901
|
Wang L, Lee AYW, Wigg JP, Peshavariya H, Liu P, Zhang H. miRNA involvement in angiogenesis in age-related macular degeneration. J Physiol Biochem 2016; 72:583-592. [PMID: 27349759 DOI: 10.1007/s13105-016-0496-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/07/2016] [Indexed: 01/08/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Late-stage AMD is characterized by choroidal neovascularization (CNV). miR-93 appears to play a role in regulating vascular endothelial growth factor-A (VEGF-A), a known factor involved in neovascularization. Understanding its biological significance might enable development of therapeutic interventions for diseases like AMD. We aimed to determine the role of miR-93 in AMD using a laser-induced CNV mouse model. CNV was induced by laser photocoagulation in C57BL/6 mice. The CNV mice were transfected with scrambled miR or miR-93 mimic. The treatment effect was assessed by fundus photography and fluorescein angiography and confirmed by choroidal flatmount. The expression of miR-93 and VEGF-A in ocular tissues was analysed by quantitative polymerase chain reaction (qPCR) and Western blot. The overexpression effects of miR-93 were also proved on human microvascular endothelial cells (HMECs). Significantly decreased expression of miR-93 was observed by qPCR analysis in CNV mice compared to untreated mice (p < 0.05). VEGF-A messenger RNA (mRNA) and protein expression were upregulated with CNV; these changes were ameliorated by restoration of miR-93 (p < 0.05). CNV was reduced after miR-93 transfection. Transfection of miR-93 reduced the proliferation of HMECs (p < 0.01), but no significant changes were observed in 2D capillary-like tube formation (p > 0.05) and migration (p > 0.05) compared with that in the untreated cells. miR-93 has been shown to be a negative modulator of angiogenesis in the eye. All together, these results highlight the therapeutic potential of miR-93 and suggest that it may contribute as a putative therapeutic target for AMD in humans.
Collapse
Affiliation(s)
- Lei Wang
- Eye Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province, China
| | - Amy Yi Wei Lee
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia.,Drug Delivery Unit, Centre for Eye Research Australia, Melbourne, VIC, Australia
| | - Jonathan P Wigg
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Hitesh Peshavariya
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Ping Liu
- Eye Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province, China.
| | - Hong Zhang
- Eye Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province, China. .,Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia.
| |
Collapse
|
902
|
Zhang JY, Gong YL, Li CJ, Qi Q, Zhang QM, Yu DM. Circulating MiRNA biomarkers serve as a fingerprint for diabetic atherosclerosis. Am J Transl Res 2016; 8:2650-2658. [PMID: 27398148 PMCID: PMC4931159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 04/24/2016] [Indexed: 06/06/2023]
Abstract
Type 2 diabetes mellitus induced atherosclerosis (DA) is regarded as a major cause of disability and death in diabetic patients. The early prediction of atherosclerosis in patients DM is necessary. Therefore, we aimed to identify special plasma microRNAs that can serve as a novel non-invasive screening signature of DA patients with atherosclerosis and test its specificity and sensitivity in the early diagnosis of DA. In total, we obtained plasma samples from 285 diabetic atherosclerosis patients and matched diabetic retinopathy (DR) patients, diabetic nephropathy (DN) patients, diabetes mellitus without complication (DM) and healthy controls. An initial screening of miRNA expression was performed through TaqMan Low Density Array (TLDA). Three miRNAs were significantly increased in patients with DA compared with other groups after the multiple stages. The areas under the receiver operating characteristic (AUC) curves of the validated three-plasma miRNAs signature in DA comparing with NC were 0.881, 0.709 and 0.842 while the merged was 0.940 while DA comparing with DM was 0.879, 0.663, 0.731 and the merged was 0.928. The three miRNA could also distinguish DA from DN with an AUC of 0.894, 0.782, 0.910 and 0.963 (merged) as well as from DR with an AUC of 0.876, 0.815, 0.850 and 0.925 (merged). In conclusion, these data provide evidence that plasma miRNAs have the potential to be sensitive, cost-effective biomarkers for the early detection of DA. These biomarkers could serve as a dynamic monitoring factor for detecting the progression of DA from DR, DN, DM patients.
Collapse
Affiliation(s)
- Jing-Yun Zhang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratary of Metabolic Diseases, Tianjin Metabolic Diseases, Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University300070, Tianjin, China
| | | | - Chun-Jun Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratary of Metabolic Diseases, Tianjin Metabolic Diseases, Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University300070, Tianjin, China
| | - Qi Qi
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratary of Metabolic Diseases, Tianjin Metabolic Diseases, Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University300070, Tianjin, China
| | - Qiu-Mei Zhang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratary of Metabolic Diseases, Tianjin Metabolic Diseases, Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University300070, Tianjin, China
| | - De-Min Yu
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratary of Metabolic Diseases, Tianjin Metabolic Diseases, Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University300070, Tianjin, China
| |
Collapse
|
903
|
Wang L, Lee AYW, Wigg JP, Peshavariya H, Liu P, Zhang H. miR-126 Regulation of Angiogenesis in Age-Related Macular Degeneration in CNV Mouse Model. Int J Mol Sci 2016; 17:ijms17060895. [PMID: 27338342 PMCID: PMC4926429 DOI: 10.3390/ijms17060895] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023] Open
Abstract
miR-126 has recently been implicated in modulating angiogenic factors in vascular development. Understandings its biological significance might enable development of therapeutic interventions for diseases like age-related macular degeneration (AMD). We aimed to determine the role of miR-126 in AMD using a laser-induced choroidal neovascularization (CNV) mouse model. CNV was induced by laser photocoagulation in C57BL/6 mice. The CNV mice were transfected with scrambled miR or miR-126 mimic. The expression of miR-126, vascular endothelial growth factor-A (VEGF-A), Kinase insert domain receptor (KDR) and Sprouty-related EVH1 domain-containing protein 1 (SPRED-1) in ocular tissues were analyzed by qPCR and Western blot. The overexpression effects of miR-126 were also proven on human microvascular endothelial cells (HMECs). miR-126 showed a significant decrease in CNV mice (p < 0.05). Both mRNA and protein levels of VEGF-A, KDR and SPRED-1 were upregulated with CNV; these changes were ameliorated by restoration of miR-126 (p < 0.05). CNV was reduced after miR-126 transfection. Transfection of miR-126 reduced the HMECs 2D-capillary-like tube formation (p < 0.01) and migration (p < 0.01). miR-126 has been shown to be a negative modulator of angiogenesis in the eye. All together these results high lights the therapeutic potential of miR-126 suggests that it may contribute as a putative therapeutic target for AMD in humans.
Collapse
Affiliation(s)
- Lei Wang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| | - Amy Yi Wei Lee
- Department of Pharmacology and Therapeutics, Drug Delivery Unit, Centre for Eye Research Australia, University of Melbourne, East Melbourne VIC 3000, Australia.
| | - Jonathan P Wigg
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne VIC 3000, Australia.
| | - Hitesh Peshavariya
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne VIC 3000, Australia.
| | - Ping Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| | - Hong Zhang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne VIC 3000, Australia.
| |
Collapse
|
904
|
Yang R, Zeng Y, Xu H, Chen Z, Xiang M, Fu Y, Yin Y, Zhong J, Zeng M, Wang P, You Q, Zeng X. Heterogeneous nuclear ribonucleoprotein K is overexpressed and associated with poor prognosis in gastric cancer. Oncol Rep 2016; 36:929-35. [DOI: 10.3892/or.2016.4845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/24/2016] [Indexed: 11/06/2022] Open
|
905
|
Vorvis C, Hatziapostolou M, Mahurkar-Joshi S, Koutsioumpa M, Williams J, Donahue TR, Poultsides GA, Eibl G, Iliopoulos D. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1124-37. [PMID: 27151939 PMCID: PMC5005285 DOI: 10.1152/ajpgi.00035.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/27/2016] [Indexed: 01/31/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with low survival rates and limited therapeutic options. Thus elucidation of signaling pathways involved in PDAC pathogenesis is essential for identifying novel potential therapeutic gene targets. Here, we used a systems approach to elucidate those pathways by integrating gene and microRNA profiling analyses together with CRISPR/Cas9 technology to identify novel transcription factors involved in PDAC pathogenesis. FOXA2 transcription factor was found to be significantly downregulated in PDAC relative to control pancreatic tissues. Functional experiments revealed that FOXA2 has a tumor suppressor function through inhibition of pancreatic cancer cell growth, migration, invasion, and colony formation. In situ hybridization analysis revealed miR-199a to be significantly upregulated in pancreatic cancer. Bioinformatics and luciferase analyses showed that miR-199a negatively but directly regulates FOXA2 expression through binding in its 3'-untranslated region (UTR). Evaluation of the functional importance of miR-199a on pancreatic cancer revealed that miR-199a acts as an inhibitor of FOXA2 expression, inducing an increase in pancreatic cancer cell proliferation, migration, and invasion. Additionally, gene ontology and network analyses in PANC-1 cells treated with a small interfering RNA (siRNA) against FOXA2 revealed an enrichment for cell invasion mechanisms through PLAUR and ERK activation. FOXA2 deletion (FOXA2Δ) by using two CRISPR/Cas9 vectors in PANC-1 cells induced tumor growth in vivo resulting in upregulation of PLAUR and ERK pathways in FOXA2Δ xenograft tumors. We have identified FOXA2 as a novel tumor suppressor in pancreatic cancer and it is regulated directly by miR-199a, thereby enhancing our understanding of how microRNAs interplay with the transcription factors to affect pancreatic oncogenesis.
Collapse
Affiliation(s)
- Christina Vorvis
- 1Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Maria Hatziapostolou
- 2Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom;
| | - Swapna Mahurkar-Joshi
- 1Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Marina Koutsioumpa
- 1Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Jennifer Williams
- 3Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - Timothy R. Donahue
- 3Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - George A. Poultsides
- 4Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Guido Eibl
- 3Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| |
Collapse
|
906
|
Frediani JN, Fabbri M. Essential role of miRNAs in orchestrating the biology of the tumor microenvironment. Mol Cancer 2016; 15:42. [PMID: 27231010 PMCID: PMC4882787 DOI: 10.1186/s12943-016-0525-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/12/2016] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are emerging as central players in shaping the biology of the Tumor Microenvironment (TME). They do so both by modulating their expression levels within the different cells of the TME and by being shuttled among different cell populations within exosomes and other extracellular vesicles. This review focuses on the state-of-the-art knowledge of the role of miRNAs in the complexity of the TME and highlights limitations and challenges in the field. A better understanding of the mechanisms of action of these fascinating micro molecules will lead to the development of new therapeutic weapons and most importantly, to an improvement in the clinical outcome of cancer patients.
Collapse
Affiliation(s)
- Jamie N Frediani
- Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital, Los Angeles, Los Angeles, CA, USA
| | - Muller Fabbri
- Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital, Los Angeles, Los Angeles, CA, USA. .,Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. .,, 4650 Sunset Blvd MS #57, Los Angeles, CA, 90027, USA.
| |
Collapse
|
907
|
Huertas CS, Fariña D, Lechuga LM. Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00162] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- César S. Huertas
- Nanobiosensors and Bioanalytical
Applications Group, Catalan Institute of Nanoscience and Nanotechnology
(ICN2), CSIC, The Barcelona Institute of Science and Technology, and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - David Fariña
- Nanobiosensors and Bioanalytical
Applications Group, Catalan Institute of Nanoscience and Nanotechnology
(ICN2), CSIC, The Barcelona Institute of Science and Technology, and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical
Applications Group, Catalan Institute of Nanoscience and Nanotechnology
(ICN2), CSIC, The Barcelona Institute of Science and Technology, and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
908
|
The altered microRNA profile in andrographolide-induced inhibition of hepatoma tumor growth. Gene 2016; 588:124-33. [PMID: 27182051 DOI: 10.1016/j.gene.2016.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/14/2016] [Accepted: 05/10/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been reported to play critical roles in regulating gene expression in tumor development. Natural compound andrographolide (Andro), isolated from medicinal herb Andrographis paniculata, was reported to inhibit hepatoma tumor growth in our previous studies. The present study aims to observe the altered miRNAs profile and related signaling pathways involved in Andro-induced inhibition on hepatoma tumor growth. RESULTS The inhibition on hepatoma tumor growth induced by Andro (10mg/kg) was found in a xenograft mouse tumor model in vivo. The results of miRNAs chip analysis showed that the expression of 22 miRNAs was increased, whereas the expression of other 10 miRNAs was decreased after Andro treatment. Further, the increased expression of miR-222-3p, miR-106b-5p, miR-30b-5p, and miR-23a-5p was confirmed in hepatoma Hep3B and SMCC7721 cells in vitro after cells were treated with Andro (50μM) for the indicated time. Functional annotation of the target genes based on the differentially expressed miRNAs demonstrated that the majority of the genes were involved in a variety of signaling pathways, including miRNAs in cancer, mitogen-activated protein kinases (MPAKs), focal adhesion. Furthermore, the expression of 24 target genes (total 31) involved in above signaling pathways based on miRNAs analysis was found to be consistent with the alteration of miRNAs. CONCLUSIONS The results demonstrate that Andro alters the expression of miRNAs profile and downstream signals, which may contribute to its inhibition on hepatoma tumor growth.
Collapse
|
909
|
Ziari K, Zarea M, Gity M, Fayyaz AF, Yahaghi E, Darian EK, Hashemian AM. Downregulation of miR-148b as biomarker for early detection of hepatocellular carcinoma and may serve as a prognostic marker. Tumour Biol 2016; 37:5765-8. [PMID: 26206498 DOI: 10.1007/s13277-015-3777-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/07/2015] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) have a large number of various target genes in different cancer types, which may result in many biological functions. Thus, identifying the molecular mechanisms of miRNAs may effect on the complexity of cancer progression via regulation of gene. In the current study, we utilized real-time PCR to quantify the diction of miR-148b in trail hepatocellular carcinoma (HCC) specimen and normal tissues. Furthermore, we evaluated the relationship of miR-148b and clinicopathological features with survival of HCC patients. Therefore, we evaluated the level of miR-148b expression in 101 HCC patients and also in 40 normal control cases. The result suggested lower expression in tumor tissues than normal control tissues (0.96 ± 0.14; 1.84 ± 0.20, P < 0.05). Our findings suggest that the declined expression of miR-148b can considerably be linked to tumor node metastasis (TNM) stage (stages III and IV; P = 0.021) and vein invasion (P = 0.029). Nevertheless, miR-148b expression was not related to sex (P = 0.674), age (P = 0. 523), size of tumor (P = 0.507), liver cirrhosis, and histologic grade (P = 0.734). Survival analysis showed that low expression was remarkably related to overall survival (P = 0.012). Furthermore, multivariate survival test suggested that decline of miR-148b diction was linked to poor survival in HCC patients. Our results suggested that miR-148b is decreased in HCC. Therefore, we concluded that miR-148b may play its role in the prognosis of HCC.
Collapse
Affiliation(s)
- Katayoun Ziari
- Department of Pathology, Be'sat Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Mojtaba Zarea
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India
| | - Masoumeh Gity
- Department of Radiology, Medical Imaging Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Farshid Fayyaz
- Department of Legal Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Emad Yahaghi
- Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Amir Masoud Hashemian
- Department of Emergency Medicine, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
910
|
Small-molecule approaches toward the targeting of oncogenic miRNAs: roadmap for the discovery of RNA modulators. Future Med Chem 2016; 8:803-16. [DOI: 10.4155/fmc-2016-0018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
miRNAs are a recently discovered class of small noncoding RNAs implicated in the regulation of gene expression. The deregulation of miRNAs levels has been linked to the development of various cancers where oncogenic miRNAs are overexpressed and tumor suppressor miRNAs are underexpressed. Here we report the three main strategies developed in order to discover small-molecule drugs able to selectively interfere with oncogenic miRNAs: the high throughput screening of large libraries of compounds, the focused screening of small libraries of molecules that are known to be able to interact with RNA thus being supposed modulators of miRNAs pathway and the design of small molecules based on the secondary structure of targeted RNA and/or three-dimensional structure of enzymes involved in miRNAs pathway.
Collapse
|
911
|
Vohhodina J, Harkin DP, Savage KI. Dual roles of DNA repair enzymes in RNA biology/post-transcriptional control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:604-19. [PMID: 27126972 DOI: 10.1002/wrna.1353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022]
Abstract
Despite consistent research into the molecular principles of the DNA damage repair pathway for almost two decades, it has only recently been found that RNA metabolism is very tightly related to this pathway, and the two ancient biochemical mechanisms act in alliance to maintain cellular genomic integrity. The close links between these pathways are well exemplified by examining the base excision repair pathway, which is now well known for dual roles of many of its members in DNA repair and RNA surveillance, including APE1, SMUG1, and PARP1. With additional links between these pathways steadily emerging, this review aims to provide a summary of the emerging roles for DNA repair proteins in the post-transcriptional regulation of RNAs. WIREs RNA 2016, 7:604-619. doi: 10.1002/wrna.1353 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jekaterina Vohhodina
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - D Paul Harkin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Kienan I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
912
|
Bansode RR, Khatiwada JR, Losso JN, Williams LL. Targeting MicroRNA in Cancer Using Plant-Based Proanthocyanidins. Diseases 2016; 4:E21. [PMID: 28933401 PMCID: PMC5456277 DOI: 10.3390/diseases4020021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
Proanthocyanidins are oligomeric flavonoids found in plant sources, most notably in apples, cinnamon, grape skin and cocoa beans. They have been also found in substantial amounts in cranberry, black currant, green tea, black tea and peanut skins. These compounds have been recently investigated for their health benefits. Proanthocyanidins have been demonstrated to have positive effects on various metabolic disorders such as inflammation, obesity, diabetes and insulin resistance. Another upcoming area of research that has gained widespread interest is microRNA (miRNA)-based anticancer therapies. MicroRNAs are short non-coding RNA segments, which plays a crucial role in RNA silencing and post-transcriptional regulation of gene expression. Currently, miRNA based anticancer therapies are being investigated either alone or in combination with current treatment methods. In this review, we summarize the current knowledge and investigate the potential of naturally occurring proanthocyanidins in modulating miRNA expression. We will also assess the strategies and challenges of using this approach as potential cancer therapeutics.
Collapse
Affiliation(s)
- Rishipal R Bansode
- Center for Excellence in Post-Harvest Technologies, North Carolina Research Campus, North Carolina Agricultural and Technical State University, Kannapolis, NC 28081, USA.
| | - Janak R Khatiwada
- Center for Excellence in Post-Harvest Technologies, North Carolina Research Campus, North Carolina Agricultural and Technical State University, Kannapolis, NC 28081, USA.
| | - Jack N Losso
- School of Nutrition & Food Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Leonard L Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Research Campus, North Carolina Agricultural and Technical State University, Kannapolis, NC 28081, USA.
| |
Collapse
|
913
|
Jiang X, Hu C, Arnovitz S, Bugno J, Yu M, Zuo Z, Chen P, Huang H, Ulrich B, Gurbuxani S, Weng H, Strong J, Wang Y, Li Y, Salat J, Li S, Elkahloun AG, Yang Y, Neilly MB, Larson RA, Le Beau MM, Herold T, Bohlander SK, Liu PP, Zhang J, Li Z, He C, Jin J, Hong S, Chen J. miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nat Commun 2016; 7:11452. [PMID: 27116251 PMCID: PMC5477496 DOI: 10.1038/ncomms11452] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/23/2016] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs are subject to precise regulation and have key roles in tumorigenesis. In contrast to the oncogenic role of miR-22 reported in myelodysplastic syndrome (MDS) and breast cancer, here we show that miR-22 is an essential anti-tumour gatekeeper in de novo acute myeloid leukaemia (AML) where it is significantly downregulated. Forced expression of miR-22 significantly suppresses leukaemic cell viability and growth in vitro, and substantially inhibits leukaemia development and maintenance in vivo. Mechanistically, miR-22 targets multiple oncogenes, including CRTC1, FLT3 and MYCBP, and thus represses the CREB and MYC pathways. The downregulation of miR-22 in AML is caused by TET1/GFI1/EZH2/SIN3A-mediated epigenetic repression and/or DNA copy-number loss. Furthermore, nanoparticles carrying miR-22 oligos significantly inhibit leukaemia progression in vivo. Together, our study uncovers a TET1/GFI1/EZH2/SIN3A/miR-22/CREB-MYC signalling circuit and thereby provides insights into epigenetic/genetic mechanisms underlying the pathogenesis of AML, and also highlights the clinical potential of miR-22-based AML therapy.
Collapse
Affiliation(s)
- Xi Jiang
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Chao Hu
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.,Department of Hematology, The First Affiliated Hospital Zhejiang University, Hangzhou, 310003 Zhejiang, China
| | - Stephen Arnovitz
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Jason Bugno
- Department of Biopharmaceutical Sciences College of Pharmacy, The University of Illinois, Chicago, Illinois 60612, USA
| | - Miao Yu
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Zhixiang Zuo
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China
| | - Ping Chen
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Hao Huang
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Bryan Ulrich
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Sandeep Gurbuxani
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA
| | - Hengyou Weng
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Jennifer Strong
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45219, USA
| | - Yungui Wang
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.,Department of Hematology, The First Affiliated Hospital Zhejiang University, Hangzhou, 310003 Zhejiang, China
| | - Yuanyuan Li
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Justin Salat
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Shenglai Li
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Abdel G Elkahloun
- Division of Intramural Research, National Human Genome Research Institute, NIH, Bethesda, Maryland 20892, USA
| | - Yang Yang
- Department of Biopharmaceutical Sciences College of Pharmacy, The University of Illinois, Chicago, Illinois 60612, USA
| | - Mary Beth Neilly
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Richard A Larson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Michelle M Le Beau
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Tobias Herold
- Department of Internal Medicine 3, University Hospital Grosshadern, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Paul P Liu
- Division of Intramural Research, National Human Genome Research Institute, NIH, Bethesda, Maryland 20892, USA
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | - Zejuan Li
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.,Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital Zhejiang University, Hangzhou, 310003 Zhejiang, China
| | - Seungpyo Hong
- Department of Biopharmaceutical Sciences College of Pharmacy, The University of Illinois, Chicago, Illinois 60612, USA.,Integrated Science and Engineering Division, Underwood International College, Yonsei University, Incheon 406-840, Korea
| | - Jianjun Chen
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
914
|
Use of systems biology to decipher host-pathogen interaction networks and predict biomarkers. Clin Microbiol Infect 2016; 22:600-6. [PMID: 27113568 DOI: 10.1016/j.cmi.2016.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 02/06/2023]
Abstract
In systems biology, researchers aim to understand complex biological systems as a whole, which is often achieved by mathematical modelling and the analyses of high-throughput data. In this review, we give an overview of medical applications of systems biology approaches with special focus on host-pathogen interactions. After introducing general ideas of systems biology, we focus on (1) the detection of putative biomarkers for improved diagnosis and support of therapeutic decisions, (2) network modelling for the identification of regulatory interactions between cellular molecules to reveal putative drug targets and (3) module discovery for the detection of phenotype-specific modules in molecular interaction networks. Biomarker detection applies supervised machine learning methods utilizing high-throughput data (e.g. single nucleotide polymorphism (SNP) detection, RNA-seq, proteomics) and clinical data. We demonstrate structural analysis of molecular networks, especially by identification of disease modules as a novel strategy, and discuss possible applications to host-pathogen interactions. Pioneering work was done to predict molecular host-pathogen interactions networks based on dual RNA-seq data. However, currently this network modelling is restricted to a small number of genes. With increasing number and quality of databases and data repositories, the prediction of large-scale networks will also be feasible that can used for multidimensional diagnosis and decision support for prevention and therapy of diseases. Finally, we outline further perspective issues such as support of personalized medicine with high-throughput data and generation of multiscale host-pathogen interaction models.
Collapse
|
915
|
Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche. Stem Cells Int 2016; 2016:5736059. [PMID: 27195011 PMCID: PMC4853949 DOI: 10.1155/2016/5736059] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/27/2016] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored. Stem cells, as well as most cells, release extracellular vesicles such as exosomes, which are nanovesicles able to target specific cell types and thus to modify their function by delivering proteins, lipids, and nucleic acids. Exosomes have recently been tested in vivo and in vitro as therapeutic conveyors for the treatment of diseases. As such, they could be engineered to target specific populations of cells within the CNS. Considering the fact that many degenerative brain diseases have an impact on adult neurogenesis, we discuss how the modulation of the adult neurogenic niches may be a therapeutic target of stem cell-derived exosomes. These novel approaches should be examined in cellular and animal models to provide better, more effective, and specific therapeutic tools in the future.
Collapse
|
916
|
Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016; 44:6518-48. [PMID: 27084936 PMCID: PMC5001581 DOI: 10.1093/nar/gkw236] [Citation(s) in RCA: 618] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
The oligonucleotide therapeutics field has seen remarkable progress over the last few years with the approval of the first antisense drug and with promising developments in late stage clinical trials using siRNA or splice switching oligonucleotides. However, effective delivery of oligonucleotides to their intracellular sites of action remains a major issue. This review will describe the biological basis of oligonucleotide delivery including the nature of various tissue barriers and the mechanisms of cellular uptake and intracellular trafficking of oligonucleotides. It will then examine a variety of current approaches for enhancing the delivery of oligonucleotides. This includes molecular scale targeted ligand-oligonucleotide conjugates, lipid- and polymer-based nanoparticles, antibody conjugates and small molecules that improve oligonucleotide delivery. The merits and liabilities of these approaches will be discussed in the context of the underlying basic biology.
Collapse
Affiliation(s)
- Rudolph L Juliano
- UNC Eshelman School of Pharmacy and UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
917
|
Jiang YZ, Liu YR, Xu XE, Jin X, Hu X, Yu KD, Shao ZM. Transcriptome Analysis of Triple-Negative Breast Cancer Reveals an Integrated mRNA-lncRNA Signature with Predictive and Prognostic Value. Cancer Res 2016; 76:2105-14. [PMID: 26921339 DOI: 10.1158/0008-5472.can-15-3284] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/26/2016] [Indexed: 11/16/2022]
Abstract
While recognized as a generally aggressive disease, triple-negative breast cancer (TNBC) is highly diverse in different patients with variable outcomes. In this prospective observational study, we aimed to develop an RNA signature of TNBC patients to improve risk stratification and optimize the choice of adjuvant therapy. Transcriptome microarrays for 33 paired TNBC and adjacent normal breast tissue revealed tumor-specific mRNAs and long noncoding RNAs (lncRNA) that were associated with recurrence-free survival. Using the Cox regression model, we developed an integrated mRNA-lncRNA signature based on the mRNA species for FCGR1A, RSAD2, CHRDL1, and the lncRNA species for HIF1A-AS2 and AK124454 The prognostic and predictive accuracy of this signature was evaluated in a training set of 137 TNBC patients and then validated in a second independent set of 138 TNBC patients. In addition, we enrolled 82 TNBC patients who underwent taxane-based neoadjuvant chemotherapy (NCT) to further verify the predictive value of the signature. In both the training and validation sets, the integrated signature had better prognostic value than clinicopathologic parameters. We also confirmed the interaction between the administration of taxane-based NCT and different risk groups. In the NCT cohort, patients in the low-risk group were more likely to achieve pathologic complete remission after taxane-based NCT (P = 0.014). Functionally, we showed that HIF1A-AS2 and AK124454 promoted cell proliferation and invasion in TNBC cells and contributed there to paclitaxel resistance. Overall, our results established an integrated mRNA-lncRNA signature as a reliable tool to predict tumor recurrence and the benefit of taxane chemotherapy in TNBC, warranting further investigation in larger populations to help frame individualized treatments for TNBC patients. Cancer Res; 76(8); 2105-14. ©2016 AACR.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Rong Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-En Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
918
|
Schmitt AM, Chang HY. Long Noncoding RNAs in Cancer Pathways. Cancer Cell 2016; 29:452-463. [PMID: 27070700 PMCID: PMC4831138 DOI: 10.1016/j.ccell.2016.03.010] [Citation(s) in RCA: 2393] [Impact Index Per Article: 265.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/01/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
Genome-wide cancer mutation analyses are revealing an extensive landscape of functional mutations within the noncoding genome, with profound effects on the expression of long noncoding RNAs (lncRNAs). While the exquisite regulation of lncRNA transcription can provide signals of malignant transformation, we now understand that lncRNAs drive many important cancer phenotypes through their interactions with other cellular macromolecules including DNA, protein, and RNA. Recent advancements in surveying lncRNA molecular mechanisms are now providing the tools to functionally annotate these cancer-associated transcripts, making these molecules attractive targets for therapeutic intervention in the fight against cancer.
Collapse
Affiliation(s)
- Adam M Schmitt
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
919
|
IKKα-mediated biogenesis of miR-196a through interaction with Drosha regulates the sensitivity of cancer cells to radiotherapy. Cell Death Differ 2016; 23:1471-82. [PMID: 27058318 DOI: 10.1038/cdd.2016.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 01/12/2023] Open
Abstract
Radioresistance is a major obstacle in successful clinical cancer radiotherapy, and the underlying mechanisms are not clear. Here we show that IKKα-mediated miR-196a biogenesis via interaction with Drosha regulates the sensitivity of nasopharyngeal carcinoma (NPC) cells to radiotherapy. Phosphorylation of IKKα at T23 site (p-IKKαT23) promotes the binding of IKKα to Drosha that accelerates the processing of miR-196a primary transcripts, leading to increased expressions of both precursor and mature miR-196a. Dephosphorylation of p-IKKαT23 downregulates miR-196a expression and promotes the resistance of NPC cells to radiation treatment. The miR-196a mimic suppresses while its inhibitor promotes the resistance of NPC to radiation treatment. Importantly, the expression of p-IKKαT23 is positively related to the expression of miR-196a in human NPC tissues, and expression of p-IKKαT23 and miR-196a is inversely correlated with NPC clinical radioresistance. Thus, our studies establish a novel mechanistic link between the inactivation of IKKαT23-Drosha-miR-196a pathway and NPC radioresistance, and de-inactivation of IKKαT23-Drosha-miR-196a pathway would be an efficient way to restore the sensitivity of radioresistant NPC to radiotherapy.
Collapse
|
920
|
Wu SY, Rupaimoole R, Shen F, Pradeep S, Pecot CV, Ivan C, Nagaraja AS, Gharpure KM, Pham E, Hatakeyama H, McGuire MH, Haemmerle M, Vidal-Anaya V, Olsen C, Rodriguez-Aguayo C, Filant J, Ehsanipour EA, Herbrich SM, Maiti SN, Huang L, Kim JH, Zhang X, Han HD, Armaiz-Pena GN, Seviour EG, Tucker S, Zhang M, Yang D, Cooper LJN, Ali-Fehmi R, Bar-Eli M, Lee JS, Ram PT, Baggerly KA, Lopez-Berestein G, Hung MC, Sood AK. A miR-192-EGR1-HOXB9 regulatory network controls the angiogenic switch in cancer. Nat Commun 2016; 7:11169. [PMID: 27041221 PMCID: PMC4822037 DOI: 10.1038/ncomms11169] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/26/2016] [Indexed: 12/13/2022] Open
Abstract
A deeper mechanistic understanding of tumour angiogenesis regulation is needed to improve current anti-angiogenic therapies. Here we present evidence from systems-based miRNA analyses of large-scale patient data sets along with in vitro and in vivo experiments that miR-192 is a key regulator of angiogenesis. The potent anti-angiogenic effect of miR-192 stems from its ability to globally downregulate angiogenic pathways in cancer cells through regulation of EGR1 and HOXB9. Low miR-192 expression in human tumours is predictive of poor clinical outcome in several cancer types. Using 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) nanoliposomes, we show that miR-192 delivery leads to inhibition of tumour angiogenesis in multiple ovarian and renal tumour models, resulting in tumour regression and growth inhibition. This anti-angiogenic and anti-tumour effect is more robust than that observed with an anti-VEGF antibody. Collectively, these data identify miR-192 as a central node in tumour angiogenesis and support the use of miR-192 in an anti-angiogenesis therapy. The formation of blood vessels in tumours, angiogenesis, is a promising target for therapy. Here, the authors show that microRNA192 has anti-angiogenic functions and negatively regulates EGR1 and HOXB9, and that delivery of this microRNA to tumours in vivo can reduce angiogenesis and tumour growth.
Collapse
Affiliation(s)
- Sherry Y Wu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Fangrong Shen
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Sunila Pradeep
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chad V Pecot
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Medicine, The University of North Carolina, Chapel Hill, North Carolina 27599 USA
| | - Cristina Ivan
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Archana S Nagaraja
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kshipra M Gharpure
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Elizabeth Pham
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada, M4N 3M5
| | - Hiroto Hatakeyama
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Michael H McGuire
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Monika Haemmerle
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Viviana Vidal-Anaya
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Courtney Olsen
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Cristian Rodriguez-Aguayo
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Justyna Filant
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ehsan A Ehsanipour
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shelley M Herbrich
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sourindra N Maiti
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Li Huang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ji Hoon Kim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xinna Zhang
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hee-Dong Han
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Immunology Laboratory, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Guillermo N Armaiz-Pena
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Elena G Seviour
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sue Tucker
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Min Zhang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Da Yang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Laurence J N Cooper
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rouba Ali-Fehmi
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan 48201, USA
| | - Menashe Bar-Eli
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Prahlad T Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Keith A Baggerly
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gabriel Lopez-Berestein
- Department of Medicine, The University of North Carolina, Chapel Hill, North Carolina 27599 USA.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
921
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
922
|
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease and has a highly variable clinical course with survival ranging from a couple of months to several decades. MicroRNAs (miRNAs), small non-coding RNAs that regulate transcription and translation of genes, have been found to be involved in CLL initiation, progression, and resistance to therapy. In addition, they can be used as prognostic biomarkers and as targets for novel therapies. In this review, we describe the association between miRNAs and the cytogenetic aberrations commonly found in CLL, as well as with other prognostic factors. We describe the presence of miRNAs as extracellular entities in the plasma and serum of CLL patients and discuss their role in resistance to therapy. Finally, we will explore the potential of targeted miRNA therapy for the treatment of CLL, with a special emphasis on MRX34, the first miRNA mimic that is currently being evaluated for clinical use.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Chromosome Aberrations
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Genetic Therapy/methods
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- MicroRNAs/blood
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- Prognosis
Collapse
Affiliation(s)
- Katrien Van Roosbroeck
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
923
|
|
924
|
Lu J, Gao FH. Role and molecular mechanism of heterogeneous nuclear ribonucleoprotein K in tumor development and progression. Biomed Rep 2016; 4:657-663. [PMID: 27284403 DOI: 10.3892/br.2016.642] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a member of the hnRNP family, which exists in the nucleus and the cytoplasm simultaneously. It is a multifunctional protein that can participate in a variety of regulatory progressions of gene expression and signal transduction, such as chromatin remodeling, transcription, RNA alternative splicing and translation. hnRNP K not only directly binds to the kinases, but also recruits the associated factors regarding transcription, splicing and translation to control gene expression, and therefore, it serves as a docking platform for integrating transduction pathways to nucleic acid-directed processes. Numerous studies also show that abnormal expression of hnRNP K is closely associated with the tumor formation. This protein is overexpressed in numerous types of cancer and its aberrant cytoplasmic localization is also associated with a worse prognosis for patients. These results consistently indicate that hnRNP K has a key role in cancer progression. To understand the hnRNP K pathophysiological process in tumor disease, the previous research results regarding the association between hnRNP K and tumors were reviewed.
Collapse
Affiliation(s)
- Jing Lu
- Institute of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Feng-Hou Gao
- Institute of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
925
|
The Therapeutic Targets of miRNA in Hepatic Cancer Stem Cells. Stem Cells Int 2016; 2016:1065230. [PMID: 27118975 PMCID: PMC4826947 DOI: 10.1155/2016/1065230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide malignancy and the third leading cause of cancer death in patients. Several studies demonstrated that hepatic cancer stem cells (HCSCs), also called tumor-initiating cells, are involved in regulation of HCC initiation, tumor progression, metastasis development, and drug resistance. Despite the extensive research, the underlying mechanisms by which HCSCs are regulated remain still unclear. MicroRNAs (miRNAs) are able to regulate a lot of biological processes such as self-renewal and pluripotency of HCSCs, representing a new promising strategy for treatment of HCC chemotherapy-resistant tumors. In this review, we synthesize the latest findings on therapeutic regulation of HCSCs by miRNAs, in order to highlight the perspective of novel miRNA-based anticancer therapies for HCC treatment.
Collapse
|
926
|
Fanini F, Fabbri M. MicroRNAs and cancer resistance: A new molecular plot. Clin Pharmacol Ther 2016; 99:485-93. [DOI: 10.1002/cpt.353] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/11/2016] [Indexed: 12/15/2022]
Affiliation(s)
- F Fanini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l. IRCCS; Unit of Gene Therapy; Meldola (FC) Italy
| | - M Fabbri
- Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases and the Saban Research Institute; Children's Hospital Los Angeles; Los Angeles California USA
| |
Collapse
|
927
|
Ling H, Krassnig L, Bullock MD, Pichler M. MicroRNAs in Testicular Cancer Diagnosis and Prognosis. Urol Clin North Am 2016; 43:127-34. [PMID: 26614035 DOI: 10.1016/j.ucl.2015.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Testicular cancer processes a unique and clear miRNA expression signature. This differentiates testicular cancer from most other cancer types, which are usually more ambiguous when assigning miRNA patterns. As such, testicular cancer may represent a unique cancer type in which miRNAs find their use as biomarkers for cancer diagnosis and prognosis, with a potential to surpass the current available markers usually with low sensitivity. In this review, we present literature findings on miRNAs associated with testicular cancer, and discuss their potential diagnostic and prognostic values, as well as their potential as indicators of drug response in patients with testicular cancer.
Collapse
Affiliation(s)
- Hui Ling
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77054, USA
| | - Lisa Krassnig
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Marc D Bullock
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77054, USA
| | - Martin Pichler
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77054, USA; Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria.
| |
Collapse
|
928
|
Mitchell DA. MicroRNAs provide a novel pathway toward combinatorial immune checkpoint blockade. Neuro Oncol 2016; 18:601-2. [PMID: 26980424 DOI: 10.1093/neuonc/now003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Duane A Mitchell
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
929
|
Liu X, Yang J, Zhang Y, Fang Y, Wang F, Wang J, Zheng X, Yang J. A systematic study on drug-response associated genes using baseline gene expressions of the Cancer Cell Line Encyclopedia. Sci Rep 2016; 6:22811. [PMID: 26960563 PMCID: PMC4785360 DOI: 10.1038/srep22811] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
Abstract
We have studied drug-response associated (DRA) gene expressions by applying a systems biology framework to the Cancer Cell Line Encyclopedia data. More than 4,000 genes are inferred to be DRA for at least one drug, while the number of DRA genes for each drug varies dramatically from almost 0 to 1,226. Functional enrichment analysis shows that the DRA genes are significantly enriched in genes associated with cell cycle and plasma membrane. Moreover, there might be two patterns of DRA genes between genders. There are significantly shared DRA genes between male and female for most drugs, while very little DRA genes tend to be shared between the two genders for a few drugs targeting sex-specific cancers (e.g., PD-0332991 for breast cancer and ovarian cancer). Our analyses also show substantial difference for DRA genes between young and old samples, suggesting the necessity of considering the age effects for personalized medicine in cancers. Lastly, differential module and key driver analyses confirm cell cycle related modules as top differential ones for drug sensitivity. The analyses also reveal the role of TSPO, TP53, and many other immune or cell cycle related genes as important key drivers for DRA network modules. These key drivers provide new drug targets to improve the sensitivity of cancer therapy.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Jiasheng Yang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Yi Zhang
- Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P. R. China
| | - Yun Fang
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Fayou Wang
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Jun Wang
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Xiaoqi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Jialiang Yang
- Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P. R. China
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
930
|
Zhang A, Zhang J, Kaipainen A, Lucas JM, Yang H. Long non-coding RNA: A newly deciphered "code" in prostate cancer. Cancer Lett 2016; 375:323-330. [PMID: 26965999 DOI: 10.1016/j.canlet.2016.03.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 01/03/2023]
Abstract
As one of the most frequently diagnosed cancers in males, the development and progression of prostate cancer remains an open area of research. The role of lncRNAs in prostate cancer is an emerging field of study. In this review, we summarize what is currently known about lncRNAs in prostate cancer while focusing on a few key lncRNAs. PCA3 was the first lncRNA identified in prostate cancer and has been shown to be expressed in a majority of prostate cancer cases. It may act in both an androgen dependent and independent fashion and has clinical utility as a biomarker. Other lncRNAs are known to interact directly with the androgen receptor pathway including PlncRNA-1, HOTAIR, PRNCR1 and PCGEM1. Additionally, lncRNAs have been shown to interfere with tumor suppressors, DNA break repair, transcription and alternate RNA splicing. While only in its infancy, an understanding of the role of lncRNAs in prostate cancer development should present ample opportunities for the discovery of new cancer biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ailin Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jiawei Zhang
- School of Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Arja Kaipainen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jared M Lucas
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hong Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
931
|
Ren Y, Wang R, Gao L, Li K, Zhou X, Guo H, Liu C, Han D, Tian J, Ye Q, Hu YT, Sun D, Yuan X, Zhang N. Sequential co-delivery of miR-21 inhibitor followed by burst release doxorubicin using NIR-responsive hollow gold nanoparticle to enhance anticancer efficacy. J Control Release 2016; 228:74-86. [PMID: 26956593 DOI: 10.1016/j.jconrel.2016.03.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/11/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022]
Abstract
Previous literature and our study showed the delivery sequence of microRNA inhibitor and chemotherapeutic compounds achieve distinct therapeutic anticancer efficacy. Yet, it is challenging to use nanoparticle to achieve sequential drug delivery. In the current study, we designed sequential co-delivery system using a near-infrared-radiation (NIR) responsive hollow gold nanoparticle (HGNPs) to achieve sequential release of microRNA inhibitor (miR-21i)/doxirubicin(Dox) in order to achieve synergistic efficacy. PAMAM modified HGNPs was used to encapsulate miR-21i and Dox. Upon entering tumor cells, miRNA-21i was released first to sensitize the cancer cells, the subsequent burst release of Dox was achieved by NIR triggered collapse of HGNPs. This sequential delivery of miRNA-21i and Dox produced a synergistic apoptotic response, thereby enhancing anticancer efficacy by 8-fold and increasing anti-cancer stem cell activity by 50-fold. The sequential delivery of miR-21i and Dox using HGNPs under NIR after intravenous administration showed high tumor accumulation and significantly improved efficacy, which was 4-fold compared to free Dox group. These data suggested that the sequential co-delivery of miR-21i followed by burst release Dox using NIR-responsive HGNPs sensitized cancer cells to chemotherapeutic compound, which provided a novel concept for co-delivery miRNA inhibitors and chemotherapeutic compounds to enhance their efficacy.
Collapse
Affiliation(s)
- Yu Ren
- Tianjin Cancer Institute and Hospital, National Clinical Research Center of Cancer, Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Ruirui Wang
- Tianjin Cancer Institute and Hospital, National Clinical Research Center of Cancer, Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Lizhang Gao
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Ke Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xuan Zhou
- Department of Head & Neck, Tianjin, Cancer Institute and Hospital, Tianjin 300060, PR China
| | - Hua Guo
- Tianjin Cancer Institute and Hospital, National Clinical Research Center of Cancer, Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Chaoyong Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Donglin Han
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Jianguo Tian
- School of Physics, Nankai University, Tianjin 300071, PR China
| | - Qing Ye
- School of Physics, Nankai University, Tianjin 300071, PR China
| | - Ye Tony Hu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston 77030, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xubo Yuan
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Ning Zhang
- Tianjin Cancer Institute and Hospital, National Clinical Research Center of Cancer, Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China.
| |
Collapse
|
932
|
ZHANG MINGTING, XU QINGLI, YAN SHUFEN, LI ZHIGANG, YAN WEI, JIA XIAOJING. Suppression of forkhead box Q1 by microRNA-506 represses the proliferation and epithelial-mesenchymal transition of cervical cancer cells. Oncol Rep 2016; 35:3106-14. [DOI: 10.3892/or.2016.4651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/17/2015] [Indexed: 11/05/2022] Open
|
933
|
Dhamija S, Diederichs S. From junk to master regulators of invasion: lncRNA functions in migration, EMT and metastasis. Int J Cancer 2016; 139:269-80. [PMID: 26875870 DOI: 10.1002/ijc.30039] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/04/2016] [Indexed: 01/17/2023]
Abstract
Metastasis is a multistep process that involves the dissemination of cells from the primary tumor and colonization of distant secondary organs. Epithelial cells at the invasive front of a carcinoma acquire an enhanced migratory phenotype in a process called epithelial-to-mesenchymal transition (EMT). This cellular plasticity seems to drive the initiation of metastasis. Identifying important molecules and understanding their molecular mechanisms is a key to cancer prognosis and the development of therapeutics for late stage malignancies. Recent advances in sequencing technology uncovered that the mammalian genome is pervasively transcribed into many nonprotein-coding RNAs including the class of long noncoding RNA, a.k.a. lncRNA. Several lncRNAs are differentially expressed in carcinomas and they are emerging as potent regulators of tumor progression and metastasis. Here, we review the diverse molecular mechanisms, cellular roles and regulatory patterns that are becoming apparent for the noncoding transcriptome. Chromatin modification, epigenetic regulation, alternative splicing and translational control by MALAT1, HOTAIR and TRE lncRNAs represent important examples of lncRNA-mediated control of cell migration and invasion, EMT and metastasis. Beyond these better characterized examples, numerous additional transcripts have been associated with cancer metastasis, but their functional roles await their discovery.
Collapse
Affiliation(s)
- Sonam Dhamija
- Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,CellNetworks Excellence Cluster, University of Heidelberg, Heidelberg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,CellNetworks Excellence Cluster, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
934
|
Skierucha M, Milne ANA, Offerhaus GJA, Polkowski WP, Maciejewski R, Sitarz R. Molecular alterations in gastric cancer with special reference to the early-onset subtype. World J Gastroenterol 2016; 22:2460-2474. [PMID: 26937134 PMCID: PMC4768192 DOI: 10.3748/wjg.v22.i8.2460] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/06/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
Currently, gastric cancer (GC) is one of the most frequently diagnosed neoplasms, with a global burden of 723000 deaths in 2012. It is the third leading cause of cancer-related death worldwide. There are numerous possible factors that stimulate the pro-carcinogenic activity of important genes. These factors include genetic susceptibility expressed in a single-nucleotide polymorphism, various acquired mutations (chromosomal instability, microsatellite instability, somatic gene mutations, epigenetic alterations) and environmental circumstances (e.g., Helicobcter pylori infection, EBV infection, diet, and smoking). Most of the aforementioned pathways overlap, and authors agree that a clear-cut pathway for GC may not exist. Thus, the categorization of carcinogenic events is complicated. Lately, it has been claimed that research on early-onset gastric carcinoma (EOGC) and hereditary GC may contribute towards unravelling some part of the mystery of the GC molecular pattern because young patients are less exposed to environmental carcinogens and because carcinogenesis in this setting may be more dependent on genetic factors. The comparison of various aspects that differ and coexist in EOGCs and conventional GCs might enable scientists to: distinguish which features in the pathway of gastric carcinogenesis are modifiable, discover specific GC markers and identify a specific target. This review provides a summary of the data published thus far concerning the molecular characteristics of GC and highlights the outstanding features of EOGC.
Collapse
|
935
|
Tiram G, Segal E, Krivitsky A, Shreberk-Hassidim R, Ferber S, Ofek P, Udagawa T, Edry L, Shomron N, Roniger M, Kerem B, Shaked Y, Aviel-Ronen S, Barshack I, Calderón M, Haag R, Satchi-Fainaro R. Identification of Dormancy-Associated MicroRNAs for the Design of Osteosarcoma-Targeted Dendritic Polyglycerol Nanopolyplexes. ACS NANO 2016; 10:2028-45. [PMID: 26815014 DOI: 10.1021/acsnano.5b06189] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The presence of dormant, microscopic cancerous lesions poses a major obstacle for the treatment of metastatic and recurrent cancers. While it is well-established that microRNAs play a major role in tumorigenesis, their involvement in tumor dormancy has yet to be fully elucidated. We established and comprehensively characterized pairs of dormant and fast-growing human osteosarcoma models. Using these pairs of mouse tumor models, we identified three novel regulators of osteosarcoma dormancy: miR-34a, miR-93, and miR-200c. This report shows that loss of these microRNAs occurs during the switch from dormant avascular into fast-growing angiogenic phenotype. We validated their downregulation in patients' tumor samples compared to normal bone, making them attractive candidates for osteosarcoma therapy. Successful delivery of miRNAs is a challenge; hence, we synthesized an aminated polyglycerol dendritic nanocarrier, dPG-NH2, and designed dPG-NH2-microRNA polyplexes to target cancer. Reconstitution of these microRNAs using dPG-NH2 polyplexes into Saos-2 and MG-63 cells, which generate fast-growing osteosarcomas, reduced the levels of their target genes, MET proto-oncogene, hypoxia-inducible factor 1α, and moesin, critical to cancer angiogenesis and cancer cells' migration. We further demonstrate that these microRNAs attenuate the angiogenic capabilities of fast-growing osteosarcomas in vitro and in vivo. Treatment with each of these microRNAs using dPG-NH2 significantly prolonged the dormancy period of fast-growing osteosarcomas in vivo. Taken together, these findings suggest that nanocarrier-mediated delivery of microRNAs involved in osteosarcoma tumor-host interactions can induce a dormant-like state.
Collapse
Affiliation(s)
- Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Ehud Segal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Rony Shreberk-Hassidim
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Shiran Ferber
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Taturo Udagawa
- Vertex Pharmaceuticals , Cambridge, Massachusetts 02142, United States
| | - Liat Edry
- Department of Cell & Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Noam Shomron
- Department of Cell & Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Maayan Roniger
- Department of Genetics, The Life Sciences Institute, Edmond J. Safra Campus, The Hebrew University , Jerusalem 91905, Israel
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, Edmond J. Safra Campus, The Hebrew University , Jerusalem 91905, Israel
| | - Yuval Shaked
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Israel Institute of Technology , Haifa 32000, Israel
| | - Sarit Aviel-Ronen
- Department of Pathology, Sheba Medical Center , Tel Hashomer 52621, Israel
- Talpiot Medical Leadership Program, Sheba Medical Center , Tel Hashomer 52621, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center , Tel Hashomer 52621, Israel
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Marcelo Calderón
- Institut für Chemie und Biochemie, Freie Universität Berlin , Berlin 14195, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin , Berlin 14195, Germany
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| |
Collapse
|
936
|
Abstract
Atherosclerosis and its attendant clinical complications, such as myocardial infarction, stroke, and peripheral artery disease, are the leading cause of morbidity and mortality in Western societies. In response to biochemical and biomechanical stimuli, atherosclerotic lesion formation occurs from the participation of a range of cell types, inflammatory mediators, and shear stress. Over the past decade, microRNAs (miRNAs) have emerged as evolutionarily conserved, noncoding small RNAs that serve as important regulators and fine-tuners of a range of pathophysiological cellular effects and molecular signaling pathways involved in atherosclerosis. Accumulating studies reveal the importance of miRNAs in regulating key signaling and lipid homeostasis pathways that alter the balance of atherosclerotic plaque progression and regression. In this review, we highlight current paradigms of miRNA-mediated effects in atherosclerosis progression and regression. We provide an update on the potential use of miRNAs diagnostically for detecting increasing severity of coronary disease and clinical events. Finally, we provide a perspective on therapeutic opportunities and challenges for miRNA delivery in the field.
Collapse
Affiliation(s)
- Mark W Feinberg
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (M.W.F.); and Departments of Medicine and Cell Biology, Leon H Charney Division of Cardiology, New York University Medical Center (K.J.M.).
| | - Kathryn J Moore
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (M.W.F.); and Departments of Medicine and Cell Biology, Leon H Charney Division of Cardiology, New York University Medical Center (K.J.M.)
| |
Collapse
|
937
|
Abstract
It is increasingly evident that many of the genomic mutations in cancer reside inside regions that do not encode proteins. However, these regions are often transcribed into long noncoding RNAs (lncRNAs). The recent application of next-generation sequencing to a growing number of cancer transcriptomes has indeed revealed thousands of lncRNAs whose aberrant expression is associated with different cancer types. Among the few that have been functionally characterized, several have been linked to malignant transformation. Notably, these lncRNAs have key roles in gene regulation and thus affect various aspects of cellular homeostasis, including proliferation, survival, migration or genomic stability. This review aims to summarize current knowledge of lncRNAs from the cancer perspective. It discusses the strategies that led to the identification of cancer-related lncRNAs and the methodologies and challenges involving the study of these molecules, as well as the imminent applications of these findings to the clinic.
Collapse
|
938
|
Precision multidimensional assay for high-throughput microRNA drug discovery. Nat Commun 2016; 7:10709. [PMID: 26880188 PMCID: PMC4757758 DOI: 10.1038/ncomms10709] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/12/2016] [Indexed: 12/16/2022] Open
Abstract
Development of drug discovery assays that combine high content with throughput is challenging. Information-processing gene networks can address this challenge by integrating multiple potential targets of drug candidates' activities into a small number of informative readouts, reporting simultaneously on specific and non-specific effects. Here we show a family of networks implementing this concept in a cell-based drug discovery assay for miRNA drug targets. The networks comprise multiple modules reporting on specific effects towards an intended miRNA target, together with non-specific effects on gene expression, off-target miRNAs and RNA interference pathway. We validate the assays using known perturbations of on- and off-target miRNAs, and evaluate an ∼700 compound library in an automated screen with a follow-up on specific and non-specific hits. We further customize and validate assays for additional drug targets and non-specific inputs. Our study offers a novel framework for precision drug discovery assays applicable to diverse target families. Progress in drug discovery can be hampered by a limited exploration of chemical space and the difficulty in assessing the full range of drug candidates' effects on living cells. Here the authors describe a cell-based assay to distinguish between off-target and specific effects of candidate compounds targeting micro RNAs.
Collapse
|
939
|
Nyhan MJ, O'Donovan TR, Boersma AWM, Wiemer EAC, McKenna SL. MiR-193b promotes autophagy and non-apoptotic cell death in oesophageal cancer cells. BMC Cancer 2016; 16:101. [PMID: 26878873 PMCID: PMC4754993 DOI: 10.1186/s12885-016-2123-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/03/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Successful treatment of oesophageal cancer is hampered by recurrent drug resistant disease. We have previously demonstrated the importance of apoptosis and autophagy for the recovery of oesophageal cancer cells following drug treatment. When apoptosis (with autophagy) is induced, these cells are chemosensitive and will not recover following chemotherapy treatment. In contrast, when cancer cells exhibit only autophagy and limited Type II cell death, they are chemoresistant and recover following drug withdrawal. METHODS MicroRNA (miRNA) expression profiling of an oesophageal cancer cell line panel was used to identify miRNAs that were important in the regulation of apoptosis and autophagy. The effects of miRNA overexpression on cell death mechanisms and recovery were assessed in the chemoresistant (autophagy inducing) KYSE450 oesophageal cancer cells. RESULTS MiR-193b was the most differentially expressed miRNA between the chemosensitive and chemoresistant cell lines with higher expression in chemosensitive apoptosis inducing cell lines. Colony formation assays showed that overexpression of miR-193b significantly impedes the ability of KYSE450 cells to recover following 5-fluorouracil (5-FU) treatment. The critical mRNA targets of miR-193b are unknown but target prediction and siRNA data analysis suggest that it may mediate some of its effects through stathmin 1 regulation. Apoptosis was not involved in the enhanced cytotoxicity. Overexpression of miR-193b in these cells induced autophagic flux and non-apoptotic cell death. CONCLUSION These results highlight the importance of miR-193b in determining oesophageal cancer cell viability and demonstrate an enhancement of chemotoxicity that is independent of apoptosis induction.
Collapse
Affiliation(s)
- Michelle J Nyhan
- Cork Cancer Research Centre, 4th Floor Western Gateway Building, University College Cork, Cork, Ireland.
| | - Tracey R O'Donovan
- Cork Cancer Research Centre, 4th Floor Western Gateway Building, University College Cork, Cork, Ireland.
| | - Antonius W M Boersma
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Erik A C Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Sharon L McKenna
- Cork Cancer Research Centre, 4th Floor Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
940
|
Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK. miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discov 2016; 6:235-46. [PMID: 26865249 DOI: 10.1158/2159-8290.cd-15-0893] [Citation(s) in RCA: 517] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED miRNAs are a key component of the noncoding RNA family. The underlying mechanisms involved in the interplay between the tumor microenvironment and cancer cells involve highly dynamic factors such as hypoxia and cell types such as cancer-associated fibroblasts and macrophages. Although miRNA levels are known to be altered in cancer cells, recent evidence suggests a critical role for the tumor microenvironment in regulating miRNA biogenesis, methylation, and transcriptional changes. Here, we discuss the complex protumorigenic symbiotic role between tumor cells, the tumor microenvironment, and miRNA deregulation. SIGNIFICANCE miRNAs play a central role in cell signaling and homeostasis. In this article, we provide insights into the regulatory mechanisms involved in the deregulation of miRNAs in cancer cells and the tumor microenvironment and discuss therapeutic intervention strategies to overcome this deregulation.
Collapse
Affiliation(s)
- Rajesha Rupaimoole
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
941
|
Pereira P, Pedro AQ, Tomás J, Maia CJ, Queiroz JA, Figueiras A, Sousa F. Advances in time course extracellular production of human pre-miR-29b from Rhodovulum sulfidophilum. Appl Microbiol Biotechnol 2016; 100:3723-34. [DOI: 10.1007/s00253-016-7350-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/12/2016] [Accepted: 01/23/2016] [Indexed: 02/08/2023]
|
942
|
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs) modulate gene transcription in response to environmental stressors and other stimuli. A role for miRNAs in inflammation and immunity has been demonstrated and further evidence suggests that miRNAs also play a role in allergic asthma. RECENT FINDINGS Studies investigating the differential expression of miRNAs in biological fluids between asthma patients and controls have been published, as have their role in immune cell subsets. Further development of miRNAs in therapy has been addressed. miRNA-146a has been implicated in autoimmunity and allergic inflammation and miRNA-155 in the development of atopy. Targeting of miRNA-1 and miRNA-145 has been used to inhibit lung inflammation in mouse models of asthma. Although these recent findings need to be confirmed, miRNAs may prove to be useful as potential biomarkers of disease. However, their use as therapeutic targets in the lung remains unclear. SUMMARY There may be a potential role for using circulating miRNAs as biomarkers of disease status or response to therapy. The use of miRNAs as asthma therapy remains to be determined.
Collapse
|
943
|
Redis RS, Vela LE, Lu W, Ferreira de Oliveira J, Ivan C, Rodriguez-Aguayo C, Adamoski D, Pasculli B, Taguchi A, Chen Y, Fernandez AF, Valledor L, Van Roosbroeck K, Chang S, Shah M, Kinnebrew G, Han L, Atlasi Y, Cheung LH, Huang GY, Monroig P, Ramirez MS, Catela Ivkovic T, Van L, Ling H, Gafà R, Kapitanovic S, Lanza G, Bankson JA, Huang P, Lai SY, Bast RC, Rosenblum MG, Radovich M, Ivan M, Bartholomeusz G, Liang H, Fraga MF, Widger WR, Hanash S, Berindan-Neagoe I, Lopez-Berestein G, Ambrosio ALB, Gomes Dias SM, Calin GA. Allele-Specific Reprogramming of Cancer Metabolism by the Long Non-coding RNA CCAT2. Mol Cell 2016; 61:520-534. [PMID: 26853146 DOI: 10.1016/j.molcel.2016.01.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 10/23/2015] [Accepted: 01/08/2016] [Indexed: 12/31/2022]
Abstract
Altered energy metabolism is a cancer hallmark as malignant cells tailor their metabolic pathways to meet their energy requirements. Glucose and glutamine are the major nutrients that fuel cellular metabolism, and the pathways utilizing these nutrients are often altered in cancer. Here, we show that the long ncRNA CCAT2, located at the 8q24 amplicon on cancer risk-associated rs6983267 SNP, regulates cancer metabolism in vitro and in vivo in an allele-specific manner by binding the Cleavage Factor I (CFIm) complex with distinct affinities for the two subunits (CFIm25 and CFIm68). The CCAT2 interaction with the CFIm complex fine-tunes the alternative splicing of Glutaminase (GLS) by selecting the poly(A) site in intron 14 of the precursor mRNA. These findings uncover a complex, allele-specific regulatory mechanism of cancer metabolism orchestrated by the two alleles of a long ncRNA.
Collapse
Affiliation(s)
- Roxana S Redis
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luz E Vela
- Department of Biology & Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Weiqin Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Juliana Ferreira de Oliveira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-100, Brazil
| | - Cristina Ivan
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Douglas Adamoski
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-100, Brazil
| | - Barbara Pasculli
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ayumu Taguchi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yunyun Chen
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Agustin F Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo 33006, Spain
| | - Luis Valledor
- Department of Organisms and Systems Biology, University of Oviedo, Ovideo 33006, Spain
| | - Katrien Van Roosbroeck
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samuel Chang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maitri Shah
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Garrett Kinnebrew
- Department of Surgery, Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Yaser Atlasi
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam 3015, the Netherlands
| | - Lawrence H Cheung
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gilbert Y Huang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paloma Monroig
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marc S Ramirez
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tina Catela Ivkovic
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb 10000, Croatia
| | - Long Van
- Department of Biology & Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roberta Gafà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Sanja Kapitanovic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb 10000, Croatia
| | - Giovanni Lanza
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - James A Bankson
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peng Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen Y Lai
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael G Rosenblum
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Milan Radovich
- Department of Surgery, Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mircea Ivan
- Department of Medicine, Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Geoffrey Bartholomeusz
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Asturias 33424, Spain
| | - William R Widger
- Department of Biology & Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ioana Berindan-Neagoe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca 400012, Romania; Department of Functional Genomics, The Oncology Institute, Cluj-Napoca 400015, Romania
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andre L B Ambrosio
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-100, Brazil
| | - Sandra M Gomes Dias
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-100, Brazil
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
944
|
NI HUIYUN, TONG RONG, ZOU LINQING, SONG GUOQI, CHO WILLIAMC. MicroRNAs in diffuse large B-cell lymphoma. Oncol Lett 2016; 11:1271-1280. [PMID: 26893730 PMCID: PMC4734178 DOI: 10.3892/ol.2015.4064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/03/2015] [Indexed: 12/19/2022] Open
Abstract
The aberrant expression of microRNAs (miRs) has a significant impact on the biological characteristics of lymphocytes, and is important in the pathogenesis of diffuse large B-cell lymphoma (DLBCL). It has been demonstrated, using miR profiling and detecting distinct miR signatures, that certain miRs may accurately distinguish different subtypes and prognostic classifications of DLBCL, as well as distinguish DLBCL from other more indolent lymphomas, including follicular lymphoma. miRs are excellent biomarkers for cancer diagnosis and prognosis. In DLBCL, specific miR expression profiles in the tissues of patients are associated with prognosis and clinical outcome. Over the past decade, there has been substantial investigation concerning the pathogenetic, diagnostic and prognostic roles of miRs in DLBCL. The aim of the present review is to describe the aberrant expression of miRs in DLBCL, and the functions, potential clinical use and possible therapeutic targets of miRs in this disease.
Collapse
Affiliation(s)
- HUIYUN NI
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - RONG TONG
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - LINQING ZOU
- Department of Anatomy, Nantong University College of Medicine, Nantong, Jiangsu 226001, P.R. China
| | - GUOQI SONG
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - WILLIAM C. CHO
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong 999077, P.R. China
| |
Collapse
|
945
|
Kamel MM, Matboli M, Sallam M, Montasser IF, Saad AS, El-Tawdi AHF. Investigation of long noncoding RNAs expression profile as potential serum biomarkers in patients with hepatocellular carcinoma. Transl Res 2016; 168:134-145. [PMID: 26551349 DOI: 10.1016/j.trsl.2015.10.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/26/2015] [Accepted: 10/06/2015] [Indexed: 12/30/2022]
Abstract
There is an increasing interest in using long noncoding RNAs (lncRNAs) as biomarkers in cancer. Predictive biomarkers in hepatocellular carcinoma (HCC) have great benefit in the choice of therapeutic modality for HCC. The aim of this study is to assess lncRNA-urothelial carcinoma associated-1 (lncRNA-UCA1) and WD repeat containing, antisense to TP53 (WRAP53) expression as novel noninvasive biomarkers for diagnosis of HCC in sera of HCC patients compared with chronic hepatitis C virus (HCV) patients and healthy volunteers and to analyze their relationship with respect to the clinicopathologic features. We retrieved HCC characteristic lncRNAs, lncRNA-UCA1 and lncRNA-WRAP53, based on the microarray signature profiling (released by LncRNADisease database). Quantitative reverse-transcriptase polymerase chain reaction assay (RT-qPCR) was then used to evaluate the expression of selected lncRNAs in the serum of 160 participants. Furthermore, in 20 of 82 HCC cases involved in the study, we examined the expression of lncRNA-UCA1 and lncRNA-WRAP53 in 20 HCC tissues and adjacent nontumor tissues and analyzed its correlation with the serum level of these lncRNAs. The prognostic significance of the investigated parameters in HCC patients was explored. We found that lncRNA-UCA1 and lncRNA-WRAP53 were significantly higher in sera of HCC than those with chronic HCV infection or healthy volunteers. Our data suggested that the increased expression of UCA1 and WRAP53 was associated with advanced clinical parameters in HCC. Of note, tissue levels of the chosen lncRNAs strongly correlate with their sera level. The combination of both lncRNAs with serum alpha fetoprotein resulted in improved sensitivity to 100%. The median follow-up period was 21.5 months. LncRNA-WRAP53 was significant independent prognostic markers in relapse-free survival. LncRNA-UCA1 and lncRNA-WRAP53 upregulation may serve as novel serum biomarkers for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Marwa M Kamel
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Matboli
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Maha Sallam
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Iman F Montasser
- Faculty of Medicine, Gastroenterology, Hepatology and Infectious Diseases, Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr S Saad
- Faculty of Medicine, Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed H F El-Tawdi
- General and Plastic Surgery Department, Military Medical Academy, Cairo, Egypt
| |
Collapse
|
946
|
Marcucci F, Stassi G, De Maria R. Epithelial-mesenchymal transition: a new target in anticancer drug discovery. Nat Rev Drug Discov 2016; 15:311-25. [PMID: 26822829 DOI: 10.1038/nrd.2015.13] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The conversion of cells with an epithelial phenotype into cells with a mesenchymal phenotype, referred to as epithelial-mesenchymal transition, is a critical process for embryonic development that also occurs in adult life, particularly during tumour progression. Tumour cells undergoing epithelial-mesenchymal transition acquire the capacity to disarm the body's antitumour defences, resist apoptosis and anticancer drugs, disseminate throughout the organism, and act as a reservoir that replenishes and expands the tumour cell population. Epithelial-mesenchymal transition is therefore becoming a target of prime interest for anticancer therapy. Here, we discuss the screening and classification of compounds that affect epithelial-mesenchymal transition, highlight some compounds of particular interest, and address issues related to their clinical application.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Scientific Directorate, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy. Present address: Department of Pharmacological and Biomolecular Sciences, University of Milan, via Trentacoste 2, 20133 Milan, Italy
| | - Giorgio Stassi
- Department of Surgical and Oncological Sciences, University of Palermo, Via del Vespro 131, 90127 Palermo, Italy
| | - Ruggero De Maria
- Scientific Directorate, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
947
|
Tang XJ, Yang MH, Cao G, Lu JT, Luo J, Dai LJ, Huang KM, Zhang LI. Protective effect of microRNA-138 against cerebral ischemia/reperfusion injury in rats. Exp Ther Med 2016; 11:1045-1050. [PMID: 26998035 DOI: 10.3892/etm.2016.3021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs) serve a regulatory function in oxidative radical-mediated inflammation and apoptosis during ischemia/reperfusion (IR) injury. Lipocalin 2 (Lcn-2), a target protein of miR-138, is widely involved in the systemic response to IR injury. The aim of the present study was to investigate the association between miR-138 and Lcn-2 in a rat model of cerebral ischemia/reperfusion (CIR) injury and to verify the interaction between miR-138 and Lcn-2 in a PC12 cell model of hypoxia/reoxygenation injury. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to detect the mRNA and protein expression levels of miR-138 and Lcn-2. Cell proliferation was determined by MTT assay. The results suggested that the expression of miR-138 was inversely correlated with the expression of Lcn-2 in the CIR rat model and the PC12 cells subjected to hypoxia and reoxygenation. The expression of Lcn-2 was inhibited by miR-138 mimics and enhanced by miR-138 inhibitors, thereby indicating that miR-138 functions as a negative regulator for Lcn-2 expression. This study provides an experimental basis for the further study of miR-138-based therapy for CIR injury.
Collapse
Affiliation(s)
- Xiang-Jun Tang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ming-Huan Yang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Gang Cao
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jun-Ti Lu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Long-Jun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China; Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1L8, Canada
| | - Kuan-Ming Huang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - L I Zhang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
948
|
Cording A, Gormally M, Bond PJ, Carrington M, Balasubramanian S, Miska EA, Thomas B. Selective inhibitors of trypanosomal uridylyl transferase RET1 establish druggability of RNA post-transcriptional modifications. RNA Biol 2016; 14:611-619. [PMID: 26786754 PMCID: PMC5449093 DOI: 10.1080/15476286.2015.1137422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Non-coding RNAs are crucial regulators for a vast array of cellular processes and have been implicated in human disease. These biological processes represent a hitherto untapped resource in our fight against disease. In this work we identify small molecule inhibitors of a non-coding RNA uridylylation pathway. The TUTase family of enzymes is important for modulating non-coding RNA pathways in both human cancer and pathogen systems. We demonstrate that this new class of drug target can be accessed with traditional drug discovery techniques. Using the Trypanosoma brucei TUTase, RET1, we identify TUTase inhibitors and lay the groundwork for the use of this new target class as a therapeutic opportunity for the under-served disease area of African Trypanosomiasis. In a broader sense this work demonstrates the therapeutic potential for targeting RNA post-transcriptional modifications with small molecules in human disease.
Collapse
Affiliation(s)
- Amy Cording
- a The Gurdon Institute, University of Cambridge , Cambridge , UK
| | - Michael Gormally
- b Department of Chemistry , University of Cambridge , Cambridge , UK.,c Cancer Research UK Cambridge Institute, Li Ka Shing Center , Cambridge , UK.,d National Center for Advancing Translational Sciences , National Institutes of Health , Bethesda , MD , USA
| | - Peter J Bond
- e Bioinformatics Institute (A*STAR) , Singapore.,f Department of Biological Sciences , National University of Singapore , Singapore
| | | | - Shankar Balasubramanian
- b Department of Chemistry , University of Cambridge , Cambridge , UK.,c Cancer Research UK Cambridge Institute, Li Ka Shing Center , Cambridge , UK
| | - Eric A Miska
- a The Gurdon Institute, University of Cambridge , Cambridge , UK
| | - Beth Thomas
- b Department of Chemistry , University of Cambridge , Cambridge , UK
| |
Collapse
|
949
|
Ng KW, Anderson C, Marshall EA, Minatel BC, Enfield KSS, Saprunoff HL, Lam WL, Martinez VD. Piwi-interacting RNAs in cancer: emerging functions and clinical utility. Mol Cancer 2016; 15:5. [PMID: 26768585 PMCID: PMC4714483 DOI: 10.1186/s12943-016-0491-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/05/2016] [Indexed: 12/29/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are emerging players in cancer genomics. Originally described in the germline, there are over 20,000 piRNA genes in the human genome. In contrast to microRNAs, piRNAs interact with PIWI proteins, another member of the Argonaute family, and function primarily in the nucleus. There, they are involved in the epigenetic silencing of transposable elements in addition to the transcriptional regulation of genes. It has recently been demonstrated that piRNAs are also expressed across a variety of human somatic tissue types in a tissue-specific manner. An increasing number of studies have shown that aberrant piRNA expression is a signature feature across multiple tumour types; however, their specific tumorigenic functions remain unclear. In this article, we discuss the emerging functional roles of piRNAs in a variety of cancers, and highlight their potential clinical utilities.
Collapse
Affiliation(s)
- Kevin W Ng
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | - Christine Anderson
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | - Erin A Marshall
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | - Brenda C Minatel
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | - Katey S S Enfield
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | | | - Wan L Lam
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | - Victor D Martinez
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| |
Collapse
|
950
|
Teplyuk NM, Uhlmann EJ, Wong AHK, Karmali P, Basu M, Gabriely G, Jain A, Wang Y, Chiocca EA, Stephens R, Marcusson E, Yi M, Krichevsky AM. MicroRNA-10b inhibition reduces E2F1-mediated transcription and miR-15/16 activity in glioblastoma. Oncotarget 2016; 6:3770-83. [PMID: 25738367 PMCID: PMC4414152 DOI: 10.18632/oncotarget.3009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/21/2014] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-10b (miR-10b) is commonly elevated in glioblastoma (GBM), while not expressed in normal brain tissues. Targeted inhibition of miR-10b has pleiotropic effects on GBM derived cell lines, it reduces GBM growth in animal models, but does not affect normal neurons and astrocytes. This data raises the possibility of developing miR-10b-targeting GBM therapy. However, the mechanisms contributing to miR-10b-mediated glioma cell survival and proliferation are unexplored. We found that inhibition of miR-10b has distinct effects on specific glioma cell lines. In cells expressing high levels of tumor suppressor p21WAF1/Cip1, it represses E2F1-mediated transcription, leading to down-regulation of multiple E2F1 target genes encoding for S-phase specific proteins, epigenetic modulators, and miRNAs (e.g. miR-15/16), and thereby stalling progression through the S-phase of cell cycle. Subsequently, miR-15/16 activities are reduced and many of their direct targets are de-repressed, including ubiquitin ligase FBXW7 that destabilizes Cyclin E. Conversely, GBM cells expressing low p21 level, or after p21 knock-down, exhibit weaker or no E2F1 response to miR-10b inhibition. Comparative analysis of The Cancer Genome Atlas revealed a strong correlation between miR-10b and multiple E2F target genes in GBM and low-grade glioma. Taken together, these findings indicate that miR-10b regulates E2F1-mediated transcription in GBM, in a p21-dependent fashion.
Collapse
Affiliation(s)
- Nadiya M Teplyuk
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Erik J Uhlmann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andus Hon-Kit Wong
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Meenakshi Basu
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Galina Gabriely
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anant Jain
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yang Wang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Stephens
- Cancer Research and Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | | | - Ming Yi
- Cancer Research and Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|