851
|
Chen Y, Xu X, Chen Z, Huang B, Wang X, Fan X. DNA methylation alternation in Stanford- A acute aortic dissection. BMC Cardiovasc Disord 2022; 22:455. [PMID: 36309656 PMCID: PMC9618190 DOI: 10.1186/s12872-022-02882-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background Acute aortic dissection (AAD) is a life-threatening cardiovascular disease. Recent studies have shown that DNA methylation may be associated with the pathological mechanism of AAD, but the panorama of DNA methylation needs to be explored. Methods DNA methylation patterns were screened using Infinium Human Methylation 450 K BeadChip in the aortic tissues from 4 patients with Stanford-A AAD and 4 controls. Gene enrichment was analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology (GO). DNA methylation levels of candidate genes were determined by pyrosequencing in the replication cohort including 16 patients with AAD and 7 controls. Protein expression level of candidate gene was assessed by Western blot. Results A total of 589 differentially methylated positions including 315 hypomethylated and 274 hypermethylated positions were found in AAD group. KEGG analysis demonstrated that differentially methylated position-associated genes were enriched in MAPK signaling pathway, TNF signaling pathway and apoptosis pathway, et al. GO analysis demonstrated that differentially methylated position-associated genes were enriched in protein binding, angiogenesis and heart development et al. The differential DNA methylation in five key genes, including Fas, ANGPT2, DUSP6, FARP1 and CARD6, was authenticated in the independent replication cohort. The protein expression level of the Fas was increased by 1.78 times, indicating the possible role of DNA methylation in regulation of gene expression. Conclusion DNA methylation was markedly changed in the aortic tissues of Stanford-A AAD and associated with gene dysregulation, involved in AAD progression. Supplementary Information The online version contains supplementary material available at10.1186/s12872-022-02882-5.
Collapse
|
852
|
Savadi S, Muralidhara BM, Godwin J, Adiga JD, Mohana GS, Eradasappa E, Shamsudheen M, Karun A. De novo assembly and characterization of the draft genome of the cashew (Anacardium occidentale L.). Sci Rep 2022; 12:18187. [PMID: 36307541 PMCID: PMC9616956 DOI: 10.1038/s41598-022-22600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
Cashew is the second most important tree nut crop in the global market. Cashew is a diploid and heterozygous species closely related to the mango and pistachio. Its improvement by conventional breeding is slow due to the long juvenile phase. Despite the economic importance, very little genomics/transcriptomics information is available for cashew. In this study, the Oxford nanopore reads and Illumina reads were used for de novo assembly of the cashew genome. The hybrid assembly yielded a 356.6 Mb genome corresponding to 85% of the estimated genome size (419 Mb). The BUSCO analysis showed 91.8% of genome completeness. Transcriptome mapping showed 92.75% transcripts aligned with the assembled genome. Gene predictions resulted in the identification of 31,263 genes coding for a total of 35,000 gene isoforms. About 46% (165 Mb) of the cashew genome comprised of repetitive sequences. Phylogenetic analyses of the cashew with nine species showed that it was closely related to Mangifera indica. Analysis of cashew genome revealed 3104 putative R-genes. The first draft assembly of the genome, transcriptome and R gene information generated in this study would be the foundation for understanding the molecular basis of economic traits and genomics-assisted breeding in cashew.
Collapse
Affiliation(s)
- Siddanna Savadi
- grid.505948.50000 0004 1764 470XICAR- Directorate of Cashew Research (DCR), Puttur, D.K., Karnataka 574 202 India
| | - B. M. Muralidhara
- grid.505948.50000 0004 1764 470XICAR- Directorate of Cashew Research (DCR), Puttur, D.K., Karnataka 574 202 India
| | - Jeffrey Godwin
- Bionivid Technology Private Limited, 209, 4th Cross Rd, B Channasandra, Kasturi Nagar, Bengaluru, Karnataka 560 043 India
| | - J. D. Adiga
- grid.505948.50000 0004 1764 470XICAR- Directorate of Cashew Research (DCR), Puttur, D.K., Karnataka 574 202 India
| | - G. S. Mohana
- grid.505948.50000 0004 1764 470XICAR- Directorate of Cashew Research (DCR), Puttur, D.K., Karnataka 574 202 India
| | - E. Eradasappa
- grid.505948.50000 0004 1764 470XICAR- Directorate of Cashew Research (DCR), Puttur, D.K., Karnataka 574 202 India
| | - M. Shamsudheen
- grid.505948.50000 0004 1764 470XICAR- Directorate of Cashew Research (DCR), Puttur, D.K., Karnataka 574 202 India
| | - Anitha Karun
- grid.505948.50000 0004 1764 470XICAR- Directorate of Cashew Research (DCR), Puttur, D.K., Karnataka 574 202 India
| |
Collapse
|
853
|
Mikaeili Namini A, Jahangir M, Mohseni M, Kolahi AA, Hassanian-Moghaddam H, Mazloumi Z, Motallebi M, Sheikhpour M, Movafagh A. An in silico comparative transcriptome analysis identifying hub lncRNAs and mRNAs in brain metastatic small cell lung cancer (SCLC). Sci Rep 2022; 12:18063. [PMID: 36302939 PMCID: PMC9613661 DOI: 10.1038/s41598-022-22252-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
Small cell lung cancer (SCLC) is a particularly lethal subtype of lung cancer. Metastatic lung tumours lead to most deaths from lung cancer. Predicting and preventing tumour metastasis is crucially essential for patient survivability. Hence, in the current study, we focused on a comprehensive analysis of lung cancer patients' differentially expressed genes (DEGs) on brain metastasis cell lines. DEGs are analysed through KEGG and GO databases for the most critical biological processes and pathways for enriched DEGs. Additionally, we performed protein-protein interaction (PPI), GeneMANIA, and Kaplan-Meier survival analyses on our DEGs. This article focused on mRNA and lncRNA DEGs for LC patients with brain metastasis and underlying molecular mechanisms. The expression data was gathered from the Gene Expression Omnibus database (GSE161968). We demonstrate that 30 distinct genes are up-expressed in brain metastatic SCLC patients, and 31 genes are down-expressed. All our analyses show that these genes are involved in metastatic SCLC. PPI analysis revealed two hub genes (CAT and APP). The results of this article present three lncRNAs, Including XLOC_l2_000941, LOC100507481, and XLOC_l2_007062, also notable mRNAs, have a close relation with brain metastasis in lung cancer and may have a role in the epithelial-mesenchymal transition (EMT) in tumour cells.
Collapse
Affiliation(s)
- Arsham Mikaeili Namini
- grid.412265.60000 0004 0406 5813Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Motahareh Jahangir
- grid.412502.00000 0001 0686 4748Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Maryam Mohseni
- grid.411600.2Department of Social Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Kolahi
- grid.411600.2Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hassanian-Moghaddam
- grid.411600.2Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Mazloumi
- grid.449262.fDepartment of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Marzieh Motallebi
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Sheikhpour
- grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Movafagh
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
854
|
Comparative analysis of microsatellites in coding regions provides insights into the adaptability of the giant panda, polar bear and brown bear. Genetica 2022; 150:355-366. [DOI: 10.1007/s10709-022-00173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/13/2022] [Indexed: 11/27/2022]
|
855
|
ENO1 Binds to ApoC3 and Impairs the Proliferation of T Cells via IL-8/STAT3 Pathway in OSCC. Int J Mol Sci 2022; 23:ijms232112777. [DOI: 10.3390/ijms232112777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lymph node metastasis is associated with poor prognosis of oral squamous cell carcinoma (OSCC), and few studies have explored the relevance of postoperative lymphatic drainage (PLD) in metastatic OSCC. Alpha-enolase (ENO1) is a metabolic enzyme, which is related to lymphatic metastasis of OSCC. However, the role of ENO1 in PLD in metastatic OSCC has not been elucidated. Herein, we collected lymphatic drainage after lymphadenectomy between metastatic and non-metastatic lymph nodes in OSCC patients to investigate the relationship between ENO1 expression and metastasis, and to identify the proteins which interacted with ENO1 in PLD of patients with metastatic OSCC by MS/GST pulldown assay. Results revealed that the metabolic protein apolipoprotein C-III (ApoC3) was a novel partner of ENO1. The ENO1 bound to ApoC3 in OSCC cells and elicited the production of interleukin (IL)-8, as demonstrated through a cytokine antibody assay. We also studied the function of IL-8 on Jurkat T cells co-cultured with OSCC cells in vitro. Western blot analysis was applied to quantitate STAT3 (signal transducer and activator of transcription 3) and p-STAT3 levels. Mechanistically, OSCC cells activated the STAT3 signaling pathway on Jurkat T cells through IL-8 secretion, promoted apoptosis, and inhibited the proliferation of Jurkat T cells. Collectively, these findings illuminate the molecular mechanisms underlying the function of ENO1 in metastasis OSCC and provide new strategies for targeting ENO1 for OSCC treatment.
Collapse
|
856
|
Fu S, Yang Y, Wang P, Ying Z, Xu W, Zhou Z. Comparative transcriptomic analysis of normal and abnormal in vitro flowers in Cymbidium nanulum Y. S. Wu et S. C. Chen identifies differentially expressed genes and candidate genes involved in flower formation. FRONTIERS IN PLANT SCIENCE 2022; 13:1007913. [PMID: 36352857 PMCID: PMC9638074 DOI: 10.3389/fpls.2022.1007913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
It is beneficial for breeding and boosting the flower value of ornamental plants such as orchids, which can take several years of growth before blooming. Over the past few years, in vitro flowering of Cymbidium nanulum Y. S. Wu et S. C. Chen has been successfully induced; nevertheless, the production of many abnormal flowers has considerably limited the efficiency of this technique. We carried out transcriptomic analysis between normal and abnormal in vitro flowers, each with four organs, to investigate key genes and differentially expressed genes (DEGs) and to gain a comprehensive perspective on the formation of abnormal flowers. Thirty-six DEGs significantly enriched in plant hormone signal transduction, and photosynthesis-antenna proteins pathways were identified as key genes. Their broad upregulation and several altered transcription factors (TFs), including 11 MADS-box genes, may contribute to the deformity of in vitro flowers. By the use of weighted geneco-expression network analysis (WGCNA), three hub genes, including one unknown gene, mitochondrial calcium uniporter (MCU) and harpin-induced gene 1/nonrace-specific disease resistance gene 1 (NDR1/HIN1-Like) were identified that might play important roles in floral organ formation. The data presented in our study may serve as a comprehensive resource for understanding the regulatory mechanisms underlying flower and floral organ formation of C. nanulum Y. S. Wu et S. C. Chen in vitro.
Collapse
|
857
|
Transcriptional Biomarkers for Treatment Monitoring of Pulmonary Drug-Resistant Tuberculosis: Protocol for a Prospective Observational Study in Indonesia. Trop Med Infect Dis 2022; 7:tropicalmed7110326. [DOI: 10.3390/tropicalmed7110326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Many blood-based gene expression biomarkers for monitoring tuberculosis (TB) treatment have been suggested so far, but promising biomarker results for drug-resistant TB treatment response have not been studied. This protocol presents a prospective observational study in Indonesia to profile the human blood transcriptome for predicting the response to drug-resistant TB treatment, focusing on pulmonary TB, and to adapt the specific RNA signature to the qRT-PCR platform. Longitudinal blood samples will be collected from 44 subjects with rifampicin resistant TB, confirmed by Xpert MTB/RIF, and 52 healthy controls. RNA-Seq will be performed to identify changes in the transcriptome following TB treatment. A discriminative RNA signature will be chosen and translated into a score for use in a quantitative PCR-based assay. This study will provide crucial information to guide the discovery and design of a clinically implementable tool to monitor the response of TB treatment.
Collapse
|
858
|
Sang H, Li Y, Sun C. Conservation Genomic Analysis of the Asian Honeybee in China Reveals Climate Factors Underlying Its Population Decline. INSECTS 2022; 13:953. [PMID: 36292899 PMCID: PMC9604051 DOI: 10.3390/insects13100953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The Asian honeybee, Apis cerana, is one of the most important native pollinators in Asia. Asian honeybees were believed to be under significant decline in China based on a report in 2005. On the contrary, a recent survey revealed that Asian honeybee populations in China are stable and even slightly increased in some regions. Therefore, the declining status of A. cerana populations in China is still unclear. Taking advantage of the abundant, publicly available genomic data for Asian honeybees in China, we employed conservation genomics methods to understand if Asian honeybee populations in China are declining and what the underlying climate factors are. We reconstructed the changes of effective population size (Ne) within the recent past for 6 population groups of Asian honeybees and found out that only one of them (population in Bomi, Tibet) showed a consistently declining Ne from the last 100 generations to 25 generations. Selective sweep analysis suggests that genes related to the tolerance of low temperatures and strong ultraviolet radiation are under selection in the declining population, indicating that these two climate factors most likely underlie the decline of BM populations during the recent past. Our study provides insights into the dynamic changes of Asian honeybee populations in China and identifies climate factors that underlie its population decline, which is valuable for the conservation of this important pollinator.
Collapse
Affiliation(s)
- Huiling Sang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yancan Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Cheng Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
859
|
Li X, Yuan L, Wang W, Zhang D, Zhao Y, Chen J, Xu D, Zhao L, Li F, Zhang X. Whole genome re-sequencing reveals artificial and natural selection for milk traits in East Friesian sheep. Front Vet Sci 2022; 9:1034211. [PMID: 36330154 PMCID: PMC9623881 DOI: 10.3389/fvets.2022.1034211] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/30/2022] [Indexed: 08/23/2023] Open
Abstract
The East Friesian sheep is one of the important high-yielding dairy sheep breeds, but still little is known about their genetic and genomic variation during domestication. Therefore, we analyzed the genomic data of 46 sheep with the aim of identifying candidate genes that are closely related to milk production traits. Our genomic data consisted of 20 East Friesian sheep and 26 Asian Mouflon wild sheep. Finally, a total of 32590241 SNPs were identified, of which 0.61% (198277) SNPs were located in exonic regions. After further screening, 122 shared genomic regions in the top 1% of F ST and top 1% of Nucleotide diversity ratio were obtained. After genome annotation, these 122 candidate genomic regions were found to contain a total of 184 candidate genes. Finally, the results of KEGG enrichment analysis showed four significantly enriched pathways (P < 0.05): beta-Alanine metabolism (SMOX, HIBCH), Pathways in cancer (GLI2, AR, TXNRD3, TRAF3, FGF16), Non-homologous end-joining (MRE11), Epstein-Barr virus infection (TRAF3, PSMD13, SIN3A). Finally, we identified four important KEGG enrichment pathways and 10 candidate genes that are closely related to milk production in East Friesian sheep. These results provide valuable candidate genes for the study of milk production traits in East Friesian sheep and lay an important foundation for the study of milk production traits.
Collapse
Affiliation(s)
- Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lvfeng Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jiangbo Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
860
|
Attenuation by Time-Restricted Feeding of High-Fat and High-Fructose Diet-Induced NASH in Mice Is Related to Per2 and Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8063897. [PMID: 36285301 PMCID: PMC9588383 DOI: 10.1155/2022/8063897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic and progressive disease whose treatment strategies are limited. Although time-restricted feeding (TRF) is beneficial for metabolic diseases without influencing caloric intake, the underlying mechanisms of TRF action in NASH and its efficacy have not yet been demonstrated. We herein showed that TRF effectively alleviated NASH, producing a reduction in liver enzymes and improvements in liver pathology. Regarding the mechanisms by which TRF mitigates NASH, we ascertained that TRF inhibited ferroptosis and the expression of the circadian gene Per2. By adopting a hepatocyte-specific Per2-knockout (Per2△hep) mice model, we clarified the critical role of Per2 in exacerbating NASH. According to the results of our RNA-Seq analysis, the knockout of Per2 ameliorated NASH by inhibiting the onset of ferroptosis; this was manifested by diminished lipid peroxidation levels, decreased mRNA and protein levels for ferroptosis-related genes, and alleviated morphologic changes in mitochondria. Furthermore, using a ferroptosis inhibitor, we showed that ferroptosis significantly aggravated NASH and noted that this was likely achieved by regulation of the expression of peroxisome proliferator activated receptor (PPAR)α. Finally, we discerned that TRF and hepatocyte-specific knockout of Per2 promoted the expression of PPARα. Our results revealed a potential for TRF to effectively alleviate high-fat and high-fructose diet-induced NASH via the inhibition of Per2 and depicted the participation of Per2 in the progression of NASH by promoting ferroptosis, which was ultimately related to the expression of PPARα.
Collapse
|
861
|
Huang Z, Zhu L, Zhang Q, Zhao D, Yao J. Circular RNA hsa-circ-0005238 enhances trophoblast migration, invasion and suppresses apoptosis via the miR-370-3p/CDC25B axis. Front Med (Lausanne) 2022; 9:943885. [PMID: 36314002 PMCID: PMC9606333 DOI: 10.3389/fmed.2022.943885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Background Fetal growth restriction (FGR) is attributed to various maternal, fetal, and placental factors. Trophoblasts participate in the establishment and maintenance of pregnancy from implantation and placentation to providing nutrition to fetus. Studies have reported that impaired trophoblast invasion and proliferation are among factors driving development of FGR. Circular RNAs (circRNAs) can regulate trophoblast function. We assessed the significance of circRNAs underlying FGR development. Materials and methods Next generation sequencing (NGS) was carried out to quantify levels of circRNAs in placenta tissues with and without FGR. In vitro experiments including transfection, (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2Htetrazolium) (MTS) assays, flow cytometry analyses, Transwell assays, wound healing assays, western blotting, qRT-PCR, dual-luciferase assays, immunofluorescence staining, and RIP assay were performed. Results There were 18 differentially expressed circRNAs between FGR placentas and uncomplicated pregnancies, while levels of hsa-circ-0005238 were markedly low in FGR placentas. Our in vitro experiments further revealed that hsa-circ-0005238 suppressed apoptosis and enhanced proliferation, migration, invasion of trophoblast cell lines. The hsa-miR-370-3p was identified as a direct target of hsa-circ-0005238. Mechanistically, hsa-miR-370-3p prevents invasion as well as migration of trophoblast cells by downregulating CDC25B. Conclusion The hsa-circ-0005238 modulates FGR pathogenesis by inhibiting trophoblast cell invasion and migration through sponging hsa-miR-370-3p. Hence, targeting this circRNA may be an attractive strategy for FGR treatment.
Collapse
Affiliation(s)
- Zhuomin Huang
- Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Litong Zhu
- Department of Gynecology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Quanfu Zhang
- Shenzhen Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Depeng Zhao
- Department of Reproductive Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China,Depeng Zhao,
| | - Jilong Yao
- Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China,*Correspondence: Jilong Yao,
| |
Collapse
|
862
|
Wang J, Cheng Y, Wang L, Sun A, Lin Z, Zhu W, Wang Z, Ma J, Wang H, Yan Y, Sun J. Chicken miR-126-5p negatively regulates antiviral innate immunity by targeting TRAF3. Vet Res 2022; 53:82. [PMID: 36224663 PMCID: PMC9559812 DOI: 10.1186/s13567-022-01098-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Innate immunity plays an essential role in preventing the invasion of pathogenic microorganisms. However, innate immunity is a double-edged sword, whose excessive activation is detrimental to immune homeostasis and even leads to a "cytokine storm" of the infected host. The host develops a series of negative regulatory mechanisms to balance the immune response. Here, we report a negative regulatory mechanism of chicken innate immunity mediated by miRNA. In the GEO database, we found that miR-126-5p was markedly up-regulated in chickens infected by RNA viruses. Upregulation of miR-126-5p by RNA virus was then further shown via both a cell model and in vivo tests. Overexpression of miR-126-5p significantly inhibited the expression of interferon and inflammatory cytokine-related genes induced by RNA viruses. The opposite result was achieved after the knockdown of miR-126-5p expression. Bioinformatics analysis identified TRAF3 as candidate target gene of miR-126-5p. Experimentally, miR-126-5p can target TRAF3, as shown by the effects of miR-126-5p on the endogenous expression of TRAF3, and by the TRAF3 3'UTR driven luciferase reporter assay. Furthermore, we demonstrated that miR-126-5p negatively regulated innate immunity by blocking the MAVS-TRAF3-TBK1 axis, with a co-expression assay. Overall, our results suggest that miR-126-5p is involved in the negative regulation of chicken innate immunity, which might contribute to maintaining immune balance.
Collapse
Affiliation(s)
- Jie Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Longlong Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Aixi Sun
- Shanghai Yuan Song Biotechnology Co., LTD., Shanghai, China
| | - Zhenyu Lin
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxian Zhu
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Henan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
863
|
Jiang N, Li Z, Dai Y, Liu Z, Han X, Li Y, Li Y, Xiong H, Xu J, Zhang G, Xiao S, Yuan X, Fu Y. Massive genome investigations reveal insights of prevalent introgression for environmental adaptation and triterpene biosynthesis in Ganoderma. Mol Ecol Resour 2022. [PMID: 36214617 DOI: 10.1111/1755-0998.13718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022]
Abstract
Genome introgression is one of the driving forces that can increase species and genetic diversity and facilitate the adaptive evolution of organisms and biodiversity conservation. However, the genomic introgression and its contribution to biodiversity of macrofungi are still unclear. The genus Ganoderma is a typical macrofungal group that plays crucial roles in forest ecosystem as saprophytic organisms and plant pathogens, and is also involved in human health as medicinal mushrooms. Most public Ganoderma genomes are fragmented, and reference genomes and whole-genome information of diverse germplasm resources for many Ganoderma species are lacking, thus hindering functional and evolutionary genomic investigations among Ganoderma species. In this study, we provide high-quality genomes of 10 Ganoderma species and whole-genome variants data of 224 individuals from various ecoregions, enabling us to infer the phylogeny of Ganoderma species and their historical population dynamics. Based on whole-genome variants, widespread and genome-wide introgression among Ganoderma species is revealed. Genes with significant introgression signals were related to stress response, digestive absorption, and secondary metabolite synthesis, factors that may contribute to environmental adaptation and important biocomponent metabolism. CYP512U6, an essential functional gene in the CYP450 family related to Ganoderma triterpene synthesis, was detected with significant introgression and selection signals combined with Ganoderma metabolomic analysis, indicating that both ancient gene exchange and recent domestication have contributed to the categories and content of secondary metabolites of Ganoderma. The reference genomes, whole-genome variants, and metabolite profiles could serve as abundant and valuable genetic resources for evolution, ecology, and conservation investigations of Ganoderma species and other macrofungi.
Collapse
Affiliation(s)
- Nan Jiang
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, Jilin, China
- College of Plant Protection, Jilin Agricultural University, Jilin, Changchun, China
| | - Zhenhao Li
- ShouXianGu Botanical Drug Institute Co., Ltd., Jinhua, Zhejiang, China
| | - Yueting Dai
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhenhua Liu
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuerong Han
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, Jilin, China
| | - Yu Li
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, Jilin, China
| | - Yong Li
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Hui Xiong
- ShouXianGu Botanical Drug Institute Co., Ltd., Jinhua, Zhejiang, China
| | - Jing Xu
- ShouXianGu Botanical Drug Institute Co., Ltd., Jinhua, Zhejiang, China
| | - Guoliang Zhang
- ShouXianGu Botanical Drug Institute Co., Ltd., Jinhua, Zhejiang, China
| | - Shijun Xiao
- Jiaxing Key Laboratory for New Germplasm Breeding of Economic Mycology, Jiaxing, Zhejiang, China
| | - Xiaohui Yuan
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, Jilin, China
| | - Yongping Fu
- College of Plant Protection, Jilin Agricultural University, Jilin, Changchun, China
| |
Collapse
|
864
|
Chen Y, Wang YF, Song SS, Zhu J, Wu LL, Li XY. Potential shared therapeutic and hepatotoxic mechanisms of Tripterygium wilfordii polyglycosides treating three kinds of autoimmune skin diseases by regulating IL-17 signaling pathway and Th17 cell differentiation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115496. [PMID: 35750104 DOI: 10.1016/j.jep.2022.115496] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii polyglycosides (TWP) are extracted from Tripterygium wilfordii Hook. f., which has the significant effects of anti-inflammation and immunosuppression and has been widely used to treat autoimmune diseases in traditional Chinese medicine. AIM OF STUDY In Chinese clinical dermatology, TWP was generally used for the treatment of autoimmune skin diseases including psoriasis (PSO), systemic lupus erythematosus (SLE) and pemphigus (PEM). However, the potential hepatotoxicity (HPT) induced by TWP was also existing with the long-term use of TWP. This study aims to explore the potential shared therapeutic mechanism of TWP treating PSO, SLE, PEM and the possible hepatotoxic mechanism induced by TWP. MATERIALS AND METHODS Network pharmacology was used to predict the potential targets and pathways in this study. The main bioactive compounds in TWP was screened according to TCMSP, PubChem, ChEMBL databases and Lipinski's Rule of Five. The potential targets of these chemical constituents were obtained from PharmMapper, SEA and SIB databases. The related targets of PSO, SLE, PEM and HPT were collected from GeneCards, DrugBank, DisGeNET and CTD databases. The target network construction was performed through STRING database and Cytoscape. GO enrichment, KEGG enrichment and molecular docking were then performed, respectively. In particular, imiquimod (IMQ)-induced PSO model was selected as the representative for the experimental verification of effects and shared therapeutic mechanisms of TWP. RESULTS 41 targets were considered as the potential shared targets of TWP treating PSO, SLE and PEM. KEGG enrichment indicated that IL-17 signaling pathway and Th17 cell differentiation were significant in the potential shared therapeutic mechanism of TWP. The animal experimental verification demonstrated that TWP could notably ameliorate skin lesions (P˂0.001), decrease inflammatory response (P˂0.05, P˂0.01, P˂0.001) and inhibit the differentiation of Th1/Th17 cells (P˂0.05, P˂0.01) compared to PSO model group. The molecular docking and qPCR validation then showed that TWP could effectively act on MAPK14, IL-2, IL-6 and suppress Th17 cell differentiation and IL-17 signaling pathway. The possible hepatotoxic mechanism of TWP indicated that there were 145 hepatotoxic targets and it was also associated with IL-17 signaling pathway and Th17 cell differentiation, especially for the key role of ALB, CASP3 and HSP90AA1. Meanwhile, the potential correlations between efficacy and hepatotoxicity of TWP showed that 28 targets were shared by therapeutic and hepatotoxic mechanisms such as IL-6, IL-2, MAPK14, MMP9, ALB, CASP3 and HSP90AA1. These significant relevant targets were also involved in IL-17 signaling pathway and Th17 cell differentiation. CONCLUSIONS There were shared disease targets in PSO, SLE and PEM, and TWP could treat them by potential shared therapeutic mechanisms of suppressing IL-17 signaling pathway and Th17 cell differentiation. The possible hepatotoxicity induced by TWP was also significantly associated with the regulation of IL-17 signaling pathway and Th17 cell differentiation. Meanwhile, the potential correlations between efficacy and hepatotoxicity of TWP also mainly focused on IL-17 signaling pathway and Th17 cell differentiation, which provided a potential direction for the study of the mechanism of "You Gu Wu Yun" theory of TWP treating autoimmune skin diseases in the future.
Collapse
Affiliation(s)
- Yi Chen
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Yong-Fang Wang
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Sha-Sha Song
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Jia Zhu
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Li-Li Wu
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Xin-Yu Li
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|
865
|
Wang L, Wang J, Chen H, Hu B. Genome-wide identification, characterization, and functional analysis of lncRNAs in Hevea brasiliensis. FRONTIERS IN PLANT SCIENCE 2022; 13:1012576. [PMID: 36275565 PMCID: PMC9581277 DOI: 10.3389/fpls.2022.1012576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Natural rubber (NR) is an essential industrial raw material widely used in our life. Hevea brasiliensis (Reyan7-33-97) is an economic plant producing natural rubber. Long non-coding RNAs (lncRNAs) are emerging as crucial regulators in numerous biological processes while the characterization and analysis of lncRNAs in Hevea brasiliensis are still largely unrevealed. We integrated the transcriptome datasets from multiple tissues to identify rubber lncRNAs. As a result, 12,029 lncRNAs were found and characterized with notably distinctive features such as longer exon, lower expression levels and GC content, and more tissue specificity in comparison with mRNAs. We discovered thousands of tissue-specific lncRNAs in rubber root, latex, bark, leaf, flower, and seed tissues. The functional enrichment result reveals that tissue-specific lncRNAs are potentially referred to particular functions of tissues, while the non-tissue specific is related to the translation and metabolic processes. In the present study, a comprehensive lncRNA dataset was identified and its functional profile in Hevea brasiliensis was explored, which provides an annotation resource and important clues to understand the biological functions of lncRNAs in Hevea brasiliensis.
Collapse
Affiliation(s)
- Lingling Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Jingyi Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Hui Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Bin Hu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
866
|
Amit M, Xie T, Gleber-Netto FO, Hunt PJ, Mehta GU, Bell D, Silverman DA, Yaman I, Ye Y, Burks JK, Fuller GN, Gidley PW, Nader ME, Raza SM, DeMonte F. Distinct immune signature predicts progression of vestibular schwannoma and unveils a possible viral etiology. J Exp Clin Cancer Res 2022; 41:292. [PMID: 36195959 PMCID: PMC9531347 DOI: 10.1186/s13046-022-02473-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The management of sub-totally resected sporadic vestibular schwannoma (VS) may include observation, re-resection or irradiation. Identifying the optimal choice can be difficult due to the disease's variable progression rate. We aimed to define an immune signature and associated transcriptomic fingerprint characteristic of rapidly-progressing VS to elucidate the underpinnings of rapidly progressing VS and identify a prognostic model for determining rate of progression. METHODS We used multiplex immunofluorescence to characterize the immune microenvironment in 17 patients with sporadic VS treated with subtotal surgical resection alone. Transcriptomic analysis revealed differentially-expressed genes and dysregulated pathways when comparing rapidly-progressing VS to slowly or non-progressing VS. RESULTS Rapidly progressing VS was distinctly enriched in CD4+, CD8+, CD20+, and CD68+ immune cells. RNA data indicated the upregulation of anti-viral innate immune response and T-cell senescence. K - Top Scoring Pair analysis identified 6 pairs of immunosenescence-related genes (CD38-KDR, CD22-STAT5A, APCS-CXCR6, MADCAM1-MPL, IL6-NFATC3, and CXCL2-TLR6) that had high sensitivity (100%) and specificity (78%) for identifying rapid VS progression. CONCLUSION Rapid progression of residual vestibular schwannoma following subtotal surgical resection has an underlying immune etiology that may be virally originating; and despite an abundant adaptive immune response, T-cell immunosenescence may be associated with rapid progression of VS. These findings provide a rationale for clinical trials evaluating immunotherapy in patients with rapidly progressing VS.
Collapse
Affiliation(s)
- Moran Amit
- grid.240145.60000 0001 2291 4776Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Tongxin Xie
- grid.240145.60000 0001 2291 4776Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Frederico O. Gleber-Netto
- grid.240145.60000 0001 2291 4776Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Patrick J. Hunt
- grid.39382.330000 0001 2160 926XMedical Scientist Training Program, Baylor College of Medicine, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Gautam U. Mehta
- grid.240145.60000 0001 2291 4776Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.417670.30000 0001 0357 1050Division of Neurosurgery, House Ear Institute, Los Angeles, CA USA
| | - Diana Bell
- grid.410425.60000 0004 0421 8357Anatomic Pathology, Head and Neck Disease Alignment Team, City of Hope Comprehensive Cancer Center, Duarte, CA USA ,grid.240145.60000 0001 2291 4776Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX USA
| | - Deborah A. Silverman
- grid.240145.60000 0001 2291 4776Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Ismail Yaman
- grid.240145.60000 0001 2291 4776Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Yi Ye
- grid.137628.90000 0004 1936 8753Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY USA ,grid.137628.90000 0004 1936 8753Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, NY USA ,grid.137628.90000 0004 1936 8753Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY USA
| | - Jared K. Burks
- grid.240145.60000 0001 2291 4776Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Gregory N. Fuller
- grid.240145.60000 0001 2291 4776Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Brain Tumor Center, The University of Texas M.D. Anderson Cancer Center, Houston, TX USA
| | - Paul W. Gidley
- grid.240145.60000 0001 2291 4776Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Marc-Elie Nader
- grid.240145.60000 0001 2291 4776Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Shaan M. Raza
- grid.240145.60000 0001 2291 4776Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Franco DeMonte
- grid.240145.60000 0001 2291 4776Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
867
|
Guo S, Zheng Y, Meng D, Zhao X, Sang Z, Tan J, Deng Z, Lang Z, Zhang B, Wang Q, Bouzayen M, Zuo J. DNA and coding/non-coding RNA methylation analysis provide insights into tomato fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:399-413. [PMID: 36004545 DOI: 10.1111/tpj.15951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Ripening is the last, irreversible developmental stage during which fruit become palatable, thus promoting seed dispersal by frugivory. In Alisa Craig fruit, mRNAs with increasing m5C levels, such as STPK and WRKY 40, were identified as being involved in response to biotic and abiotic stresses. Furthermore, two mRNAs involved in cell wall metabolism, PG and EXP-B1, also presented increased m5C levels. In the Nr mutant, several m5C-modified mRNAs involved in fruit ripening, including those encoding WRKY and MADS-box proteins, were found. Targets of long non-coding RNAs and circular RNAs with different m5C sites were also found; these targets included 2-alkenal reductase, soluble starch synthase 1, WRKY, MADS-box, and F-box/ketch-repeat protein SKIP11. A combined analysis of changes in 5mC methylation and mRNA revealed many differentially expressed genes with differentially methylated regions encoding transcription factors and key enzymes related to ethylene biosynthesis and signal transduction; these included ERF084, EIN3, AP2/ERF, ACO5, ACS7, EIN3/4, EBF1, MADS-box, AP2/ERF, and ETR1. Taken together, our findings contribute to the global understanding of the mechanisms underlying fruit ripening, thereby providing new information for both fruit and post-harvest behavior.
Collapse
Affiliation(s)
- Susu Guo
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Zhaoze Sang
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Jinjuan Tan
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhang
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Qing Wang
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Mondher Bouzayen
- Laboratory Genomics and Biotechnology of Fruits, INRA, Toulouse INP, University of Toulouse, Castanet-Tolosan, France
| | - Jinhua Zuo
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
868
|
Su X, Liu T, Liu YP, Harris AJ, Chen JY. Adaptive radiation in Orinus, an endemic alpine grass of the Qinghai-Tibet Plateau, based on comparative transcriptomic analysis. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153786. [PMID: 35963042 DOI: 10.1016/j.jplph.2022.153786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The species of Orinus (Poaceae) are important alpine plants with a variety of phenotypic traits and potential usages in molecular breeding toward drought-tolerant forage crops. However, the genetic basis of evolutionary adaption and diversification in the genus is still unclear. In the present study, we obtained transcriptomes for the two most divergent species, O. thoroldii and O. kokonoricus, using the Illumina platform and de novo assembly. In total, we generated 23,029 and 24,086 unigenes with N50 values of 1188 and 1203 for O. thoroldii and O. kokonoricus respectively, and identified 19,005 pairs of putative orthologs between the two species of Orinus. For these orthologs, estimations of non-synonymous/synonymous substitution rate ratios indicated that 568 pairs may be under strongly positive selection (Ka/Ks > 1), and Gene Ontogeny (GO) enrichment analysis revealed that significantly enriched pathways were in DNA repair and resistance to abiotic stress. Meanwhile, the divergence times of species between O. thoroldii and O. kokonoricus occurred 3.2 million years ago (Mya), and the recent evolutionary branch is an allotetraploid species, Cleistogenes songorica. We also detected a Ks peak of ∼0.60 for Orinus. Additionally, we identified 188 pairs of differentially expressed genes (DEGs) between the two species of Orinus, which were significantly enrich in stress resistance and lateral root development. Thus, we considered that the species diversification and evolutionary adaption of this genus was initiated by environmental selection, followed by phenotypic differentiation, finally leading to niche separation in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Xu Su
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Land Surface Processes and Ecological Conservation of the Qinghai-Tibet Plateau, The Ministry of Education, Qinghai Normal University, Xining, 810008, China
| | - Tao Liu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; School of Geographical Science, Qinghai Normal University, Xining, 810008, China
| | - Yu Ping Liu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China.
| | - A J Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Jin Yuan Chen
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China
| |
Collapse
|
869
|
Qin X, Lai KP, Wu RSS, Kong RYC. Continuous 17α-ethinylestradiol exposure impairs the sperm quality of marine medaka (Oryzias melastigma). MARINE POLLUTION BULLETIN 2022; 183:114093. [PMID: 36084614 DOI: 10.1016/j.marpolbul.2022.114093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
17α-ethinylestradiol (EE2) is an anthropogenic estrogen that is widely used for hormone therapy and oral contraceptives. It was reported that EE2 exposure induced reproductive impairments through processes affecting reproduction behavior and inducing ovotestis. However, the effects of continuous EE2 exposure on the reproductive performance remain largely unknown. In this study, adult marine medaka fish (Oryzias melastigma) were exposed to EE2 (85 ng/L) for one (F0) and two (F1) generations. Our results indicate that continuous EE2 exposure reduced fecundity and sperm motility. The testicular transcriptome, followed by bioinformatic analysis revealed the dysregulation of pathways related to steroidogenesis, sperm motility, and reproductive system development. Collectively, our findings indicate that continuous EE2 exposure directly affected sperm quality via the alteration of steroidogenesis and dysregulation of reproductive system development. The identified key factors including DNM1, PINK1, PDE7B, and SLC12A7 can serve as biomarkers to assess EE2-reduced sperm motility.
Collapse
Affiliation(s)
- Xian Qin
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| | - Rudolf Shiu Sun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
870
|
Chen X, Wang K, Li D, Zhao M, Huang B, Su W, Yu D. Genetic and immune crosstalk between severe burns and blunt trauma: A study of transcriptomic data. Front Genet 2022; 13:1038222. [PMID: 36246590 PMCID: PMC9561827 DOI: 10.3389/fgene.2022.1038222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Severe burns and blunt trauma can lead to multiple organ dysfunction syndrome, the leading cause of death in intensive care units. In addition to infection, the degree of immune inflammatory response also affects prognosis. However, the characteristics and clinical relevance of the common mechanisms of these major diseases are still underexplored. Methods: In the present study, we performed microarray data analysis to identify immune-related differentially expressed genes (DEGs) involved in both disease progression in burns and blunt trauma. Six analyses were subsequently performed, including gene enrichment analysis, protein‐protein interaction (PPI) network construction, immune cell infiltration analysis, core gene identification, co-expression network analysis, and clinical correlation analysis. Results: A total of 117 common immune-related DEGs was selected for subsequent analyses. Functional analysis emphasizes the important role of Th17 cell differentiation, Th1 and Th2 cell differentiation, Cytokine-cytokine receptor interaction and T cell receptor signaling pathway in these two diseases. Finally, eight core DEGs were identified using cytoHubba, including CD8A, IL10, CCL5, CD28, LCK, CCL4, IL2RB, and STAT1. The correlation analysis showed that the identified core DEGs were more or less significantly associated with simultaneous dysregulation of immune cells in blunt trauma and sepsis patients. Of these, the downregulation of CD8A and CD28 had a worse prognosis. Conclusion: Our analysis lays the groundwork for future studies to elucidate molecular mechanisms shared in burns and blunt trauma. The functional roles of identified core immune-related DEGs and dysregulated immune cell subsets warrant further in-depth study.
Collapse
Affiliation(s)
- Xiaoming Chen
- Department of Plastic and burns Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Kuan Wang
- Department of Cosmetic Plastic and burns Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Dazhuang Li
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Mingyue Zhao
- Department of Periodontology, Affiliated Stomatological Hospital of Zunyi MedicalUniversity, Zunyi, China
| | - Biao Huang
- Department of Plastic and burns Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- *Correspondence: Biao Huang, ; Wenxing Su, ; Daojiang Yu,
| | - Wenxing Su
- Department of Plastic and burns Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- *Correspondence: Biao Huang, ; Wenxing Su, ; Daojiang Yu,
| | - Daojiang Yu
- Department of Plastic and burns Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- *Correspondence: Biao Huang, ; Wenxing Su, ; Daojiang Yu,
| |
Collapse
|
871
|
He X, Xu J, Niu N, Xu G, Zhu H, Liu Z, Mou Y, Qian Z, Wang H, Hu J, Ma T, Ma J, Tao H. PBRM1 presents a potential prognostic marker and therapeutic target in duodenal papillary carcinoma. Clin Transl Med 2022; 12:e1062. [PMID: 36178086 PMCID: PMC9523678 DOI: 10.1002/ctm2.1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Due to its rarity, duodenal papillary carcinoma (DPC) is seldom studied as a unique disease and no specific molecular features or treatment guidelines are provided. METHODS Whole-exome sequencing was performed to gain new insights into the DPC mutation landscape and to identify potential signalling pathways and therapeutic targets. Mechanistically, immunohistochemistry (IHC), immunofluorescence, RNA-seq, ATAC-seq and in vitro cell function experiments were performed to confirm the underlying mechanisms. RESULTS We described the mutational landscape of DPC for the first time as a group of rare tumours with a high frequency of dysregulation in the chromatin remodelling pathway, particularly PBRM1-inactivating mutations that are significantly higher than duodenal adenocarcinomas and ampullary adenocarcinoma (27% vs. 0% vs. 7%, p < .01). In vitro cell experiments showed that downregulation of PBRM1 expression could significantly promote the cancer progression and epithelial-to-mesenchymal transition via the PBRM1-c-JUN-VIM axis. The IHC data indicated that PBRM1 deficiency (p = .047) and c-JUN expression (p < .001) were significantly associated with poor prognosis. Meanwhile, the downregulation of PBRM1 expression in HUTU-80 cells was sensitive to radiation, which may be due to the suppression of c-JUN by irradiation. CONCLUSIONS Our findings define a novel molecular subgroup of PBRM1-inactivating mutations in DPC. PBRM1 play an important role in DPC progression and may serve as a potential therapeutic target and prognostic indicator.
Collapse
Affiliation(s)
- Xujun He
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)HangzhouZhejiangChina,Department of Genetic and Genome MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina,Department of Gastrointestinal and Pancreatic SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Ji Xu
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)HangzhouZhejiangChina,Department of Gastrointestinal and Pancreatic SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Nan Niu
- The Second Clinical Medical College of Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Guoxi Xu
- Department of Gastrointestinal SurgeryJinjiang HospitalQuanzhouFujianChina
| | - Honglin Zhu
- Genetron Health (Beijing) TechnologyCo. Ltd.BeijingChina
| | - Zhengchuang Liu
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)HangzhouZhejiangChina
| | - Yiping Mou
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)HangzhouZhejiangChina,Department of Gastrointestinal and Pancreatic SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Zhengyuan Qian
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)HangzhouZhejiangChina,Department of Gastrointestinal and Pancreatic SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Huiju Wang
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)HangzhouZhejiangChina,Department of Gastrointestinal and Pancreatic SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Junfeng Hu
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)HangzhouZhejiangChina,Department of Gastrointestinal and Pancreatic SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Tonghui Ma
- Genetron Health (Beijing) TechnologyCo. Ltd.BeijingChina
| | - Jie Ma
- Department of PathologyZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Houquan Tao
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)HangzhouZhejiangChina,Department of Gastrointestinal and Pancreatic SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| |
Collapse
|
872
|
Liu Z, Liu Z, Mu Q, Zhao M, Cai T, Xie Y, Zhao C, Qin Q, Zhang C, Xu X, Lan M, Zhang Y, Su R, Wang Z, Wang R, Wang Z, Li J, Zhao Y. Identification of key pathways and genes that regulate cashmere development in cashmere goats mediated by exogenous melatonin. Front Vet Sci 2022; 9:993773. [PMID: 36246326 PMCID: PMC9558121 DOI: 10.3389/fvets.2022.993773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The growth of secondary hair follicles in cashmere goats follows a seasonal cycle. Melatonin can regulate the cycle of cashmere growth. In this study, melatonin was implanted into live cashmere goats. After skin samples were collected, transcriptome sequencing and histological section observation were performed, and weighted gene co-expression network analysis (WGCNA) was used to identify key genes and establish an interaction network. A total of 14 co-expression modules were defined by WGCNA, and combined with previous analysis results, it was found that the blue module was related to the cycle of cashmere growth after melatonin implantation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the first initiation of exogenous melatonin-mediated cashmere development was related mainly to the signaling pathway regulating stem cell pluripotency and to the Hippo, TGF-beta and MAPK signaling pathways. Via combined differential gene expression analyses, 6 hub genes were identified: PDGFRA, WNT5A, PPP2R1A, BMPR2, BMPR1A, and SMAD1. This study provides a foundation for further research on the mechanism by which melatonin regulates cashmere growth.
Collapse
Affiliation(s)
- Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Goat Genetics and Breeding Engineering Technology Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhichen Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Qing Mu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Meng Zhao
- Inner Mongolia Autonomous Region Agriculture and Animal Husbandry Technology Extension Center, Hohhot, China
| | - Ting Cai
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yuchun Xie
- Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Cun Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Qing Qin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chongyan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaolong Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingxi Lan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Goat Genetics and Breeding Engineering Technology Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Goat Genetics and Breeding Engineering Technology Research Center, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Yanhong Zhao
| |
Collapse
|
873
|
Gao L, Ren R, Shen J, Hou J, Ning J, Feng Y, Wang M, Wu L, Sun Y, Wang H, Wang D, Cao J. Values of OAS gene family in the expression signature, immune cell infiltration and prognosis of human bladder cancer. BMC Cancer 2022; 22:1016. [PMID: 36162993 PMCID: PMC9510761 DOI: 10.1186/s12885-022-10102-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is one of the most common genitourinary malignancies in the world, but its pathogenic genes have not been fully identified and the treatment outcomes are still unsatisfactory. Although the members of 2', 5'-oligoadenylate synthetase (OAS) gene family are known involved in some tumorous biological processes, the roles of the OAS gene family in BLCA are still undetermined. METHODS By combining vast bioinformatic datasets analyses of BLCA and the experimental verification on clinical BLCA specimen, we identified the expressions and biological functions of OAS gene family members in BLCA with comparison to normal bladder tissues. RESULTS The expression levels of OAS gene family members were higher in BLCA than in normal bladder tissues. The expression levels of most OAS genes had correlations with genomic mutation and methylation, and with the infiltration levels of CD4 + T cells, CD8 + T cells, neutrophils, and dendritic cells in the microenvironment of BLCA. In addition, high expressions of OAS1, OAS2, OAS3, and OASL predicted better overall survival in BLCA patients. CONCLUSIONS The highly expressed OAS genes in BLCA can reflect immune cells infiltration in the tumor microenvironment and predict the better overall survival of BLCA, and thus may be considered as a signature of BLCA. The study provides new insights into the diagnosis, treatment, and prognosis of BLCA.
Collapse
Affiliation(s)
- Lijuan Gao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Ruimin Ren
- Department of Urology, Shanxi Bethune Hospital (Third Hospital of Shanxi Medical University), Taiyuan, 030032, China
| | - Jing Shen
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Jiayi Hou
- Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Junya Ning
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Meiyue Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Lifei Wu
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Yaojun Sun
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Huang Wang
- Department of Urology, Shanxi Bethune Hospital (Third Hospital of Shanxi Medical University), Taiyuan, 030032, China
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| |
Collapse
|
874
|
Scott MA, Woolums AR, Karisch BB, Harvey KM, Capik SF. Impact of preweaning vaccination on host gene expression and antibody titers in healthy beef calves. Front Vet Sci 2022; 9:1010039. [PMID: 36225796 PMCID: PMC9549141 DOI: 10.3389/fvets.2022.1010039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of preweaning vaccination for bovine respiratory viruses on cattle health and subsequent bovine respiratory disease morbidity has been widely studied yet questions remain regarding the impact of these vaccines on host response and gene expression. Six randomly selected calves were vaccinated twice preweaning (T1 and T3) with a modified live vaccine for respiratory pathogens and 6 randomly selected calves were left unvaccinated. Whole blood samples were taken at first vaccination (T1), seven days later (T2), at revaccination and castration (T3), and at weaning (T4), and utilized for RNA isolation and sequencing. Serum from T3 and T4 was analyzed for antibodies to BRSV, BVDV1a, and BHV1. Sequenced RNA for all 48 samples was bioinformatically processed with a HISAT2/StringTie pipeline, utilizing reference guided assembly with the ARS-UCD1.2 bovine genome. Differentially expressed genes were identified through analyzing the impact of time across all calves, influence of vaccination across treatment groups at each timepoint, and the interaction of time and vaccination. Calves, regardless of vaccine administration, demonstrated an increase in gene expression over time related to specialized proresolving mediator production, lipid metabolism, and stimulation of immunoregulatory T-cells. Vaccination was associated with gene expression related to natural killer cell activity and helper T-cell differentiation, enriching for an upregulation in Th17-related gene expression, and downregulated genes involved in complement system activity and coagulation mechanisms. Type-1 interferon production was unaffected by the influence of vaccination nor time. To our knowledge, this is the first study to evaluate mechanisms of vaccination and development in healthy calves through RNA sequencing analysis.
Collapse
Affiliation(s)
- Matthew A. Scott
- Veterinary Education, Research, and Outreach Center, Texas A&M University and West Texas A&M University, Canyon, TX, United States
| | - Amelia R. Woolums
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Brandi B. Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Kelsey M. Harvey
- Prairie Research Unit, Mississippi State University, Prairie, MS, United States
| | - Sarah F. Capik
- Texas A&M AgriLife Research, Texas A&M University System, Amarillo, TX, United States
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
875
|
Wang X, Li Z, Qu M, Xiong C, Li H. A homozygous PIWIL2 frameshift variant affects the formation and maintenance of human-induced pluripotent stem cell-derived spermatogonial stem cells and causes Sertoli cell-only syndrome. STEM CELL RESEARCH & THERAPY 2022; 13:480. [PMID: 36153567 PMCID: PMC9509617 DOI: 10.1186/s13287-022-03175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/11/2022] [Indexed: 11/10/2022]
Abstract
Background The most serious condition of male infertility is complete Sertoli cell-only syndrome (SCOS), which refers to the lack of all spermatogenic cells in the testes. The genetic cause of SCOS remains to be explored. We aimed to investigate the genetic cause of SCOS and assess the effects of the identified causative variant on human male germ cells. Methods Whole-exome sequencing was performed to identify potentially pathogenic variants in a man with complete SCOS, and Sanger sequencing was performed to verify the causative variant in this man and his father and brother. The pathogenic mechanisms of the causative variant were investigated by in vitro differentiation of human-induced pluripotent stem cells (hiPSCs) into germ cell-like cells. Results The homozygous loss-of-function (LoF) variant p.His244ArgfsTer31 (c.731_732delAT) in PIWIL2 was identified as the causative variant in the man with complete SCOS, and the same variant in heterozygosis was confirmed in his father and brother. This variant resulted in a truncated PIWIL2 protein lacking all functional domains, and no PIWIL2 expression was detected in the patient’s testes. The patient and PIWIL2−/− hiPSCs could be differentiated into primordial germ cell-like cells and spermatogonial stem cell-like cells (SSCLCs) in vitro, but the formation and maintenance of SSCLCs were severely impaired. RNA-seq analyses suggested the inactivation of the Wnt signaling pathway in the process of SSCLC induction in the PIWIL2−/− group, which was validated in the patient group by RT-qPCR. The Wnt signaling pathway inhibitor hindered the formation and maintenance of SSCLCs during the differentiation of normal hiPSCs. Conclusions Our study revealed the pivotal role of PIWIL2 in the formation and maintenance of human spermatogonial stem cells. We provided clinical and functional evidence that the LoF variant in PIWIL2 is a genetic cause of SCOS, which supported the potential role of PIWIL2 in genetic diagnosis. Furthermore, our results highlighted the applicability of in vitro differentiation models to function validation experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03175-6.
Collapse
|
876
|
Zhang GM, Huang SS, Ye LX, Liu XL, Shi WH, Ren ZL, Zhou RH, Zhang JJ, Pan JX, Liu SW, Yu L, Li YL. Reciprocal positive regulation between BRD4 and YAP in GNAQ-mutant uveal melanoma cells confers sensitivity to BET inhibitors. Pharmacol Res 2022; 184:106464. [PMID: 36162600 DOI: 10.1016/j.phrs.2022.106464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
Uveal melanoma (UM) is the most common intraocular cancer in adults. UMs are usually initiated by a mutation in GNAQ or GNA11 (encoding Gq or G11, respectively), unlike cutaneous melanomas (CMs), which usually carry a BRAF or NRAS mutation. Currently, there are no clinically effective targeted therapies for UM carrying Gq/11 mutations. Here, we identified a causal link between Gq activating mutations and hypersensitivity to bromodomain and extra-terminal (BET) inhibitors. BET inhibitors transcriptionally repress YAP via BRD4 regardless of Gq mutation status, independently of Hippo core components LATS1/2. In contrast, YAP/TAZ downregulation reduces BRD4 transcription exclusively in Gq-mutant cells and LATS1/2 double knockout cells, both of which are featured by constitutively active YAP/TAZ. The transcriptional interdependency between BRD4 and YAP identified in Gq-mutated cells is responsible for the preferential inhibitory effect of BET inhibitors on the growth and dissemination of Gq-mutated UM cells compared to BRAF-mutated CM cells in both culture cells and animal models. Our findings suggest BRD4 as a viable therapeutic target for Gq-driven UMs that are addicted to unrestrained YAP function.
Collapse
Affiliation(s)
- Gui-Ming Zhang
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Si-Si Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin-Xuan Ye
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lian Liu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wen-Hui Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhong-Lu Ren
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Run-Hua Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jia-Jie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing-Xuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Le Yu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Yi-Lei Li
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
877
|
Jin J, Meng L, Chen K, Xu Y, Lu P, Li Z, Tao J, Li Z, Wang C, Yang X, Yu S, Yang Z, Cao L, Cao P. Analysis of herbivore-responsive long noncoding ribonucleic acids reveals a subset of small peptide-coding transcripts in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2022; 13:971400. [PMID: 36212334 PMCID: PMC9538394 DOI: 10.3389/fpls.2022.971400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulate many biological processes in plants, including defense against pathogens and herbivores. Recently, many small ORFs embedded in lncRNAs have been identified to encode biologically functional peptides (small ORF-encoded peptides [SEPs]) in many species. However, it is unknown whether lncRNAs mediate defense against herbivore attack and whether there are novel functional SEPs for these lncRNAs. By sequencing Spodoptera litura-treated leaves at six time-points in Nicotiana tabacum, 22,436 lncRNAs were identified, of which 787 were differentially expressed. Using a comprehensive mass spectrometry (MS) pipeline, 302 novel SEPs derived from 115 tobacco lncRNAs were identified. Moreover, 61 SEPs showed differential expression after S. litura attack. Importantly, several of these peptides were characterized through 3D structure prediction, subcellular localization validation by laser confocal microscopy, and western blotting. Subsequent bioinformatic analysis revealed some specific chemical and physical properties of these novel SEPs, which probably represent the largest number of SEPs identified in plants to date. Our study not only identifies potential lncRNA regulators of plant response to herbivore attack but also serves as a valuable resource for the functional characterization of SEP-encoding lncRNAs.
Collapse
Affiliation(s)
- Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Lijun Meng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Kai Chen
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zhaowu Li
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Jiemeng Tao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xiaonian Yang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Shizhou Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Zhixiao Yang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Linggai Cao
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
878
|
Wang S, Feng Y, Liu X, Liu Y, Wu M, Zheng J. NSF4SL: negative-sample-free contrastive learning for ranking synthetic lethal partner genes in human cancers. Bioinformatics 2022; 38:ii13-ii19. [PMID: 36124790 DOI: 10.1093/bioinformatics/btac462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION Detecting synthetic lethality (SL) is a promising strategy for identifying anti-cancer drug targets. Targeting SL partners of a primary gene mutated in cancer is selectively lethal to cancer cells. Due to high cost of wet-lab experiments and availability of gold standard SL data, supervised machine learning for SL prediction has been popular. However, most of the methods are based on binary classification and thus limited by the lack of reliable negative data. Contrastive learning can train models without any negative sample and is thus promising for finding novel SLs. RESULTS We propose NSF4SL, a negative-sample-free SL prediction model based on a contrastive learning framework. It captures the characteristics of positive SL samples by using two branches of neural networks that interact with each other to learn SL-related gene representations. Moreover, a feature-wise data augmentation strategy is used to mitigate the sparsity of SL data. NSF4SL significantly outperforms all baselines which require negative samples, even in challenging experimental settings. To the best of our knowledge, this is the first time that SL prediction is formulated as a gene ranking problem, which is more practical than the current formulation as binary classification. NSF4SL is the first contrastive learning method for SL prediction and its success points to a new direction of machine-learning methods for identifying novel SLs. AVAILABILITY AND IMPLEMENTATION Our source code is available at https://github.com/JieZheng-ShanghaiTech/NSF4SL. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shike Wang
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yimiao Feng
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin Liu
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong Liu
- Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly, Nanyang Technological University, Singapore 639798, Singapore
| | - Min Wu
- Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Jie Zheng
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai 201210, China
| |
Collapse
|
879
|
Zhang K, Cao H, Ma Y, Si H, Zang J, Bai H, Yu L, Pang X, Zhou F, Xing J, Dong J. Global analysis of lysine 2-hydroxyisobutyrylation during Fusarium graminearum infection in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:1000039. [PMID: 36186065 PMCID: PMC9521605 DOI: 10.3389/fpls.2022.1000039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Proteins post-translational modification (PTMs) is necessary in the whole life process of organisms. Among them, lysine 2-hydroxyisobutyrylation (Khib) plays an important role in protein synthesis, transcriptional regulation, and cell metabolism. Khib is a newly identified PTM in several plant species. However, the function of Khib in maize was unclear. In this study, western blotting results showed that Khib modification level increased significantly after Fusarium graminearum infection, and 2,066 Khib modified sites on 728 proteins were identified in maize, among which 24 Khib sites occurred on core histones. Subcellular localization results showed that these Khib modified proteins were localized in cytoplasm, chloroplast, and nucleus. Then, comparative proteomic analysis of the defense response to F. graminearum infection showed that Khib modification participated in plant resistance to pathogen infection by regulating glycolysis, TCA cycle, protein synthesis, peroxisome, and secondary metabolic processes, such as benzoxazinoid biosynthesis, phenylpropanoid biosynthesis, jasmonic acid synthesis, and tyrosine and tryptophan biosynthesis. In addition, we also demonstrated that lysine 2-hydroxyisobutyrylation sites on histones were involved in the gene expression of pathogenesis-related proteins. Our results provide a new perspective for the study of plant disease resistance, and had directive significance of maize disease resistance for molecular breeding.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Hongzhe Cao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuxin Ma
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Helong Si
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jinping Zang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Hua Bai
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Lu Yu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Xi Pang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Fan Zhou
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jihong Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
880
|
Transcriptome Analyses Provide Insights into the Auditory Function in Trachemys scripta elegans. Animals (Basel) 2022; 12:ani12182410. [PMID: 36139269 PMCID: PMC9495000 DOI: 10.3390/ani12182410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
An auditory ability is essential for communication in vertebrates, and considerable attention has been paid to auditory sensitivity in mammals, birds, and frogs. Turtles were thought to be deaf for a long time; however, recent studies have confirmed the presence of an auditory ability in Trachemys scripta elegans as well as sex-related differences in hearing sensitivity. Earlier studies mainly focused on the morphological and physiological functions of the hearing organ in turtles; thus, the gene expression patterns remain unclear. In this study, 36 transcriptomes from six tissues (inner ear, tympanic membrane, brain, eye, lung, and muscle) were sequenced to explore the gene expression patterns of the hearing system in T. scripta elegans. A weighted gene co-expression network analysis revealed that hub genes related to the inner ear and tympanic membrane are involved in development and signal transduction. Moreover, we identified six differently expressed genes (GABRA1, GABRG2, GABBR2, GNAO1, SLC38A1, and SLC12A5) related to the GABAergic synapse pathway as candidate genes to explain the differences in sexually dimorphic hearing sensitivity. Collectively, this study provides a critical foundation for genetic research on auditory functions in turtles.
Collapse
|
881
|
Arencibia A, Salazar LA. Microarray meta-analysis reveals IL6 and p38β/MAPK11 as potential targets of hsa-miR-124 in endothelial progenitor cells: Implications for stent re-endothelization in diabetic patients. Front Cardiovasc Med 2022; 9:964721. [PMID: 36176980 PMCID: PMC9513120 DOI: 10.3389/fcvm.2022.964721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Circulating endothelial progenitor cells (EPCs) play an important role in the repair processes of damaged vessels, favoring re-endothelization of stented vessels to minimize restenosis. EPCs number and function is diminished in patients with type 2 diabetes, a known risk factor for restenosis. Considering the impact of EPCs in vascular injury repair, we conducted a meta-analysis of microarray to assess the transcriptomic profile and determine target genes during the differentiation process of EPCs into mature ECs. Five microarray datasets, including 13 EPC and 12 EC samples were analyzed, using the online tool ExpressAnalyst. Differentially expressed genes (DEGs) analysis was done by Limma method, with an | log2FC| > 1 and FDR < 0.05. Combined p-value by Fisher exact method was computed for the intersection of datasets. There were 3,267 DEGs, 1,539 up-regulated and 1,728 down-regulated in EPCs, with 407 common DEGs in at least four datasets. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed enrichment for terms related to “AGE-RAGE signaling pathway in diabetic complications.” Intersection of common DEGs, KEGG pathways genes and genes in protein-protein interaction network (PPI) identified four key genes, two up-regulated (IL1B and STAT5A) and two down-regulated (IL6 and MAPK11). MicroRNA enrichment analysis of common DEGs depicted five hub microRNA targeting 175 DEGs, including STAT5A, IL6 and MAPK11, with hsa-miR-124 as common regulator. This group of genes and microRNAs could serve as biomarkers of EPCs differentiation during coronary stenting as well as potential therapeutic targets to improve stent re-endothelization, especially in diabetic patients.
Collapse
|
882
|
Chen Y, Li R, Sun J, Li C, Xiao H, Chen S. Genome-Wide Population Structure and Selection Signatures of Yunling Goat Based on RAD-seq. Animals (Basel) 2022; 12:ani12182401. [PMID: 36139261 PMCID: PMC9495202 DOI: 10.3390/ani12182401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Goats are important domestic animals that provide meat, milk, fur, and other products for humans. The demand for these products has increased in recent years. Disease resistance among goat breeds is different, but the genetic basis of the differences in resistance to diseases is still unclear and needs to be further studied. In this study, many genes and pathways related to immunity and diseases were identified to be under positive selection between Yunling and Nubian goats using RAD-seq technology. This study on the selection signatures of Yunling goats provides the scientific basis and technical support for the breeding of domestic goats for disease resistance, which has important social and economic significance. Abstract Animal diseases impose a huge burden on the countries where diseases are endemic. Conventional control strategies of vaccines and veterinary drugs are to control diseases from a pharmaceutical perspective. Another alternative approach is using pre-existing genetic disease resistance or tolerance. We know that the Yunling goat is an excellent local breed from Yunnan, southwestern China, which has characteristics of strong disease resistance and remarkable adaptability. However, genetic information about the selection signatures of Yunling goats is limited. We reasoned that the genes underlying the observed difference in disease resistance might be identified by investigating selection signatures between two different goat breeds. Herein, we selected the Nubian goat as the reference group to perform the population structure and selection signature analysis by using RAD-seq technology. The results showed that two goat breeds were divided into two clusters, but there also existed gene flow. We used Fst (F-statistics) and π (pi/θπ) methods to carry out selection signature analysis. Eight selected regions and 91 candidate genes were identified, in which some genes such as DOK2, TIMM17A, MAVS, and DOCK8 related to disease and immunity and some genes such as SPEFI, CDC25B, and MIR103 were associated with reproduction. Four GO (Gene Ontology) terms (GO:0010591, GO:001601, GO:0038023, and GO:0017166) were associated with cell migration, signal transduction, and immune responses. The KEGG (Kyoto Encyclopedia of Genes and Genomes) signaling pathways were mainly associated with immune responses, inflammatory responses, and stress reactions. This study preliminarily revealed the genetic basis of strong disease resistance and adaptability of Yunling goats. It provides a theoretical basis for the subsequent genetic breeding of disease resistance of goats.
Collapse
Affiliation(s)
- Yuming Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Rong Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
- College of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Jianshu Sun
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Chunqing Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
| | - Heng Xiao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
| | - Shanyuan Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
- Correspondence: ; Tel.: +86-18687122260
| |
Collapse
|
883
|
Wu X, Zhou R, Wang Y, Zhang W, Zheng X, Zhao G, Zhang X, Yin Z, Ding Y. Genome‐wide scan for runs of homozygosity in Asian wild boars and Anqing six‐end‐white pigs. Anim Genet 2022; 53:867-871. [DOI: 10.1111/age.13250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/26/2022] [Accepted: 08/02/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Xudong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences Hefei China
| | - Ren Zhou
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
| | - Yuanlang Wang
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences Hefei China
| | - Wei Zhang
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences Hefei China
| | - Xianrui Zheng
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
| | - Guiying Zhao
- College of Animal Science and Technology Yunnan Agricultural University Kunming China
| | - Xiaodong Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
| | - Zongjun Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
| | - Yueyun Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
| |
Collapse
|
884
|
Jin J, Ohama N, He X, Wu HW, Chua NH. Tissue-specific transcriptomic analysis uncovers potential roles of natural antisense transcripts in Arabidopsis heat stress response. FRONTIERS IN PLANT SCIENCE 2022; 13:997967. [PMID: 36160979 PMCID: PMC9498583 DOI: 10.3389/fpls.2022.997967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 05/26/2023]
Abstract
Natural antisense transcripts (NATs) are an important class of non-coding ribonucleic acids (RNAs) that have been shown to regulate gene expression. Using strand-specific RNA sequencing, 36,317 NAT pairs were identified, and 5,536 were specifically expressed under heat stress. We found distinct expression patterns between vegetative and reproductive tissues for both coding genes and genes encoding NATs. Genes for heat-responsive NATs are associated with relatively high levels of H3K4me3 and low levels of H3K27me2/3. On the other hand, small RNAs are significantly enriched in sequence overlapping regions of NAT pairs, and a large number of heat-responsive NATs pairs serve as potential precursors of nat-siRNAs. Collectively, our results suggest epigenetic modifications and small RNAs play important roles in the regulation of NAT expression, and highlight the potential significance of heat-inducible NATs.
Collapse
Affiliation(s)
- Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Naohiko Ohama
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Xiujing He
- West China Hospital, Sichuan University, Chengdu, China
| | - Hui-Wen Wu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
885
|
Liu L, Feng X, Liu S, Zhou Y, Dong X, Yao H, Tan B. Whole-genome sequencing combined RNA-sequencing analysis of patients with mutations in SET binding protein 1. Front Neurosci 2022; 16:980000. [PMID: 36161179 PMCID: PMC9490002 DOI: 10.3389/fnins.2022.980000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
SET binding protein 1 (SETBP1) is essential for human development, and pathogenic germline variants in SETBP1 lead to a recognizable developmental syndrome and variable clinical features. In this study, we assessed a patient with facial dysmorphism, intellectual disability and delayed motor development. Whole genome sequencing identified a novel de novo variation of the SETBP1 (c.2631C > A; p. S877R) gene, which is located in the SKI domain, as a likely pathogenic variant for the proband’s phenotype. RNA sequencing was performed to investigate the potential molecular mechanism of the novel variation in SETBP1. In total, 77 and 38 genes were identified with aberrant expression and splicing, respectively. Moreover, the biological functions of these genes were involved in DNA/protein binding, expression regulation, and the cell cycle, which may advance our understanding of the pathogenesis of SETBP1 in vivo.
Collapse
Affiliation(s)
- Li Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoshu Feng
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Sihan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yanqiu Zhou
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojing Dong
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Yao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Hong Yao,
| | - Bo Tan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Bo Tan,
| |
Collapse
|
886
|
Li B, Yang S, Long J, Chen X, Zhang Q, Ning L, He B, Chen H, Huang J. AGODB: a comprehensive domain annotation database of argonaute proteins. Database (Oxford) 2022; 2022:6693399. [PMID: 36068786 PMCID: PMC9448894 DOI: 10.1093/database/baac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/18/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Argonaute (Ago) proteins are widely expressed in almost all organisms. Eukaryotic Ago (eAgo) proteins bind small RNA guides forming RNA-induced silencing complex that silence gene expression, and prokaryotic Ago (pAgo) proteins defend against invading nucleic acids via binding small RNAs or DNAs. pAgo proteins have shown great potential as a candidate ‘scissors’ for gene editing. Protein domains are fundamental units of protein structure, function and evolution; however, the domains of Ago proteins are not well annotated/curated currently. Therefore, full functional domain annotation of Ago proteins is urgently needed for researchers to understand the function and mechanism of Ago proteins. Herein, we constructed the first comprehensive domain annotation database of Ago proteins (AGODB). The database curates detailed information of 1902 Ago proteins, including 1095 eAgos and 807 pAgos. Especially for long pAgo proteins, all six domains are annotated and curated. Gene Ontology (GO) enrichment analysis revealed that Ago genes in different species were enriched in the following GO terms: biological processes (BPs), molecular function and cellular compartment. GO enrichment analysis results were integrated into AGODB, which provided insights into the BP that Ago genes may participate in. AGODB also allows users to search the database with a variety of options and download the search results. We believe that the AGODB will be a useful resource for understanding the function and domain components of Ago proteins. This database is expected to cater to the needs of scientific community dedicated to the research of Ago proteins.
Collapse
Affiliation(s)
- Bowen Li
- Medical College, Guizhou University , Guiyang, Guizhou 550025, China
| | - Shanshan Yang
- Medical College, Guizhou University , Guiyang, Guizhou 550025, China
| | - Jinjin Long
- Medical College, Guizhou University , Guiyang, Guizhou 550025, China
| | - Xue Chen
- Medical College, Guizhou University , Guiyang, Guizhou 550025, China
| | - Qianyue Zhang
- Medical College, Guizhou University , Guiyang, Guizhou 550025, China
| | - Lin Ning
- School of Health Care Technology, Chengdu Neusoft University , Chengdu, Sichuan 611844, China
| | - Bifang He
- Medical College, Guizhou University , Guiyang, Guizhou 550025, China
| | - Heng Chen
- Medical College, Guizhou University , Guiyang, Guizhou 550025, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China , Chengdu, Sichuan 611731, China
| |
Collapse
|
887
|
Lyu C, Wang Q, Yin X, Li Z, Wang T, Wang Y, Cui S, Liu K, Wang Z, Gao C, Xu R. Clinical significance and potential mechanism of heat shock factor 1 in acute myeloid leukemia. Aging (Albany NY) 2022; 14:7026-7037. [PMID: 36069792 PMCID: PMC9512492 DOI: 10.18632/aging.204267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Background: Heat shock factor 1 (HSF1) is now considered to have the potential to be used as a prognostic biomarker in cancers. However, its clinical significance and potential function in acute myeloid leukemia (AML) remain underexplored. Methods: In this study, the expression pattern and clinical significance of HSF1 in AML were examined by integrating data from databases including The Cancer Genome Atlas (TCGA), The Genotype–Tissue Expression (GTEx), Vizome, Cancer Cell Line Encyclopedia (CCLE) and Gene Expression Omnibus (GEO). Linkedomics was applied to collect HSF1–related genes in AML. GeneMANIA was applied to outline HSF1–related functional networks. CancerSEA analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Set Enrichment Analysis (GSEA) were performed to mine the potential mechanism of HSF1 in leukemogenesis. Single–sample Gene Set Enrichment Analysis (ssGSEA) was applied to explore the correlation between HSF1 and infiltrating immune cells in AML. Results: HSF1 expression was elevated in AML compared to healthy controls and indicate a poor overall survival. HSF1 expression was significantly correlated with patients age, associated with patient survival in subgroup of bone marrow blasts (%) >20. Functional analyses indicated that HSF1 plays a role in the metastatic status of AML, and is involved in inflammation–related pathways and biological processes. HSF1 expression was significantly correlated with the immune infiltration of nature killer cells and T cell population. Conclusion: HSF1 plays a vital role in the molecular network of AML pathogenesis, and has the potential to be a biomarker for prognosis prediction.
Collapse
Affiliation(s)
- Chunyi Lyu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Qian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xuewei Yin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Zonghong Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Teng Wang
- Shandong Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine of Health Commission, Institute of Hematology of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Yan Wang
- Shandong Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine of Health Commission, Institute of Hematology of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Kui Liu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Zhenzhen Wang
- Shandong Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine of Health Commission, Institute of Hematology of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Chang Gao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Ruirong Xu
- Shandong Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine of Health Commission, Institute of Hematology of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|
888
|
Yan C, Zhang ZY, Lv Y, Wang Z, Jiang K, Li JT. Genome of Laudakia sacra Provides New Insights into High-Altitude Adaptation of Ectotherms. Int J Mol Sci 2022; 23:ijms231710081. [PMID: 36077479 PMCID: PMC9456099 DOI: 10.3390/ijms231710081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Anan’s rock agama (Laudakia sacra) is a lizard species endemic to the harsh high-altitude environment of the Qinghai–Tibet Plateau, a region characterized by low oxygen tension and high ultraviolet (UV) radiation. To better understand the genetic mechanisms underlying highland adaptation of ectotherms, we assembled a 1.80-Gb L. sacra genome, which contained 284 contigs with an N50 of 20.19 Mb and a BUSCO score of 93.54%. Comparative genomic analysis indicated that mutations in certain genes, including HIF1A, TIE2, and NFAT family members and genes in the respiratory chain, may be common adaptations to hypoxia among high-altitude animals. Compared with lowland reptiles, MLIP showed a convergent mutation in L. sacra and the Tibetan hot-spring snake (Thermophis baileyi), which may affect their hypoxia adaptation. In L. sacra, several genes related to cardiovascular remodeling, erythropoiesis, oxidative phosphorylation, and DNA repair may also be tailored for adaptation to UV radiation and hypoxia. Of note, ERCC6 and MSH2, two genes associated with adaptation to UV radiation in T. baileyi, exhibited L. sacra-specific mutations that may affect peptide function. Thus, this study provides new insights into the potential mechanisms underpinning high-altitude adaptation in ectotherms and reveals certain genetic generalities for animals’ survival on the plateau.
Collapse
Affiliation(s)
- Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhi-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Correspondence: (Z.-Y.Z.); (J.-T.L.)
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Science, Neijiang Normal University, Neijiang 641100, China
| | - Zeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ke Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Mangkang Biodiversity and Ecological Station, Tibet Ecological Safety Monitor Network, Changdu 854500, China
- Correspondence: (Z.-Y.Z.); (J.-T.L.)
| |
Collapse
|
889
|
Zhou R, Jia H, Du Z, Jiang A, Song Z, Wang T, Du A, Gasser RB, Ma G. The non-glycosylated protein of Toxocara canis MUC-1 interacts with proteins of murine macrophages. PLoS Negl Trop Dis 2022; 16:e0010734. [PMID: 36054186 PMCID: PMC9477421 DOI: 10.1371/journal.pntd.0010734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/15/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Toxocariasis is a neglected parasitic disease caused predominantly by larvae of Toxocara canis. While this zoonotic disease is of major importance in humans and canids, it can also affect a range of other mammalian hosts. It is known that mucins secreted by larvae play key roles in immune recognition and evasion, but very little is understood about the molecular interactions between host cells and T. canis. Here, using an integrative approach (affinity pull-down, mass spectrometry, co-immunoprecipitation and bioinformatics), we identified 219 proteins expressed by a murine macrophage cell line (RAW264.7) that interact with prokaryotically-expressed recombinant protein (rTc-MUC-1) representing the mucin Tc-MUC-1 present in the surface coat of infective larvae of T. canis. Protein-protein interactions between rTc-MUC-1 and an actin binding protein CFL1 as well as the fatty acid binding protein FABP5 of RAW264.7 macrophages were also demonstrated in a human embryonic kidney cell line (HEK 293T). By combing predicted structural information on the protein-protein interaction and functional knowledge of the related protein association networks, we inferred roles for Tc-MUC-1 protein in the regulation of actin cytoskeletal remodelling, and the migration and phagosome formation of macrophage cells. These molecular interactions now require verification in vivo. The experimental approach taken here should be readily applicable to comparative studies of other ascaridoid nematodes (e.g. T. cati, Anisakis simplex, Ascaris suum and Baylisascaris procyonis) whose larvae undergo tissue migration in accidental hosts, including humans. Toxocariasis is a neglected parasitic disease of humans caused mainly by larvae of Toxocara canis. Given that T. canis is zoonotic and can infect a range of mammals, there has been substantial interest in host-parasite relationships, with studies showing that T. canis larvae secrete abundant mucins that effect/modulate immune responses and disease pathogenesis. To improve the understanding of immunomolecular interactions, we investigated the role(s) of the protein component of a mucin (Tc-MUC-1) secreted by infective larvae using a well-defined murine macrophage line (RAW264.7). The non-glycosylated recombinant protein of Tc-MUC-1 (designated rTc-MUC-1) was shown to interact with at least 219 proteins of RAW264.7 cells, particularly with the actin binding protein (CFL1) and a fatty acid binding protein (FABP5), which are involved in cell migration and phagocytosis, respectively. Based on these findings, we propose that Tc-MUC-1 regulates cytoskeletal organisation and signal transduction in host macrophages. It would be interesting to establish, using the integrative experimental approach employed here, whether the role(s) of Tc-MUC-1 protein homologues of related ascaridoids are conserved.
Collapse
Affiliation(s)
- Rongqiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongguo Jia
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhendong Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Aiyun Jiang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhenhui Song
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (RBG); (GM)
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (RBG); (GM)
| |
Collapse
|
890
|
Zhang H, Li P, Wu B, Hou J, Ren J, Zhu Y, Xu J, Si F, Sun Z, Liu X. Transcriptomic analysis reveals the genes involved in tetrodotoxin (TTX) accumulation, translocation, and detoxification in the pufferfish Takifugu rubripes. CHEMOSPHERE 2022; 303:134962. [PMID: 35580645 DOI: 10.1016/j.chemosphere.2022.134962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Tetrodotoxin (TTX) is a potent marine neurotoxin that exists in a variety of aquatic and terrestrial organisms. Pufferfish in different habitats show great variation in their TTX contents. Exploring the genes involved in TTX metabolism could contribute to our understanding of the molecular mechanisms underlying TTX accumulation, translocation, and detoxification in pufferfish. In this study, transcriptomic analysis was used to identify the functional genes related to TTX metabolism in the blood, liver, and muscle of the toxic and non-toxic tiger puffer (Takifugu rubripes). A total of 6101 differentially expressed genes (DEGs) were obtained after transcriptomic analysis; of these, 2401 were identified in the blood, 2262 in the liver, and 1438 in the muscle. After enrichment analysis, fourteen genes encoding glutathione S-transferases (GSTs), glutathione peroxidase (GPx), thioredoxins (TXNs), superoxide dismutase (SOD), ATP-binding cassettes (ABCs), apolipoproteins (APOs), inhibitors of apoptosis protein (IAP), and solute carrier (SLC), which are mainly antioxidant enzymes, membrane transporters, or anti-apoptotic factors, were revealed in the blood. Thirty-six genes encoding SLCs, ABCs, long-chain-fatty-acid-CoA ligases (ACSLs), interleukin 6 cytokine family signal transducer (IL6ST), endoplasmic reticulum (ER), and heat shock protein family A (Hsp70) were involved in transmembrane transporter activity and innate immune response. Notably, a large number of slc genes were found to play critical and diverse roles in TTX accumulation and translocation in the liver of T. rubripes. Nine genes from the slc, hsp70, complement C5 (c5), acsl, er, and serpin peptidase inhibitor (serpin) gene families were found to participate in the regulation of protein processing and anti-apoptosis. These results reflect the diverse functions of genes closely related to TTX accumulation, translocation, and detoxification in T. rubripes.
Collapse
Affiliation(s)
- Hanyuan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Peizhen Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Biyin Wu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jilun Hou
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Jiangong Ren
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Youxiu Zhu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jian Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Fei Si
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Zhaohui Sun
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Xia Liu
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| |
Collapse
|
891
|
Wang R, Chen Y, Kaur G, Wu X, Nguyen HT, Shen R, Pandey AK, Lan P. Differentially reset transcriptomes and genome bias response orchestrate wheat response to phosphate deficiency. PHYSIOLOGIA PLANTARUM 2022; 174:e13767. [PMID: 36281840 DOI: 10.1111/ppl.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) is an essential macronutrient for all organisms. Phosphate (Pi) deficiency reduces grain yield and quality in wheat. Understanding how wheat responds to Pi deficiency at the global transcriptional level remains limited. We revisited the available RNA-seq transcriptome from Pi-starved wheat roots and shoots subjected to Pi starvation. Genome-wide transcriptome resetting was observed under Pi starvation, with a total of 917 and 2338 genes being differentially expressed in roots and shoots, respectively. Chromosomal distribution analysis of the gene triplets and differentially expressed genes (DEGs) revealed that the D genome displayed genome induction bias and, specifically, the chromosome 2D might be a key contributor to Pi-limiting triggered gene expression response. Alterations in multiple metabolic pathways pertaining to secondary metabolites, transcription factors and Pi uptake-related genes were evidenced. This study provides genomic insight and the dynamic landscape of the transcriptional changes contributing to the hexaploid wheat during Pi starvation. The outcomes of this study and the follow-up experiments have the potential to assist the development of Pi-efficient wheat cultivars.
Collapse
Affiliation(s)
- Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinglong Chen
- UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Gazaldeep Kaur
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Xiaoba Wu
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Henry T Nguyen
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ajay Kumar Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
892
|
Xu Z, Chen Z, Zhang H. Adaptation and evolution of the sea anemone Alvinactis sp. to deep-sea hydrothermal vents: A comparison using transcriptomes. Ecol Evol 2022; 12:e9309. [PMID: 36188500 PMCID: PMC9486505 DOI: 10.1002/ece3.9309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Sea anemones are diverse and ecologically successful members of Anthozoa. They are often found in intertidal and shallow waters, although a few of them inhabit harsher living conditions, such as deep-sea hydrothermal vents. Here, we sequenced the transcriptome of the vent sea anemone Alvinactis sp., which was collected from Edmond vent along the central Indian Ocean ridge at a depth of 3275 m, to explore the molecular mechanisms related to adaptation to vents. Compared with another deep-sea anemone (Paraphelliactis xishaensis) and five shallow water sea anemones, a total of 117 positively selected genes and 46 significantly expanded gene families were found in Alvinactis sp. specifically that may be related to its vent-specific aspect of adaptation. In addition, 127 positively selected genes and 23 significantly expanded gene families that were found in both Alvinactis sp. and P. xishaensis. Among these, vent-specific adaptations of Alvinactis sp. may involve genetic alterations in peroxisome, ubiquitin-mediated protein degradation, oxidative phosphorylation, and endocytosis, and its deep-sea adaptation may involve changes in genetic information processing. Differentially expressed genes between Alvinactis sp. and the deep-sea anemone P. xishaensis were enriched in a variety of pathways related to adaptation, such as energy metabolism, genetic information processing, endocytosis, and peroxisomes. Overall, we provided the first transcriptome of sea anemones that inhabit vents, which enriches our knowledge of deep-sea hydrothermal vent adaptation and the diversity of sea anemones.
Collapse
Affiliation(s)
- Zehui Xu
- Institute of Deep‐sea Science and Engineering, Chinese Academy of SciencesSanyaChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zeyu Chen
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Haibin Zhang
- Institute of Deep‐sea Science and Engineering, Chinese Academy of SciencesSanyaChina
| |
Collapse
|
893
|
Wu J, Zhang L, Shen C, Sin SYW, Lei C, Zhao H. Comparative transcriptome analysis reveals molecular adaptations underlying distinct immunity and inverted resting posture in bats. Integr Zool 2022; 18:493-505. [PMID: 36049759 DOI: 10.1111/1749-4877.12676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding how natural selection shapes unique traits in mammals is a central topic in evolutionary biology. The mammalian order Chiroptera (bats) is attractive for biologists as well as the general public due to their specific traits of extraordinary immunity and inverted resting posture. However, genomic resources for bats that occupy key phylogenetic positions are not sufficient, which hinders comprehensive investigation of the molecular mechanisms underpinning the origin of specific traits in bats. Here, we sequenced the transcriptomes of five bats that are phylogenetically divergent and occupy key positions in the phylogenetic tree of bats. In combination with the available genomes of 19 bats and 21 other mammals, we built a database consisting of 10,918 one-to-one ortholog genes and reconstructed phylogenetic relationships of these mammals. We found that genes related to immunity, bone remodeling and cardiovascular system are targets of natural selection along the ancestral branch of bats. Further analyses revealed that the T cell receptor signaling pathway involved in immune adaptation is specifically enriched in bats. Moreover, molecular adaptations of bone remodeling, cardiovascular system, and balance sensing may help to explain the reverted resting posture in bats. Our study provides valuable transcriptome resources, enabling us to tentatively identify genetic changes associated with bat-specific traits. This work is among the first to advance our understanding of molecular underpinnings of inverted resting posture in bats, which could provide insight into healthcare applications such as hypertension in humans. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinwei Wu
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Caoqi Lei
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Huabin Zhao
- College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
894
|
Xu M, Wang S, Jiang Y, Wang J, Xiong Y, Dong W, Yao Q, Xing Y, Liu F, Chen Z, Yu D. Single-Cell RNA-Seq Reveals Heterogeneity of Cell Communications between Schwann Cells and Fibroblasts within Vestibular Schwannoma Microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1230-1249. [PMID: 35750260 DOI: 10.1016/j.ajpath.2022.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 12/16/2022]
Abstract
Vestibular schwannomas (VSs), which develop from Schwann cells (SCs) of the vestibular nerve, are the most prevalent benign tumors of the cerebellopontine angle and internal auditory canal. Despite advances in treatment, the cellular components and mechanisms of VS tumor progression remain unclear. Herein, single-cell RNA-sequencing was performed on clinically surgically isolated VS samples and their cellular composition, including the heterogeneous SC subtypes, was determined. Advanced bioinformatics analysis revealed the associated biological functions, pseudotime trajectory, and transcriptional network of the SC subgroups. A tight intercellular communication between SCs and tumor-associated fibroblasts via integrin and growth factor signaling was observed and the gene expression differences in SCs and fibroblasts were shown to determine the heterogeneity of cellular communication in different individuals. These findings suggest a microenvironmental mechanism underlying the development of VS.
Collapse
Affiliation(s)
- Maoxiang Xu
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shengming Wang
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yumeng Jiang
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jingjing Wang
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuanping Xiong
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenqi Dong
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qingxiu Yao
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yazhi Xing
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Liu
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Zhengnong Chen
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Dongzhen Yu
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
895
|
Lu L, Liu LP, Gui R, Dong H, Su YR, Zhou XH, Liu FX. Discovering common pathogenetic processes between COVID-19 and sepsis by bioinformatics and system biology approach. Front Immunol 2022; 13:975848. [PMID: 36119022 PMCID: PMC9471316 DOI: 10.3389/fimmu.2022.975848] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Corona Virus Disease 2019 (COVID-19), an acute respiratory infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has spread rapidly worldwide, resulting in a pandemic with a high mortality rate. In clinical practice, we have noted that many critically ill or critically ill patients with COVID-19 present with typical sepsis-related clinical manifestations, including multiple organ dysfunction syndrome, coagulopathy, and septic shock. In addition, it has been demonstrated that severe COVID-19 has some pathological similarities with sepsis, such as cytokine storm, hypercoagulable state after blood balance is disrupted and neutrophil dysfunction. Considering the parallels between COVID-19 and non-SARS-CoV-2 induced sepsis (hereafter referred to as sepsis), the aim of this study was to analyze the underlying molecular mechanisms between these two diseases by bioinformatics and a systems biology approach, providing new insights into the pathogenesis of COVID-19 and the development of new treatments. Specifically, the gene expression profiles of COVID-19 and sepsis patients were obtained from the Gene Expression Omnibus (GEO) database and compared to extract common differentially expressed genes (DEGs). Subsequently, common DEGs were used to investigate the genetic links between COVID-19 and sepsis. Based on enrichment analysis of common DEGs, many pathways closely related to inflammatory response were observed, such as Cytokine-cytokine receptor interaction pathway and NF-kappa B signaling pathway. In addition, protein-protein interaction networks and gene regulatory networks of common DEGs were constructed, and the analysis results showed that ITGAM may be a potential key biomarker base on regulatory analysis. Furthermore, a disease diagnostic model and risk prediction nomogram for COVID-19 were constructed using machine learning methods. Finally, potential therapeutic agents, including progesterone and emetine, were screened through drug-protein interaction networks and molecular docking simulations. We hope to provide new strategies for future research and treatment related to COVID-19 by elucidating the pathogenesis and genetic mechanisms between COVID-19 and sepsis.
Collapse
Affiliation(s)
- Lu Lu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Le-Ping Liu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yan-Rong Su
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiong-Hui Zhou
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Feng-Xia Liu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Feng-Xia Liu,
| |
Collapse
|
896
|
Cui G, Feng S, Yan Y, Wang L, He X, Li X, Duan Y, Chen J, Tang K, Zheng P, Tam PPL, Si W, Jing N, Peng G. Spatial molecular anatomy of germ layers in the gastrulating cynomolgus monkey embryo. Cell Rep 2022; 40:111285. [PMID: 36044859 DOI: 10.1016/j.celrep.2022.111285] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/31/2022] [Accepted: 08/05/2022] [Indexed: 12/18/2022] Open
Abstract
During mammalian embryogenesis, spatial regulation of gene expression and cell signaling are functionally coupled with lineage specification, patterning of tissue progenitors, and germ layer morphogenesis. While the mouse model has been instrumental for understanding mammalian development, comparatively little is known about human and non-human primate gastrulation due to the restriction of both technical and ethical issues. Here, we present a spatial and temporal survey of the molecular dynamics of cell types populating the non-human primate embryos during gastrulation. We reconstructed three-dimensional digital models from serial sections of cynomolgus monkey (Macaca fascicularis) gastrulating embryos at 1-day temporal resolution from E17 to E21. Spatial transcriptomics identifies gene expression profiles unique to the germ layers. Cross-species comparison reveals a developmental coordinate of germ layer segregation between mouse and primates, and species-specific transcription programs during gastrulation. These findings offer insights into evolutionarily conserved and divergent processes during mammalian gastrulation.
Collapse
Affiliation(s)
- Guizhong Cui
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou 510005, China
| | - Su Feng
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou 510005, China
| | - Yaping Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Li Wang
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiechao He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yanchao Duan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Naihe Jing
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou 510005, China; Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Guangdun Peng
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou 510005, China; Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
897
|
Wei Y, Yu N, Wang Z, Hao Y, Wang Z, Yang Z, Liu J, Wang J. Analysis of the multi-physiological and functional mechanism of wheat alkylresorcinols based on reverse molecular docking and network pharmacology. Food Funct 2022; 13:9091-9107. [PMID: 35943408 DOI: 10.1039/d2fo01438f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Alkylresorcinols (ARs) are phenolic lipids present in the bran part of whole grain wheat and rye, which possess antioxidant, anti-inflammatory, anti-cancer and anti-tumor properties. The physiological activities of ARs have been proven to be diverse; however, the specific molecular mechanisms are still unclear. In this study, reverse virtual screening and network pharmacology were used to explore the potential molecular mechanisms of the physiological function of ARs and their endogenous metabolites. The Metascape database was used for GO enrichment and KEGG pathway analysis. Furthermore, molecular docking was used to investigate the interactions between active compounds and potential targets. The results showed that the bioavailability of most ARs and their endogenous metabolites was 0.55 and 0.56, while the bioavailability of certain endogenous metabolites was only 0.11. Multiplex analysis was used to screen 73 important targets and 4 core targets (namely, HSP90AA1, EP300, HSP90AB1 and ERBB2) out of the 163 initial targets. The important targets involved in the key KEGG pathway were pathways in cancer (hsa05200), lipid and atherosclerosis (hsa05417), Th17 cell differentiation (hsa04659), chemical carcinogenesis-receptor activation (hsa05207), and prostate cancer (hsa05215). The compounds involved in the core targets were AR-C21, AR-C19, AR-C17, 3,5-DHPHTA-S, 3,5-DHPHTA-G, 3,5-DHPPTA, 3,5-DHPPTA-S, 3,5-DHPPTA-G, 3,5-DHPPTA-Gly and 3,5-DHPPA-G. The interaction force between them was mainly related to hydrogen bonds and van der Waals. Overall, the physiological activities of ARs are not only related to their multiple targets, but may also be related to the synergistic effect of their endogenous metabolites.
Collapse
Affiliation(s)
- Yulong Wei
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yiming Hao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Zongwei Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Zihui Yang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
898
|
Chen Y, Tan S, Fu J. Modified Metabolism and Response to UV Radiation: Gene Expression Variations Along an Elevational Gradient in the Asiatic Toad (Bufo gargarizans). J Mol Evol 2022; 90:389-399. [PMID: 36029325 DOI: 10.1007/s00239-022-10070-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
High-elevation adaptation provides an excellent system for examining adaptive evolution, and adaptive variations may manifest at gene expression or any other phenotypic levels. We examined gene expression profiles of Asiatic toads (Bufo gargarizans) along an elevational gradient from both wild and common-garden acclimated populations. Asiatic toads originated from high altitudes have distinctive gene expression patterns. We identified 18 fixed differentially expressed genes (DEGs), which are different in both wild and acclimated samples, and 1217 plastic DEGs, which are different among wild samples. The expression levels of most genes were linearly correlated with altitude gradient and down-regulated in high-altitude populations. Expression variations of several genes associated with metabolic process are fixed, and we also identified a co-expression module that is significantly different between acclimated populations and has functions related to DNA repair. The differential expression of the vast majority genes, however, are due to phenotypic plasticity, revealing the highly plastic nature of gene expression variations. Expression modification of some specific genes related to metabolism and response to UV radiation play crucial role in adaptation to high altitude for Asiatic toads. Common-garden experiments are essential for evaluating adaptive evolution of natural populations.
Collapse
Affiliation(s)
- Ying Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
- The University of Chinese Academy of Science, Beijing, China.
| | - Song Tan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- The University of Chinese Academy of Science, Beijing, China
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
899
|
Liu H, Xing K, Jiang Y, Liu Y, Wang C, Ding X. Using Machine Learning to Identify Biomarkers Affecting Fat Deposition in Pigs by Integrating Multisource Transcriptome Information. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10359-10370. [PMID: 35953074 PMCID: PMC9413214 DOI: 10.1021/acs.jafc.2c03339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Fat deposition in pigs is not only closely related to pig production efficiency and pork quality but also an ideal model for human obesity. Transcriptome sequencing is widely used to study fat deposition. However, due to small sample sizes, high false positive rates, and poor consistency of results from different studies, new strategies are urgently needed. Machine learning, a new analysis method, can effectively fit complex data and accurately identify samples and genes. In this study, 36 samples of adipose tissue, muscle tissue, and liver tissue were collected from Songliao black pigs and Landrace pigs, and the mRNA of all the samples was sequenced. In addition, we collected transcriptome data for 64 samples in the GEO database from four different sources. After standardization and imputation of missing values in the data set comprising 100 samples, traditional differential expression analysis was carried out, and different numbers of expressed genes were selected as features for the training model of eight machine learning methods. In the 1000 replications of fourfold cross validation with 100 samples, AdaBoost performed best, with an average prediction accuracy greater than 93% and the highest mean area under the curve in predicting the high- and low-fat content groups among the eight ML methods. According to their performance-based ranks inferred by AdaBoost, 12 genes related to fat deposition were identified; among them, FASN and APOD were specifically expressed in adipose tissue, and APOA1 was specifically expressed in the liver, which could be important candidate biomarkers affecting fat deposition.
Collapse
|
900
|
Xue Y, Chen C, Tan R, Zhang J, Fang Q, Jin R, Mi X, Sun D, Xue Y, Wang Y, Xiong R, Lu H, Tan W. Artificial Intelligence-Assisted Bioinformatics, Microneedle, and Diabetic Wound Healing: A "New Deal" of an Old Drug. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37396-37409. [PMID: 35913266 DOI: 10.1021/acsami.2c08994] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic wounds severely influence life, facing grand challenges in clinical treatments. The demand for better treatment is growing dramatically. Diabetic wound healing is challenging because of inflammation, angiogenesis disruptions, and tissue remodeling. Based on sequencing results of diabetic patients' skins and artificial intelligence (AI)-assisted bioinformatics, we excavate a potential therapeutic agent Trichostatin A (TSA) and a potential target histone deacetylase 4 (HDAC4) for diabetic wound healing. The molecular docking simulation reveals the favorable interaction between TSA and HDAC4. Taking advantage of the microneedle (MN) minimally invasive way to pierce the skin barrier for drug administration, we develop a swelling modified MN-mediated patch loaded with TSA to reduce the probability of injection-caused iatrogenic secondary damage. The MN-mediated TSA patch has been demonstrated to reduce inflammation, promote tissue regeneration, and inhibit HDAC4, which provides superior results in diabetic wound healing. We envisage that our explored specific drug TSA and the related MN-mediated drug delivery system can provide an innovative approach for diabetic wound treatment with simple, effective, and safe features and find a broad spectrum of applications in related biomedical fields.
Collapse
Affiliation(s)
- Yanan Xue
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou 310016, China
| | - Cheng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Rong Tan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jingyu Zhang
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qin Fang
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Jin
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiangyu Mi
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Danying Sun
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yinan Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue Wang
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rong Xiong
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haojian Lu
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weiqiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou 310016, China
| |
Collapse
|