| | | | | | - Margaret A. Vizzard
- University of Vermont College of Medicine, Departments of Anatomy and Neurobiology and
- Neurology Burlington, VT 05405 USA
- Contact Information: Margaret A. Vizzard, Ph.D., University of Vermont College of Medicine, Department of Neurology, D411 Given Building, Burlington, VT 05405, Phone: 802-656-3209, Fax: 802-656-8704,
| |
Collapse
|
802
|
Zanjani TM, Sabetkasaei M, Mosaffa N, Manaheji H, Labibi F, Farokhi B. Suppression of interleukin-6 by minocycline in a rat model of neuropathic pain. Eur J Pharmacol 2006; 538:66-72. [PMID: 16687137 DOI: 10.1016/j.ejphar.2006.03.063] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2005] [Revised: 02/24/2006] [Accepted: 03/28/2006] [Indexed: 12/21/2022]
Abstract
Inflammatory mediators produced in the injured nerve have been proposed as contributing factors in the development of neuropathic pain. In this regard an important role is assigned to interleukin-6. The present study, evaluated the effect of pretreatment with minocycline, on pain behavior (hyperalgesia and allodynia) and serum level of interleukin-6 in chronic constriction injury (CCI) model of neuropathic pain in rat. Minocycline (5, 10, 20 and 40 mg/kg, i.p.) was injected 1 h before surgery and continued daily to day 14 post-ligation. Behavioral tests were recorded before surgery and on postoperative days 1, 3, 5, 7, 9, 10, 14, and the serum concentration of interleukin-6 was determined at day 14. We observed that minocycline which was reported to have a neuroprotective effect in some neurodegenerative diseases, reversed hyperalgesia and allodynia due to sciatic nerve ligation and inhibited the interleukin-6 production. It seems that minocycline could have an anti-inflammatory and analgesic effect in some chronic pain states.
Collapse
Affiliation(s)
- Taraneh Moini Zanjani
- Shahid Baheshti University of Medical Sciences, Department of Pharmacology and Neuroscience Research Center, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
803
|
Lindfors PH, Võikar V, Rossi J, Airaksinen MS. Deficient nonpeptidergic epidermis innervation and reduced inflammatory pain in glial cell line-derived neurotrophic factor family receptor alpha2 knock-out mice. J Neurosci 2006; 26:1953-60. [PMID: 16481427 PMCID: PMC6674922 DOI: 10.1523/jneurosci.4065-05.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most unmyelinated nociceptive neurons that mediate pain and temperature sensation from the skin bind isolectin B4 (IB4)-lectin and express Ret, the common signaling component of glial cell line-derived neurotrophic factor (GDNF) family. One of these factors, neurturin, is expressed in the epidermis, whereas its GDNF family receptor alpha2 (GFRalpha2) is expressed in the majority of unmyelinated Ret-positive sensory neurons. However, the physiological roles of endogenous neurturin signaling in primary sensory neurons are poorly understood. Here, we show that the vast majority (approximately 85%) of IB4 binding and P2X3 purinoreceptor-positive neurons, but virtually none of the calcitonin gene-related peptide (CGRP) or vanilloid receptor transient receptor potential vanilloid 1-positive neurons in mouse dorsal root ganglion (DRG) express GFRalpha2. In GFRalpha2 knock-out (KO) mice, the IB4-binding and P2X3-positive DRG neurons were present but reduced in size, consistent with normal number but reduced caliber of unmyelinated axons in a cutaneous nerve. Strikingly, nonpeptidergic (CGRP-negative) free nerve endings in footpad epidermis were >70% fewer in GFRalpha2-KO mice than in their wild-type littermates. In contrast, the density of CGRP-positive epidermal innervation remained unaffected. In the formalin test, the KO mice showed a normal acute response but a markedly attenuated persistent phase, indicating a deficit in inflammatory pain response. Behavioral responses of GFRalpha2-KO mice to innocuous warm and noxious heat were not blunted; the mice were actually markedly hypersensitive to noxious cold in tail immersion test. Overall, our results indicate a critical role for endogenous GFRalpha2 signaling in maintaining the size and terminal innervation of the nonpeptidergic class of cutaneous nociceptors in vivo.
Collapse
|
804
|
Chen CL, Broom DC, Liu Y, de Nooij JC, Li Z, Cen C, Samad OA, Jessell TM, Woolf CJ, Ma Q. Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron 2006; 49:365-77. [PMID: 16446141 DOI: 10.1016/j.neuron.2005.10.036] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 10/11/2005] [Accepted: 10/25/2005] [Indexed: 01/19/2023]
Abstract
In mammals, the perception of pain is initiated by the transduction of noxious stimuli through specialized ion channels and receptors expressed by nociceptive sensory neurons. The molecular mechanisms responsible for the specification of distinct sensory modality are, however, largely unknown. We show here that Runx1, a Runt domain transcription factor, is expressed in most nociceptors during embryonic development but in adult mice, becomes restricted to nociceptors marked by expression of the neurotrophin receptor Ret. In these neurons, Runx1 regulates the expression of many ion channels and receptors, including TRP class thermal receptors, Na+-gated, ATP-gated, and H+-gated channels, the opioid receptor MOR, and Mrgpr class G protein coupled receptors. Runx1 also controls the lamina-specific innervation pattern of nociceptive afferents in the spinal cord. Moreover, mice lacking Runx1 exhibit specific defects in thermal and neuropathic pain. Thus, Runx1 coordinates the phenotype of a large cohort of nociceptors, a finding with implications for pain therapy.
Collapse
Affiliation(s)
- Chih-Li Chen
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, 1 Jimmy Fund Way, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
805
|
Clark AK, Gentry C, Bradbury EJ, McMahon SB, Malcangio M. Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J Pain 2006; 11:223-30. [PMID: 16545974 DOI: 10.1016/j.ejpain.2006.02.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 01/19/2006] [Accepted: 02/06/2006] [Indexed: 11/25/2022]
Abstract
Mounting evidence supports the hypothesis that spinal microglia modulate the development and maintenance of some chronic pain states. Here we examined the role of spinal microglia following both peripheral inflammatory insult and peripheral nerve injury. We observed significant ipsilateral dorsal horn microglia activation 2 weeks after injury and bilateral activation 50 days following nerve injury as well as 24 h following intraplantar zymosan but not intraplantar complete Freund's adjuvant (CFA). Ipsilateral but not contralateral microglia activation was associated with hind paw mechanical hyperalgesia. Spinal injection of the glial metabolic inactivator fluorocitrate attenuated ipsilateral hyperalgesia and bilateral spinal microglia activation after peripheral nerve injury. Intrathecal fluorocitrate reversed hyperalgesia after intraplantar zymosan and produced no reversal of CFA-induced hyperalgesia. These data suggest a role for spinal glia in the persistence of mechanical hyperalgesia following peripheral nerve injury. However, activation of spinal microglia contralaterally did not correlate to nociception. Furthermore, it would appear that the time course of microglia activation and their contribution to inflammatory pain is dependent on the inflammatory stimulus administered.
Collapse
Affiliation(s)
- Anna K Clark
- Neurorestoration, Wolfson Centre for Age Related Diseases, King's College London, Wolfson Wing, Hodgkin Building, Guys Campus, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
806
|
Ioi H, Kido MA, Zhang JQ, Yamaza T, Nakata S, Nakasima A, Tanaka T. Capsaicin receptor expression in the rat temporomandibular joint. Cell Tissue Res 2006; 325:47-54. [PMID: 16541285 DOI: 10.1007/s00441-006-0183-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 02/01/2006] [Indexed: 10/24/2022]
Abstract
Experimentally, temporomandibular joint (TMJ) nerve units respond to capsaicin, which is used clinically to treat TMJ pain. However, the existence of capsaicin receptors in the TMJ has not previously been clearly demonstrated. Immunohistochemical analysis has revealed the presence of transient receptor potential vanilloid subtype 1 (TRPV1) expression in the nerves and synovial lining cells of the TMJ. TRPV1-immunoreactive nerves are distributed in the synovial membrane of the joint capsule and provide branches to the joint compartment. The disc periphery is supplied by TRPV1 nerves that are mostly associated with small arterioles, and occasional nerves penetrate to the synovial lining layer. Double immunofluorescence has shown that many TRPV1-immunoreactive nerves are labeled with neuropeptide calcitonin gene-related peptide, whereas few are labeled with IB4-lectin. The results provide evidence for the presence of TRPV1 in both nerves and synovial lining cells, which might thus be involved in the mechanism of nociception and inflammation in the TMJ.
Collapse
Affiliation(s)
- Hideki Ioi
- Department of Orthodontics, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
807
|
Affiliation(s)
- C Goicoechea
- Área de Farmacología. Departamento de Ciencias de la Salud III. Facultad de Ciencias de la Salud. Universidad Rey Juan Carlos. Alcorcón. Madrid. España
| | | |
Collapse
|
808
|
|
809
|
Wolf G, Gabay E, Tal M, Yirmiya R, Shavit Y. Genetic impairment of interleukin-1 signaling attenuates neuropathic pain, autotomy, and spontaneous ectopic neuronal activity, following nerve injury in mice. Pain 2006; 120:315-324. [PMID: 16426759 DOI: 10.1016/j.pain.2005.11.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Revised: 10/30/2005] [Accepted: 11/21/2005] [Indexed: 01/23/2023]
Abstract
Peripheral nerve injury may lead to neuropathic pain, which is often associated with mechanical and thermal allodynia, ectopic discharge of from injured nerves and from the dorsal root ganglion neurons, and elevated levels of proinflammatory cytokines, particularly interleukin-1 (IL-1). In the present study, we tested the role of IL-1 in neuropathic pain models using two mouse strains impaired in IL-1 signaling: Deletion of the IL-1 receptor type I (IL-1rKO) and transgenic over-expression of the IL-1 receptor antagonist (IL-1raTG). Neuropathy was induced by cutting the L5 spinal nerve on one side, following which mechanical and thermal pain sensitivity was measured. Wild-type (WT) mice and the parent strains developed significant allodynia and hyperalgesia in the hind-paw ipsilateral to the injury compared with the contralateral hind-paw. The mutant strains, however, did not display decreased pain threshold in either hind-paw. Pain behavior was also assessed by cutting the sciatic and saphenous nerves and measuring autotomy scores. WT mice developed progressive autotomy, beginning at 7 days post-injury, whereas the mutant strains displayed delayed onset of autotomy and markedly reduced severity of the autotomy score. Electrophysiological assessment revealed that in WT mice a significant proportion of the dorsal root axons exhibited spontaneous ectopic activity at 1, 3, and 7 days following spinal nerve injury, whereas in IL-1rKO and IL-1raTG mice only a minimal number of axons exhibited such activity. Taken together, these results suggest that IL-1 signaling plays an important role in neuropathic pain and in the altered neuronal activity that underlies its development.
Collapse
Affiliation(s)
- Gilly Wolf
- Department of Psychology, Hebrew University, Mount Scopus, Jerusalem 91905, Israel Department of Anatomy and Cell Biology, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
810
|
|
811
|
Gómez-Nicola D, Doncel-Pérez E, Nieto-Sampedro M. Regulation by GD3 of the proinflammatory response of microglia mediated by interleukin-15. J Neurosci Res 2006; 83:754-62. [PMID: 16477650 DOI: 10.1002/jnr.20777] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The interleukin (IL)-15-dependent immune responses of murine microglia were strongly affected by low concentrations of the ganglioside GD3. The ganglioside binding to IL-15 inhibited the proinflammatory effects of the cytokine, reducing IL-15-dependent T-cell proliferation as well as mRNA expression for IL-15Ralpha, p65, and NFATc2 in the N13 murine microglial cell line. Treatment of primary murine microglial cultures with GD3 abolished IL-15 production, without affecting cellular viability, but decreased the production of nitric oxide, a direct sensor of inflammation and nuclear factor-kappaB activity. We conclude that low doses of GD3 could inhibit specific proinflammatory mechanisms and modulate the inflammatory environment, leading to a less reactive scene. Microglial cells are one of the main actors in the inflammatory events that follow CNS trauma or an autoimmune disease episode, modulating the internal production of cytokines, growth factors, and other homeostatic molecules that may determine the evolution and outcome of tissue damage. Proinflammatory cytokines have a relevant role in the initial events, and modulation of their activity by gangliosides could cut down their harmful effects and interfere with invasion of the CNS by peripheral immune cells. The antiinflammatory properties of GD3 could be significant in the treatment of pain subsequent to CNS damage.
Collapse
Affiliation(s)
- Diego Gómez-Nicola
- Neural Plasticity Department, Instituto Ramón y Cajal de Neurobiología, CSIC, Madrid, Spain
| | | | | |
Collapse
|
812
|
Lindsay TH, Jonas BM, Sevcik MA, Kubota K, Halvorson KG, Ghilardi JR, Kuskowski MA, Stelow EB, Mukherjee P, Gendler SJ, Wong GY, Mantyh PW. Pancreatic cancer pain and its correlation with changes in tumor vasculature, macrophage infiltration, neuronal innervation, body weight and disease progression. Pain 2005; 119:233-246. [PMID: 16298491 DOI: 10.1016/j.pain.2005.10.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 08/08/2005] [Accepted: 10/17/2005] [Indexed: 12/21/2022]
Abstract
To begin to understand the relationship between disease progression and pain in pancreatic cancer, transgenic mice that develop pancreatic cancer due to the expression of the simian virus 40 large T antigen under control of the rat elastase-1 promoter were examined. In these mice precancerous cellular changes were evident at 6 weeks and these included an increase in: microvascular density, macrophages that express nerve growth factor and the density of sensory and sympathetic fibers that innervate the pancreas, with all of these changes increasing with tumor growth. In somatic tissue such as skin, the above changes would be accompanied by significant pain; however, in mice with pancreatic cancer, changes in pain-related behaviors, such as morphine-reversible severe hunching and vocalization only became evident at 16 weeks of age, by which time the pancreatic cancer was highly advanced. These data suggest that in mice as well as humans, there is a stereotypic set of pathological changes that occur as pancreatic cancer develops, and while weight loss generally tracks disease progression, there is a significant lag between disease progression and behaviors indicative of pancreatic cancer pain. Defining the mechanisms that mask this pain in early and mid-stage disease and drive the pain in late-stage disease may aid in earlier diagnosis, survival, and increased quality of life of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Theodore H Lindsay
- Neurosystems Center, 18-208 Moos Tower, School of Dentistry, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455, USA Research Service, VA Medical Center, Minneapolis, MN 55417, USA GRECC, VA Medical Center, Minneapolis, MN 55417, USA Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Scottsdale, AZ 85259, USA Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|