851
|
Hu J, Qi Q, August A. Itk derived signals regulate the expression of Th-POK and controls the development of CD4 T cells. PLoS One 2010; 5:e8891. [PMID: 20126642 PMCID: PMC2811181 DOI: 10.1371/journal.pone.0008891] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 01/07/2010] [Indexed: 11/18/2022] Open
Abstract
T cell development is critically dependent on both the environment and signals delivered by the T cell Receptor (TCR). The Tec family kinase Itk has been suggested to be an amplifier of signals emanating from the TCR and the loss of Itk partially affects most stages of thymopoiesis. Loss of Itk also differentially affects the development of conventional vs. non-conventional or innate memory phenotype T cells. Here, we examine whether these lineage choices are affected by a combination of TCR affinity and Itk by analyzing mice lacking Itk and carrying two TCR transgenes with differing affinities, OT-II and DO11.10. Our results show that developing thymocytes receive a gradient of signals, DO11.10>OT-II>DO11.10/Itk(-/-)>OT-II/Itk(-/-). We also show that the development of CD4(+) T cells is controlled by TCR signaling via Itk, which regulates the expression of the transcription factor, Th-POK, an enforcement factor for CD4 commitment. This results in a reduction in CD4(+) T cell development, and an increase in the development of MHC class II restricted TCR transgenic CD8(+) T cells that resemble non-conventional or innate memory phenotype CD8 T cells. This alteration accompanies increased expression of Runx3 and its target genes Eomesodermin, Granzyme B and Perforin in Itk null OT-II CD4(+) thymocytes. All together, these data suggest that Itk plays an important role in CD4/CD8 commitment by regulating signal thresholds for the lineage commitment. Our data also suggest that the lower level of TCR signaling that occurs with a low affinity TCR in the absence of Itk can redirect some MHC class II restricted CD4(+) T cell to class II-restricted CD8(+) innate memory phenotype T cells.
Collapse
Affiliation(s)
- Jianfang Hu
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Immunology and Infectious Disease Graduate Program, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Qian Qi
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Immunology and Infectious Disease Graduate Program, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Avery August
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
852
|
Regulation of primary alloantibody response through antecedent exposure to a microbial T-cell epitope. Blood 2010; 115:3989-96. [PMID: 20086249 DOI: 10.1182/blood-2009-08-238568] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Humoral alloimmunization to red blood cell (RBC) antigens is a clinically significant problem that can lead to transfusion reactions and difficulty in locating future compatible blood for transfusion. However, factors regulating responder/nonresponder status are only partially understood. Herein, we identify a series of microbes with 100% identity in 8- to 9-amino acid peptides containing the variant amino acids in Kell, Kidd, and Duffy antigens. To test the hypothesis that infection with such a microbe could predispose to RBC alloimmunization, a mouse model was developed using murine polyoma virus expressing a defined CD4(+) T-cell epitope ovalbumin(323-339) ((OVA)(323-339)) and subsequent transfusion with RBCs expressing a B-cell epitope (hen egg lysozyme [HEL]) fused to (OVA)(323-339). Whereas infection alone induced no detectable anti-HEL, subsequent RBC transfusion induced 100- to 1000-fold more anti-HEL in mice that had been previously infected compared with control mice. This effect did not occur with wild-type polyoma virus or RBCs expressing HEL alone. Together, these data indicate that prior exposure to a pathogen with small peptide homology to RBC antigens can lead to an enhanced primary alloantibody response. As such priming is not detectable by current clinical tests, it is unknown to what extent this occurs in human alloimmunization.
Collapse
|
853
|
Lawson VJ, Weston K, Maurice D. Early growth response 2 regulates the survival of thymocytes during positive selection. Eur J Immunol 2010; 40:232-41. [PMID: 19877014 DOI: 10.1002/eji.200939567] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The early growth response (Egr) transcription factor family regulates multiple steps during T-cell development. We examine here the role played by Egr2 in positive selection. In double-positive cells, Egr2 is upregulated immediately following TCR ligation, and its expression requires both the MAPK and calcineurin signaling pathways. Inducible transgenic and knockout mice were generated to cause gain- or loss-of-function of Egr2 in double-positive cells, and had reciprocal effects; more mature single-positive cells were made when Egr2 was overexpressed, and fewer when Egr2 was absent. These defects were associated with changes in the survival of positively selected cells rather than perturbation of positive selection or immediate post-selection signaling. The survival function of Egr2 at least partly depends upon its ability to activate the cytokine-mediated survival pathway, likely through negative regulation of both the IL-7R and suppressor of cytokine signaling 1 (Socs1), the molecular switch whose downregulation normally results in restored responsiveness to cytokine signaling following selection. While gain of Egr2 caused a decrease in Socs1 mRNA, loss of Egr2 resulted in downregulation of IL-7R, upregulation of Socs1, and inhibition of Stat5 phosphorylation and IL-7-mediated survival post-selection. Therefore, expression of Egr2 following positive selection links the initial TCR signaling event to subsequent survival of signaled cells.
Collapse
Affiliation(s)
- Victoria J Lawson
- Section of Cell and Molecular Biology, Institute of Cancer Research, London, UK
| | | | | |
Collapse
|
854
|
Martino A, Badell E, Abadie V, Balloy V, Chignard M, Mistou MY, Combadière B, Combadière C, Winter N. Mycobacterium bovis bacillus Calmette-Guérin vaccination mobilizes innate myeloid-derived suppressor cells restraining in vivo T cell priming via IL-1R-dependent nitric oxide production. THE JOURNAL OF IMMUNOLOGY 2010; 184:2038-47. [PMID: 20083674 DOI: 10.4049/jimmunol.0903348] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Early immune response to the largely used Mycobacterium bovis bacillus Calmette-Guérin (BCG) intradermal vaccine remains ill defined. Three days after BCG inoculation into the mouse ear, in addition to neutrophils infiltrating skin, we observed CD11b(+)Ly-6C(int)Ly-6G(-) myeloid cells. Neutrophil depletion markedly enhanced their recruitment. These cells differed from inflammatory monocytes and required MyD88-dependent BCG-specific signals to invade skin, whereas neutrophil influx was MyD88 independent. Upon BCG phagocytosis, CD11b(+)Ly-6C(int)Ly-6G(-) cells produced NO, which required the IL-1 receptor. Despite NO production, they were unable to kill BCG or the nonpathogenic Mycobacterium smegmatis. However, they markedly impaired T cell priming in the draining lymph node. Their elimination by all-trans retinoid acid treatment increased the number of IFN-gamma-producing CD4 T cells. Thus, BCG vaccination recruits innate myeloid-derived suppressor cells, akin to mouse tumor-infiltrating cells. These propathogenic cells dampen the early T cell response and might facilitate BCG persistence.
Collapse
Affiliation(s)
- Angelo Martino
- Institut Pasteur Unité Génétique Mycobactérienne, Université Pierre et Marie Curie-Paris 6, AP-HP Groupe Hospitalier Pitié-Salpétrière Service d'Immunologie, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
855
|
PI3K p110delta regulates T-cell cytokine production during primary and secondary immune responses in mice and humans. Blood 2010; 115:2203-13. [PMID: 20081091 DOI: 10.1182/blood-2009-07-232330] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously described critical and nonredundant roles for the phosphoinositide 3-kinase p110delta during the activation and differentiation of naive T cells, and p110delta inhibitors are currently being developed for clinical use. However, to effectively treat established inflammatory or autoimmune diseases, it is important to be able to inhibit previously activated or memory T cells. In this study, using the isoform-selective inhibitor IC87114, we show that sustained p110delta activity is required for interferon-gamma production. Moreover, acute inhibition of p110delta inhibits cytokine production and reduces hypersensitivity responses in mice. Whether p110delta played a similar role in human T cells was unknown. Here we show that IC87114 potently blocked T-cell receptor-induced phosphoinositide 3-kinase signaling by both naive and effector/memory human T cells. Importantly, IC87114 reduced cytokine production by memory T cells from healthy and allergic donors and from inflammatory arthritis patients. These studies establish that previously activated memory T cells are at least as sensitive to p110delta inhibition as naive T cells and show that mouse models accurately predict p110delta function in human T cells. There is therefore a strong rationale for p110delta inhibitors to be considered for therapeutic use in T-cell-mediated autoimmune and inflammatory diseases.
Collapse
|
856
|
Baaten BJG, Li CR, Deiro MF, Lin MM, Linton PJ, Bradley LM. CD44 regulates survival and memory development in Th1 cells. Immunity 2010; 32:104-15. [PMID: 20079666 DOI: 10.1016/j.immuni.2009.10.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/29/2009] [Accepted: 10/19/2009] [Indexed: 11/28/2022]
Abstract
Optimal immunity to microorganisms depends upon the regulated death of clonally expanded effector cells and the survival of a cohort of cells that become memory cells. After activation of naive T cells, CD44, a widely expressed receptor for extracellular matrix components, is upregulated. High expression of CD44 remains on memory cells and despite its wide usage as a "memory marker," its function is unknown. Here we report that CD44 was essential for the generation of memory T helper 1 (Th1) cells by promoting effector cell survival. This dependency was not found in Th2, Th17, or CD8(+) T cells despite similar expression of CD44 and the absence of splice variants in all subsets. CD44 limited Fas-mediated death in Th1 cells and its ligation engaged the phosphoinositide 3-kinase-Akt kinase signaling pathway that regulates cell survival. The difference in CD44-regulated apoptosis resistance in T cell subpopulations has important implications in a broad spectrum of diseases.
Collapse
Affiliation(s)
- Bas J G Baaten
- Infectious and Inflammatory Diseases Center, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
857
|
Skin-draining lymph nodes contain dermis-derived CD103(-) dendritic cells that constitutively produce retinoic acid and induce Foxp3(+) regulatory T cells. Blood 2010; 115:1958-68. [PMID: 20068222 DOI: 10.1182/blood-2009-09-245274] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Small intestinal CD103(+) dendritic cells (DCs) have the selective ability to promote de novo generation of regulatory T cells via the production of retinoic acid (RA). Considering that aldehyde dehydrogenase (ALDH) activity controls the production of RA, we used a flow cytometry-based assay to measure ALDH activity at the single-cell level and to perform a comprehensive analysis of the RA-producing DC populations present in lymphoid and nonlymphoid mouse tissues. RA-producing DCs were primarily of the tissue-derived, migratory DC subtype and can be readily found in the skin and in the lungs as well as in their corresponding draining lymph nodes. The RA-producing skin-derived DCs were capable of triggering the generation of regulatory T cells, a finding demonstrating that the presence of RA-producing, tolerogenic DCs is not restricted to the intestinal tract as previously thought. Unexpectedly, the production of RA by skin DCs was restricted to CD103(-) DCs, indicating that CD103 expression does not constitute a "universal" marker for RA-producing mouse DCs. Finally, Toll-like receptor (TLR) triggering or the presence of a commensal microflora was not essential for the induction of ALDH activity in the discrete ALDH(+) DC subsets that characterize tissues constituting environmental interfaces.
Collapse
|
858
|
Ikeuchi N, Futami J, Hosoi A, Noji S, Kurachi M, Ueha S, Fujii SI, Yamada H, Matsushima K, Moriyasu F, Kakimi K. Efficient cross-presentation of soluble exogenous antigens introduced into dendritic cells using a weak-based amphiphilic peptide. Biochem Biophys Res Commun 2010; 392:217-22. [PMID: 20067764 DOI: 10.1016/j.bbrc.2010.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Accepted: 01/07/2010] [Indexed: 01/25/2023]
Abstract
To develop a novel dendritic cell (DC)-based vaccine for inducing antigen-specific CD8+ T cell responses by cross-presentation, we tested a novel antigen delivery system that introduces soluble antigens into the cytosol of cells by an endocytosis-mediated mechanism which avoids damaging the plasma membrane ("Endo-Porter"). Proteins released from endosomes into the cytoplasm are degraded by the proteasome, and fragmented antigenic peptides are presented to the classical cytosolic MHC class I pathway. DCs pulsed with OVA protein in the presence of Endo-Porter efficiently stimulate OVA peptide-specific CD8+ T (OT-I) cells. Although this agent diverts some of the endocytosed antigens away from the classical MHC class II-restricted presentation pathway to the class I pathway, the activation of CD4+ T cells was found not to be hampered by Endo-Porter-mediated antigen delivery. On the contrary, it was rather augmented, probably due to the increased uptake of antigen. Because specific CD4+ T cell help is required to license DCs for cross-priming, Endo-Porter-mediated antigen delivery is a promising approach for developing more efficient cancer vaccines targeting both CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Nobuhito Ikeuchi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
859
|
Tu L, Moriya C, Imai T, Ishida H, Tetsutani K, Duan X, Murata S, Tanaka K, Shimokawa C, Hisaeda H, Himeno K. Critical role for the immunoproteasome subunit LMP7 in the resistance of mice to Toxoplasma gondii infection. Eur J Immunol 2010; 39:3385-94. [PMID: 19830724 DOI: 10.1002/eji.200839117] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteasome-mediated proteolysis is responsible for the generation of immunogenic epitopes presented by MHC class I molecules, which activate antigen-specific CD8+ T cells. Immunoproteasomes, defined by the presence of the three catalytic subunits LMP2, MECL-1, and LMP7, have been hypothesized to optimize MHC class I antigen processing. In this study, we demonstrate that the infection of mice with a protozoan parasite, Toxoplasma gondii, induced the expression of LMP7 mRNA in APC and increased the capacity of APC to induce the production of IFN-gamma by antigen-specific CD8+ T cells. In vitro infection of a DC cell line with T. gondii also induced the expression of LMP7 and resulted in enhanced proteasome proteolytic activity. Finally, mice lacking LMP7 were highly susceptible to infection with T. gondii and showed a reduced number of functional CD8+ T cells. These results demonstrate that proteasomes containing LMP7 play an indispensable role in the survival of mice infected with T. gondii, presumably due to the efficient generation of CTL epitopes required for the functional development of CD8+ T cells.
Collapse
Affiliation(s)
- Liping Tu
- Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
860
|
Bar-On L, Jung S. Defining in vivo dendritic cell functions using CD11c-DTR transgenic mice. Methods Mol Biol 2010; 595:429-42. [PMID: 19941129 DOI: 10.1007/978-1-60761-421-0_28] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The study of dendritic cell involvement in complex phenomena that rely on multi-cellular interactions, such as immune homeostasis, stimulation, and tolerization, called for the investigation of dendritic cell functions within physiological context. To this end we have developed a conditional cell ablation strategy that is based on dendritic cell-restricted expression of a Diphtheria Toxin receptor (DTR) using the CD11c/Itgax promoter. Here, we provide basic protocols that describe the use of this prototypic dendritic cell ablation model and highlight pitfalls and strengths of the approach.
Collapse
Affiliation(s)
- Liat Bar-On
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
861
|
A T cell-binding fragment of fibrinogen can prevent autoimmunity. J Autoimmun 2009; 34:453-9. [PMID: 20036106 DOI: 10.1016/j.jaut.2009.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 11/29/2022]
Abstract
The C-terminal domain of the fibrinogen gamma chain (gammaC) has been shown to bind to the integrins alphaIIbbeta3, alphaMbeta2 and alphaVbeta3. It has also been reported that a peptide derived from the alphaMbeta2-binding site of gammaC can suppress an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Here we have truncated gammaC at position 399 to remove the prothrombotic alphaIIbbeta3-binding site. We show that this truncated version of gammaC, termed gammaC399tr, can bind to activated T cells. In addition, T cells incubated with gammaC399tr secreted less IFN-gamma when stimulated with antigen and APC; however, cytokine secretion was unaltered when T cells were stimulated non-specifically with a mixture of anti-CD3 and anti-CD28 antibodies. Thus, only antigen-dependent T cell activation is inhibited by gammaC399tr. When administered intraperitoneally, gammaC399tr potently inhibited actively induced EAE and reversed ongoing disease. We hypothesize that the ability of gammaC399tr to inhibit autoreactive immune responses is a result of its ability to bind integrins. This activity was not solely dependent on the alphaMbeta2 integrin-binding site. When polyalanine was substituted for the alphaMbeta2-binding site, the resulting gammaC390polyA was still able to inhibit EAE. To our knowledge, this is the first demonstration that T cells can bind to fibrin (ogen), an important extracellular matrix protein that is deposited at sites of inflammation. Our results also identify gammaC399tr as a novel therapeutic molecule.
Collapse
|
862
|
Prokopowicz ZM, Arce F, Biedroń R, Chiang CLL, Ciszek M, Katz DR, Nowakowska M, Zapotoczny S, Marcinkiewicz J, Chain BM. Hypochlorous acid: a natural adjuvant that facilitates antigen processing, cross-priming, and the induction of adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2009; 184:824-35. [PMID: 20018624 DOI: 10.4049/jimmunol.0902606] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The production of hypochlorous acid (HOCl) is a characteristic of granulocyte activation, a hallmark of the early phase of innate immune responses. In this study, we show that, in addition to its well-established role as a microbicide, HOCl can act as a natural adjuvant of adaptive immunity. HOCl enhances the T cell responses to the model Ag OVA, facilitating the processing and presentation of this protein via the class II MHC pathway. HOCl modification also enhances cross-presentation of the tumor Ag tyrosinase-related protein 2 via class I MHC. The adjuvant effects of HOCl are independent of TLR signaling. The enhanced presentation of HOCl-modified OVA is mediated via modification of the N-linked carbohydrate side chain rather than formation of protein aldehydes or chloramines. HOCl-modified OVA is taken up more efficiently by APCs and is degraded more efficiently by proteinases. Atomic force microscopy demonstrated that enhanced uptake is mediated via specific receptor binding, one candidate for which is the scavenger receptor lectin-like oxidized low-density lipoprotein receptor, which shows enhanced binding to chlorinated OVA. A function of HOCl is therefore to target glycoprotein Ags to scavenger receptors on the APC surface. This additional mechanism linking innate and adaptive immunity suggests novel strategies to enhance immunity to vaccines.
Collapse
Affiliation(s)
- Zofia M Prokopowicz
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
863
|
Watford WT, Wang CC, Tsatsanis C, Mielke LA, Eliopoulos AG, Daskalakis C, Charles N, Odom S, Rivera J, O'Shea J, Tsichlis PN. Ablation of tumor progression locus 2 promotes a type 2 Th cell response in Ovalbumin-immunized mice. THE JOURNAL OF IMMUNOLOGY 2009; 184:105-13. [PMID: 19955521 DOI: 10.4049/jimmunol.0803730] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The protein kinase encoded by the Tpl2 proto-oncogene regulates ERK activation and cytokine gene expression in macrophages in response to LPS and TNF-alpha. In this study we show that OVA-immunized Tpl2(-/-) mice express high levels of IgE and develop more severe bronchoalveolar eosinophilic inflammation than Tpl2(+/+) controls, when challenged with OVA intranasally. Bronchoalveolar exudates and supernatants of OVA-stimulated splenocytes from immunized Tpl2(-/-) mice express elevated levels of IL-4 and IL-5, suggesting that Tpl2 ablation promotes the Th2 polarization of the T cell response. Anti-CD3 stimulation of CD4(+) T cells of wild-type and Tpl2 knockout mice revealed that Tpl2 ablation gives rise to a cell autonomous T cell defect that is primarily responsible for the Th2 polarization of the T cell response to Ag. This observation was further supported by experiments addressing the expression of Th1 and Th2 cytokines in OVA-stimulated mixed cultures of CD4(+) T cells from Tpl2(+/+)/OT2 or Tpl2(-/-)/OT2 mice and dendritic cells from Tpl2(+/+) or Tpl2(-/-) mice. Further studies revealed that Th1 cells express significantly higher levels of Tpl2 than Th2 cells. As a result, Tpl2(-/-) Th1 cells exhibit a stronger defect in ERK activation by anti-CD3 than Th2 cells and express low levels of T-bet. Given that the development of Th1 and Th2 cells depends on positive feedback signals from the T cells, themselves, the functional defect of the Tpl2(-/-) Th1 cells provides a mechanistic explanation for the T cell autonomous Th2 polarization in Tpl2(-/-) mice.
Collapse
Affiliation(s)
- Wendy T Watford
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
864
|
Hu B, Yang H, Dai B, Tai A, Wang P. Nonintegrating lentiviral vectors can effectively deliver ovalbumin antigen for induction of antitumor immunity. Hum Gene Ther 2009; 20:1652-64. [PMID: 19663564 PMCID: PMC2799785 DOI: 10.1089/hum.2009.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 08/06/2009] [Indexed: 11/13/2022] Open
Abstract
It has been demonstrated that nonintegrating lentiviral vectors (NILVs) are efficient in maintaining transgene expression in vitro and in vivo. Gene delivery by NILVs can significantly reduce nonspecific vector integration, which has been shown to cause malignant transformation in patients receiving gene therapy for X-linked severe combined immunodeficiency. Strong and sustained immune responses were observed after a single immunization with NILVs carrying viral antigens. However, there is no report to date that evaluates the efficacy of NILVs in inducing antigen-specific antitumor immunity. Using a well-characterized tumor model, we tested in vivo immunization with a self-inactivating lentiviral vector harboring a defective integrase. A high frequency of ovalbumin peptide (OVAp1)-specific CD8(+) T cells and a substantial antibody response were detected in naive mice immunized with an NILV encoding an OVA transgene. Furthermore, this immunization method completely protected the mice against the growth of E.G7 tumor cells expressing the OVA antigen. Thus, this study provides evidence that immunization using NILVs can be a safe and promising approach for exploring cancer immunotherapy.
Collapse
Affiliation(s)
- Biliang Hu
- Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
865
|
Kruse N, Neumann K, Schrage A, Derkow K, Schott E, Erben U, Kühl A, Loddenkemper C, Zeitz M, Hamann A, Klugewitz K. Priming of CD4+ T cells by liver sinusoidal endothelial cells induces CD25low forkhead box protein 3- regulatory T cells suppressing autoimmune hepatitis. Hepatology 2009; 50:1904-13. [PMID: 19787806 DOI: 10.1002/hep.23191] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Elucidating cellular mechanisms that maintain the intrahepatic immune balance is crucial to our understanding of viral or autoimmune liver diseases and allograft acceptance. Liver sinusoidal endothelial cells (LSECs) play an important role in modifying local immune responses to tolerance in major histocompatibility complex (MHC) I-restricted models, whereas their contribution in the MHCII context is still controversial. In an MHCII chimeric mouse model that excludes MHCII-mediated antigen presentation by professional antigen-presenting cells, we demonstrated that LSECs prime CD4(+) T cells to a CD45RB(low) memory phenotype lacking marker cytokine production for effector cells that was stable in vivo following immunogenic antigen re-encounter. Although these cells, which we term T(LSEC), had the capacity to enter lymph nodes and the liver, they did not function as effector cells either in a delayed-type hypersensitivity reaction or in a hepatitis model. T(LSEC) inhibited the proliferation of naïve CD4(+) T cells in vitro although being CD25(low) and lacking expression of forkhead box protein (FoxP)3. Furthermore, these cells suppressed hepatic inflammation as monitored by alanine aminotransferase levels and cellular infiltrates in a T cell-mediated autoimmune hepatitis model in vivo. CONCLUSION T(LSEC) first described here might belong to the expanding group of FoxP3(-) regulatory T cells. Our findings strengthen the previously discussed assumption that CD4(+) T cell priming by nonprofessional antigen-presenting cells induces anti-inflammatory rather than proinflammatory phenotypes. Because recruitment of CD4(+) T cells is increased upon hepatic inflammation, T(LSEC) might contribute to shifting antigen-dependent immune responses to tolerance toward exogenous antigens or toward endogenous self-antigens, especially under inflammatory conditions.
Collapse
Affiliation(s)
- Nils Kruse
- Medical Clinic I, Charité Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
866
|
Ciabattini A, Pettini E, Arsenijevic S, Pozzi G, Medaglini D. Intranasal immunization with vaccine vector Streptococcus gordonii elicits primed CD4+ and CD8+ T cells in the genital and intestinal tracts. Vaccine 2009; 28:1226-33. [PMID: 19945415 DOI: 10.1016/j.vaccine.2009.11.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/30/2009] [Accepted: 11/09/2009] [Indexed: 01/01/2023]
Abstract
Generation of primed T cells is crucial for the development of optimal vaccination strategies. Using a TCR-transgenic CD4(+) and CD8(+) T cell adoptive transfer model, we demonstrate that a single nasal immunization with recombinant Streptococcus gordonii induces antigen-specific primed T cells in lymph nodes draining the genital and intestinal tracts with about 80% of CD4(+) and 50% of CD8(+) proliferating cells. T cell clonal expansion was also observed in cervical lymph nodes, draining the immunization site, and in the spleen. The modulation of CD44 and CD45RB marker expression indicated that proliferating T cells were activated. Proliferation in distal mesenteric and iliac lymph nodes and in the spleen was observed 5 days after nasal immunization, while in draining cervical lymph nodes proliferation peaked already at day 3. The division profile of transgenic T cells observed in iliac and mesenteric lymph nodes was discontinuous, showing the lack of early cell divisions. The kinetics of T cell clonal expansion, the discontinuous division profile and the modulation of migration markers such as CD62L suggest that activated antigen-specific T cells disseminate from the immunization site to distal intestinal and genital tracts. These data demonstrate the efficacy of nasal immunization with recombinant S. gordonii in eliciting CD4(+) and CD8(+) T cell priming not only in draining sites, but also in the genital and intestinal tracts and in the spleen.
Collapse
Affiliation(s)
- Annalisa Ciabattini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena, Italy
| | | | | | | | | |
Collapse
|
867
|
Sexton A, Whitney PG, Chong SF, Zelikin AN, Johnston APR, De Rose R, Brooks AG, Caruso F, Kent SJ. A protective vaccine delivery system for in vivo T cell stimulation using nanoengineered polymer hydrogel capsules. ACS NANO 2009; 3:3391-400. [PMID: 19824668 DOI: 10.1021/nn900715g] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Successful delivery of labile vaccine antigens, such as peptides and proteins, to stimulate CD4 and CD8 T cell immunity could improve vaccine strategies against chronic infections such as HIV and Hepatitis C. Layer-by-layer (LbL)-assembled nanoengineered hydrogel capsules represent a novel and promising technology for the protection and delivery of labile vaccine candidates to antigen-presenting cells (APCs). Here we report on the in vitro and in vivo immunostimulatory capabilities of LbL-assembled disulfide cross-linked poly(methacrylic acid) (PMA(SH)) hydrogel capsules as a delivery strategy for protein and peptide vaccines using robust transgenic mice models and ovalbumin (OVA) as a model vaccine. We demonstrate that OVA protein as well as multiple OVA peptides can be successfully encapsulated within nanoengineered PMA(SH) hydrogel capsules. OVA-containing PMA(SH) capsules are internalized by mouse APCs, resulting in presentation of OVA epitopes and subsequent activation of OVA-specific CD4 and CD8 T cells in vitro. OVA-specific CD4 and CD8 T cells are also activated to proliferate in vivo following intravenous vaccination of mice with OVA protein- and OVA peptide-loaded PMA(SH) hydrogel capsules. Furthermore, we show that OVA encapsulated within the PMA(SH) capsules resulted in at least 6-fold greater proliferation of OVA-specific CD8 T cells and 70-fold greater proliferation of OVA-specific CD4 T cells in vivo compared to the equivalent amount of OVA protein administered alone. These results highlight the potential of nanoengineered hydrogel capsules for vaccine delivery.
Collapse
Affiliation(s)
- Amy Sexton
- Department of Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
868
|
Kelly M, Bharadwaj AS, Tacke F, Chao H. Regulatory T cells and immune tolerance to coagulation factor IX in the context of intramuscular AAV1 gene transfer. Mol Ther 2009; 18:361-9. [PMID: 19935782 DOI: 10.1038/mt.2009.269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Regulatory T cells play a major role in induction and maintenance of immune tolerance and immunological homeostasis. A variety of strategies have been attempted to induce regulatory T cells for control of unwanted, adverse immunity in autoimmune diseases, transplantation as well as gene transfer. We recently reported efficient induction of immune tolerance to coagulation factor IX (FIX) following intramuscular AAV1 gene transfer. In the current study, we performed a systematic and comprehensive examination of the role and function of regulatory T cells in induction and maintenance of FIX tolerance in the context of intramuscular AAV1 gene transfer. We observed no significant upregulation of regulatory T cells in the FIX-tolerant mice. In addition, adoptive transfer of splenocytes from FIX-tolerant mice did not suppress anti-hFIX immunity in recipient mice. Both in vitro and in vivo depletion of regulatory T cells failed to reverse FIX tolerance. These observations revealed that regulatory T cells do not play a significant role in the maintenance/protection of the established FIX tolerance. Our results provide critical insight into the role and function of regulatory T cells in induction and maintenance/protection of immune tolerance in gene transfer, complementing the current paradigm of immune tolerance mechanism.
Collapse
Affiliation(s)
- Meagan Kelly
- Division of Hematology/Oncology, Cancer Institute, Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
869
|
Zamisch M, Tian L, Grenningloh R, Xiong Y, Wildt KF, Ehlers M, Ho IC, Bosselut R. The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. ACTA ACUST UNITED AC 2009; 206:2685-99. [PMID: 19917777 PMCID: PMC2806616 DOI: 10.1084/jem.20092024] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The transcription factor Ets1 contributes to the differentiation of CD8 lineage cells in the thymus, but how it does so is not understood. In this study, we demonstrate that Ets1 is required for the proper termination of CD4 expression during the differentiation of major histocompatability class 1 (MHC I)–restricted thymocytes, but not for other events associated with their positive selection, including the initiation of cytotoxic gene expression, corticomedullary migration, or thymus exit. We further show that Ets1 promotes expression of Runx3, a transcription factor important for CD8 T cell differentiation and the cessation of Cd4 gene expression. Enforced Runx3 expression in Ets1-deficient MHC I–restricted thymocytes largely rescued their impaired Cd4 silencing, indicating that Ets1 is not required for Runx3 function. Finally, we document that Ets1 binds at least two evolutionarily conserved regions within the Runx3 gene in vivo, supporting the possibility that Ets1 directly contributes to Runx3 transcription. These findings identify Ets1 as a key player during CD8 lineage differentiation and indicate that it acts, at least in part, by promoting Runx3 expression.
Collapse
Affiliation(s)
- Monica Zamisch
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
870
|
Different cross-presentation pathways in steady-state and inflammatory dendritic cells. Proc Natl Acad Sci U S A 2009; 106:20377-81. [PMID: 19918052 DOI: 10.1073/pnas.0910295106] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Presentation of exogenous antigens on MHC class I molecules, termed cross-presentation, is essential for the induction of CD8 T-cell responses and is carried out by specialized dendritic cell (DC) subsets. The mechanisms involved remain unclear. It has been proposed that antigens could be transported by endocytic receptors, such as the mannose receptor (MR) in the case of soluble ovalbumin, into early endosomes in which the cross-presentation machinery would be recruited. In these endosomal compartments, peptides would be trimmed by the aminopeptidase IRAP before loading onto MHC class I molecules. Here, we have investigated the contribution of this pathway to cross-presentation by steady-state CD8(+) DC and inflammatory monocyte-derived DC (moDC) generated in vivo. We demonstrate that IRAP and MR are dispensable for cross-presentation by CD8(+) DC and for cross-priming. Moreover, we could not find any evidence for diversion of endocytosed antigen into IRAP-containing endosomes in these cells. However, cross-presentation was impaired in moDC deficient in IRAP or MR, confirming the role of these two molecules in inflammatory DC. These results demonstrate that the mechanisms responsible for cross-priming by steady-state and inflammatory DC are different, which has important implications for vaccine design.
Collapse
|
871
|
Houston EG, Fink PJ. MHC drives TCR repertoire shaping, but not maturation, in recent thymic emigrants. THE JOURNAL OF IMMUNOLOGY 2009; 183:7244-9. [PMID: 19915060 DOI: 10.4049/jimmunol.0902313] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
After developing in the thymus, recent thymic emigrants (RTEs) enter the lymphoid periphery and undergo a maturation process as they transition into the mature naive (MN) T cell compartment. This maturation presumably shapes RTEs into a pool of T cells best fit to function robustly in the periphery without causing autoimmunity; however, the mechanism and consequences of this maturation process remain unknown. Using a transgenic mouse system that specifically labels RTEs, we tested the influence of MHC molecules, key drivers of intrathymic T cell selection and naive peripheral T cell homeostasis, in shaping the RTE pool in the lymphoid periphery. We found that the TCRs expressed by RTEs are skewed to longer CDR3 regions compared with those of MN T cells, suggesting that MHC does streamline the TCR repertoire of T cells as they transition from the RTE to the MN T cell stage. This conclusion is borne out in studies in which the representation of individual TCRs was followed as a function of time since thymic egress. Surprisingly, we found that MHC is dispensable for the phenotypic and functional maturation of RTEs.
Collapse
Affiliation(s)
- Evan G Houston
- Department of Immunology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
872
|
Tanaka S, Yoshimoto T, Naka T, Nakae S, Iwakura YI, Cua D, Kubo M. Natural occurring IL-17 producing T cells regulate the initial phase of neutrophil mediated airway responses. THE JOURNAL OF IMMUNOLOGY 2009; 183:7523-30. [PMID: 19890042 DOI: 10.4049/jimmunol.0803828] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Effector Th17 cells are a major source of IL-17, a critical inflammatory cytokine in autoimmune diseases and in host defenses during bacterial infections. Recently, splenic lymphoid tissue inducer-like cells have been reported to be a source of T cell independent IL-17. In this study, we report that the immune system contains a unique set of natural occurring IL-17 producing cell, "natural" Th17 (nTh17), which are a memory-like T cell subset. The nTh17 cells can develop in the absence of the IL-6/STAT3 signaling axis required by inducible Th17 cells. The nTh17 cell population is distinct from conventional inducible Th17 cells, since nTh17 cells express substantial amounts of IL-17A (IL-17), but not IL-17F, under the control of the master regulator, RORgammat. The nTh17 cells simultaneously produce IFN-gamma. DO11.10 transgenic mice with a Rag(-/-) background (DO11.10 Rag(-/-)) lack nTh17 cells, and, following intranasal administration of OVA, IL-17-dependent neutrophil infiltration occurs in DO11.10 transgenic mice, but not in DO11.10 Rag(-/-) mice. The impaired neutrophil-dependent airway response is restored by adaptive transfer of nTh17 cells into DO11.10 Rag(-/-) mice. These results demonstrate that a novel T cell subset, nTh17, facilitates the early phase of Ag-induced airway responses and host defenses against pathogen invasion before the establishment of acquired immunity.
Collapse
Affiliation(s)
- Shinya Tanaka
- Laboratory for Signal Network, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Tsurumi, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
873
|
Yang T, Martin ML, Nielsen JS, Milne K, Wall EM, Lin W, Watson PH, Nelson BH. Mammary tumors with diverse immunological phenotypes show differing sensitivity to adoptively transferred CD8+ T cells lacking the Cbl-b gene. Cancer Immunol Immunother 2009; 58:1865-75. [PMID: 19350239 PMCID: PMC11030869 DOI: 10.1007/s00262-009-0698-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 03/12/2009] [Indexed: 12/14/2022]
Abstract
We tested the efficacy of CD8+ T cells lacking the Cbl-b gene against a panel of mammary tumor lines with different intrinsic sensitivities to T cells. Mice bearing established tumors expressing an ovalbumin-tagged version of HER-2/neu underwent adoptive transfer with Cbl-b-replete or -null CD8+ T cells from OT-I T cell receptor transgenic donor mice. In general, Cbl-b-null OT-I cells showed enhanced expansion, persistence, and capacity for tumor infiltration. This resulted in markedly enhanced efficacy against two tumor lines that normally demonstrate complete (NOP21) or partial (NOP23) regression. Moreover, a third tumor line (NOP6) that normally demonstrates progressive disease underwent complete regression in response to Cbl-b-null OT-I cells. However, a fourth tumor line (NOP18) was resistant to Cbl-b-null OT-I cells owing to a profound barrier to lymphocyte infiltration. Thus, Cbl-b-null CD8+ T cells are generally more efficacious but are nonetheless unable to mediate curative responses against all tumor phenotypes.
Collapse
Affiliation(s)
- Taimei Yang
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Avenue, Victoria, BC V8R 6V5, Canada
| | - Michele L. Martin
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Avenue, Victoria, BC V8R 6V5, Canada
- Department of Biology, University of Victoria, Victoria, BC Canada
| | - Julie S. Nielsen
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Avenue, Victoria, BC V8R 6V5, Canada
| | - Katy Milne
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Avenue, Victoria, BC V8R 6V5, Canada
| | - Erika M. Wall
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Avenue, Victoria, BC V8R 6V5, Canada
- Department of Biochemistry/Microbiology, University of Victoria, Victoria, BC Canada
| | - Wendy Lin
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Avenue, Victoria, BC V8R 6V5, Canada
| | - Peter H. Watson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Avenue, Victoria, BC V8R 6V5, Canada
- Department of Biochemistry/Microbiology, University of Victoria, Victoria, BC Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Brad H. Nelson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Avenue, Victoria, BC V8R 6V5, Canada
- Department of Biology, University of Victoria, Victoria, BC Canada
- Department of Biochemistry/Microbiology, University of Victoria, Victoria, BC Canada
| |
Collapse
|
874
|
Sepulveda FE, Maschalidi S, Colisson R, Heslop L, Ghirelli C, Sakka E, Lennon-Duménil AM, Amigorena S, Cabanie L, Manoury B. Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells. Immunity 2009; 31:737-48. [PMID: 19879164 DOI: 10.1016/j.immuni.2009.09.013] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 06/26/2009] [Accepted: 09/11/2009] [Indexed: 11/25/2022]
Abstract
Intracellular Toll-like receptor 3 (TLR3), TLR7, and TLR9 localize in endosomes and recognize single-stranded RNA and nucleotides from viruses and bacteria. This interaction induces their conformational changes resulting in the production of proinflammatory cytokines and upregulation of cell surface molecules. TLR9 requires a proteolytic cleavage for its signaling. Here, we report that myeloid and plasmacytoid dendritic cells (DCs) deficient for the asparagine endopeptidase (AEP), a cysteine lysosomal protease, showed a decrease in the secretion of proinflammatory cytokines in response to TLR9 stimulation in vitro and in vivo. Upon stimulation, full-length TLR9 was cleaved into a 72 kDa fragment and this processing was strongly reduced in DCs lacking AEP. Processed TLR9 coeluted with the adaptor molecule MyD88 and AEP after size exclusion chromatography. When expressed in AEP-deficient DCs, the 72 kDa proteolytic fragment restored TLR9 signaling. Thus, our results identify an endocytic protease playing a critical role in TLR processing and signaling in DCs.
Collapse
|
875
|
Willart MAM, Jan de Heer H, Hammad H, Soullié T, Deswarte K, Clausen BE, Boon L, Hoogsteden HC, Lambrecht BN. The lung vascular filter as a site of immune induction for T cell responses to large embolic antigen. ACTA ACUST UNITED AC 2009; 206:2823-35. [PMID: 19858325 PMCID: PMC2806611 DOI: 10.1084/jem.20082401] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The bloodstream is an important route of dissemination of invading pathogens. Most of the small bloodborne pathogens, like bacteria or viruses, are filtered by the spleen or liver sinusoids and presented to the immune system by dendritic cells (DCs) that probe these filters for the presence of foreign antigen (Ag). However, larger pathogens, like helminths or infectious emboli, that exceed 20 µm are mostly trapped in the vasculature of the lung. To determine if Ag trapped here can be presented to cells of the immune system, we used a model of venous embolism of large particulate Ag (in the form of ovalbumin [OVA]-coated Sepharose beads) in the lung vascular bed. We found that large Ags were presented and cross-presented to CD4 and CD8 T cells in the mediastinal lymph nodes (LNs) but not in the spleen or liver-draining LNs. Dividing T cells returned to the lungs, and a short-lived infiltrate consisting of T cells and DCs formed around trapped Ag. This infiltrate was increased when the Toll-like receptor 4 was stimulated and full DC maturation was induced by CD40 triggering. Under these conditions, OVA-specific cytotoxic T lymphocyte responses, as well as humoral immunity, were induced. The T cell response to embolic Ag was severely reduced in mice depleted of CD11chi cells or Ly6C/G+ cells but restored upon adoptive transfer of Ly6Chi monocytes. We conclude that the lung vascular filter represents a largely unexplored site of immune induction that traps large bloodborne Ags for presentation by monocyte-derived DCs.
Collapse
Affiliation(s)
- Monique A M Willart
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Pulmonary Medicine, University of Ghent, Ghent B-9000, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
876
|
Hudrisier D, Clemenceau B, Balor S, Daubeuf S, Magdeleine E, Daëron M, Bruhns P, Vié H. Ligand binding but undetected functional response of FcR after their capture by T cells via trogocytosis. THE JOURNAL OF IMMUNOLOGY 2009; 183:6102-13. [PMID: 19841164 DOI: 10.4049/jimmunol.0900821] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intercellular transfer of cell surface proteins by trogocytosis is common and could affect T cell responses. Yet, the role of trogocytosis in T cell function is still elusive, and it is unknown whether a molecule, once captured by T cells, harbors the same biological properties as in donor APC. In this study, we showed that FcgammaR as well as the associated FcRgamma subunit could be detected at high levels on murine and human T cells after their intercellular transfer from FcgammaR-expressing APC. Capture of FcgammaR occurred during coculture of T cells with FcgammaR-expressing APC upon Ab- or Ag-mediated T cell stimulation. Once captured by T cells, FcgammaR were expressed in a conformation compatible with physiological function and conferred upon T cells the ability to bind immune complexes and to provision B cells with this source of Ag. However, we were unable to detect downstream signal or signaling-dependent function following the stimulation of FcgammaR captured by T cells, and biochemical studies suggested the improper integration of FcgammaR in the recipient T cell membrane. Thus, our study demonstrates that T cells capture FcgammaR that can efficiently exert ligand-binding activity, which, per se, could have functional consequences in T cell-B cell cooperation.
Collapse
Affiliation(s)
- Denis Hudrisier
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
877
|
Singh SK, Stephani J, Schaefer M, Kalay H, García-Vallejo JJ, den Haan J, Saeland E, Sparwasser T, van Kooyk Y. Targeting glycan modified OVA to murine DC-SIGN transgenic dendritic cells enhances MHC class I and II presentation. Mol Immunol 2009; 47:164-74. [PMID: 19818504 DOI: 10.1016/j.molimm.2009.09.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 09/09/2009] [Indexed: 02/05/2023]
Abstract
Dendritic cells have gained much interest in the field of anti-cancer vaccine development because of their central function in immune regulation. One of the receptors that facilitate DC-specific targeting of antigens is the DC-specific C-type lectin DC-SIGN. Although DC-SIGN is specifically expressed on human DCs, its murine homologue is not present on any murine DC subsets, which makes in vivo evaluation of potential DC-SIGN targeting vaccines very difficult. Here we describe the use of DC-SIGN transgenic mice, as a good model system to evaluate DC-SIGN targeting vaccines. We demonstrate that glycan modification of OVA with DC-SIGN targeting glycans, targets antigen specifically to bone marrow (BM)** derived DCs and splenic DCs. Glycan modification of OVA with Lewis X or Lewis B oligosaccharides, that target DC-SIGN transgenic DCs, resulted in efficient 10-fold induction of OT-II compared to unmodified OVA. Interestingly, glycan modified OVA proteins were significantly cross-presented to OT-I T cells by wild type DC, 10-fold more than native OVA, and the expression of DC-SIGN further enhanced this cross-presentation. Targeting of glycosylated OVA was neither accompanied with any DC maturation, nor the production of inflammatory or anti-inflammatory cytokines. Thus, we conclude that glycan modification of antigens and targeting to DC-SIGN enhance both CD4 and CD8 T cell responses. Furthermore, our data demonstrate that DC-SIGN transgenic mice are valuable tool for optimisation and efficiency testing of DC vaccination strategies that are designed to target in particular the human DC-SIGN receptor.
Collapse
Affiliation(s)
- Satwinder Kaur Singh
- Department of Molecular Cell Biology and Immunology, VU Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
878
|
Withers DR, Jaensson E, Gaspal F, McConnell FM, Eksteen B, Anderson G, Agace WW, Lane PJL. The survival of memory CD4+ T cells within the gut lamina propria requires OX40 and CD30 signals. THE JOURNAL OF IMMUNOLOGY 2009; 183:5079-84. [PMID: 19786532 DOI: 10.4049/jimmunol.0901514] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although CD4(+) memory T cells reside within secondary lymphoid tissue, the major reservoir of these cells is in the lamina propria of the intestine. In this study, we demonstrate that, in the absence of signals through both OX40 and CD30, CD4(+) T cells are comprehensively depleted from the lamina propria. Deficiency in either CD30 or OX40 alone reduced CD4(+) T cell numbers, however, in mice deficient in both OX40 and CD30, CD4(+) T cell loss was greatly exacerbated. This loss of CD4(+) T cells was not due to a homing defect because CD30 x OX40-deficient OTII cells were not impaired in their ability to express CCR9 and alpha(4)beta(7) or traffic to the small intestine. There was also no difference in the priming of wild-type (WT) and CD30 x OX40-deficient OTII cells in the mesenteric lymph node after oral immunization. However, following oral immunization, CD30 x OX40-deficient OTII cells trafficked to the lamina propria but failed to persist compared with WT OTII cells. This was not due to reduced levels of Bcl-2 or Bcl-XL, because expression of these was comparable between WT and double knockout OTII cells. Collectively, these data demonstrate that signals through CD30 and OX40 are required for the survival of CD4(+) T cells within the small intestine lamina propria.
Collapse
Affiliation(s)
- David R Withers
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Elin Jaensson
- Immunology Section, Lund University, BMCD14, Lund, Sweden
| | - Fabrina Gaspal
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Fiona M McConnell
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Bertus Eksteen
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Graham Anderson
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | | | - Peter J L Lane
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
879
|
Bekiaris V, Gaspal F, Kim MY, Withers DR, Sweet C, Anderson G, Lane PJL. Synergistic OX40 and CD30 signals sustain CD8+ T cells during antigenic challenge. Eur J Immunol 2009; 39:2120-5. [PMID: 19609980 DOI: 10.1002/eji.200939424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Prior to acquiring a memory phenotype, antigen-activated CD8(+) T cells need to expand and then undergo a contraction phase. Utilizing two different antigenic stimuli, we provide evidence that the tumor necrosis factor receptors OX40 and CD30 integrate synergistic signals during the expansion phase to help maintain CD8(+) effectors. Thus, double deficiency in OX40 and CD30 leads to CD8(+) cell loss during expansion after immunization either with OVA or with murine CMV. Following their contraction, OX40- and CD30-deficient CD8(+) T cells persist normally in CMV-infected mice. In contrast, persistence after OVA challenge is dependent on OX40 and CD30. Collectively, our data define the important role of both OX40 and CD30 during CD8(+) T-cell activation, and show that long-term CD8 persistence after contraction is regulated not only by stimulatory receptors but also by the nature of the antigen or how the antigen is presented.
Collapse
Affiliation(s)
- Vasileios Bekiaris
- Medical Research Council Centre for Immune Regulation, Birmingham Medical School, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | |
Collapse
|
880
|
Shi M, Lin TH, Appell KC, Berg LJ. Cell cycle progression following naive T cell activation is independent of Jak3/common gamma-chain cytokine signals. THE JOURNAL OF IMMUNOLOGY 2009; 183:4493-501. [PMID: 19734221 DOI: 10.4049/jimmunol.0804339] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T cell proliferation following activation is an essential aspect of the adaptive immune response. Multiple factors, such as TCR signaling, costimulation, and signals from cytokines, each contribute to determine the magnitude of T cell expansion. In this report, we examine in detail the role of Jak3/common gamma-chain-dependent cytokines in promoting cell cycle progression and proliferation of naive T cells. Using naive CD4+ T cells from Jak3-deficient mice and wild-type CD4+ T cells treated with a small molecule inhibitor of Jak3, we find that these cytokine signals are not required for proliferation; instead, they are important for the survival of activated T cells. In addition, we show that the percentage of cells entering the cell cycle and the percentage of cells in each round of cell division are comparable between Jak3-deficent and wild-type T cells. Furthermore, cell cycle progression and the regulated expression of key cell cycle proteins are independent of Jak3/common gamma-chain cytokine signals. These findings hold true over a wide range of TCR signal strengths. However, when CD28 costimulatory signals, but not TCR signals, are limiting, Jak3-dependent cytokine signals become necessary for the proliferation of naive T cells. Because CD28 signaling has been found to be dispensable for autoreactive T cell responses, these data suggest the potential for interfering with autoimmune T cell responses by inhibition of Jak3 signaling.
Collapse
Affiliation(s)
- Min Shi
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
881
|
Varol C, Vallon-Eberhard A, Elinav E, Aychek T, Shapira Y, Luche H, Fehling HJ, Hardt WD, Shakhar G, Jung S. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 2009; 31:502-12. [PMID: 19733097 DOI: 10.1016/j.immuni.2009.06.025] [Citation(s) in RCA: 580] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/31/2009] [Accepted: 06/22/2009] [Indexed: 12/12/2022]
Abstract
The intestinal immune system discriminates between tolerance toward the commensal microflora and robust responses to pathogens. Maintenance of this critical balance is attributed to mucosal dendritic cells (DCs) residing in organized lymphoid tissue and dispersed in the subepithelial lamina propria. In situ parameters of lamina propria DCs (lpDCs) remain poorly understood. Here, we combined conditional cell ablation and precursor-mediated in vivo reconstitution to establish that lpDC subsets have distinct origins and functions. CD103(+) CX(3)CR1(-) lpDCs arose from macrophage-DC precursors (MDPs) via DC-committed intermediates (pre-cDCs) through a Flt3L growth-factor-mediated pathway. CD11b(+) CD14(+) CX(3)CR1(+) lpDCs were derived from grafted Ly6C(hi) but not Ly6C(lo) monocytes under the control of GM-CSF. Mice reconstituted exclusively with CX(3)CR1(+) lpDCs when challenged in an innate colitis model developed severe intestinal inflammation that was driven by graft-derived TNF-alpha-secreting CX(3)CR1(+) lpDCs. Our results highlight the critical importance of the lpDC subset balance for robust gut homeostasis.
Collapse
Affiliation(s)
- Chen Varol
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | | | | | | | | | | | | | | | |
Collapse
|
882
|
Brandmaier AG, Leitner WW, Ha SP, Sidney J, Restifo NP, Touloukian CE. High-avidity autoreactive CD4+ T cells induce host CTL, overcome T(regs) and mediate tumor destruction. J Immunother 2009; 32:677-88. [PMID: 19561540 PMCID: PMC2747815 DOI: 10.1097/cji.0b013e3181ab1824] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite progress made over the past 25 years, existing immunotherapies have limited clinical effectiveness in patients with cancer. Immune tolerance consistently blunts the generated immune response, and the largely solitary focus on CD8+ T cell immunity has proven ineffective in the absence of CD4+ T cell help. To address these twin-tier deficiencies, we developed a translational model of melanoma immunotherapy focused on the exploitation of high-avidity CD4+ T cells that become generated in germline antigen-deficient mice. We had previously identified a tyrosinase-related protein-1 specific HLA-DRB1*0401-restricted epitope. Using this epitope in conjunction with a newly described tyrosinase-related protein-1 germline-knockout, we demonstrate that endogenous tyrosinase-related protein-1 expression alters the functionality of the autoreactive T cell repertoire. More importantly, we show, by using major histocompatibility complex-mismatched combinations, that CD4+ T cells derived from the self-antigen deficient host indirectly triggers the eradication of established B16 lung metastases. We demonstrate that the treatment effect is mediated entirely by endogenous CD8+ T cells and is not affected by the depletion of host regulatory T cells. These findings suggest that high-avidity CD4+ T cells can overcome endogenous conditions and mediate their antitumor effects exclusively through the elicitation of CD8+ T cell immunity.
Collapse
MESH Headings
- Animals
- Autoantigens/immunology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Epitopes/immunology
- Female
- Flow Cytometry
- Forkhead Transcription Factors/immunology
- HLA-DR Antigens/genetics
- HLA-DR Antigens/immunology
- HLA-DR4 Antigen/genetics
- HLA-DR4 Antigen/immunology
- HLA-DRB1 Chains
- Humans
- Immunization
- Interferon-gamma/metabolism
- Interleukin-2 Receptor alpha Subunit/immunology
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Male
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Oxidoreductases/genetics
- Oxidoreductases/immunology
- Oxidoreductases/metabolism
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Andrew G. Brandmaier
- Indiana University School of Medicine, and the Walther Oncology Center, Indianapolis, IN 46202
| | | | - Sung P. Ha
- Indiana University School of Medicine, and the Walther Oncology Center, Indianapolis, IN 46202
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92130
| | | | | |
Collapse
|
883
|
Goldstein BD, Kurt RA. Dietary Vitamin D3Restriction Influences Tumor Growth, but not the Ability to Generate an Antigen-Specific Immune Response in OTII Transgenic Mice. Immunol Invest 2009; 38:365-82. [DOI: 10.1080/08820130902861968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
884
|
Chan TD, Gatto D, Wood K, Camidge T, Basten A, Brink R. Antigen affinity controls rapid T-dependent antibody production by driving the expansion rather than the differentiation or extrafollicular migration of early plasmablasts. THE JOURNAL OF IMMUNOLOGY 2009; 183:3139-49. [PMID: 19666691 DOI: 10.4049/jimmunol.0901690] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To optimize the initial wave of Ab production against T-dependent Ags, primary B cell clones with the highest Ag affinity are selected to generate the largest extrafollicular plasmablast (PB) responses. The mechanism behind this remains undefined, primarily due to the difficulty of analyzing low frequency Ag-specific B cells during the earliest phases of the immune response when key differentiation decisions are made. In this study, a high resolution in vivo mouse model was used to characterize in detail the first 6 days of a T-dependent B cell response and to identify the steps at which initial Ag affinity has a major impact. Ag-specific B cells proliferated within splenic follicles from days 1.0 to 3.0 before undergoing a dynamic phase of multilineage differentiation (days 3.0-4.0) that generated switched and unswitched populations of germinal center B cells, early memory B cells, and extrafollicular PBs. PB differentiation was marked by synchronous up-regulation of CXCR4 and down-regulation of CXCR5 and the adoption of a unique BCR(high) phenotype by unswitched PBs. Differences in Ag affinity of >50-fold did not markedly affect the early stages of the response, including the differentiation and extrafollicular migration of PBs. However, high affinity PBs underwent significantly greater expansion within the splenic bridging channels and red pulp, due to both increased proliferation and decreased apoptosis. Extrafollicular PBs maintained class II MHC, but not IL-21R expression, and interacted directly with Ag-specific extrafollicular Th cells, suggesting that IL-21-independent T cell help may drive extrafollicular PB expansion in responses to foreign Ag.
Collapse
Affiliation(s)
- Tyani D Chan
- Immunology Program, Garvan Institute of Medical Research, Darlinghurst, Australia
| | | | | | | | | | | |
Collapse
|
885
|
Bioluminescence-based visualization of CD4 T cell dynamics using a T lineage-specific luciferase transgenic model. BMC Immunol 2009; 10:44. [PMID: 19650922 PMCID: PMC2736162 DOI: 10.1186/1471-2172-10-44] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 08/03/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid clonal expansion of T cells occurs in response to antigenic challenges. The kinetics of the T cell response has previously been described using tissue-based studies performed at defined time points. Luciferase bioluminescence has recently been utilized for non-invasive analysis of in vivo biologic processes in real-time. RESULTS We have created a novel transgenic mouse model (T-Lux) using a human CD2 mini-gene to direct luciferase expression specifically to the T cell compartment. T-Lux T cells demonstrated normal homing patterns within the intact mouse and following adoptive transfer. Bioluminescent signal correlated with T cell numbers in the whole body images as well as within specific organ regions of interest. Following transfer into lymphopenic (RAG2-/-) recipients, homeostatic proliferation of T-Lux T cells was visualized using bioluminescent imaging. Real-time bioluminescent analysis of CD4+ T cell antigen-specific responses enabled real-time comparison of the kinetics and magnitude of clonal expansion and contraction in the inductive lymph node and tissue site of antigen injection. T cell expansion was dose-dependent despite the presence of supraphysiologic numbers of OVA-specific OT-II transgenic TCR T-Lux T cells. CD4+ T cells subsequently underwent a rapid (3-4 day) contraction phase in the draining lymph node, with a delayed contraction in the antigen delivery site, with bioluminescent signal diminished below initial levels, representing TCR clonal frequency control. CONCLUSION The T-Lux mouse provides a novel, efficient model for tracking in vivo aspects of the CD4+ T cell response to antigen, providing an attractive approach for studies directed at immunotherapy or vaccine design.
Collapse
|
886
|
Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, Dorfman R, Wang Y, Zielenski J, Mastronardi F, Maezawa Y, Drucker DJ, Engleman E, Winer D, Dosch HM. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 2009; 15:921-9. [PMID: 19633657 PMCID: PMC3063199 DOI: 10.1038/nm.2001] [Citation(s) in RCA: 1095] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 06/09/2009] [Indexed: 12/13/2022]
Abstract
Obesity and its associated metabolic syndromes represent a growing global challenge, yet mechanistic understanding of this pathology and current therapeutics are unsatisfactory. We discovered that CD4(+) T lymphocytes, resident in visceral adipose tissue (VAT), control insulin resistance in mice with diet-induced obesity (DIO). Analyses of human tissue suggest that a similar process may also occur in humans. DIO VAT-associated T cells show severely biased T cell receptor V(alpha) repertoires, suggesting antigen-specific expansion. CD4(+) T lymphocyte control of glucose homeostasis is compromised in DIO progression, when VAT accumulates pathogenic interferon-gamma (IFN-gamma)-secreting T helper type 1 (T(H)1) cells, overwhelming static numbers of T(H)2 (CD4(+)GATA-binding protein-3 (GATA-3)(+)) and regulatory forkhead box P3 (Foxp3)(+) T cells. CD4(+) (but not CD8(+)) T cell transfer into lymphocyte-free Rag1-null DIO mice reversed weight gain and insulin resistance, predominantly through T(H)2 cells. In obese WT and ob/ob (leptin-deficient) mice, brief treatment with CD3-specific antibody or its F(ab')(2) fragment, reduces the predominance of T(H)1 cells over Foxp3(+) cells, reversing insulin resistance for months, despite continuation of a high-fat diet. Our data suggest that the progression of obesity-associated metabolic abnormalities is under the pathophysiological control of CD4(+) T cells. The eventual failure of this control, with expanding adiposity and pathogenic VAT T cells, can successfully be reversed by immunotherapy.
Collapse
Affiliation(s)
- Shawn Winer
- Department of Pediatrics & Immunology, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
887
|
Zietara N, Łyszkiewicz M, Gekara N, Puchałka J, Dos Santos VAPM, Hunt CR, Pandita TK, Lienenklaus S, Weiss S. Absence of IFN-beta impairs antigen presentation capacity of splenic dendritic cells via down-regulation of heat shock protein 70. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:1099-109. [PMID: 19581626 PMCID: PMC2756009 DOI: 10.4049/jimmunol.0803214] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Type I IFNs play a key role in linking the innate and adaptive arms of the immune system. Although produced rapidly in response to pathogens, IFNs are also produced at low levels in the absence of infection. In the present study, we demonstrate that constitutively produced IFNs are necessary in vivo to maintain dendritic cells in an "Ag presentation-competent" state. Conventional dendritic cells (cDCs) isolated from spleens of IFN-beta or IFNAR-deficient mice exhibit a highly impaired ability to present Ag and activate naive T cells. Microarray analysis of mRNA isolated from IFN-beta(-/-) and IFNAR(-/-) cDCs revealed diminished expression of two genes that encoded members of the heat shock protein 70 (Hsp70) family. Consistent with this observation, pharmacological inhibition of Hsp70 in cDCs from wild-type mice impaired their T cell stimulatory capacity. Similarly, the Ag presentation ability of splenic cDCs isolated from Hsp70.1/3(-/-) mice was also severely impaired in comparison to wild-type cDCs. Thus, constitutive IFN-beta expression regulates Hsp70 levels to help maintain dendritic cells in a competent state for efficient priming of effector T cells in vivo.
Collapse
Affiliation(s)
- Natalia Zietara
- Department of Molecular Biotechnology, Molecular Immunology Group, Helmholtz Centre for Infection Research, HZI, Braunschweig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
888
|
Cridge TJ, Horowitz KM, Marinucci MN, Rose KM, Wells M, Werner MT, Kurt RA. Functional and Molecular Alterations in T Cells Induced by CCL5. Immunol Invest 2009; 35:115-32. [PMID: 16531333 DOI: 10.1080/08820130500514365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To delineate whether, and the extent to which, CCL5 could impact T cell function we examined cytokine production and proliferative ability following CCL5 treatment in vitro. We report a decreased ability of splenic T cells to produce IFN-? and TNF-a as well as proliferate in response to crosslinking with antibody to CD3 after 72, but not 24 hours of CCL5 exposure. To identify a mechanism by which CCL5 modulated T cell function, we examined T cell receptor translocation and lipid raft clustering. After exposure to CCL5, T cells were less efficient at translocating the TCR and clustering lipid rafts. Since TCR translocation and lipid raft clustering are required for creation of an immunological synapse, these data suggest that extended exposure to CCL5 may impact T cell effector function by modulating the ability to create a functional immunological synapse.
Collapse
Affiliation(s)
- T J Cridge
- Department of Biology, Lafayette College, Easton, Pennsylvania 18042, USA
| | | | | | | | | | | | | |
Collapse
|
889
|
Parlane NA, Denis M, Severn WB, Skinner MA, Painter GF, La Flamme AC, Ainge GD, Larsen DS, Buddle BM. Phosphatidylinositol Mannosides are Efficient Mucosal Adjuvants. Immunol Invest 2009; 37:129-42. [DOI: 10.1080/08820130701690782] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
890
|
Chu HH, Moon JJ, Takada K, Pepper M, Molitor JA, Schacker TW, Hogquist KA, Jameson SC, Jenkins MK. Positive selection optimizes the number and function of MHCII-restricted CD4+ T cell clones in the naive polyclonal repertoire. Proc Natl Acad Sci U S A 2009; 106:11241-5. [PMID: 19541603 PMCID: PMC2708705 DOI: 10.1073/pnas.0902015106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Indexed: 02/02/2023] Open
Abstract
T cell receptors (TCRs) on T lymphocytes in an individual bind foreign peptides bound to major histocompatibility complex (MHC) molecules expressed in that individual (designated MHC(A)). Results from radiation bone marrow chimeras and TCR transgenic mice indicate that this complex form of antigen recognition is the result of positive selection of clones with low affinity for self peptide:MHC(A) complexes during development. Here we used a sensitive peptide:MHC tetramer enrichment method to quantify the role of positive selection in the generation of the preimmune polyclonal T cell repertoire in normal individuals. We made the surprising observation that mouse and human naive T cells capable of binding to foreign peptide:MHC(A) were present at the same frequency in hosts that expressed MHC(A) or a different MHC isoform (MHC(B)). However, most of the clones in MHC(B) hosts also recognized self peptide:MHC(A) complexes. When these "alloreactive" T cells were removed from the MHC(B) repertoire via negative selection in an MHC(A) host, the number of foreign peptide:MHC(A)-binding T cells was reduced to one fifth and many of the remaining cells did not respond to the peptide. Therefore, although positive selection on MHC(A) was not required to produce foreign peptide:MHC(A)-binding clones, it had a large effect on selecting responsive clones.
Collapse
Affiliation(s)
| | | | | | | | - Jerry A. Molitor
- Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Timothy W. Schacker
- Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | | | | | | |
Collapse
|
891
|
Flacher V, Sparber F, Tripp CH, Romani N, Stoitzner P. Targeting of epidermal Langerhans cells with antigenic proteins: attempts to harness their properties for immunotherapy. Cancer Immunol Immunother 2009; 58:1137-47. [PMID: 18677477 PMCID: PMC11030799 DOI: 10.1007/s00262-008-0563-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 07/12/2008] [Indexed: 12/16/2022]
Abstract
Langerhans cells, a subset of skin dendritic cells in the epidermis, survey peripheral tissue for invading pathogens. In recent functional studies it was proven that Langerhans cells can present exogenous antigen not merely on major histocompatibility complexes (MHC)-class II molecules to CD4+ T cells, but also on MHC-class I molecules to CD8+ T cells. Immune responses against topically applied antigen could be measured in skin-draining lymph nodes. Skin barrier disruption or co-application of adjuvants was required for maximal induction of T cell responses. Cytotoxic T cells induced by topically applied antigen inhibited tumor growth in vivo, thus underlining the potential of Langerhans cells for immunotherapy. Here we review recent work and report novel observations relating to the potential use of Langerhans cells for immunotherapy. We investigated the potential of epicutaneous immunization strategies in which resident skin dendritic cells are loaded with tumor antigen in situ. This contrasts with current clinical approaches, where dendritic cells generated from progenitors in blood are loaded with tumor antigen ex vivo before injection into cancer patients. In the current study, we applied either fluorescently labeled protein antigen or targeting antibodies against DEC-205/CD205 and langerin/CD207 topically onto barrier-disrupted skin and examined antigen capture and transport by Langerhans cells. Protein antigen could be detected in Langerhans cells in situ, and they were the main skin dendritic cell subset transporting antigen during emigration from skin explants. Potent in vivo proliferative responses of CD4+ and CD8+ T cells were measured after epicutaneous immunization with low amounts of protein antigen. Targeting antibodies were mainly transported by langerin+ migratory dendritic cells of which the majority represented migratory Langerhans cells and a smaller subset the new langerin+ dermal dendritic cell population located in the upper dermis. The preferential capture of topically applied antigen by Langerhans cells and their ability to induce potent CD4+ and CD8+ T cell responses emphasizes their potential for epicutaneous immunization strategies.
Collapse
Affiliation(s)
- Vincent Flacher
- Department of Dermatology and Venereology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Florian Sparber
- Department of Dermatology and Venereology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Christoph H. Tripp
- Department of Dermatology and Venereology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Nikolaus Romani
- Department of Dermatology and Venereology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
- Kompetenzzentrum Medizin Tirol (CEMIT), Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
892
|
Phan TG, Green JA, Gray EE, Xu Y, Cyster JG. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat Immunol 2009; 10:786-93. [PMID: 19503106 PMCID: PMC2776777 DOI: 10.1038/ni.1745] [Citation(s) in RCA: 333] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 04/23/2009] [Indexed: 12/15/2022]
Abstract
Subcapsular sinus (SCS) macrophages capture antigens from lymph and present them intact for B cell encounter and follicular delivery. However, the properties of SCS macrophages are poorly defined. Here we show SCS macrophage development depended on lymphotoxin-alpha1beta2, and the cells had low lysosomal enzyme expression and retained opsonized antigens on their surface. Intravital imaging revealed immune complexes moving along macrophage processes into the follicle. Moreover, noncognate B cells relayed antigen opsonized by newly produced antibodies from the subcapsular region to the germinal center, and affinity maturation was impaired when this transport process was disrupted. Thus, we characterize SCS macrophages as specialized antigen-presenting cells functioning at the apex of an antigen transport chain that promotes humoral immunity.
Collapse
Affiliation(s)
- Tri Giang Phan
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, CA 94143, USA
- Garvan Institute of Medical Research, 384 Victoria St Darlinghurst, Sydney NSW 2010, Australia
| | - Jesse A. Green
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, CA 94143, USA
| | - Elizabeth E. Gray
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, CA 94143, USA
| | - Ying Xu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, CA 94143, USA
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, CA 94143, USA
| |
Collapse
|
893
|
Segura E, Wong J, Villadangos JA. Cutting edge: B220+CCR9- dendritic cells are not plasmacytoid dendritic cells but are precursors of conventional dendritic cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:1514-7. [PMID: 19570827 DOI: 10.4049/jimmunol.0901524] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse lymphoid organs contain two major subsets of dendritic cells (DC) that differ in their phenotype and functions: conventional DC (cDC) and plasmacytoid DC (pDC). Recently, it has been proposed that differential expression of CCR9 could distinguish functionally distinct pDC subsets. We show that B220(+)CCR9(-) DC do not express classical pDC markers and have a developmental origin different from that of pDC. Furthermore, B220(+)CCR9(-) DC do not secrete IFN-alpha in response to CpG and, unlike pDC, can efficiently present exogenous Ags. Our results demonstrate that B220(+)CCR9(-) DC do not represent a subset of pDC. After in vivo transfer, these cells down-regulate B220 expression and convert into the two major cDC subsets, showing that they are a developmental stage of cDC differentiation.
Collapse
Affiliation(s)
- Elodie Segura
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
894
|
Bates JT, Uematsu S, Akira S, Mizel SB. Direct stimulation of tlr5+/+ CD11c+ cells is necessary for the adjuvant activity of flagellin. THE JOURNAL OF IMMUNOLOGY 2009; 182:7539-47. [PMID: 19494277 DOI: 10.4049/jimmunol.0804225] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Flagellin is a highly effective adjuvant, but the cellular mechanism underlying this activity remains uncertain. More specifically, no consensus exists as to whether flagellin activates dendritic cells (DC) directly or indirectly. Intramuscular immunization with flagellin-OVA fusion protein resulted in enhanced in vivo T cell clustering in draining lymph nodes and IL-2 production by OVA-specific CD4(+) T cells. Immunization with flagellin-OVA also triggered greater levels of Ag-specific CD4(+) T cell proliferation than immunization with flagellin and OVA as separate proteins. To determine whether flagellin, in the context of a fusion protein with OVA, was acting directly on DC, we used a combination of CD4(+) T cell adoptive transfers and bone marrow chimera mice in which the presence or absence of potential tlr5(+/+) CD11c(+) cells was controlled by injection of diphtheria toxin. The Ag-specific CD4(+) T cell response in mice with CD11c(+) cells from a tlr5(-/-) background and mixed populations of all other hematopoietic cells was dramatically reduced in comparison to mice that had DC from tlr5(-/-) and wild-type backgrounds. Immunization of MyD88(-/-)tlr5(+/+) mice revealed that the enhanced response following immunization with flagellin-OVA is dependent on signaling via the TLR5-MyD88 pathway as well as enhanced Ag uptake and processing resulting from Ag targeting via TLR5. In summary, our data are consistent with the conclusion that direct stimulation of tlr5(+/+) CD11c(+) cells is necessary for the adjuvant activity of a flagellin fusion protein and that this adjuvant effect requires signaling through TLR5.
Collapse
Affiliation(s)
- John T Bates
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
895
|
de Kauwe AL, Chen Z, Anderson RP, Keech CL, Price JD, Wijburg O, Jackson DC, Ladhams J, Allison J, McCluskey J. Resistance to celiac disease in humanized HLA-DR3-DQ2-transgenic mice expressing specific anti-gliadin CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:7440-50. [PMID: 19494267 DOI: 10.4049/jimmunol.0900233] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Celiac disease is a chronic inflammatory enteropathy caused by cellular immunity to dietary gluten. More than 90% of patients carry HLA-DQ2 encoded by HLA-DQA1*05 and DQB1*02, and gluten-specific CD4(+) T cells from intestinal biopsies of these patients are HLA-DQ2-restricted, produce Th1 cytokines and preferentially recognize gluten peptides deamidated by tissue transglutaminase. We generated mice lacking murine MHC class II genes that are transgenic for human CD4 and the autoimmunity and celiac disease-associated HLA-DR3-DQ2 haplotype. Immunization with the alpha-gliadin 17-mer that incorporates the overlapping DQ2-alpha-I and DQ2-alpha-II epitopes immunodominant in human celiac disease generates peptide-specific HLA-DQ2-restricted CD4(+) T cells. When exposed to dietary gluten, naive or gliadin-primed mice do not develop pathology. Coincident introduction of dietary gluten and intestinal inflammation resulted in low-penetrance enteropathy and tissue transglutaminase-specific IgA. Two further strains of transgenic mice expressing HLA-DR3-DQ2 and human CD4, one with a NOD background and another TCR transgenic having over 90% of CD4(+) T cells specific for the DQ2-alpha-II epitope with a Th1 phenotype, were also healthy when consuming gluten. These humanized mouse models indicate that gluten ingestion can be tolerated without intestinal pathology even when HLA-DQ2-restricted CD4(+) T cell immunity to gluten is established, thereby implicating additional factors in controlling the penetrance of celiac disease.
Collapse
Affiliation(s)
- Andrea L de Kauwe
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
896
|
Carlow DA, Gold MR, Ziltener HJ. Lymphocytes in the Peritoneum Home to the Omentum and Are Activated by Resident Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:1155-65. [DOI: 10.4049/jimmunol.0900409] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
897
|
Collins MK, Tay CS, Erlebacher A. Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice. J Clin Invest 2009; 119:2062-73. [PMID: 19546507 DOI: 10.1172/jci38714] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 04/22/2009] [Indexed: 11/17/2022] Open
Abstract
Embryo implantation induces formation of the decidua, a stromal cell-derived structure that encases the fetus and placenta. Using the mouse as a model organism, we have found that this tissue reaction prevents DCs stationed at the maternal/fetal interface from migrating to the lymphatic vessels of the uterus and thus reaching the draining lymph nodes. Strikingly, decidual DCs remained immobile even after being stimulated with LPS and exhibiting responsiveness to CCL21, the chemokine that drives DC entry into lymphatic vessels. An analysis of maternal T cell reactivity toward a surrogate fetal/placental antigen furthermore revealed that regional T cell responses toward the fetus and placenta were driven by passive antigen transport and thus the tolerogenic mode of antigen presentation that predominates when there is negligible input from tissue-resident DCs. Indeed, the lack of involvement of tissue-resident DCs in the T cell response to the fetal allograft starkly contrasts with their prominent role in organ transplant rejection. Our results suggest that DC entrapment within the decidua minimizes immunogenic T cell exposure to fetal/placental antigens and raise the possibility that impaired development or function of the human decidua, which unlike that of the mouse contains lymphatic vessels, might lead to pathological T cell activation during pregnancy.
Collapse
Affiliation(s)
- Mary K Collins
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, New York, USA
| | | | | |
Collapse
|
898
|
Brydges SD, Mueller JL, McGeough MD, Pena CA, Misaghi A, Gandhi C, Putnam CD, Boyle DL, Firestein GS, Horner AA, Soroosh P, Watford WT, O'Shea JJ, Kastner DL, Hoffman HM. Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity. Immunity 2009; 30:875-87. [PMID: 19501000 PMCID: PMC2759865 DOI: 10.1016/j.immuni.2009.05.005] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 04/24/2009] [Accepted: 05/07/2009] [Indexed: 01/01/2023]
Abstract
NLRP3 nucleates the inflammasome, a protein complex responsible for cleavage of prointerleukin-1beta (IL-1beta) to its active form. Mutations in the NLRP3 gene cause the autoinflammatory disease spectrum cryopyrin-associated periodic syndromes (CAPS). The central role of IL-1beta in CAPS is supported by the response to IL-1-targeted therapy. We developed two Nlrp3 mutant knockin mouse strains to model CAPS to examine the role of other inflammatory mediators and adaptive immune responses in an innate immune-driven disease. These mice had systemic inflammation and poor growth, similar to some human CAPS patients, and demonstrated early mortality, primarily mediated by myeloid cells. Mating these mutant mice to various gene mutant backgrounds showed that the mouse disease phenotype required an intact inflammasome, was only partially dependent on IL-1beta, and was independent of T cells. These data suggest that CAPS are true inflammasome-mediated diseases and provide insight for more common inflammatory disorders.
Collapse
Affiliation(s)
- Susannah D Brydges
- Genetics and Genomics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
899
|
Srinivasan A, Nanton M, Griffin A, McSorley SJ. Culling of activated CD4 T cells during typhoid is driven by Salmonella virulence genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:7838-45. [PMID: 19494308 PMCID: PMC2731968 DOI: 10.4049/jimmunol.0900382] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pathogen-specific CD4 T cells are activated within a few hours of oral Salmonella infection and are essential for protective immunity. However, CD4 T cells do not participate in bacterial clearance until several weeks after infection, suggesting that Salmonella can inhibit or evade CD4 T cells that are activated at early time points. Here, we describe the progressive culling of initially activated CD4 T cells in Salmonella-infected mice. Loss of activated CD4 T cells was independent of early instructional programming, T cell precursor frequency, and Ag availability. In contrast, apoptosis of Ag-specific CD4 T cells was actively induced by live bacteria in a process that required Salmonella pathogenicity island-2 and correlated with increased expression of PD-L1. These data demonstrate efficient culling of initially activated Ag-specific CD4 cells by a microbial pathogen and document a novel strategy for bacterial immune evasion.
Collapse
Affiliation(s)
- Aparna Srinivasan
- Department of Medicine, Division of Gastroenterology, Center for Infectious Diseases and Microbiology Translational Research, McGuire Translational Research Facility, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
900
|
Immunological synapse formation inhibits, via NF-kappaB and FOXO1, the apoptosis of dendritic cells. Nat Immunol 2009; 10:753-60. [PMID: 19503105 DOI: 10.1038/ni.1750] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 05/12/2009] [Indexed: 12/30/2022]
Abstract
The immunological synapse (IS) is a cell-cell junction formed between CD4(+) T cells and dendritic cells (DCs). Here we show in vitro and in vivo that IS formation inhibits apoptosis of DCs. Consistent with these results, IS formation induced antiapoptotic signaling events, including activation of the kinase Akt1 and localization of the prosurvival transcription factor NF-kappaB and the proapoptotic transcription factor FOXO1 to the nucleus and cytoplasm, respectively. Inhibition of phosphatidylinositol 3-OH kinase and Akt1 partially prevented the antiapoptotic effects of IS formation. Direct stimulation of the IS component CD40 on DCs leads to the activation of Akt1, suggesting the involvement of this receptor in the antiapoptotic effects observed upon IS formation.
Collapse
|