851
|
Betancourt MR, Thirumalai D. Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity. J Mol Biol 1999; 287:627-44. [PMID: 10092464 DOI: 10.1006/jmbi.1999.2591] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chaperonin system, GroEL and GroES of Escherichia coli enable certain proteins to fold under conditions when spontaneous folding is prohibitively slow as to compete with other non-productive channels such as aggregation. We investigated the plausible mechanisms of GroEL-mediated folding using simple lattice models. In particular, we have investigated protein folding in a confined environment, such as those offered by the GroEL, to decipher whether rate and yield enhancement can occur when the substrate protein is allowed to fold within the cavity of the chaperonins. The GroEL cavity is modeled as a cubic box and a simple bead model is used to represent the substrate chain. We consider three distinct characteristic of the confining environment. First, the cavity is taken to be a passive Anfinsen cage in which the walls merely reduce the available conformation space. We find that at temperatures when the native conformation is stable, the folding rate is retarded in the Anfinsen cage. We then assumed that the interior of the wall is hydrophobic. In this case the folding times exhibit a complex behavior. When the strength of the interaction between the polypeptide chain and the cavity is too strong or too weak we find that the rates of folding are retarded compared to spontaneous folding. There is an optimum range of the interaction strength that enhances the rates. Thus, above this value there is an inverse correlation between the folding rates and the strength of the substrate-cavity interactions. The optimal hydrophobic walls essentially pull the kinetically trapped states which leads to a smoother the energy landscape. It is known that upon addition of ATP and GroES the interior cavity of GroEL offers a hydrophilic-like environment to the substrate protein. In order to mimic this within the context of the dynamic Anfinsen cage model, we allow for changes in the hydrophobicity of the walls of the cavity. The duration for which the walls remain hydrophobic during one cycle of ATP hydrolysis is allowed to vary. These calculations show that frequent cycling of the wall hydrophobicity can dramatically reduce the folding times and increase the yield as well under non-permissive conditions. Examination of the structures of the substrate proteins before and after the change in hydrophobicity indicates that there is global unfolding involved. In addition, it is found that a fraction of the molecules kinetically partition to the native state in accordabce with the iterative annealing mechanism. Thus, frequent "unfoldase" activity of chaperonins leading to global unfolding of the polypeptide chain results in enhancement of the folding rates and yield of the folded protein. We suggest that chaperonin efficiency can be greatly enhanced if the cycling time is reduced. The calculations are used to interpret a few experiments on chaperonin-mediated protein folding.
Collapse
Affiliation(s)
- M R Betancourt
- University of Maryland at College Park, College Park, MD 20742, USA
| | | |
Collapse
|
852
|
Abstract
The folding of most newly synthesized proteins in the cell requires the interaction of a variety of protein cofactors known as molecular chaperones. These molecules recognize and bind to nascent polypeptide chains and partially folded intermediates of proteins, preventing their aggregation and misfolding. There are several families of chaperones; those most involved in protein folding are the 40-kDa heat shock protein (HSP40; DnaJ), 60-kDa heat shock protein (HSP60; GroEL), and 70-kDa heat shock protein (HSP70; DnaK) families. The availability of high-resolution structures has facilitated a more detailed understanding of the complex chaperone machinery and mechanisms, including the ATP-dependent reaction cycles of the GroEL and HSP70 chaperones. For both of these chaperones, the binding of ATP triggers a critical conformational change leading to release of the bound substrate protein. Whereas the main role of the HSP70/HSP40 chaperone system is to minimize aggregation of newly synthesized proteins, the HSP60 chaperones also facilitate the actual folding process by providing a secluded environment for individual folding molecules and may also promote the unfolding and refolding of misfolded intermediates.
Collapse
Affiliation(s)
- A L Fink
- Department of Chemistry and Biochemistry, The University of California, Santa Cruz, California, USA
| |
Collapse
|
853
|
Horowitz PM, Lorimer GH, Ybarra J. GroES in the asymmetric GroEL14-GroES7 complex exchanges via an associative mechanism. Proc Natl Acad Sci U S A 1999; 96:2682-6. [PMID: 10077571 PMCID: PMC15829 DOI: 10.1073/pnas.96.6.2682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The interaction of the chaperonin GroEL14 with its cochaperonin GroES7 is dynamic, involving stable, asymmetric 1:1 complexes (GroES7.GroEL7-GroEL7) and transient, metastable symmetric 2:1 complexes [GroES7.GroEL7-GroEL7.GroES7]. The transient formation of a 2:1 complex permits exchange of free GroES7 for GroES7 bound in the stable 1:1 complex. Electrophoresis in the presence of ADP was used to resolve free GroEL14 from the GroES7-GroEL14 complex. Titration of GroEL14 with radiolabeled GroES7 to molar ratios of 32:1 demonstrated a 1:1 limiting stoichiometry in a stable complex. No stable 2:1 complex was detected. Preincubation of the asymmetric GroES7.GroEL7-GroEL7 complex with excess unlabeled GroES7 in the presence of ADP demonstrated GroES7 exchange. The rates of GroES7 exchange were proportional to the concentration of unlabeled free GroES7. This concentration dependence points to an associative mechanism in which exchange of GroES7 occurs by way of a transient 2:1 complex and excludes a dissociative mechanism in which exchange occurs by way of free GroEL14. Exchange of radiolabeled ADP from 1:1 complexes was much slower than the exchange of GroES7. In agreement with recent structural studies, this indicates that conformational changes in GroEL14 following the dissociation of GroES7 must precede ADP release. These results explain how the GroEL14 cavity can become reversibly accessible to proteins under in vivo conditions that favor 2:1 complexes.
Collapse
Affiliation(s)
- P M Horowitz
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78284, USA
| | | | | |
Collapse
|
854
|
de Groot BL, Vriend G, Berendsen HJ. Conformational changes in the chaperonin GroEL: new insights into the allosteric mechanism. J Mol Biol 1999; 286:1241-9. [PMID: 10047494 DOI: 10.1006/jmbi.1998.2568] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Conformational changes are known to play a crucial role in the function of the bacterial GroE chaperonin system. Here, results are presented from an essential dynamics analysis of known experimental structures and from computer simulations of GroEL using the CONCOORD method. The results indicate a possible direct form of inter-ring communication associated with internal fluctuations in the nucleotide-binding domains upon nucleotide and GroES binding that are involved in the allosteric mechanism of GroEL. At the level of conformational transitions in entire GroEL rings, nucleotide-induced structural changes were found to be distinct and in principle uncoupled from changes occurring upon GroES binding. However, a coupling is found between nucleotide-induced conformational changes and GroES-mediated transitions, but only in simulations of GroEL double rings, and not in simulations of single rings. This provides another explanation for the fact that GroEL functions a double ring system.
Collapse
Affiliation(s)
- B L de Groot
- Department of Biophysical Chemistry, The University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | | | | |
Collapse
|
855
|
Freeman ML, Borrelli MJ, Meredith MJ, Lepock JR. On the path to the heat shock response: destabilization and formation of partially folded protein intermediates, a consequence of protein thiol modification. Free Radic Biol Med 1999; 26:737-45. [PMID: 10218664 DOI: 10.1016/s0891-5849(98)00258-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This review discusses the initial events that occur during oxidative stress that induce the synthesis of heat shock proteins. The focus is on non-native oxidation or modification of protein thiols and the destablization that can result. Proteins that contain non-native modified thiols can become destablized such that they unfold into molten globule-like intermediates at or below 37 degrees C, relieving Hsf-1 negative regulation, and inducing Hsp transcription.
Collapse
Affiliation(s)
- M L Freeman
- Department of Radiation Oncology, Vanderbilt Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
856
|
Koumoto Y, Shimada T, Kondo M, Takao T, Shimonishi Y, Hara-Nishimura I, Nishimura M. Chloroplast Cpn20 forms a tetrameric structure in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:467-77. [PMID: 10205903 DOI: 10.1046/j.1365-313x.1999.00388.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chloroplast chaperonin 20 (Cpn20) in higher plants is a functional homologue of the Escherichia coli GroES, which is a critical regulator of chaperonin-mediated protein folding. The cDNA for a Cpn20 homologue of Arabidopsis thaliana was isolated. It was 958 bp long, encoding a protein of 253 amino acids. The protein was composed of an N-terminal chloroplast transit peptide, and the predicted mature region comprised two distinct GroES domains that showed 42% amino acid identity to each other. The isolated cDNA was constitutively expressed in transgenic tobacco. Immunogold labelling showed that Cpn20 is accumulated in chloroplasts of transgenic tobacco. A Northern blot analysis revealed that mRNA for the chloroplast Cpn20 is abundant in leaves and is increased by heat treatment. To examine the oligomeric structure of Cpn20, a histidine-tagged construct lacking the transit peptide was expressed in E. coli and purified by affinity chromatography. Gel-filtration and cross-linking analyses showed that the expressed products formed a tetramer. The expressed products could substitute for GroES to assist the refolding of citrate synthase under non-permissive conditions. The analysis on the subunit stoichiometry of the GroEL-Cpn20 complex also revealed that the functional complex is composed of a GroEL tetradecamer and a Cpn20 tetramer.
Collapse
Affiliation(s)
- Y Koumoto
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | | | | | | | |
Collapse
|
857
|
von Germar F, Galán A, Llorca O, Carrascosa JL, Valpuesta JM, Mäntele W, Muga A. Conformational changes generated in GroEL during ATP hydrolysis as seen by time-resolved infrared spectroscopy. J Biol Chem 1999; 274:5508-13. [PMID: 10026164 DOI: 10.1074/jbc.274.9.5508] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in the vibrational spectrum of the chaperonin GroEL in the presence of ADP and ATP have been followed as a function of time using rapid scan Fourier transform infrared spectroscopy. The interaction of nucleotides with GroEL was triggered by the photochemical release of the ligands from their corresponding biologically inactive precursors (caged nucleotides; P3-1-(2-nitro)phenylethyl nucleotide). Binding of either ADP or ATP induced the appearance of small differential signals in the amide I band of the protein, sensitive to protein secondary structure, suggesting a subtle and localized change in protein conformation. Moreover, conformational changes associated with ATP hydrolysis were detected that differed markedly from those observed upon nucleotide binding. Both, high-amplitude absorbance changes and difference bands attributable to modifications in the interaction between oppositely charged residues were observed during ATP hydrolysis. Once this process had occurred, the protein relaxed to an ADP-like conformation. Our results suggest that the secondary structure as well as salt bridges of GroEL are modified during ATP hydrolysis, as compared with the ATP and ADP bound protein states.
Collapse
Affiliation(s)
- F von Germar
- Institut für Physikalische und Theoretische Chemie der Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
858
|
Abstract
The ability of newly synthesised protein chains to fold into their functional conformations has evolved within the complex intracellular environment. Until recently, however, this ability has been studied largely as the refolding of denatured mature proteins in dilute simple solutions. Recent work aimed at understanding how proteins fold in vivo has allowed some general statements to be postulated.
Collapse
Affiliation(s)
- R J Ellis
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
859
|
Altamirano MM, García C, Possani LD, Fersht AR. Oxidative refolding chromatography: folding of the scorpion toxin Cn5. Nat Biotechnol 1999; 17:187-91. [PMID: 10052357 DOI: 10.1038/6192] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have made an immobilized and reusable molecular chaperone system for oxidative refolding chromatography. Its three components-GroEL minichaperone (191-345), which can prevent protein aggregation; DsbA, which catalyzes the shuffling and oxidative formation of disulfide bonds; and peptidyl-prolyl isomerase-were immobilized on an agarose gel. The gel was applied to the refolding of denatured and reduced scorpion toxin Cn5. The 66-residue toxin, which has four disulfide bridges and a cis peptidyl-proline bond, had not previously been refolded in reasonable yield. We recovered an 87% yield of protein with 100% biological activity.
Collapse
Affiliation(s)
- M M Altamirano
- Cambridge Centre for Protein Engineering and Cambridge University Chemical Laboratory, MRC Centre, UK
| | | | | | | |
Collapse
|
860
|
Hirohashi T, Nishio K, Nakai M. cDNA sequence and overexpression of chloroplast chaperonin 21 from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1429:512-5. [PMID: 9989238 DOI: 10.1016/s0167-4838(98)00268-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Higher plant chloroplasts contain a 21-kDa protein, chaperonin 21 (Cpn21), that is a functional homolog of the chaperonin 10 (Cpn10). The chloroplast Cpn21 polypeptide consists of two Cpn10-like domains fused together in tandem. We describe here the cDNA sequence of the Cpn21 (AtCpn21) precursor protein from Arabidopsis thaliana. The deduced amino acid sequence of the AtCpn21 precursor protein, 253 amino acids long, shows 61% identity with the spinach Cpn21 protein. The AtCpn21 precursor protein contains the typical chloroplast transit peptide of 51 amino acids at its aminoterminus and the two Cpn10-like domains which exhibits 46% sequence identity to each other. The predicted mature-sized polypeptide of AtCpn21 was expressed in Escherichia coli as a soluble 21-kDa protein. Gel-filtration and chemical cross-linking analyses showed that the recombinant mature AtCpn21 protein forms a stable homo-oligomer composed of three or four polypeptides.
Collapse
Affiliation(s)
- T Hirohashi
- Institute for Protein Research, Osaka University, Japan
| | | | | |
Collapse
|
861
|
Richardson A, van der Vies SM, Keppel F, Taher A, Landry SJ, Georgopoulos C. Compensatory changes in GroEL/Gp31 affinity as a mechanism for allele-specific genetic interaction. J Biol Chem 1999; 274:52-8. [PMID: 9867810 DOI: 10.1074/jbc.274.1.52] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Previous work has shown that the GroEL-GroES interaction is primarily mediated by the GroES mobile loop. In bacteriophage T4 infection, GroES is substituted by the gene 31-encoded cochaperonin, Gp31. Using a genetic selection scheme, we have identified a new set of mutations in gene 31 that affect interaction with GroEL; all mutations result in changes in the mobile loop of Gp31. Biochemical analyses reveal that the mobile loop mutations alter the affinity between Gp31 and GroEL, most likely by modulating the stability of the GroEL-bound hairpin conformation of the mobile loop. Surprisingly, mutations in groEL that display allele-specific interactions with mutations in gene 31 alter residues in the GroEL intermediate domain, distantly located from the mobile loop binding site. The observed patterns of genetic and biochemical interaction between GroES or Gp31 and GroEL point to a mechanism of genetic allele specificity based on compensatory changes in affinity of the protein-protein interaction. Mutations studied in this work indirectly alter affinity by modulating a folding transition in the Gp31 mobile loop or by modulating a hinged conformational change in GroEL.
Collapse
Affiliation(s)
- A Richardson
- Département de Biochimie Médicale, University of Geneva, 1 rue Michel-Servet, 1211 Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
862
|
Bulatnikov IG, Polyakova OV, Asryants RA, Nagradova NK, Muronetz VI. Participation of chaperonin GroEL in the folding of D-glyceraldehyde-3-phosphate dehydrogenase. An approach based on the use of different oligomeric forms of the enzyme immobilized on sepharose. JOURNAL OF PROTEIN CHEMISTRY 1999; 18:79-87. [PMID: 10071932 DOI: 10.1023/a:1020603717781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The binding of denatured B. stearothermophilus D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to the E. coli chaperonin GroEL was investigated in two systems: (1) GroEL immobilized on Sepharose via a single subunit was titrated with urea-denatured soluble GAPDH and (2) a Sepharose-bound denatured GAPDH monomer was titrated with soluble GroEL. Similar apparent KD values for the complex GroEL x GAPDH were obtained in both cases (0.04 and 0.03 microM, respectively), the stoichiometry being 1.0 mol chaperonin per GAPDH subunit in the system with the immobilized GroEL and 0.2 mol chaperonin per Sepharose-bound GAPDH monomer. Addition of GroEL and Mg x ATP to a reactivation mixture increased the yield of reactivation of both E. coli and B. stearothermophilus GAPDHs. Incubation of the Sepharose-bound catalytically active tetrameric and dimeric GAPDH forms with the protein fraction of a wild-type E. coli cell extract resulted in the binding of GroEL to the dimer and no interaction with the tetrameric form. These data suggest that GroEL may be capable of interacting with the interdimeric contact regions of the folded GAPDH dimers.
Collapse
Affiliation(s)
- I G Bulatnikov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow
| | | | | | | | | |
Collapse
|
863
|
Galán A, Llorca O, Valpuesta JM, Pérez-Pérez J, Carrascosa JL, Menéndez M, Bañuelos S, Muga A. ATP hydrolysis induces an intermediate conformational state in GroEL. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:347-55. [PMID: 9914513 DOI: 10.1046/j.1432-1327.1999.00045.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The conformational properties of the molecular chaperone GroEL in the presence of ATP, its non-hydrolyzable analog 5'-adenylimidodiphosphate (AMP-PNP), and ADP have been analyzed by differential scanning calorimetry (DSC), Fourier-transform infra-red (FT-IR) and fluorescence spectroscopy. Nucleotide binding to one ring promotes a decrease in the Tm value of the GroEL thermal transition that is reversed when both rings are filled with nucleotide, indicating that the sequential occupation of the two protein rings by these nucleotides has different effects on the GroEL thermal denaturation process. In addition, ATP induces a conformational change in GroEL characterized by (a) the appearance of a reversible low temperature endotherm in the DSC profiles of the protein, and (b) an enhanced binding of the hydrophobic probe 8-anilino-naphthalene-1-sulfonate (ANS), which strictly depends on ATP hydrolysis. The similar sensitivity to K+ of the temperature range where activation of the GroEL ATPase activity, the low temperature endotherm, and the increase of the ANS fluorescence are abserved strongly indicates the existence of a conformational state of GroEL during ATP hydrolysis, different from that generated on ADP or AMP-PNP binding. To achieve this intermediate conformation, GroEL mainly modifies its tertiary and quaternary structures, leading to an increased exposure of hydrophobic surfaces, with minor rearrangements of its secondary structure.
Collapse
Affiliation(s)
- A Galán
- Department de Bioquímica y Biología Molecular, Unidad asociada al CSIC, Universidad del París Vaco, Bilbao, Spain
| | | | | | | | | | | | | | | |
Collapse
|
864
|
Roobol A, Carden MJ. Subunits of the eukaryotic cytosolic chaperonin CCT do not always behave as components of a uniform hetero-oligomeric particle. Eur J Cell Biol 1999; 78:21-32. [PMID: 10082421 DOI: 10.1016/s0171-9335(99)80004-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The chaperonin CCT is an hetero-oligomeric molecular chaperone complex. Studies in yeast suggest each of its eight gene products are required for its major identified functions in producing native tubulins and actins. However, it is unclear whether these eight components always form a single particle, covering all functions, or else can also exist as heterogeneous mixtures and/or free subunits in cells. Using mouse P19 embryonal carcinoma cells, which divide rapidly, yet in retinoic acid adopt a neuronal phenotype, admixed with occasional (approximately 10%) fibroblast-like cells, together with a panel of peptide-specific antibodies raised to 7 of the 8 CCT subunits we show that; (1) adoption of a post mitotic phenotype is accompanied by reduced CCT protein expression, significantly more so for CCTbeta, CCTdelta, CCTepsilon, and CCTtheta than for CCTalpha (TCP-1), CCTgamma and CCTzeta; (2) CCTalpha is detected preferentially over other subunits in neurites of P19 neurons; (3) small amounts of CCTalpha and gamma are localised in nuclei (i.e. are not exclusively cytoplasmic), selectively so compared with other subunits; (4) numerous cytosolic foci exist in the cytoplasm which, when detected by double immunofluorescence can contain only one of the subunits probed for; (5) while a "core" chaperonin particle can be immunoprecipitated under native conditions, epitope access is modified both by nucleotides and by non-CCT co-precipitating proteins. Collectively, these findings indicate that CCT subunits are not only components of the hetero-oligomeric chaperonin particle but exist as significant populations of free subunits or smaller oligomers in cells.
Collapse
Affiliation(s)
- A Roobol
- Research School of Biosciences, University of Kent at Canterbury, UK
| | | |
Collapse
|
865
|
Ben-Zvi AP, Chatellier J, Fersht AR, Goloubinoff P. Minimal and optimal mechanisms for GroE-mediated protein folding. Proc Natl Acad Sci U S A 1998; 95:15275-80. [PMID: 9860959 PMCID: PMC28033 DOI: 10.1073/pnas.95.26.15275] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/1998] [Indexed: 11/18/2022] Open
Abstract
We have analyzed the effects of different components of the GroE chaperonin system on protein folding by using a nonpermissive substrate (i.e., one that has very low spontaneous refolding yield) for which rate data can be acquired. In the absence of GroES and nucleotides, the rate of GroEL-mediated refolding of heat- and DTT-denatured mitochondrial malate dehydrogenase was extremely low, but some three times higher than the spontaneous rate. This GroEL-mediated rate was increased 17-fold by saturating concentrations of ATP, 11-fold by ADP and GroES, and 465-fold by ATP and GroES. Optimal refolding activity was observed when the dissociation of GroES from the chaperonin complex was dramatically reduced. Although GroEL minichaperones were able to bind denatured mitochondrial malate dehydrogenase, they were ineffective in enhancing the refolding rate. The spectrum of mechanisms for GroE-mediated protein folding depends on the nature of the substrate. The minimal mechanism for permissive substrates (i.e., having significant yields of spontaneous refolding), requires only binding to the apical domain of GroEL. Slow folding rates of nonpermissive substrates are limited by the transitions between high- and low-affinity states of GroEL alone. The optimal mechanism, which requires holoGroEL, physiological amounts of GroES, and ATP hydrolysis, is necessary for the chaperonin-mediated folding of nonpermissive substrates at physiologically relevant rates under conditions in which retention of bound GroES prevents the premature release of aggregation-prone folding intermediates from the chaperonin complex. The different mechanisms are described in terms of the structural features of mini- and holo-chaperones.
Collapse
Affiliation(s)
- A P Ben-Zvi
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | |
Collapse
|
866
|
Andreadis JD, Black LW. Substrate mutations that bypass a specific Cpn10 chaperonin requirement for protein folding. J Biol Chem 1998; 273:34075-86. [PMID: 9852065 DOI: 10.1074/jbc.273.51.34075] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacteriophage T4 GroES homologue, gp31, in conjunction with the Escherichia coli chaperonin GroEL, is both necessary and sufficient to fold the T4 major capsid protein, gp23, to a state competent for capsid assembly as shown by in vivo expression studies. GroES is unable to function in this role as a productive co-chaperonin. The sequencing and characterization of mutations within gp23 that confer GroEL and gp31 chaperonin-independent folding of the mutant protein suggest that the chaperonin requirements are due to specific sequence determinants or structures in critical regions of gp23 that behave in an additive fashion to confer a chaperonin bypass phenotype. Conservative amino acid substitutions in these critical regions enable gp23 to fold in a GroEL-gp31 chaperonin-independent mode, albeit less efficiently than wild type, both in vivo and in vitro. Although the presence of functional GroEL-gp31 enhances folding of the mutated gp23 in vivo, GroEL-GroES has no such effect. Site-directed mutagenesis experiments suggest that a translational pausing mechanism is not responsible for the bypass mutant phenotype. Polyhead reassembly experiments are also consistent with direct, post-translational effects of the bypass mutations on polypeptide folding. Given our finding that gp31 is not required for the binding of the major capsid protein to GroEL and that active GroES is incapable of folding the gp23 polypeptide chain to native conformation, our results suggest co-chaperonin specificity in the folding of certain substrates.
Collapse
Affiliation(s)
- J D Andreadis
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
867
|
Abstract
Recent structural and functional studies have greatly advanced our understanding of the mechanism by which chaperonins (Cpn60) mediate protein folding, the final step in the accurate expression of genetic information. Escherichia coli GroEL has a symmetric double-toroid architecture, which binds nonnative polypeptide substrates on the hydrophobic walls of its central cavity. The asymmetric binding of ATP and cochaperonin GroES to GroEL triggers a major conformational change in the cis ring, creating an enlarged chamber into which the bound nonnative polypeptide is released. The structural changes that create the cis assembly also change the lining of the cavity wall from hydrophobic to hydrophilic, conducive to folding into the native state. ATP hydrolysis in the cis ring weakens it and primes the release of products. When ATP and GroES bind to the trans ring, it forms a stronger assembly, which disassembles the cis complex through negative cooperativity between rings. The opposing function of the two rings operates as if the system had two cylinders, one expelling the products of the reaction as the other loads up the reactants. One cycle of the reaction gives the polypeptide about 15 s to fold at the cost of seven ATP molecules. For some proteins, several cycles of GroEL assistance may be needed in order to achieve their native states.
Collapse
Affiliation(s)
- Z Xu
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue, New Haven, Connecticut, 06520-8114, USA
| | | |
Collapse
|
868
|
Grallert H, Rutkat K, Buchner J. GroEL traps dimeric and monomeric unfolding intermediates of citrate synthase. J Biol Chem 1998; 273:33305-10. [PMID: 9837903 DOI: 10.1074/jbc.273.50.33305] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prokaryotic molecular chaperone GroE is increasingly expressed under heat shock conditions. GroE protects cells by preventing the irreversible aggregation of thermally unfolding proteins. Here, the interaction of GroE with thermally unfolding citrate synthase (CS) was dissected into several steps that occur before irreversible aggregation, and the conformational states of the unfolding protein recognized by GroEL were determined. The kinetic analysis of CS unfolding revealed the formation of inactive dimeric and monomeric intermediates. GroEL binds both intermediates without affecting the unfolding pathway. Furthermore, the dimeric intermediates are not protected against dissociation in the presence of GroEL. Monomeric CS is stably associated with GroEL, thus preventing further irreversible unfolding steps and subsequent aggregation. During refolding, monomeric CS is encapsulated inside the cavity of GroEL. GroES complexes. Taken together our results suggest that for protection of cells against heat stress both the ability of GroEL to interact with a large variety of nonnative conformations of proteins and the active, GroES-dependent refolding of highly unfolded species are important.
Collapse
Affiliation(s)
- H Grallert
- Institut für Biophysik & Physikalische Biochemie, Universität Regensburg, 93040 Regensburg, Germany
| | | | | |
Collapse
|
869
|
Llorca O, Galán A, Carrascosa JL, Muga A, Valpuesta JM. GroEL under heat-shock. Switching from a folding to a storing function. J Biol Chem 1998; 273:32587-94. [PMID: 9829996 DOI: 10.1074/jbc.273.49.32587] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chaperonin GroEL from Escherichia coli, together with its cochaperonin GroES, are proteins involved in assisting the folding of polypeptides. GroEL is a tetradecamer composed of two heptameric rings, which enclose a cavity where folding takes place through multiple cycles of substrate and GroES binding and release. GroEL and GroES are also heat-shock proteins, their synthesis being increased during heat-shock conditions to help the cell coping with the thermal stress. Our results suggest that, as the temperature increases, GroEL decreases its protein folding activity and starts acting as a "protein store." The molecular basis of this behavior is the loss of inter-ring signaling, which slows down GroES liberation from GroEL and therefore the release of the unfolded protein from the GroEL cavity. This behavior is reversible, and after heat-shock, GroEL reverts to its normal function. This might have a physiological meaning, since under thermal stress conditions, it may be inefficient for the cell to fold thermounstable proteins that are prone to denaturation.
Collapse
Affiliation(s)
- O Llorca
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
870
|
Dibrov E, Fu S, Lemire BD. The Saccharomyces cerevisiae TCM62 gene encodes a chaperone necessary for the assembly of the mitochondrial succinate dehydrogenase (complex II). J Biol Chem 1998; 273:32042-8. [PMID: 9822678 DOI: 10.1074/jbc.273.48.32042] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly of the mitochondrial respiratory chain is mediated by a large number of helper proteins. To better understand the biogenesis of the yeast succinate dehydrogenase (SDH), we searched for assembly-defective mutants. SDH is encoded by the SDH1, SDH2, SDH3, and SDH4 genes. The holoenzyme is composed of two domains. The membrane extrinsic domain, consisting of Sdh1p and Sdh2p, contains a covalent FAD cofactor and three iron-sulfur clusters. The membrane intrinsic domain, consisting of Sdh3p and Sdh4p, is proposed to bind two molecules of ubiquinone and one heme. We isolated one mutant that is respiration-deficient with a specific loss of SDH oxidase activity. SDH is not assembled in this mutant. The complementing gene, TCM62 (also known as SCYBR044C), does not encode an SDH subunit and is not essential for cell viability. It encodes a mitochondrial membrane protein of 64,211 Da. The Tcm62p sequence is 17.3% identical to yeast hsp60, a molecular chaperone. The Tcm62p amino terminus is in the mitochondrial matrix, whereas the carboxyl terminus is accessible from the intermembrane space. Tcm62p forms a complex containing at least three SDH subunits. We propose that Tcm62p functions as a chaperone in the assembly of yeast SDH.
Collapse
Affiliation(s)
- E Dibrov
- Medical Research Council of Canada Group in the Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
871
|
Kumarevel TS, Gromiha MM, Ponnuswamy MN. Analysis of hydrophobic and charged patches and influence of medium- and long-range interactions in molecular chaperones. Biophys Chem 1998; 75:105-13. [PMID: 9857480 DOI: 10.1016/s0301-4622(98)00198-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The amino acid composition of the aromatic residues Phe, Tyr and Trp are much less significant in chaperones and the residues Cys, Glu, His, Met and Pro vary significantly in chaperones compared to normal globular proteins. In the present work, we have analysed the hydrophobic and charged patches in molecular chaperones which provide more insight for a better understanding of chaperone folding. Also, we have investigated the role of medium- and long-range contacts in chaperones and the preference of amino acid residues influenced by these interactions. Furthermore, the role of hydrophobic and helix-forming residues and disulfide bonding in these interactions have been discussed.
Collapse
Affiliation(s)
- T S Kumarevel
- Department of Crystallography and Biophysics, University of Madras, Tamil Nadu, India
| | | | | |
Collapse
|
872
|
Schiøtt B, Iversen BB, Hellerup Madsen GK, Bruice TC. Characterization of the Short Strong Hydrogen Bond in Benzoylacetone by ab Initio Calculations and Accurate Diffraction Experiments. Implications for the Electronic Nature of Low-Barrier Hydrogen Bonds in Enzymatic Reactions. J Am Chem Soc 1998. [DOI: 10.1021/ja982317t] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Birgit Schiøtt
- Contribution from the Departments of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106, and the University of Aarhus, DK-8000 Århus C, Denmark
| | - Bo Brummerstedt Iversen
- Contribution from the Departments of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106, and the University of Aarhus, DK-8000 Århus C, Denmark
| | - Georg Kent Hellerup Madsen
- Contribution from the Departments of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106, and the University of Aarhus, DK-8000 Århus C, Denmark
| | - Thomas C. Bruice
- Contribution from the Departments of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106, and the University of Aarhus, DK-8000 Århus C, Denmark
| |
Collapse
|
873
|
Weber F, Keppel F, Georgopoulos C, Hayer-Hartl MK, Hartl FU. The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding. NATURE STRUCTURAL BIOLOGY 1998; 5:977-85. [PMID: 9808043 DOI: 10.1038/2952] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two models are being considered for the mechanism of chaperonin-assisted protein folding in E. coli: (i) GroEL/GroES act primarily by enclosing substrate polypeptide in a folding cage in which aggregation is prevented during folding. (ii) GroEL mediates the repetitive unfolding of misfolded polypeptides, returning them onto a productive folding track. Both models are not mutually exclusive, but studies with the polypeptide-binding domain of GroEL have suggested that unfolding is the primary mechanism, enclosure being unnecessary. Here we investigate the capacity of the isolated apical polypeptide-binding domain to functionally replace the complete GroEL/GroES system. We show that the apical domain binds aggregation-sensitive polypeptides but cannot significantly assist their refolding in vitro and fails to replace the groEL gene or to complement defects of groEL mutants in vivo. A single-ring version of GroEL cannot substitute for GroEL. These results strongly support the view that sequestration of aggregation-prone intermediates in a folding cage is an important element of the chaperonin mechanism.
Collapse
Affiliation(s)
- F Weber
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
874
|
Beuron F, Maurizi MR, Belnap DM, Kocsis E, Booy FP, Kessel M, Steven AC. At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. J Struct Biol 1998; 123:248-59. [PMID: 9878579 DOI: 10.1006/jsbi.1998.4039] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ClpAP, a typical energy-dependent protease, consists of a proteolytic component (ClpP) and a chaperone-like ATPase (ClpA). ClpP is composed of two apposed heptameric rings, whereas in the presence of ATP or ATPgammaS, ClpA is a single hexameric ring. Formation of ClpAP complexes involves a symmetry mismatch as sixfold ClpA stacks axially on one or both faces of sevenfold ClpP. We have analyzed these structures by cryo-electron microscopy. Our three-dimensional reconstruction of ClpA at 29-A resolution shows the monomer to be composed of two domains of similar size that, in the hexamer, form two tiers enclosing a large cavity. Cylindrical reconstruction of ClpAP reveals three compartments: the digestion chamber inside ClpP; a compartment between ClpP and ClpA; and the cavity inside ClpA. They are connected axially via narrow apertures, implying that substrate proteins should be unfolded to allow translocation into the digestion chamber. The cavity inside ClpA is structurally comparable to the "Anfinsen cage" of other chaperones and may play a role in the unfolding of substrates. A geometrical description of the symmetry mismatch was obtained by using our model of ClpA and the crystal structure of ClpP (Wang et al., 1997, Cell 91, 447-456) to identify the particular side views presented by both molecules in individual complexes. The interaction is characterized by a key pair of subunits, one of each protein. A small turn (8.6(o) = 2pi/42; equivalent to a 4-A shift) would transfer the key interaction to another pair of subunits. We propose that nucleotide hydrolysis results in rotation, facilitating the processive digestion of substrate proteins.
Collapse
Affiliation(s)
- F Beuron
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, 20892, USA
| | | | | | | | | | | | | |
Collapse
|
875
|
Dubaquié Y, Looser R, Fünfschilling U, Jenö P, Rospert S. Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10. EMBO J 1998; 17:5868-76. [PMID: 9774331 PMCID: PMC1170914 DOI: 10.1093/emboj/17.20.5868] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanism of chaperonin-assisted protein folding has been mostly analyzed in vitro using non-homologous substrate proteins. In order to understand the relative importance of hsp60 and hsp10 in the living cell, homologous substrate proteins need to be identified and analyzed. We have devised a novel screen to test the folding of a large variety of homologous substrates in the mitochondrial matrix in the absence or presence of functional hsp60 or hsp10. The identified substrates have an Mr of 15-90 kDa and fall into three groups: (i) proteins that require both hsp60 and hsp10 for correct folding; (ii) proteins that completely fail to fold after inactivation of hsp60 but are unaffected by the inactivation of hsp10; and (iii) newly imported hsp60 itself, which is more severely affected by inactivation of hsp10 than by inactivation of pre-existing hsp60. The majority of the identified substrates are group I proteins. For these, the lack of hsp60 function has a more pronounced effect than inactivation of hsp10. We suggest that homologous substrate proteins have differential chaperonin requirements, indicating that hsp60 and hsp10 do not always act as a single functional unit in vivo.
Collapse
Affiliation(s)
- Y Dubaquié
- Biozentrum der Universität Basel, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
876
|
Wang JD, Michelitsch MD, Weissman JS. GroEL-GroES-mediated protein folding requires an intact central cavity. Proc Natl Acad Sci U S A 1998; 95:12163-8. [PMID: 9770457 PMCID: PMC22802 DOI: 10.1073/pnas.95.21.12163] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chaperonin GroEL is an oligomeric double ring structure that, together with the cochaperonin GroES, assists protein folding. Biochemical analyses indicate that folding occurs in a cis ternary complex in which substrate is sequestered within the GroEL central cavity underneath GroES. Recently, however, studies of GroEL "minichaperones" containing only the apical substrate binding subdomain have questioned the functional importance of substrate encapsulation within GroEL-GroES complexes. Minichaperones were reported to assist folding despite the fact that they are monomeric and therefore cannot form a central cavity. Here we compare directly the folding activity of minichaperones with that of the full GroEL-GroES system. In agreement with earlier studies, minichaperones assist folding of some proteins. However, this effect is observed only under conditions where substantial spontaneous folding is also observed and is indistinguishable from that resulting from addition of the nonchaperone protein alpha-casein. By contrast, the full GroE system efficiently promotes folding of several substrates under conditions where essentially no spontaneous folding is observed. These data argue that the full GroEL folding activity requires the intact GroEL-GroES complex, and in light of previous studies, underscore the importance of substrate encapsulation for providing a folding environment distinct from the bulk solution.
Collapse
Affiliation(s)
- J D Wang
- Department of Pharmacology, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0450, USA
| | | | | |
Collapse
|
877
|
Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL. Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 1998; 67:581-608. [PMID: 9759498 DOI: 10.1146/annurev.biochem.67.1.581] [Citation(s) in RCA: 421] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent structural and biochemical investigations have come together to allow a better understanding of the mechanism of chaperonin (GroEL, Hsp60)-mediated protein folding, the final step in the accurate expression of genetic information. Major, asymmetric conformational changes in the GroEL double toroid accompany binding of ATP and the cochaperonin GroES. When a nonnative polypeptide, bound to one of the GroEL rings, is encapsulated by GroES to form a cis ternary complex, these changes drive the polypeptide into the sequestered cavity and initiate its folding. ATP hydrolysis in the cis ring primes release of the products, and ATP binding in the trans ring then disrupts the cis complex. This process allows the polypeptide to achieve its final native state, if folding was completed, or to recycle to another chaperonin molecule, if the folding process did not result in a form committed to the native state.
Collapse
Affiliation(s)
- P B Sigler
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut 06510, USA.
| | | | | | | | | | | |
Collapse
|
878
|
Jones S, Wallington EJ, George R, Lund PA. An arginine residue (Arg101), which is conserved in many GroEL homologues, is required for interactions between the two heptameric rings. J Mol Biol 1998; 282:789-800. [PMID: 9743627 DOI: 10.1006/jmbi.1998.2039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Homologous recombination was used to construct a series of hybrid chaperonin genes, containing various lengths of Escherichia coli groEL replaced by the equivalent region from the homologous cpn60-1 gene of Rhizobium leguminosarum. Analysis of proteins produced by these hybrids showed that many of them formed structures with properties consistent with their being single heptameric rings under some conditions, as opposed to the double ring form in which both the GroEL and the Cpn60-1 proteins are found. By determining precise cross-over points, two regions in Cpn60-1 were defined which appeared to be critical for ring-ring interactions. Within one of these regions is a highly conserved arginine residue (Arg101), which we hypothesised to interact with a residue or residues toward the C terminus of the protein, this contact being required for double rings to form. To test this hypothesis, we mutagenised this residue from arginine to threonine in chaperonin genes from two different species of Rhizobium. In both cases, proteins which ran on non-denaturing gels as single rings were produced. Conversion of Arg101 to serine also had the same effect, whereas conversion of Arg101 to lysine did not. Two different single rings created by homologous recombination could be converted back to double rings by changing the threonine, which naturally occurs at this position in E. coli GroEL, back to arginine. The in vivo properties of the proteins were investigated by complementation following deletion of the chromosomal copy of the groEL gene, and by monitoring the ability of cells expressing the hybrid proteins to plate bacteriophage. Most of the hybrid and mutant proteins were functional in these assays, despite their altered properties compared to wild-type GroEL.
Collapse
Affiliation(s)
- S Jones
- School of Biological Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
879
|
Forreiter C, Nover L. Heat induced stress proteins and the concept of molecular chaperones. J Biosci 1998. [DOI: 10.1007/bf02936122] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
880
|
Nitsch M, Walz J, Typke D, Klumpp M, Essen LO, Baumeister W. Group II chaperonin in an open conformation examined by electron tomography. NATURE STRUCTURAL BIOLOGY 1998; 5:855-7. [PMID: 9783741 DOI: 10.1038/2296] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M Nitsch
- Department of Structural Biology, Max Planck Institute for Biochemistry, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
881
|
Voziyan PA, Tieman BC, Low CM, Fisher MT. Changing the nature of the initial chaperonin capture complex influences the substrate folding efficiency. J Biol Chem 1998; 273:25073-8. [PMID: 9737964 DOI: 10.1074/jbc.273.39.25073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For the chaperonin substrates, rhodanese, malate dehydrogenase (MDH), and glutamine synthetase (GS), the folding efficiencies, and the lifetimes of folding intermediates were measured with either the nucleotide-free GroEL or the activated ATP.GroEL.GroES chaperonin complex. With both nucleotide-free and activated complex, the folding efficiency of rhodanese and MDH remained high over a large range of GroEL to substrate concentration ratios (up to 1:1). In contrast, the folding efficiency of GS began to decline at ratios lower than 8:1. At ratios where the refolding yields were initially the same, only a relatively small increase (1.6-fold) in misfolding kinetics of MDH was observed with either the nucleotide-free or activated chaperonin complex. For rhodanese, no change was detected with either chaperonin complex. In contrast, GS lost its ability to interact with the chaperonin system at an accelerated rate (8-fold increase) when the activated complex instead of the nucleotide-free complex was used to rescue the protein from misfolding. Our data demonstrate that the differences in the refolding yields are related to the intrinsic folding kinetics of the protein substrates. We suggest that the early kinetic events at the substrate level ultimately govern successful chaperonin-substrate interactions and play a crucial role in dictating polypeptide flux through the chaperonin system. Our results also indicate that an accurate assessment of the transient properties of folding intermediates that dictate the initial chaperonin-substrate interactions requires the use of the activated complex as the interacting chaperonin species.
Collapse
Affiliation(s)
- P A Voziyan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | | | |
Collapse
|
882
|
Grimes JM, Stuart DI. Large unit cells and cellular mechanics. NATURE STRUCTURAL BIOLOGY 1998; 5 Suppl:630-4. [PMID: 9699610 DOI: 10.1038/1322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
883
|
Ma J, Karplus M. The allosteric mechanism of the chaperonin GroEL: a dynamic analysis. Proc Natl Acad Sci U S A 1998; 95:8502-7. [PMID: 9671707 PMCID: PMC21105 DOI: 10.1073/pnas.95.15.8502] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/1998] [Indexed: 02/08/2023] Open
Abstract
Normal mode calculations on individual subunits and a multisubunit construct are used to analyze the structural transitions that occur during the GroEL cycle. The normal modes demonstrate that the specific displacements of the domains (hinge bending, twisting) observed in the structural studies arise from the intrinsic flexibility of the subunits. The allosteric mechanism (positive cooperativity within a ring, negative cooperativity between rings) is shown to be based on coupled tertiary structural changes, rather than the quaternary transition found in classic allosteric proteins. The results unify static structural data from x-ray crystallography and cryoelectron microscopy with functional measurements of binding and cooperativity.
Collapse
Affiliation(s)
- J Ma
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
884
|
Abstract
The molecular chaperones are a diverse set of protein families required for the correct folding, transport and degradation of other proteins in vivo. There has been great progress in understanding the structure and mechanism of action of the chaperonin family, exemplified by Escherichia coli GroEL. The chaperonins are large, double-ring oligomeric proteins that act as containers for the folding of other protein subunits. Together with its co-protein GroES, GroEL binds non-native polypeptides and facilitates their refolding in an ATP-dependent manner. The action of the ATPase cycle causes the substrate-binding surface of GroEL to alternate in character between hydrophobic (binding/unfolding) and hydrophilic (release/folding). ATP binding initiates a series of dramatic conformational changes that bury the substrate-binding sites, lowering the affinity for non-native polypeptide. In the presence of ATP, GroES binds to GroEL, forming a large chamber that encapsulates substrate proteins for folding. For proteins whose folding is absolutely dependent on the full GroE system, ATP binding (but not hydrolysis) in the encapsulating ring is needed to initiate protein folding. Similarly, ATP binding, but not hydrolysis, in the opposite GroEL ring is needed to release GroES, thus opening the chamber. If the released substrate protein is still not correctly folded, it will go through another round of interaction with GroEL.
Collapse
Affiliation(s)
- N A Ranson
- Department of Crystallography, Birkbeck College London, Malet Street, London WC1E 7HX,
| | | | | |
Collapse
|
885
|
Kibbey RG, Rizo J, Gierasch LM, Anderson RG. The LDL receptor clustering motif interacts with the clathrin terminal domain in a reverse turn conformation. J Cell Biol 1998; 142:59-67. [PMID: 9660863 PMCID: PMC2133019 DOI: 10.1083/jcb.142.1.59] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/1998] [Revised: 05/29/1998] [Indexed: 02/08/2023] Open
Abstract
Previously the hexapeptide motif FXNPXY807 in the cytoplasmic tail of the LDL receptor was shown to be essential for clustering in clathrin-coated pits. We used nuclear magnetic resonance line-broadening and transferred nuclear Overhauser effect measurements to identify the molecule in the clathrin lattice that interacts with this hexapeptide, and determined the structure of the bound motif. The wild-type peptide bound in a single conformation with a reverse turn at residues NPVY. Tyr807Ser, a peptide that harbors a mutation that disrupts receptor clustering, displayed markedly reduced interactions. Clustering motif peptides interacted with clathrin cages assembled in the presence or absence of AP2, with recombinant clathrin terminal domains, but not with clathrin hubs. The identification of terminal domains as the primary site of interaction for FXNPXY807 suggests that adaptor molecules are not required for receptor-mediated endocytosis of LDL, and that at least two different tyrosine-based internalization motifs exist for clustering receptors in coated pits.
Collapse
Affiliation(s)
- R G Kibbey
- Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, 75235, USA
| | | | | | | |
Collapse
|
886
|
Abstract
Facilitated protein folding by the double toroidal bacterial chaperonin, GroEL/GroES, proceeds by a "two-stroke engine" mechanism in which an allosteric interaction between the two rings synchronizes the reaction cycle by controlling the binding and release of cochaperonin. Using chimeric chaperonin molecules assembled by fusing equatorial and apical domains derived from GroEL and its mammalian mitochondrial homolog, Hsp60, we show that productive folding by Hsp60 and its cognate cochaperonin, Hsp10, proceeds in vitro and in vivo without the formation of a two-ring structure. This simpler "one-stroke" engine works because Hsp60 has a different mechanism for the release of its cochaperonin cap and bound target protein.
Collapse
Affiliation(s)
- K L Nielsen
- Department of Biochemistry, New York University Medical Center, New York 10016, USA
| | | |
Collapse
|
887
|
Szpikowska BK, Swiderek KM, Sherman MA, Mas MT. MgATP binding to the nucleotide-binding domains of the eukaryotic cytoplasmic chaperonin induces conformational changes in the putative substrate-binding domains. Protein Sci 1998; 7:1524-30. [PMID: 9684884 PMCID: PMC2144052 DOI: 10.1002/pro.5560070705] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The eukaryotic cytosolic chaperonins are large heterooligomeric complexes with a cylindrical shape, resembling that of the homooligomeric bacterial counterpart, GroEL. In analogy to GroEL, changes in shape of the cytosolic chaperonin have been detected in the presence of MgATP using electron microscopy but, in contrast to the nucleotide-induced conformational changes in GroEL, no details are available about the specific nature of these changes. The present study identifies the structural regions of the cytosolic chaperonin that undergo conformational changes when MgATP binds to the nucleotide binding domains. It is shown that limited proteolysis with trypsin in the absence of MgATP cleaves each of the eight subunits approximately in half, generating two fragments of approximately 30 kDa. Using mass spectrometry (MS) and N-terminal sequence analysis, the cleavage is found to occur in a narrow span of the amino acid sequence, corresponding to the peptide binding regions of GroEL and to the helical protrusion, recently identified in the structure of the substrate binding domain of the archeal group II chaperonin. This proteolytic cleavage is prevented by MgATP but not by ATP in the absence of magnesium, ATP analogs (MgATPyS and MgAMP-PNP) or MgADP. These results suggest that, in analogy to GroEL, binding of MgATP to the nucleotide binding domains of the cytosolic chaperonin induces long range conformational changes in the polypeptide binding domains. It is postulated that despite their different subunit composition and substrate specificity, group I and group II chaperonins may share similar, functionally-important, conformational changes. Additional conformational changes are likely to involve a flexible helix-loop-helix motif, which is characteristic for all group II chaperonins.
Collapse
Affiliation(s)
- B K Szpikowska
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
888
|
Abstract
The thermosome, the chaperonin of the archaea, and its homologue from the cytosol of eukaryotes, known as TRiC or CCT, form a distinct subfamily of the chaperonins that does not depend on a co-chaperonin for protein folding activity. Recent structural data obtained by cryo- electron microscopy and X-ray crystallography provide the first insights into a novel mechanism remarkably different from that of the bacterial GroEL-GroES system.
Collapse
Affiliation(s)
- M Klumpp
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
889
|
Abstract
The Clp/Hsp100 molecular chaperones are unusual in their ability to tease apart protein aggregates and complexes. Recent results make a good case that these chaperones bind substrates via PDZ-like domains; this may reflect a general strategy for manipulating the] assembly state of substrate proteins.
Collapse
Affiliation(s)
- H P Feng
- Department of Chemistry, University of Massachusetts, Amherst 01003, USA
| | | |
Collapse
|
890
|
Kowalski JM, Kelly RM, Konisky J, Clark DS, Wittrup KD. Purification and functional characterization of a chaperone from Methanococcus jannaschii. Syst Appl Microbiol 1998; 21:173-8. [PMID: 9704106 DOI: 10.1016/s0723-2020(98)80021-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A chaperone from Methanococcus jannaschii has been purified to homogeneity with a single chromatographic step. The chaperone was identified and characterized using activity assays for characteristic chaperone abilities. The M. jannaschii chaperone binds unfolded proteins, protects proteins against heat-induced aggregation, and has a strongly temperature dependent ATPase activity. The chaperone has also been shown to inhibit the spontaneous refolding of a mesophilic protein at low temperatures. The purified chaperone complex has a M(r) of about 1,000,000 and consists of a single type of subunit with an approximate M(r) of 60,000. Analysis of partial sequence data reveals that this chaperone is the predicted protein product of the previously identified chaperonin gene in M. jannaschii (BULT et al., 1996). To our knowledge, this is the first functional characterization of a chaperone from a methanogen.
Collapse
Affiliation(s)
- J M Kowalski
- Department of Chemical Engineering, University of Illinois, Urbana, USA
| | | | | | | | | |
Collapse
|
891
|
Vinckier A, Gervasoni P, Zaugg F, Ziegler U, Lindner P, Groscurth P, Plückthun A, Semenza G. Atomic force microscopy detects changes in the interaction forces between GroEL and substrate proteins. Biophys J 1998; 74:3256-63. [PMID: 9635779 PMCID: PMC1299666 DOI: 10.1016/s0006-3495(98)78032-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The structure of the Escherichia coli chaperonin GroEL has been investigated by tapping-mode atomic force microscopy (AFM) under liquid. High-resolution images can be obtained, which show the up-right position of GroEL adsorbed on mica with the substrate-binding site on top. Because of this orientation, the interaction between GroEL and two substrate proteins, citrate synthase from Saccharomyces cerevisiae with a destabilizing Gly-->Ala mutation and RTEM beta-lactamase from Escherichia coli with two Cys-->Ala mutations, could be studied by force spectroscopy under different conditions. The results show that the interaction force decreases in the presence of ATP (but not of ATPgammaS) and that the force is smaller for native-like proteins than for the fully denatured ones. It also demonstrates that the interaction energy with GroEL increases with increasing molecular weight. By measuring the interaction force changes between the chaperonin and the two different substrate proteins, we could specifically detect GroEL conformational changes upon nucleotide binding.
Collapse
Affiliation(s)
- A Vinckier
- Department of Biochemistry, Swiss Federal Institute of Technology, ETH Zentrum, Zürich.
| | | | | | | | | | | | | | | |
Collapse
|
892
|
Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL, Cowan NJ. Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 1998; 93:863-73. [PMID: 9630229 DOI: 10.1016/s0092-8674(00)81446-4] [Citation(s) in RCA: 414] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe the discovery of a heterohexameric chaperone protein, prefoldin, based on its ability to capture unfolded actin. Prefoldin binds specifically to cytosolic chaperonin (c-cpn) and transfers target proteins to it. Deletion of the gene encoding a prefoldin subunit in S. cerevisiae results in a phenotype similar to those found when c-cpn is mutated, namely impaired functions of the actin and tubulin-based cytoskeleton. Consistent with prefoldin having a general role in chaperonin-mediated folding, we identify homologs in archaea, which have a class II chaperonin but contain neither actin nor tubulin. We show that by directing target proteins to chaperonin, prefoldin promotes folding in an environment in which there are many competing pathways for nonnative proteins.
Collapse
Affiliation(s)
- I E Vainberg
- Department of Biochemistry, New York University Medical Center, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
893
|
Horwich AL, Saibil HR. The thermosome: chaperonin with a built-in lid. NATURE STRUCTURAL BIOLOGY 1998; 5:333-6. [PMID: 9586988 DOI: 10.1038/nsb0598-333] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
894
|
Llorca O, Smyth MG, Marco S, Carrascosa JL, Willison KR, Valpuesta JM. ATP binding induces large conformational changes in the apical and equatorial domains of the eukaryotic chaperonin containing TCP-1 complex. J Biol Chem 1998; 273:10091-4. [PMID: 9553054 DOI: 10.1074/jbc.273.17.10091] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chaperonin-containing TCP-1 complex (CCT) is a heteromeric particle composed of eight different subunits arranged in two back-to-back 8-fold pseudo-symmetric rings. The structural and functional implications of nucleotide binding to the CCT complex was addressed by electron microscopy and image processing. Whereas ADP binding to CCT does not reveal major conformational differences when compared with nucleotide-free CCT, ATP binding induces large conformational changes in the apical and equatorial domains, shifting the latter domains up to 40 degrees (with respect to the inter-ring plane) compared with 10 degrees for nucleotide-free CCT or ADP-CCT. This equatorial ATP-induced shift has no counterpart in GroEL, its prokaryotic homologue, which suggests differences in the folding mechanism for CCT.
Collapse
Affiliation(s)
- O Llorca
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
895
|
Kad NM, Ranson NA, Cliff MJ, Clarke AR. Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings. J Mol Biol 1998; 278:267-78. [PMID: 9571049 DOI: 10.1006/jmbi.1998.1704] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ATPase cycle of GroE chaperonins has been examined by transient kinetics to dissect partial reactions in complexes where GroEL is asymmetrically loaded with nucleotides. The occupation of one heptameric ring by ADP does not inhibit the loading of the other with ATP nor does it prevent the consequent structural rearrangement to the "open" state. However, ADP binding completely inhibits ATP hydrolysis in the asymmetric complex, i.e. ATP cannot by hydrolysed when ADP is bound to the other ring. This non-competitive inhibition of the ATPase by ADP is consistent with a ring-switching, or "two-stroke", mechanism of the type: ATP:GroEL --> ADP:GroEL --> ADP:GroEL:ATP --> GroEL:ATP --> GroEL:ADP, i.e. with respect to the GroEL rings, ATP turns over in an alternating fashion. When the ATP-stabilized, "open" state is challenged with hexokinase and glucose, to quench the free ATP, the open state relaxes slowly (0.44 s-1) back to the apo (or closed) conformation. This rate, however, is three times faster than the hydrolytic step, showing that bound ATP is not committed to hydrolysis. When GroES is bound to the GroEL:ATP complex and the system is quenched in the same way, approximately half of the bound ATP undergoes hydrolysis on the chaperonin complex showing that the co-protein increases the degree of commitment. Thus, non-competitive inhibition of ATP hydrolysis, combined with the ability of the co-protein to block ligand exchange between rings has the effect of imposing a reciprocating cycle of reactions with ATP hydrolysing, and GroES binding, on each of the GroEL rings in turn. Taken together, these data imply that the dominant, productive steady state reaction in vivo is: GroEL:ATP:GroES --> GroEL:ADP:GroES --> ATP:GroEL:ADP:GroES --> ATP:GroEL:ADP --> GroES:ATP:GroEL:ADP --> GroES:ATP:GroEL for a hemi-cycle, and that significant inhibi tion of hydrolysis may arise through the formation of a dead-end ADP:GroEL:ATP:GroES complex.
Collapse
Affiliation(s)
- N M Kad
- Department of Biochemistry, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
896
|
Affiliation(s)
- S Chen
- Department of Crystallography, Birkbeck College, London, United Kingdom
| | | | | |
Collapse
|
897
|
Ditzel L, Löwe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 1998; 93:125-38. [PMID: 9546398 DOI: 10.1016/s0092-8674(00)81152-6] [Citation(s) in RCA: 318] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have determined to 2.6 A resolution the crystal structure of the thermosome, the archaeal group II chaperonin from T. acidophilum. The hexadecameric homolog of the eukaryotic chaperonin CCT/TRiC shows an (alphabeta)4(alphabeta)4 subunit assembly. Domain folds are homologous to GroEL but form a novel type of inter-ring contact. The domain arrangement resembles the GroEL-GroES cis-ring. Parts of the apical domains form a lid creating a closed conformation. The lid substitutes for a GroES-like cochaperonin that is absent in the CCT/TRiC system. The central cavity has a polar surface implicated in protein folding. Binding of the transition state analog Mg-ADP-AIF3 suggests that the closed conformation corresponds to the ATP form.
Collapse
Affiliation(s)
- L Ditzel
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
898
|
Abstract
Chaperones and foldases are two groups of accessory proteins which assist maturation of nascent peptides into functional proteins in cells. Protein disulfide isomerase, a foldase, and ATP-dependent proteases, responsible for degradation of misfolded proteins in cells, both have intrinsic chaperone activities. Trigger factor and DnaJ, well known Escherichia coli chaperones, show peptidyl prolyl isomerase and protein disulfide isomerase activities respectively. It is suggested that the combination of chaperone and enzyme activities in one molecule is the result of evolution to increase molecular efficiency.
Collapse
Affiliation(s)
- C C Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing, People's Republic of China
| | | |
Collapse
|
899
|
Abstract
Genetic and biochemical work has highlighted the biological importance of the GroEL/GroES (Hsp60/Hsp10; cpn60/cpn10) chaperone machine in protein folding. GroEL's donut-shaped structure has attracted the attention of structural biologists because of its elegance as well as the secrets (substrates) it can hide. The recent determination of the GroES and GroEL/GroES structures provides a glimpse of their plasticity, revealing dramatic conformational changes that point to an elaborate mechanism, coupling ATP hydrolysis to substrate release by GroEL.
Collapse
Affiliation(s)
- A Richardson
- Département de Biochimie Médicale, Université de Genève, Switzerland.
| | | | | |
Collapse
|
900
|
Abstract
Molecular chaperones are essential to all living organisms. Their key role consists of mediating protein folding within the cell. Recent functional studies have provided more detailed information about the function and regulation of the chaperone network. Highlights of the past year include the crystal structure determinations of the asymmetric GroEL-GroES complex and of their isolated peptide-binding domains.
Collapse
Affiliation(s)
- K Braig
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|