851
|
De Lucca FL, Sales VSF, Souza LR, Watanabe MAE. Evidence for the involvement of the RNA-dependent protein kinase (PKR) in the induction of human cytotoxic T lymphocytes against a synthetic peptide of HIV-1 by regulatory RNA. Mol Cell Biochem 2002; 238:19-26. [PMID: 12349906 DOI: 10.1023/a:1019983102017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Exogenous RNA molecules can be incorporated into eukaryotic cells and can exert a variety of biological effects. We have previously showed that exogenous RNAs obtained from lymphoid organs of animals immunized with synthetic peptides of HIV-1 are able to induce cell-mediated immune responses. In this study, animals were immunized with a synthetic peptide (pol: 476-484) of HIV-1, referred to as p9, which is a cytotoxic T lymphocyte (CTL) epitope. The RNA extracted from the lymphoid organs of animals immunized with p9 was termed p9-RNA. We have demonstrated that p9-RNA is active in inducing human CTL. The p9-RNA was also able to activate the RNA-dependent protein kinase (PKR) of human lymphocytes. The polyA(+) p9-RNA was the fraction responsible for the activation of this protein kinase. We also found that p9-RNA activates the transcription factor nuclear kappa B (NF-kappaB) by inducing the degradation of its inhibitor I-kappaB. Thus, these findings suggest that p9-RNA may act as a regulatory RNA and that the induction of CTL activity by p9-RNA could be mediated by PKR through NF-kappaB activation. It is known that CTL activity plays an important role in host defense against HIV-1 infection. Elucidating the molecular mechanism of p9-RNA could contribute to determining the basis for the use of p9-RNA as an immunomodulator in HIV-infected patients.
Collapse
Affiliation(s)
- Fernando L De Lucca
- Department of Biochemistry and Immunology, School of Medicine University of São Paulo, Ribeirdo Preto, Brazil.
| | | | | | | |
Collapse
|
852
|
Smith NGC, Webster MT, Ellegren H. Deterministic mutation rate variation in the human genome. Genome Res 2002; 12:1350-6. [PMID: 12213772 PMCID: PMC186654 DOI: 10.1101/gr.220502] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Several studies of substitution rate variation have indicated that the local mutation rate varies over the mammalian genome. In the present study, we show significant variation in substitution rates within the noncoding part of the human genome using 4.7 Mb of human-chimpanzee pairwise comparisons. Moreover, we find a significant positive covariation of lineage-specific chimpanzee and human local substitution rates, and very similar mean substitution rates down the two lineages. The substitution rate variation is probably not caused by selection or biased gene conversion, and so we conclude that mutation rates vary deterministically across the noncoding nonrepetitive regions of the human genome. We also show that noncoding substitution rates are significantly affected by G+C base composition, partly because the base composition is not at equilibrium.
Collapse
Affiliation(s)
- Nick G C Smith
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 752-36 Uppsala, Sweden.
| | | | | |
Collapse
|
853
|
Jordan T, Schornack S, Lahaye T. Alternative splicing of transcripts encoding Toll-like plant resistance proteins - what's the functional relevance to innate immunity? TRENDS IN PLANT SCIENCE 2002; 7:392-8. [PMID: 12234730 DOI: 10.1016/s1360-1385(02)02311-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Innate immunity in plants and animals shares many structural and functional homologies, which suggests an ancient origin of cellular defense mechanisms in both kingdoms. Pathogen sensing in animal innate immunity is mediated by Toll-like receptors (TLRs). These receptors have TIR (Toll/interleukin-1 receptor) domains and leucine-rich repeats, which are modules also present in many plant resistance (R) proteins. Molecular analysis of transcripts encoding animal TLRs and Toll-like plant R proteins revealed many cases of alternative splicing. Recent studies of the tobacco N and the Arabidopsis RPS4 genes, both encoding Toll-like plant R proteins, showed that intron-deprived genes have reduced or no activity, suggesting that alternative splicing is a crucial component in these signaling pathways.
Collapse
Affiliation(s)
- Tina Jordan
- Institute of Genetics, Martin-Luther-Universität, Halle-Wittenberg, 06099 Halle, Saale, Germany
| | | | | |
Collapse
|
854
|
Suzuki K, Wang X, Weilbacher T, Pernestig AK, Melefors O, Georgellis D, Babitzke P, Romeo T. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J Bacteriol 2002; 184:5130-40. [PMID: 12193630 PMCID: PMC135316 DOI: 10.1128/jb.184.18.5130-5140.2002] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The global regulator CsrA (carbon storage regulator) is an RNA binding protein that coordinates central carbon metabolism, activates flagellum biosynthesis and motility, and represses biofilm formation in Escherichia coli. CsrA activity is antagonized by the untranslated RNA CsrB, to which it binds and forms a globular ribonucleoprotein complex. CsrA indirectly activates csrB transcription, in an apparent autoregulatory mechanism. In the present study, we elucidate the intermediate regulatory circuitry of this system. Mutations affecting the BarA/UvrY two-component signal transduction system decreased csrB transcription but did not affect csrA'-'lacZ expression. The uvrY defect was severalfold more severe than that of barA. Both csrA and uvrY were required for optimal barA expression. The latter observation suggests an autoregulatory loop for UvrY. Ectopic expression of uvrY suppressed the csrB-lacZ expression defects caused by uvrY, csrA, or barA mutations; csrA suppressed csrA or barA defects; and barA complemented only the barA mutation. Purified UvrY protein stimulated csrB-lacZ expression approximately sixfold in S-30 transcription-translation reactions, revealing a direct effect of UvrY on csrB transcription. Disruption of sdiA, which encodes a LuxR homologue, decreased the expression of uvrY'-'lacZ and csrB-lacZ fusions but did not affect csrA'-'lacZ. The BarA/UvrY system activated biofilm formation. Ectopic expression of uvrY stimulated biofilm formation by a csrB-null mutant, indicative of a CsrB-independent role for UvrY in biofilm development. Collectively, these results demonstrate that uvrY resides downstream from csrA in a signaling pathway for csrB and that CsrA stimulates UvrY-dependent activation of csrB expression by BarA-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Kazushi Suzuki
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
855
|
De Lucca FL, Serrano SV, Souza LR, Watanabe MAE. Activation of RNA-dependent protein kinase and nuclear factor-kB by regulatory RNA from lipopolysaccharide-stimulated macrophages: implications for cytokine production. Eur J Pharmacol 2002; 450:85-9. [PMID: 12176113 DOI: 10.1016/s0014-2999(02)02072-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Our previous results showed that L-RNA, extracted from lipopolysaccharide-stimulated macrophages, induces interleukin-1, interleukin-8 and tumor necrosis factor-alpha (TNF-alpha) in resident macrophages. It was demonstrated the promoter of these cytokine genes contain nuclear factor-kB (NF-kappa B) binding sites. We hypothesized that this effect of L-RNA is mediated by RNA-dependent protein kinase (PKR) through NF-kappa B activation. We found that L-RNA activates PKR and induces NF-kappa B activation through degradation of its inhibitor I-kappa B alpha. These data support the idea that L-RNA acts as a regulatory RNA. A model for the mechanism of action of L-RNA is proposed.
Collapse
Affiliation(s)
- Fernando L De Lucca
- Department of Biochemistry and Immunology, School of Medicine University of São Paulo 14049-900, Ribeirão Preto, S.P., Brazil.
| | | | | | | |
Collapse
|
856
|
Henkin TM, Yanofsky C. Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. Bioessays 2002; 24:700-7. [PMID: 12210530 DOI: 10.1002/bies.10125] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regulation of gene expression by premature termination of transcription, or transcription attenuation, is a common regulatory strategy in bacteria. Various mechanisms of regulating transcription termination have been uncovered, each can be placed in either of two broad categories of termination events. Many mechanisms involve choosing between two alternative hairpin structures in an RNA transcript, with the decision dependent on interactions between ribosome and transcript, tRNA and transcript, or protein and transcript. In other examples, modification of the transcription elongation complex is the crucial event. This article will describe and compare several of these regulatory strategies, and will cite specific examples to illustrate the different mechanisms employed.
Collapse
Affiliation(s)
- Tina M Henkin
- Department of Microbiology, Ohio State University, USA
| | | |
Collapse
|
857
|
Abstract
In eukaryotes, the site-specific formation of the two prevalent types of rRNA modified nucleotides, 2'-O-methylated nucleotides and pseudouridines, is directed by two large families of snoRNAs. These are termed box C/D and H/ACA snoRNAs, respectively, and exert their function through the formation of a canonical guide RNA duplex at the modification site. In each family, one snoRNA acts as a guide for one, or at most two modifications, through a single, or a pair of appropriate antisense elements. The two guide families now appear much larger than anticipated and their role not restricted to ribosome synthesis only. This is reflected by the recent detection of guides that can target other cellular RNAs, including snRNAs, tRNAs and possibly even mRNAs, and by the identification of scores of tissue-specific specimens in mammals. Recent characterization of homologs of eukaryotic modification guide snoRNAs in Archaea reveals the ancient origin of these non-coding RNA families and offers new perspectives as to their range of function.
Collapse
Affiliation(s)
- Jean Pierre Bachellerie
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 4,France.
| | | | | |
Collapse
|
858
|
Madamanchi NR, Hu ZY, Li F, Horaist C, Moon SK, Patterson C, Runge MS, Ruef J, Fritz PH, Aaron J. A noncoding RNA regulates human protease-activated receptor-1 gene during embryogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:237-45. [PMID: 12084570 DOI: 10.1016/s0167-4781(02)00308-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Activation of the human protease-activated receptor-1 (PAR-1) by thrombin leads to myriad functions essential for maintaining vascular integrity. Upregulation of PAR-1 expression is considered important in atherosclerosis, angiogenesis and tumor metastasis. In vitro analysis of the human PAR-1 promoter function revealed a positive regulatory element between -4.2 and -3.2 kb of the transcription start site. This element was examined in transgenic mice containing either 4.1 or 2.9 kb of the 5' flanking sequence driving a LacZ reporter gene. Only the 4.1 kb PAR-1 transgene was expressed in vivo and only during embryonic development. The transgene expression was observed only in developing arteries and not in veins. Further examination of this putative regulatory sequence identified a novel noncoding RNA (ncR-uPAR:noncoding RNA upstream of the PAR-1) gene at -3.4 kb. The ncR-uPAR upregulated PAR-1-core promoter-driven luciferase activity and mRNA expression in vitro in a Pol II-dependent manner. This noncoding RNA appears to act in trans, albeit locally at the adjacent PAR-1 promoter. These data suggest that an untranslated RNA plays a role in PAR-1 gene expression during embryonic growth.
Collapse
MESH Headings
- Animals
- Arteries/cytology
- Arteries/embryology
- Base Sequence
- Embryo, Mammalian/anatomy & histology
- Embryo, Mammalian/physiology
- Female
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Humans
- Male
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Receptor, PAR-1
- Receptors, Thrombin/genetics
- Receptors, Thrombin/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Nageswara R Madamanchi
- Carolina Cardiovascular Biology Center, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599-7126, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
859
|
Eddy SR. A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure. BMC Bioinformatics 2002; 3:18. [PMID: 12095421 PMCID: PMC119854 DOI: 10.1186/1471-2105-3-18] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2002] [Accepted: 07/02/2002] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Covariance models (CMs) are probabilistic models of RNA secondary structure, analogous to profile hidden Markov models of linear sequence. The dynamic programming algorithm for aligning a CM to an RNA sequence of length N is O(N3) in memory. This is only practical for small RNAs. RESULTS I describe a divide and conquer variant of the alignment algorithm that is analogous to memory-efficient Myers/Miller dynamic programming algorithms for linear sequence alignment. The new algorithm has an O(N2 log N) memory complexity, at the expense of a small constant factor in time. CONCLUSIONS Optimal ribosomal RNA structural alignments that previously required up to 150 GB of memory now require less than 270 MB.
Collapse
Affiliation(s)
- Sean R Eddy
- Howard Hughes Medical Institute & Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri 63110 USA.
| |
Collapse
|
860
|
Kuznetsov VA, Knott GD, Bonner RF. General statistics of stochastic process of gene expression in eukaryotic cells. Genetics 2002; 161:1321-32. [PMID: 12136033 PMCID: PMC1462190 DOI: 10.1093/genetics/161.3.1321] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thousands of genes are expressed at such very low levels (< or =1 copy per cell) that global gene expression analysis of rarer transcripts remains problematic. Ambiguity in identification of rarer transcripts creates considerable uncertainty in fundamental questions such as the total number of genes expressed in an organism and the biological significance of rarer transcripts. Knowing the distribution of the true number of genes expressed at each level and the corresponding gene expression level probability function (GELPF) could help resolve these uncertainties. We found that all observed large-scale gene expression data sets in yeast, mouse, and human cells follow a Pareto-like distribution model skewed by many low-abundance transcripts. A novel stochastic model of the gene expression process predicts the universality of the GELPF both across different cell types within a multicellular organism and across different organisms. This model allows us to predict the frequency distribution of all gene expression levels within a single cell and to estimate the number of expressed genes in a single cell and in a population of cells. A random "basal" transcription mechanism for protein-coding genes in all or almost all eukaryotic cell types is predicted. This fundamental mechanism might enhance the expression of rarely expressed genes and, thus, provide a basic level of phenotypic diversity, adaptability, and random monoallelic expression in cell populations.
Collapse
Affiliation(s)
- V A Kuznetsov
- Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and Human Development/NIH, Bldg. 13, Rm. 3W16, Bethesda, MD 20892-5772, USA.
| | | | | |
Collapse
|
861
|
Abstract
MicroRNAs (miRNAs) are an extensive class of ~22-nucleotide noncoding RNAs thought to regulate gene expression in metazoans. We find that miRNAs are also present in plants, indicating that this class of noncoding RNA arose early in eukaryotic evolution. In this paper 16 Arabidopsis miRNAs are described, many of which have differential expression patterns in development. Eight are absolutely conserved in the rice genome. The plant miRNA loci potentially encode stem-loop precursors similar to those processed by Dicer (a ribonuclease III) in animals. Mutation of an Arabidopsis Dicer homolog, CARPEL FACTORY, prevents the accumulation of miRNAs, showing that similar mechanisms direct miRNA processing in plants and animals. The previously described roles of CARPEL FACTORY in the development of Arabidopsis embryos, leaves, and floral meristems suggest that the miRNAs could play regulatory roles in the development of plants as well as animals.
Collapse
Affiliation(s)
- Brenda J Reinhart
- Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
862
|
Abstract
RNA folding in vivo is influenced by the cellular environment, the vectorial nature of transcription and translation, trans-acting factors and ion homeostasis. Specific RNA-binding proteins promote RNA folding by stabilizing the native structure or by guiding folding. In contrast, RNA chaperones, which are believed to interact nonspecifically with RNA, were proposed to resolve misfolded RNA structures and to promote intermolecular RNA-RNA annealing. Small trans-acting noncoding RNAs are thought to modulate mRNA structures, thereby regulating gene expression. So far, there is some evidence that in vitro and invivo RNA folding pathways share basic features. However, it is unclear whether the rules deduced from in vitro folding experiments generally apply to invivo conditions.
Collapse
Affiliation(s)
- Renée Schroeder
- Institute of Microbiology and Genetics, University of Vienna, Vienna Biocenter, Doktor Bohrgasse 9, A-1030 Vienna, Austria.
| | | | | | | |
Collapse
|
863
|
Tang TH, Bachellerie JP, Rozhdestvensky T, Bortolin ML, Huber H, Drungowski M, Elge T, Brosius J, Hüttenhofer A. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci U S A 2002; 99:7536-41. [PMID: 12032318 PMCID: PMC124276 DOI: 10.1073/pnas.112047299] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In a specialized cDNA library from the archaeon Archaeoglobus fulgidus we have identified a total of 86 different expressed RNA sequences potentially encoding previously uncharacterized small non-messenger RNA (snmRNA) species. Ten of these RNAs resemble eukaryotic small nucleolar RNAs, which guide rRNA 2'-O-methylations (C/D-box type) and pseudouridylations (H/ACA-box type). Thereby, we identified four candidates for H/ACA small RNAs in an archaeal species that are predicted to guide a total of six rRNA pseudouridylations. Furthermore, we have verified the presence of the six predicted pseudouridines experimentally. We demonstrate that 22 snmRNAs are transcribed from a family of short tandem repeats conserved in most archaeal genomes and shown previously to be potentially involved in replicon partitioning. In addition, four snmRNAs derived from the rRNA operon of A. fulgidus were identified and shown to be generated by a splicing/processing pathway of pre-rRNAs. The remaining 50 RNAs could not be assigned to a known class of snmRNAs because of the lack of known structure and/or sequence motifs. Regarding their location on the genome, only nine were located in intergenic regions, whereas 33 were complementary to an ORF, five were overlapping an ORF, and three were derived from the sense orientation within an ORF. Our study further supports the importance of snmRNAs in all three domains of life.
Collapse
Affiliation(s)
- Thean-Hock Tang
- Institute of Experimental Pathology, Von-Esmarch-Strasse 56, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
864
|
Klein RJ, Misulovin Z, Eddy SR. Noncoding RNA genes identified in AT-rich hyperthermophiles. Proc Natl Acad Sci U S A 2002; 99:7542-7. [PMID: 12032319 PMCID: PMC124278 DOI: 10.1073/pnas.112063799] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Noncoding RNA (ncRNA) genes that produce functional RNAs instead of encoding proteins seem to be somewhat more prevalent than previously thought. However, estimating their number and importance is difficult because systematic identification of ncRNA genes remains challenging. Here, we exploit a strong, surprising DNA composition bias in genomes of some hyperthermophilic organisms: simply screening for GC-rich regions in the AT-rich Methanococcus jannaschii and Pyrococcus furiosus genomes efficiently detects both known and new RNA genes with a high degree of secondary structure. A separate screen based on comparative analysis also successfully identifies noncoding RNA genes in P. furiosus. Nine of the 30 new candidate genes predicted by these screens have been verified to produce discrete, apparently noncoding transcripts with sizes ranging from 97 to 277 nucleotides.
Collapse
Affiliation(s)
- Robert J Klein
- Howard Hughes Medical Institute and Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | |
Collapse
|
865
|
Abstract
Noncoding RNAs (ncRNAs) have been found to have roles in a great variety of processes, including transcriptional regulation, chromosome replication, RNA processing and modification, messenger RNA stability and translation, and even protein degradation and translocation. Recent studies indicate that ncRNAs are far more abundant and important than initially imagined. These findings raise several fundamental questions: How many ncRNAs are encoded by a genome? Given the absence of a diagnostic open reading frame, how can these genes be identified? How can all the functions of ncRNAs be elucidated?
Collapse
MESH Headings
- Animals
- Base Pairing
- Catalysis
- Chromosomes/physiology
- Chromosomes/ultrastructure
- Evolution, Molecular
- Gene Silencing
- Humans
- Protein Biosynthesis
- Protein Transport
- Proteins/metabolism
- RNA/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/physiology
- RNA, Catalytic/metabolism
- RNA, Messenger/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/physiology
Collapse
Affiliation(s)
- Gisela Storz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
866
|
Abstract
In recent years, systematic searches of both prokaryote and eukaryote genomes have identified a staggering number of small RNAs, the biological functions of which remain unknown. Small RNA-based regulators are well known from bacterial plasmids. They act on target RNAs by sequence complementarity; that is, they are antisense RNAs. Recent findings suggest that many of the novel orphan RNAs encoded by bacterial and eukaryotic chromosomes might also belong to a ubiquitous, heterogeneous class of antisense regulators of gene expression.
Collapse
|
867
|
Wassarman KM. Small RNAs in bacteria: diverse regulators of gene expression in response to environmental changes. Cell 2002; 109:141-4. [PMID: 12007399 DOI: 10.1016/s0092-8674(02)00717-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bacterial small, untranslated RNAs are important regulators that often act to transmit environmental signals when cells encounter suboptimal or stressful growth conditions. These RNAs help modulate changes in cellular metabolism to optimize utilization of available nutrients and improve the probability for survival.
Collapse
Affiliation(s)
- Karen M Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
868
|
Abstract
The number of known noncoding RNA genes is expanding rapidly. Computational analysis of genome sequences, which has been revolutionary for protein gene analysis, should also be able to address questions of the number and diversity of noncoding RNA genes. However, noncoding RNAs present computational genomics with a new set of challenges.
Collapse
Affiliation(s)
- Sean R Eddy
- Howard Hughes Medical Institute, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
869
|
Wang W, Brunet FG, Nevo E, Long M. Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc Natl Acad Sci U S A 2002; 99:4448-53. [PMID: 11904380 PMCID: PMC123668 DOI: 10.1073/pnas.072066399] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non-protein-coding RNA genes play an important role in various biological processes. How new RNA genes originated and whether this process is controlled by similar evolutionary mechanisms for the origin of protein-coding genes remains unclear. A young chimeric RNA gene that we term sphinx (spx) provides the first insight into the early stage of evolution of RNA genes. spx originated as an insertion of a retroposed sequence of the ATP synthase chain F gene at the cytological region 60DB since the divergence of Drosophila melanogaster from its sibling species 2-3 million years ago. This retrosequence, which is located at 102F on the fourth chromosome, recruited a nearby exon and intron, thereby evolving a chimeric gene structure. This molecular process suggests that the mechanism of exon shuffling, which can generate protein-coding genes, also plays a role in the origin of RNA genes. The subsequent evolutionary process of spx has been associated with a high nucleotide substitution rate, possibly driven by a continuous positive Darwinian selection for a novel function, as is shown in its sex- and development-specific alternative splicing. To test whether spx has adapted to different environments, we investigated its population genetic structure in the unique "Evolution Canyon" in Israel, revealing a similar haplotype structure in spx, and thus similar evolutionary forces operating on spx between environments.
Collapse
Affiliation(s)
- Wen Wang
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
870
|
Abstract
A variety of RNA molecules have been found over the last 20 years to have a remarkable range of functions beyond the well-known roles of messenger, ribosomal and transfer RNAs. Here, we present a general categorization of all non-coding RNAs and briefly discuss the ones that affect transcription, translation and protein function.
Collapse
Affiliation(s)
- Maciej Szymański
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|
871
|
Abstract
Animal genomes contain an abundance of small genes that produce regulatory RNAs of about 22 nucleotides in length. These microRNAs are diverse in sequence and expression patterns, and are evolutionarily widespread, suggesting that they may participate in a wide range of genetic regulatory pathways.
Collapse
Affiliation(s)
- V Ambros
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA.
| |
Collapse
|
872
|
|