901
|
Miller Y, Ma B, Nussinov R. Polymorphism in Alzheimer Abeta amyloid organization reflects conformational selection in a rugged energy landscape. Chem Rev 2010; 110:4820-38. [PMID: 20402519 PMCID: PMC2920034 DOI: 10.1021/cr900377t] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Indexed: 01/13/2023]
Affiliation(s)
| | | | - Ruth Nussinov
- To whom correspondence should be addressed. Tel.: (301) 846-5579. Fax: (301) 846-5598. E-mail:
| |
Collapse
|
902
|
Miller Y, Ma B, Tsai CJ, Nussinov R. Hollow core of Alzheimer's Abeta42 amyloid observed by cryoEM is relevant at physiological pH. Proc Natl Acad Sci U S A 2010; 107:14128-33. [PMID: 20660780 PMCID: PMC2922530 DOI: 10.1073/pnas.1004704107] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent cryoEM density maps of Abeta(42) fibrils obtained at low pH revealed two protofilaments winding around a hollow core raising the question if such tubular structures also exist at physiological pH. Based on the cryoEM measurements and on NMR data, we probe amyloid fibril organizations corresponding to the observed cryoEM density map. Our study demonstrates that the tubular Abeta(42) fibril models exist at both acidic and physiological pH; however, the relative populations of the polymorphic models shift with pH. At acidic pH, the hollow core model exhibits higher population than the other models; at physiological pH, although it is less populated compared to the other models, structurally, it is stable and represents 8% of the population. We observe that only models with C termini facing the external surface of the fibril retain the hollow core under acidic and physiological conditions with dimensions similar to those observed by cryoEM; on the other hand, the hydrophobic effect shrinks the tubular cavity in the alternative organization. The existence of the hollow core fibril at physiological pH emphasizes the need to examine toxic effects of minor oligomeric species with unique organizations.
Collapse
Affiliation(s)
- Yifat Miller
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702
| | - Buyong Ma
- Center for Cancer Research Nanobiology, Basic Science Program, Science Applications International Corproation-Frederick, Inc., National Cancer Institute, Frederick, MD 21702; and
| | - Chung-Jung Tsai
- Center for Cancer Research Nanobiology, Basic Science Program, Science Applications International Corproation-Frederick, Inc., National Cancer Institute, Frederick, MD 21702; and
| | - Ruth Nussinov
- Center for Cancer Research Nanobiology, Basic Science Program, Science Applications International Corproation-Frederick, Inc., National Cancer Institute, Frederick, MD 21702; and
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
903
|
Tycko R, Hu KN. A Monte Carlo/simulated annealing algorithm for sequential resonance assignment in solid state NMR of uniformly labeled proteins with magic-angle spinning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 205:304-14. [PMID: 20547467 PMCID: PMC2902575 DOI: 10.1016/j.jmr.2010.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 05/05/2023]
Abstract
We describe a computational approach to sequential resonance assignment in solid state NMR studies of uniformly (15)N,(13)C-labeled proteins with magic-angle spinning. As input, the algorithm uses only the protein sequence and lists of (15)N/(13)C(alpha) crosspeaks from 2D NCACX and NCOCX spectra that include possible residue-type assignments of each crosspeak. Assignment of crosspeaks to specific residues is carried out by a Monte Carlo/simulated annealing algorithm, implemented in the program MC_ASSIGN1. The algorithm tolerates substantial ambiguity in residue-type assignments and coexistence of visible and invisible segments in the protein sequence. We use MC_ASSIGN1 and our own 2D spectra to replicate and extend the sequential assignments for uniformly-labeled HET-s(218-289) fibrils previously determined manually by Siemer et al. (J. Biomol. NMR, 34 (2006) 75-87) from a more extensive set of 2D and 3D spectra. Accurate assignments by MC_ASSIGN1 do not require data that are of exceptionally high quality. Use of MC_ASSIGN1 (and its extensions to other types of 2D and 3D data) is likely to alleviate many of the difficulties and uncertainties associated with manual resonance assignments in solid state NMR studies of uniformly labeled proteins, where spectral resolution and signal-to-noise are often sub-optimal.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| | | |
Collapse
|
904
|
Hammarström P, Simon R, Nyström S, Konradsson P, Åslund A, Nilsson KPR. A Fluorescent Pentameric Thiophene Derivative Detects in Vitro-Formed Prefibrillar Protein Aggregates. Biochemistry 2010; 49:6838-45. [DOI: 10.1021/bi100922r] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Per Hammarström
- Department of Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden
| | - Rozalyn Simon
- Department of Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden
| | - Sofie Nyström
- Department of Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden
| | - Peter Konradsson
- Department of Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden
| | - Andreas Åslund
- Department of Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden
| | - K. Peter R. Nilsson
- Department of Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
905
|
Saraiva AM, Pereira MC, Brezesinski G. Is the viscoelasticity of Alzheimer's Abeta42 peptide oligomers a general property of protein oligomers related to their toxicity? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:12060-12067. [PMID: 20515050 DOI: 10.1021/la101203h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The largest group of protein misfolding diseases is associated with the conversion of specific peptides or proteins from their soluble functional states into highly organized fibrillar aggregates named amyloid fibrils or plaques. The amyloid-beta peptide (Abeta) is involved in pathogenesis of Alzheimer's disease (AD), being the main constituent of the amyloid plaques found in AD brains. Abeta is a proteolytic product of a transmembrane protein and due to its amphipathicity it may be retained in the membrane, and this has been shown to be crucial for neurotoxicity. Hydrophobic and electrostatic interactions strongly influence its conformation and aggregation both in solution and at interfaces. Appropriate solid sorbent surfaces were used to study the different interactions independently. Quartz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM) and attenuated total reflection infrared spectroscopy (ATR-IR) were employed for the investigation of the behavior of Abeta peptides on planar surfaces. Abeta peptides have high affinity for hydrophobic and rough surfaces that promote aggregation. QCM-D measurements indicate that the oligomers are soft when compared to monomers, and this property might be related to the bioactivity of protein oligomers in general.
Collapse
Affiliation(s)
- Ana M Saraiva
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, 14476 Potsdam, Germany.
| | | | | |
Collapse
|
906
|
Giehm L, Dal Degan F, Fraser P, Klysner S, Otzen DE. An Aß concatemer with altered aggregation propensities. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:2025-35. [PMID: 20619363 DOI: 10.1016/j.bbapap.2010.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/25/2010] [Accepted: 06/28/2010] [Indexed: 11/30/2022]
Abstract
We present an analysis of the conformational and aggregative properties of an Aß concatemer (Con-Alz) of interest for vaccine development against Alzheimer's disease. Con-Alz consists of 3 copies of the 43 residues of the Aß peptide separated by the P2 and P30 T-cell epitopes from the tetanus toxin. Even in the presence of high concentrations of denaturants or fluorinated alcohols, Con-Alz has a very high propensity to form aggregates which slowly coalesce over time with changes in secondary, tertiary and quaternary structure. Only micellar concentrations of SDS were able to inhibit aggregation. The increase in the ability to bind the fibril-binding dye ThT increases without lag time, which is characteristic of relatively amorphous aggregates. Confirming this, electron microscopy reveals that Con-Alz adopts a morphology resembling truncated protofibrils after prolonged incubation, but it is unable to assemble into classical amyloid fibrils. Despite its high propensity to aggregate, Con-Alz does not show any significant ability to permeabilize vesicles, which for fibrillating proteins is taken to be a key factor in aggregate cytotoxicity and is attributed to oligomers formed at an early stage in the fibrillation process. Physically linking multiple copies of the Aß-peptide may thus sterically restrict Con-Alz against forming cytotoxic oligomers, forcing it instead to adopt a less well-organized assembly of intermeshed polypeptide chains.
Collapse
Affiliation(s)
- L Giehm
- Interdisciplinary Nanoscience Centre (iNANO), Center for insoluble Protein Structures (inSPIN), Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
907
|
Takeda T, Klimov DK. Computational backbone mutagenesis of Abeta peptides: probing the role of backbone hydrogen bonds in aggregation. J Phys Chem B 2010; 114:4755-62. [PMID: 20302321 DOI: 10.1021/jp911533q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Using replica exchange molecular dynamics (REMD) and united atom implicit solvent model we examine the role of backbone hydrogen bonds (HBs) in Abeta aggregation. The importance of HBs appears to depend on the aggregation stage. The backbone HBs have little effect on the stability of Abeta dimers or on their aggregation interface. The HBs also do not play a critical role in initial binding of Abeta peptides to the amyloid fibril. Their elimination does not change the continuous character of Abeta binding nor its temperature. However, cancellation of HBs forming between incoming Abeta peptides and the fibril disrupts the locked fibril-like states in the bound peptides. Without the support of HBs, bound Abeta peptides form few long beta-strands on the fibril edge. As a result, the deletion of peptide-fibril HBs is expected to impede fibril growth. As for the peptides bound to Abeta fibril the deletion of interpeptide HBs reduces the beta propensity in the dimers making them less competent for amyloid assembly. These simulation findings together with the backbone mutagenesis experiments suggest that a viable strategy for arresting fibril growth is the disruption of interpeptide HBs.
Collapse
Affiliation(s)
- Takako Takeda
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, Virginia 20110, USA
| | | |
Collapse
|
908
|
Wegmann S, Jung YJ, Chinnathambi S, Mandelkow EM, Mandelkow E, Muller DJ. Human Tau isoforms assemble into ribbon-like fibrils that display polymorphic structure and stability. J Biol Chem 2010; 285:27302-27313. [PMID: 20566652 DOI: 10.1074/jbc.m110.145318] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibrous aggregates of Tau protein are characteristic features of Alzheimer disease. We applied high resolution atomic force and EM microscopy to study fibrils assembled from different human Tau isoforms and domains. All fibrils reveal structural polymorphism; the "thin twisted" and "thin smooth" fibrils resemble flat ribbons (cross-section approximately 10 x 15 nm) with diverse twist periodicities. "Thick fibrils" show periodicities of approximately 65-70 nm and thicknesses of approximately 9-18 nm such as routinely reported for "paired helical filaments" but structurally resemble heavily twisted ribbons. Therefore, thin and thick fibrils assembled from different human Tau isoforms challenge current structural models of paired helical filaments. Furthermore, all Tau fibrils reveal axial subperiodicities of approximately 17-19 nm and, upon exposure to mechanical stress or hydrophobic surfaces, disassemble into uniform fragments that remain connected by thin thread-like structures ( approximately 2 nm). This hydrophobically induced disassembly is inhibited at enhanced electrolyte concentrations, indicating that the fragments resemble structural building blocks and the fibril integrity depends largely on hydrophobic and electrostatic interactions. Because full-length Tau and repeat domain constructs assemble into fibrils of similar thickness, the "fuzzy coat" of Tau protein termini surrounding the fibril axis is nearly invisible for atomic force microscopy and EM, presumably because of its high flexibility.
Collapse
Affiliation(s)
- Susanne Wegmann
- Department of Biosystems Science and Engineering, ETH Zürich, CH-4058 Basel, Switzerland
| | - Yu Jin Jung
- Biotechnology Center, University of Technology, 01307 Dresden, Germany
| | - Subashchandrabose Chinnathambi
- Max-Planck-Unit for Structural Molecular Biology, c/o DESY, 22607 Hamburg, Germany and the German Center for Neurodegenerative Diseases, c/o CAESAR, 53175 Bonn, Germany
| | - Eva-Maria Mandelkow
- Max-Planck-Unit for Structural Molecular Biology, c/o DESY, 22607 Hamburg, Germany and the German Center for Neurodegenerative Diseases, c/o CAESAR, 53175 Bonn, Germany
| | - Eckhard Mandelkow
- Max-Planck-Unit for Structural Molecular Biology, c/o DESY, 22607 Hamburg, Germany and the German Center for Neurodegenerative Diseases, c/o CAESAR, 53175 Bonn, Germany.
| | - Daniel J Muller
- Department of Biosystems Science and Engineering, ETH Zürich, CH-4058 Basel, Switzerland.
| |
Collapse
|
909
|
Kodali R, Williams AD, Chemuru S, Wetzel R. Abeta(1-40) forms five distinct amyloid structures whose beta-sheet contents and fibril stabilities are correlated. J Mol Biol 2010; 401:503-17. [PMID: 20600131 DOI: 10.1016/j.jmb.2010.06.023] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/30/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
The ability of a single polypeptide sequence to grow into multiple stable amyloid fibrils sets these aggregates apart from most native globular proteins. The existence of multiple amyloid forms is the basis for strain effects in yeast prion biology, and might contribute to variations in Alzheimer's disease pathology. However, the structural basis for amyloid polymorphism is poorly understood. We report here five structurally distinct fibrillar aggregates of the Alzheimer's plaque peptide Abeta(1-40), as well as a non-fibrillar aggregate induced by Zn(2+). Each of these conformational forms exhibits a unique profile of physical properties, and all the fibrillar forms breed true in elongation reactions under a common set of growth conditions. Consistent with their defining cross-beta structure, we find that in this series the amyloid fibrils containing more extensive beta-sheet exhibit greater stability. At the same time, side chain packing outside of the beta-sheet regions contributes to stability, and to differences of stability between polymorphic forms. Stability comparison is facilitated by the unique feature that the free energy of the monomer (equivalent to the unfolded state in a protein folding reaction) does not vary, and hence can be ignored, in the comparison of DeltaG degrees of elongation values for each polymorphic fibril obtained under a single set of conditions.
Collapse
Affiliation(s)
- Ravindra Kodali
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
910
|
Shtainfeld A, Sheynis T, Jelinek R. Specific Mutations Alter Fibrillation Kinetics, Fiber Morphologies, and Membrane Interactions of Pentapeptides Derived from Human Calcitonin. Biochemistry 2010; 49:5299-307. [DOI: 10.1021/bi1002713] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amit Shtainfeld
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tania Sheynis
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
911
|
Adamcik J, Jung JM, Flakowski J, De Los Rios P, Dietler G, Mezzenga R. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. NATURE NANOTECHNOLOGY 2010; 5:423-428. [PMID: 20383125 DOI: 10.1038/nnano.2010.59] [Citation(s) in RCA: 421] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 03/01/2010] [Indexed: 05/26/2023]
Abstract
The aggregation of proteins is central to many aspects of daily life, including food processing, blood coagulation, eye cataract formation disease and prion-related neurodegenerative infections. However, the physical mechanisms responsible for amyloidosis-the irreversible fibril formation of various proteins that is linked to disorders such as Alzheimer's, Creutzfeldt-Jakob and Huntington's diseases-have not yet been fully elucidated. Here, we show that different stages of amyloid aggregation can be examined by performing a statistical polymer physics analysis of single-molecule atomic force microscopy images of heat-denatured beta-lactoglobulin fibrils. The atomic force microscopy analysis, supported by theoretical arguments, reveals that the fibrils have a multistranded helical shape with twisted ribbon-like structures. Our results also indicate a possible general model for amyloid fibril assembly and illustrate the potential of this approach for investigating fibrillar systems.
Collapse
Affiliation(s)
- Jozef Adamcik
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
912
|
Filippov AV, Gröbner G, Antzutkin ON. Aggregation of amyloid Abeta((1-40)) peptide in perdeuterated 2,2,2-trifluoroethanol caused by ultrasound sonication. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2010; 48:427-434. [PMID: 20474020 DOI: 10.1002/mrc.2596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Ultrasound sonication of protein and peptide solutions is routinely used in biochemical, biophysical, pharmaceutical and medical sciences to facilitate and accelerate dissolution of macromolecules in both aqueous and organic solvents. However, the impact of ultrasound waves on folding/unfolding of treated proteins, in particular, on aggregation kinetics of amyloidogenic peptides and proteins is not understood. In this work, effects of ultrasound sonication on the misfolding and aggregation behavior of the Alzheimer's Abeta((1-40))-peptide is studied by pulsed-field gradient (PFG) spin-echo diffusion NMR and UV circular dichroism (CD) spectroscopy. Upon simple dissolution of Abeta((1-40)) in perdeuterated trifluoroethanol, CF(3)-CD(2)-OD (TFE-d(3)), the peptide is present in the solution as a stable monomer adopting alpha-helical secondary structural motifs. The self-diffusion coefficient of Abeta((1-40)) monomers in TFE-d(3) was measured as 1.35 x 10(-10) m(2) s(-1), reflecting its monomeric character. However, upon ultrasonic sonication for less than 5 min, considerable populations of Abeta molecules (ca 40%) form large aggregates as reflected in diffusion coefficients smaller than 4.0 x 10(-13) m(2) s(-1). Sonication for longer times (up to 40 min in total) effectively reduces the fraction of these aggregates in (1)H PFG NMR spectra to ca 25%. Additionally, absorption below 230 nm increased significantly upon sonication treatment, an observation, which also clearly confirms the ongoing aggregation process of Abeta((1-40)) in TFE-d(3). Surprisingly, upon ultrasound sonication only small changes in the peptide secondary structure were detected by CD: the peptide molecules mainly adopt alpha-helical motifs in both monomers and aggregates formed upon sonication.
Collapse
Affiliation(s)
- Andrei V Filippov
- Division of Chemical Engineering, Luleå University of Technology, Luleå SE-97187, Sweden.
| | | | | |
Collapse
|
913
|
Ladiwala ARA, Lin JC, Bale SS, Marcelino-Cruz AM, Bhattacharya M, Dordick JS, Tessier PM. Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Abeta into off-pathway conformers. J Biol Chem 2010; 285:24228-37. [PMID: 20511235 DOI: 10.1074/jbc.m110.133108] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Misfolded proteins associated with diverse aggregation disorders assemble not only into a single toxic conformer but rather into a suite of aggregated conformers with unique biochemical properties and toxicities. To what extent small molecules can target and neutralize specific aggregated conformers is poorly understood. Therefore, we have investigated the capacity of resveratrol to recognize and remodel five conformers (monomers, soluble oligomers, non-toxic oligomers, fibrillar intermediates, and amyloid fibrils) of the Abeta1-42 peptide associated with Alzheimer disease. We find that resveratrol selectively remodels three of these conformers (soluble oligomers, fibrillar intermediates, and amyloid fibrils) into an alternative aggregated species that is non-toxic, high molecular weight, and unstructured. Surprisingly, resveratrol does not remodel non-toxic oligomers or accelerate Abeta monomer aggregation despite that both conformers possess random coil secondary structures indistinguishable from soluble oligomers and significantly different from their beta-sheet rich, fibrillar counterparts. We expect that resveratrol and other small molecules with similar conformational specificity will aid in illuminating the conformational epitopes responsible for Abeta-mediated toxicity.
Collapse
Affiliation(s)
- Ali Reza A Ladiwala
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | | | |
Collapse
|
914
|
Ostapchenko VG, Sawaya MR, Makarava N, Savtchenko R, Nilsson KPR, Eisenberg D, Baskakov IV. Two amyloid States of the prion protein display significantly different folding patterns. J Mol Biol 2010; 400:908-21. [PMID: 20553730 DOI: 10.1016/j.jmb.2010.05.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/27/2010] [Accepted: 05/21/2010] [Indexed: 12/16/2022]
Abstract
It has been well established that a single amino acid sequence can give rise to several conformationally distinct amyloid states. The extent to which amyloid structures formed within the same sequence are different, however, remains unclear. To address this question, we studied two amyloid states (referred to as R- and S-fibrils) produced in vitro from highly purified full-length recombinant prion protein. Several biophysical techniques including X-ray diffraction, CD, Fourier transform infrared spectroscopy (FTIR), hydrogen-deuterium exchange, proteinase K digestion, and binding of a conformation-sensitive fluorescence dye revealed that R- and S-fibrils have substantially different secondary, tertiary, and quaternary structures. While both states displayed a 4. 8-A meridional X-ray diffraction typical for amyloid cross-beta-spines, they showed markedly different equatorial profiles, suggesting different folding pattern of beta-strands. The experiments on hydrogen-deuterium exchange monitored by FTIR revealed that only small fractions of amide protons were protected in R- or S-fibrils, an argument for the dynamic nature of their cross-beta-structure. Despite this fact, both amyloid states were found to be very stable conformationally as judged from temperature-induced denaturation monitored by FTIR and the conformation-sensitive dye. Upon heating to 80 degrees C, only local unfolding was revealed, while individual state-specific cross-beta features were preserved. The current studies demonstrated that the two amyloid states formed by the same amino acid sequence exhibited significantly different folding patterns that presumably reflect two different architectures of cross-beta-structure. Both S- and R-fibrils, however, shared high conformational stability, arguing that the energy landscape for protein folding and aggregation can contain several deep free-energy minima.
Collapse
Affiliation(s)
- Valeriy G Ostapchenko
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
915
|
Lemkul JA, Bevan DR. Destabilizing Alzheimer's Abeta(42) protofibrils with morin: mechanistic insights from molecular dynamics simulations. Biochemistry 2010; 49:3935-46. [PMID: 20369844 DOI: 10.1021/bi1000855] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease is a progressive, neurodegenerative disorder that is the leading cause of senile dementia, afflicting millions of individuals worldwide. Since the identification of the amyloid beta-peptide (Abeta) as the principal toxic entity in the progression of Alzheimer's disease, numerous attempts have been made to reduce endogenous Abeta production and deposition, including designing inhibitors of the proteases that generate the peptide, generating antibodies against Abeta aggregates, utilizing metal chelators, and identifying small molecules that target the peptide during the aggregation pathway. The last approach is particularly attractive, as Abeta is normally present in vivo, but aggregation is a purely pathological event. Studies conducted in vitro and in vivo have suggested that administration of flavonoids, compounds naturally present in many foods, including wine and tea, can prevent and reverse Abeta aggregation, but mechanistic details are lacking. In this work, we employ atomistic, explicit-solvent molecular dynamics (MD) simulations to identify the mechanism of Abeta fibril destabilization by morin, one of the most effective anti-aggregation flavonoids, using a model of the mature Abeta fibril. Through the course of 24 simulations totaling 4.3 mus, we find that morin can bind to the ends of the fibrils to block the attachment of an incoming peptide and can penetrate into the hydrophobic core to disrupt the Asp23-Lys28 salt bridges and interfere with backbone hydrogen bonding. The combination of hydrophobicity, aromaticity, and hydrogen bonding capacity of morin imparts the observed behavior.
Collapse
Affiliation(s)
- Justin A Lemkul
- Department of Biochemistry, 111 Engel Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0308, USA
| | | |
Collapse
|
916
|
Meng F, Abedini A, Plesner A, Middleton CT, Potter KJ, Zanni MT, Verchere CB, Raleigh DP. The sulfated triphenyl methane derivative acid fuchsin is a potent inhibitor of amyloid formation by human islet amyloid polypeptide and protects against the toxic effects of amyloid formation. J Mol Biol 2010; 400:555-66. [PMID: 20452363 DOI: 10.1016/j.jmb.2010.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/29/2010] [Accepted: 05/02/2010] [Indexed: 01/09/2023]
Abstract
Islet amyloid polypeptide (IAPP), also known as amylin, is responsible for amyloid formation in type 2 diabetes. The formation of islet amyloid is believed to contribute to the pathology of the disease by killing beta-cells, and it may also contribute to islet transplant failure. The design of inhibitors of amyloid formation is an active area of research, but comparatively little attention has been paid to inhibitors of IAPP in contrast to the large body of work on beta-amyloid, and most small-molecule inhibitors of IAPP amyloid are generally effective only when used at a significant molar excess. Here we show that the simple sulfonated triphenyl methane derivative acid fuchsin, 3-(1-(4-amino-3-methyl-5-sulfonatophenyl)-1-(4-amino-3-sulfonatophenyl) methylene) cyclohexa-1,4-dienesulfonic acid, is a potent inhibitor of in vitro amyloid formation by IAPP at substoichiometric levels and protects cultured rat INS-1 cells against the toxic effects of human IAPP. Fluorescence-detected thioflavin-T binding assays, light-scattering, circular dichroism, two-dimensional IR, and transmission electron microscopy measurements confirm that the compound prevents amyloid fibril formation. Ionic-strength-dependent studies show that the effects are mediated in part by electrostatic interactions. Experiments in which the compound is added at different time points during the lag phase after amyloid formation has commenced reveal that it arrests amyloid formation by trapping intermediate species. The compound is less effective against the beta-amyloid peptide, indicating specificity in its ability to inhibit amyloid formation by IAPP. The work reported here provides a new structural class of IAPP amyloid inhibitors and demonstrates the power of two-dimensional infrared spectroscopy for characterizing amyloid inhibitor interactions.
Collapse
Affiliation(s)
- Fanling Meng
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | | | | | | | | | | | | | |
Collapse
|
917
|
Laghaei R, Mousseau N. Spontaneous formation of polyglutamine nanotubes with molecular dynamics simulations. J Chem Phys 2010; 132:165102. [DOI: 10.1063/1.3383244] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
918
|
Yagi H, Ozawa D, Sakurai K, Kawakami T, Kuyama H, Nishimura O, Shimanouchi T, Kuboi R, Naiki H, Goto Y. Laser-induced propagation and destruction of amyloid beta fibrils. J Biol Chem 2010; 285:19660-7. [PMID: 20406822 DOI: 10.1074/jbc.m109.076505] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid deposition of amyloid beta (Abeta) peptides is a critical pathological event in Alzheimer disease (AD). Preventing the formation of amyloid deposits and removing preformed fibrils in tissues are important therapeutic strategies against AD. Previously, we reported the destruction of amyloid fibrils of beta(2)-microglobulin K3 fragments by laser irradiation coupled with the binding of amyloid-specific thioflavin T. Here, we studied the effects of a laser beam on Abeta fibrils. As was the case for K3 fibrils, extensive irradiation destroyed the preformed Abeta fibrils. However, irradiation during spontaneous fibril formation resulted in only the partial destruction of growing fibrils and a subsequent explosive propagation of fibrils. The explosive propagation was caused by an increase in the number of active ends due to breakage. The results not only reveal a case of fragmentation-induced propagation of fibrils but also provide insights into therapeutic strategies for AD.
Collapse
Affiliation(s)
- Hisashi Yagi
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
919
|
Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 2010; 17:561-7. [PMID: 20383142 PMCID: PMC2922021 DOI: 10.1038/nsmb.1799] [Citation(s) in RCA: 891] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 03/05/2010] [Indexed: 12/22/2022]
Abstract
The amyloid-beta(1-42) (Abeta42) peptide rapidly aggregates to form oligomers, protofibils and fibrils en route to the deposition of amyloid plaques associated with Alzheimer's disease. We show that low-temperature and low-salt conditions can stabilize disc-shaped oligomers (pentamers) that are substantially more toxic to mouse cortical neurons than protofibrils and fibrils. We find that these neurotoxic oligomers do not have the beta-sheet structure characteristic of fibrils. Rather, the oligomers are composed of loosely aggregated strands whose C termini are protected from solvent exchange and which have a turn conformation, placing Phe19 in contact with Leu34. On the basis of NMR spectroscopy, we show that the structural conversion of Abeta42 oligomers to fibrils involves the association of these loosely aggregated strands into beta-sheets whose individual beta-strands polymerize in a parallel, in-register orientation and are staggered at an intermonomer contact between Gln15 and Gly37.
Collapse
|
920
|
Abstract
The prion hypothesis states that the prion and non-prion form of a protein differ only in their 3D conformation and that different strains of a prion differ by their 3D structure. Recent technical developments have enabled solid-state NMR to address the atomic-resolution structures of full-length prions, and a first comparative study of two of them, HET-s and Ure2p, in fibrillar form, has recently appeared as a pair of companion papers. Interestingly, the two structures are rather different: HET-s features an exceedingly well-ordered prion domain and a partially disordered globular domain. Ure2p in contrast features a very well ordered globular domain with a conserved fold, and-most probably-a partially ordered prion domain. For HET-s, the structure of the prion domain is characterized at atomic-resolution. For Ure2p, structure determination is under way, but the highly resolved spectra clearly show that information at atomic resolution should be achievable.
Collapse
Affiliation(s)
- Anja Böckmann
- IBCP UMR 5086 CNRS/Université de Lyon, Lyon, France.
| | | |
Collapse
|
921
|
Yang Y, Petkova A, Huang K, Xu B, Hua QX, Ye IJ, Chu YC, Hu SQ, Phillips NB, Whittaker J, Ismail-Beigi F, Mackin RB, Katsoyannis PG, Tycko R, Weiss MA. An Achilles' heel in an amyloidogenic protein and its repair: insulin fibrillation and therapeutic design. J Biol Chem 2010; 285:10806-21. [PMID: 20106984 PMCID: PMC2856287 DOI: 10.1074/jbc.m109.067850] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/19/2010] [Indexed: 11/06/2022] Open
Abstract
Insulin fibrillation provides a model for a broad class of amyloidogenic diseases. Conformational distortion of the native monomer leads to aggregation-coupled misfolding. Whereas beta-cells are protected from proteotoxicity by hexamer assembly, fibrillation limits the storage and use of insulin at elevated temperatures. Here, we have investigated conformational distortions of an engineered insulin monomer in relation to the structure of an insulin fibril. Anomalous (13)C NMR chemical shifts and rapid (15)N-detected (1)H-(2)H amide-proton exchange were observed in one of the three classical alpha-helices (residues A1-A8) of the hormone, suggesting a conformational equilibrium between locally folded and unfolded A-chain segments. Whereas hexamer assembly resolves these anomalies in accordance with its protective role, solid-state (13)C NMR studies suggest that the A-chain segment participates in a fibril-specific beta-sheet. Accordingly, we investigated whether helicogenic substitutions in the A1-A8 segment might delay fibrillation. Simultaneous substitution of three beta-branched residues (Ile(A2) --> Leu, Val(A3) --> Leu, and Thr(A8) --> His) yielded an analog with reduced thermodynamic stability but marked resistance to fibrillation. Whereas amide-proton exchange in the A1-A8 segment remained rapid, (13)Calpha chemical shifts exhibited a more helical pattern. This analog is essentially without activity, however, as Ile(A2) and Val(A3) define conserved receptor contacts. To obtain active analogs, substitutions were restricted to A8. These analogs exhibit high receptor-binding affinity; representative potency in a rodent model of diabetes mellitus was similar to wild-type insulin. Although (13)Calpha chemical shifts remain anomalous, significant protection from fibrillation is retained. Together, our studies define an "Achilles' heel" in a globular protein whose repair may enhance the stability of pharmaceutical formulations and broaden their therapeutic deployment in the developing world.
Collapse
Affiliation(s)
- Yanwu Yang
- From the Departments of Biochemistry and
| | - Aneta Petkova
- the Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0520
| | - Kun Huang
- From the Departments of Biochemistry and
| | - Bin Xu
- From the Departments of Biochemistry and
| | | | - I-Ju Ye
- From the Departments of Biochemistry and
| | - Ying-Chi Chu
- the Department of Pharmacology and Biological Chemistry, Mt. Sinai School of Medicine, New York University, New York, New York 10029, and
| | | | | | | | | | - Robert B. Mackin
- the Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Panayotis G. Katsoyannis
- the Department of Pharmacology and Biological Chemistry, Mt. Sinai School of Medicine, New York University, New York, New York 10029, and
| | - Robert Tycko
- the Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0520
| | - Michael A. Weiss
- From the Departments of Biochemistry and
- Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
922
|
Molecular Structure of Amyloid Fibrils Formed by Residues 127 to 147 of the Human Prion Protein. Chemistry 2010; 16:5492-9. [DOI: 10.1002/chem.200903290] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
923
|
Bertini I, Bhaumik A, De Paëpe G, Griffin RG, Lelli M, Lewandowski JR, Luchinat C. High-resolution solid-state NMR structure of a 17.6 kDa protein. J Am Chem Soc 2010; 132:1032-40. [PMID: 20041641 DOI: 10.1021/ja906426p] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of pseudocontact shifts arising from paramagnetic metal ions in a microcrystalline protein sample is proposed as a strategy to obtain unambiguous signal assignments in solid-state NMR spectra enabling distance extraction for protein structure calculation. With this strategy, 777 unambiguous (281 sequential, 217 medium-range, and 279 long-range) distance restraints could be obtained from PDSD, DARR, CHHC, and the recently introduced PAR and PAIN-CP solid-state experiments for the cobalt(II)-substituted catalytic domain of matrix metalloproteinase 12 (159 amino acids, 17.6 kDa). The obtained structure is a high resolution one, with backbone rmsd of 1.0 +/- 0.2 A, and is in good agreement with the X-ray structure (rmsd to X-ray 1.3 A). The proposed strategy, which may be generalized for nonmetalloproteins with the use of paramagnetic tags, represents a significant step ahead in protein structure determination using solid-state NMR.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, CERM, University of Florence, Via L. Sacconi, 6-50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | |
Collapse
|
924
|
Andreetto E, Yan LM, Tatarek-Nossol M, Velkova A, Frank R, Kapurniotu A. Identification of Hot Regions of the Aβ-IAPP Interaction Interface as High-Affinity Binding Sites in both Cross- and Self-Association. Angew Chem Int Ed Engl 2010; 49:3081-5. [DOI: 10.1002/anie.200904902] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
925
|
Andreetto E, Yan LM, Tatarek-Nossol M, Velkova A, Frank R, Kapurniotu A. Hot-Spot-Regionen der Aβ-IAPP-Wechselwirkungsdomänen als hochaffine Bindungsstellen bei Kreuz- und Selbstassoziation. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200904902] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
926
|
Zheng J, Yu X, Wang J, Yang JC, Wang Q. Molecular modeling of two distinct triangular oligomers in amyloid beta-protein. J Phys Chem B 2010; 114:463-70. [PMID: 20014755 DOI: 10.1021/jp907608s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid-beta (Abeta) peptides exhibit many distinct structural morphology at the early aggregate stage, some of which are biological relevant to the pathogenesis of Alzheimer's disease (AD). Atomic-resolution structures of the early Abeta aggregates and their conformational changes in amyloid aggregation remain elusive. Here, we perform all-atom molecular modeling and dynamics simulations to obtain two stable triangular-like Abeta structures with the lowest packing energy, one corresponding to the Tycko's model (Paravastu, A.; Leapman, R.; Yau, W.; Tycko, R. Proc. Nat. Acad. Soc. U.S.A. 2008, 105, 18349-18354) (referred to C-WT model) and the other corresponding to computational model (N-WT model). Both models have the same 3-fold symmetry but distinct beta-sheet organizations in which three Abeta hexamers pack together via either C-terminal beta-strand residues or N-terminal beta-strand residues forming distinct hydrophobic cross section. Structural and energetic comparisons of two 3-fold Abeta oligomers, coupled with structural changes upon the mutations occurring at the interacting interfaces, reveal that although hydrophobic interactions are still dominant forces, electrostatic interactions are more favorable in the N-WT model due to the formation of more and stable intersheet salt bridges, while solvation energy is more favorable in the C-WT model due to more exposed hydrophilic residues to solvent. Both models display many common features similar to other amyloid oligomers and therefore are likely to be biologically relevant.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio 44325, USA.
| | | | | | | | | |
Collapse
|
927
|
Rubin N, Perugia E, Wolf SG, Klein E, Fridkin M, Addadi L. Relation between Serum Amyloid A Truncated Peptides and Their Suprastructure Chirality. J Am Chem Soc 2010; 132:4242-8. [DOI: 10.1021/ja909345p] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Noa Rubin
- Department of Structural Biology, Department of Organic Chemistry, and Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Emanuel Perugia
- Department of Structural Biology, Department of Organic Chemistry, and Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Sharon G. Wolf
- Department of Structural Biology, Department of Organic Chemistry, and Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Eugenia Klein
- Department of Structural Biology, Department of Organic Chemistry, and Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Mati Fridkin
- Department of Structural Biology, Department of Organic Chemistry, and Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Lia Addadi
- Department of Structural Biology, Department of Organic Chemistry, and Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging, Weizmann Institute of Science, Rehovot, Israel 76100
| |
Collapse
|
928
|
Wu C, Bowers MT, Shea JE. Molecular structures of quiescently grown and brain-derived polymorphic fibrils of the Alzheimer amyloid abeta9-40 peptide: a comparison to agitated fibrils. PLoS Comput Biol 2010; 6:e1000693. [PMID: 20221247 PMCID: PMC2832665 DOI: 10.1371/journal.pcbi.1000693] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 01/30/2010] [Indexed: 12/31/2022] Open
Abstract
The presence of amyloid deposits consisting primarily of Amyloid-β (Aβ) fibril in the brain is a hallmark of Alzheimer's disease (AD). The morphologies of these fibrils are exquisitely sensitive to environmental conditions. Using molecular dynamics simulations combined with data from previously published solid-state NMR experiments, we propose the first atomically detailed structures of two asymmetric polymorphs of the Aβ9-40 peptide fibril. The first corresponds to synthetic fibrils grown under quiescent conditions and the second to fibrils derived from AD patients' brain-extracts. Our core structure in both fibril structures consists of a layered structure in which three cross-β subunits are arranged in six tightly stacked β-sheet layers with an antiparallel hydrophobic-hydrophobic and an antiparallel polar-polar interface. The synthetic and brain-derived structures differ primarily in the side-chain orientation of one β-strand. The presence of a large and continually exposed hydrophobic surface (buried in the symmetric agitated Aβ fibrils) may account for the higher toxicity of the asymmetric fibrils. Our model explains the effects of external perturbations on the fibril lateral architecture as well as the fibrillogenesis inhibiting action of amphiphilic molecules. Amyloid diseases are characterized by the presence of amyloid fibrils on organs and tissue in the body. Alzheimer's disease, Parkinson's diseases and Type II Diabetes are all examples of amyloid diseases. Determining the structure of amyloid fibrils is critical for understanding the mechanism of fibril formation as well as for the design of inhibitor molecules that can prevent aggregation. In the case of the Alzheimer Amyloid-β (Aβ) peptide, the structure of fibrils grown under conditions of mechanical agitation has been elucidated from a combination of simulation and experiments. However, the structures of the asymmetric quiescent Aβ fibrils (grown under conditions akin to physiological conditions) and of Alzheimer's brain–derived fibrils are not known. In this paper, we propose the first atomically detailed structures of these two fibrils, using molecular dynamics simulations combined with data from previously published experiments. In additions, we suggest a unifying lateral growth mechanism that explains the increased toxicity of quiescent Aβ fibrils, the effects of external perturbations on fibril lateral architecture and the inhibition mechanism of the small molecule inhibitors on fibril formation.
Collapse
Affiliation(s)
- Chun Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Michael T. Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
929
|
Jang H, Arce FT, Capone R, Ramachandran S, Lal R, Nussinov R. Misfolded amyloid ion channels present mobile beta-sheet subunits in contrast to conventional ion channels. Biophys J 2010; 97:3029-37. [PMID: 19948133 DOI: 10.1016/j.bpj.2009.09.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/31/2009] [Accepted: 09/10/2009] [Indexed: 02/05/2023] Open
Abstract
In Alzheimer's disease, calcium permeability through cellular membranes appears to underlie neuronal cell death. It is increasingly accepted that calcium permeability involves toxic ion channels. We modeled Alzheimer's disease ion channels of different sizes (12-mer to 36-mer) in the lipid bilayer using molecular dynamics simulations. Our Abeta channels consist of the solid-state NMR-based U-shaped beta-strand-turn-beta-strand motif. In the simulations we obtain ion-permeable channels whose subunit morphologies and shapes are consistent with electron microscopy/atomic force microscopy. In agreement with imaged channels, the simulations indicate that beta-sheet channels break into loosely associated mobile beta-sheet subunits. The preferred channel sizes (16- to 24-mer) are compatible with electron microscopy/atomic force microscopy-derived dimensions. Mobile subunits were also observed for beta-sheet channels formed by cytolytic PG-1 beta-hairpins. The emerging picture from our large-scale simulations is that toxic ion channels formed by beta-sheets spontaneously break into loosely interacting dynamic units that associate and dissociate leading to toxic ionic flux. This sharply contrasts intact conventional gated ion channels that consist of tightly interacting alpha-helices that robustly prevent ion leakage, rather than hydrogen-bonded beta-strands. The simulations suggest why conventional gated channels evolved to consist of interacting alpha-helices rather than hydrogen-bonded beta-strands that tend to break in fluidic bilayers. Nature designs folded channels but not misfolded toxic channels.
Collapse
Affiliation(s)
- Hyunbum Jang
- Center for Cancer Research Nanobiology Program, NCI-Frederick, SAIC-Frederick, Frederick, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
930
|
Abstract
Demonstrated successes of protein design and engineering suggest significant potential to produce diverse protein architectures and assemblies beyond those found in nature. Here, we describe a new class of synthetic protein architecture through the successful design and atomic structures of water-soluble cross-beta proteins. The cross-beta motif is formed from the lamination of successive beta-sheet layers, and it is abundantly observed in the core of insoluble amyloid fibrils associated with protein-misfolding diseases. Despite its prominence, cross-beta has been designed only in the context of insoluble aggregates of peptides or proteins. Cross-beta's recalcitrance to protein engineering and conspicuous absence among the known atomic structures of natural proteins thus makes it a challenging target for design in a water-soluble form. Through comparative analysis of the cross-beta structures of fibril-forming peptides, we identified rows of hydrophobic residues ("ladders") running across beta-strands of each beta-sheet layer as a minimal component of the cross-beta motif. Grafting a single ladder of hydrophobic residues designed from the Alzheimer's amyloid-beta peptide onto a large beta-sheet protein formed a dimeric protein with a cross-beta architecture that remained water-soluble, as revealed by solution analysis and x-ray crystal structures. These results demonstrate that the cross-beta motif is a stable architecture in water-soluble polypeptides and can be readily designed. Our results provide a new route for accessing the cross-beta structure and expanding the scope of protein design.
Collapse
|
931
|
Principles governing oligomer formation in amyloidogenic peptides. Curr Opin Struct Biol 2010; 20:187-95. [PMID: 20106655 DOI: 10.1016/j.sbi.2009.12.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/23/2009] [Accepted: 12/28/2009] [Indexed: 12/31/2022]
Abstract
Identifying the principles that describe the formation of protein oligomers and fibrils with distinct morphologies is a daunting problem. Here we summarize general principles of oligomer formation gleaned from molecular dynamics simulations of Abeta-peptides. The spectra of high free energy structures sampled by the monomer provide insights into the plausible fibril structures, providing a rationale for the 'strain phenomenon.' Heterogeneous growth dynamics of small oligomers of Abeta(16-22), whose lowest free energy structures are like nematic droplets, can be broadly described using a two-stage dock-lock mechanism. In the growth process, water is found to play various roles depending on the oligomer size, and peptide length, and sequence. Water may be an explicit element of fibril structure linked to various fibril morphologies.
Collapse
|
932
|
Mitraki A. Protein aggregation from inclusion bodies to amyloid and biomaterials. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 79:89-125. [PMID: 20621282 DOI: 10.1016/s1876-1623(10)79003-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inclusion bodies and amyloid are two different outcomes of the same fundamental biological process: protein aggregation. They share two important features that suggest sequence-specific aggregation: oligomeric intermediates as precursors to the aggregated sate and sensitivity to site-specific point mutations. For a long time, the physical state of inclusion bodies was refractory to the use of protein structural characterization techniques that were developed for soluble proteins. Recent high-resolution studies reveal that the apparently amorphous state of these dense protein agglomerates consists of amyloid-type structures adopted by short segments that initiate aggregation. Under certain circumstances it is possible for the aggregation-prone segments to "recruit" a globular counterpart within the inclusion body, with the latter being able to fold into an active conformation. In this chapter we will discuss these recent structural insights in relation with the also recent, high-resolution structures for amyloid "spines" and their ability to accommodate globular or "swapped" domains in their periphery. Finally, unexpected natural roles for amyloid structures such as protection, adhesion, and storage materials gradually emerge. We will discuss how these properties in combination with biochemical and structural insights can inspire "biomimetic" approaches for the rational design of novel nanobiomaterials.
Collapse
Affiliation(s)
- Anna Mitraki
- Department of Materials Science and Technology, University of Crete and Institute for Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Vassilika Vouton, Heraklion, Crete, Greece
| |
Collapse
|
933
|
Wei G, Jewett AI, Shea JE. Structural diversity of dimers of the Alzheimer amyloid-β(25–35) peptide and polymorphism of the resulting fibrils. Phys Chem Chem Phys 2010; 12:3622-9. [DOI: 10.1039/c000755m] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
934
|
Frkanec L, Žinić M. Chiral bis(amino acid)- and bis(amino alcohol)-oxalamidegelators. Gelation properties, self-assembly motifs and chirality effects. Chem Commun (Camb) 2010; 46:522-37. [DOI: 10.1039/b920353m] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
935
|
Milton NG, Harris JR. Polymorphism of amyloid-β fibrils and its effects on human erythrocyte catalase binding. Micron 2009; 40:800-10. [DOI: 10.1016/j.micron.2009.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 11/28/2022]
|
936
|
Ramakrishnan M, Kandimalla KK, Wengenack TM, Howell KG, Poduslo JF. Surface plasmon resonance binding kinetics of Alzheimer's disease amyloid beta peptide-capturing and plaque-binding monoclonal antibodies. Biochemistry 2009; 48:10405-15. [PMID: 19775170 DOI: 10.1021/bi900523q] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several different monoclonal antibodies (mAbs) have been actively developed in the field of Alzheimer's disease (AD) for basic science and clinical applications; however, the binding kinetics of many of the mAbs with the beta-amyloid peptides (Abeta) are poorly understood. A panel of mAbs with different Abeta recognition sites, including our plaque-binding antibody (IgG4.1), a peptide-capturing antibody (11A50), and two classical mAbs (6E10 and 4G8) used for immunohistochemistry, were chosen for characterization of their kinetics of binding to monomeric and fibrillar forms of Abeta40 using surface plasmon resonance and their amyloid plaque binding ability in AD mouse brain sections using immunohistochemistry. The plaque-binding antibody (IgG4.1) with epitope specificity of Abeta(2-10) showed a weaker affinity (512 nM) for monomeric Abeta40 but a higher affinity (1.5 nM) for Abeta40 fibrils and labeled dense core plaques better than 6E10 as determined by immunohistochemistry. The peptide-capturing antibody (11A50) showed preferential affinity (32.5 nM) for monomeric Abeta40 but did not bind to Abeta40 fibrils, whereas antibodies 6E10 and 4G8 had moderate affinity for monomeric Abeta40 (22.3 and 30.1 nM, respectively). 4G8, which labels diffuse plaques better than 6E10, had a higher association rate constant than 6E10 but showed similar association and dissociation kinetics compared to those of 11A50. Enzymatic digestion of IgG4.1 to the F(ab')(2)4.1 fragments or their polyamine-modified derivatives that enhance blood-brain barrier permeability did not affect the kinetic properties of the antigen binding site. These differences in kinetic binding to monomeric and fibrillar Abeta among various antibodies could be utilized to distinguish mAbs that might be useful for immunotherapy or amyloid plaque imaging versus those that could be utilized for bioanalytical techniques.
Collapse
Affiliation(s)
- Muthu Ramakrishnan
- Molecular Neurobiology Laboratory, Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
937
|
Malisauskas M, Weise C, Yanamandra K, Wolf-Watz M, Morozova-Roche L. Lability landscape and protease resistance of human insulin amyloid: a new insight into its molecular properties. J Mol Biol 2009; 396:60-74. [PMID: 19913026 DOI: 10.1016/j.jmb.2009.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 11/24/2022]
Abstract
Amyloid formation is a universal behavior of proteins central to many important human pathologies and industrial processes. The extreme stability of amyloids towards chemical and proteolytic degradation is an acquired property compared to the precursor proteins and is a major prerequisite for their accumulation. Here, we report a study on the lability of human insulin amyloid as a function of pH and amyloid ageing. Using a range of methods such as atomic force microscopy, thioflavin T fluorescence, circular dichroism, and gas-phase electrophoretic mobility macromolecule analysis, we probed the propensity of human insulin amyloid to propagate or dissociate in a wide span of pH values and ageing in a low concentration regime. We generated a three-dimensional amyloid lability landscape in coordinates of pH and amyloid ageing, which displays three distinctive features: (i) a maximum propensity to grow near pH 3.8 and an age corresponding to the inflection point of the growth phase, (ii) an abrupt cutoff between growth and disaggregation at pH 8-10, and (iii) isoclines shifted towards older age during the amyloid growth phase at pH 4-9, reflecting the greater stability of aged amyloid. Thus, lability of amyloid strongly depends on the ionization state of insulin and on the structure and maturity of amyloid fibrils. The stability of insulin amyloid towards protease K was assessed by using real-time atomic force microscopy and thioflavin T fluorescence. We estimated that amyloid fibrils can be digested both from the free ends and within the length of the fibril with a rate of ca 4 nm/min. Our results highlight that amyloid structures, depending on solution conditions, can be less stable than commonly perceived. These results have wide implications for understanding the propagation of amyloids via a seeding mechanism as well as for understanding their natural clearance and dissociation under solution conditions unfavorable for amyloid formation in biological systems and industrial applications.
Collapse
Affiliation(s)
- Mantas Malisauskas
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE 90187, Sweden
| | | | | | | | | |
Collapse
|
938
|
Hu KN, Tycko R. Zero-quantum frequency-selective recoupling of homonuclear dipole-dipole interactions in solid state nuclear magnetic resonance. J Chem Phys 2009; 131:045101. [PMID: 19655922 DOI: 10.1063/1.3176874] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We describe a method for measuring magnetic dipole-dipole interactions, and hence distances, between pairs of like nuclear spins in a many-spin system under magic-angle spinning (MAS). This method employs a homonuclear dipolar recoupling sequence that creates an average dipole-dipole coupling Hamiltonian under MAS with full zero-quantum symmetry, including both secular and flip-flop terms. Flip-flop terms are then attenuated by inserting rotor-synchronized periods of chemical shift evolution between recoupling blocks, leaving an effective Hamiltonian that contains only secular terms to a good approximation. Couplings between specific pairs of nuclear spins can then be selected with frequency-selective pi pulses. We demonstrate this technique, which we call zero-quantum shift evolution assisted homonuclear recoupling, in a series of one-dimensional and two-dimensional (13)C NMR experiments at 17.6 T and 40.00 kHz MAS frequency on uniformly (13)C-labeled L-threonine powder and on the helix-forming peptide MB(i+4)EK, synthesized with a pair of uniformly (13)C-labeled L-alanine residues. Experimental demonstrations include measurements of distances between (13)C sites that are separated by three bonds, placing quantitative constraints on both sidechain and backbone torsion angles in polypeptides.
Collapse
Affiliation(s)
- Kan-Nian Hu
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | |
Collapse
|
939
|
Polymorphism of Alzheimer's Abeta17-42 (p3) oligomers: the importance of the turn location and its conformation. Biophys J 2009; 97:1168-77. [PMID: 19686665 DOI: 10.1016/j.bpj.2009.05.042] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 11/21/2022] Open
Abstract
Abeta(17-42) (so-called p3) amyloid is detected in vivo in the brains of individuals with Alzheimer's disease or Down's syndrome. We investigated the polymorphism of Abeta(17-42) oligomers based on experimental data from steady-state NMR measurements, electron microscopy, two-dimensional hydrogen exchange, and mutational studies, using all-atom molecular-dynamics simulation with explicit solvent. We assessed the structural stability and the populations. Our results suggest that conformational differences in the U-turn of Abeta(17-42) lead to polymorphism in beta-sheet registration and retention of an ordered beta-strand organization at the termini. Further, although the parallel Abeta(17-42) oligomer organization is the most stable of the conformers investigated here, different antiparallel Abeta(17-42) organizations are also stable and compete with the parallel architectures, presenting a polymorphic population. In this study we propose that 1), the U-turn conformation is the primary factor leading to polymorphism in the assembly of Abeta(17-42) oligomers, and is also coupled to oligomer growth; and 2), both parallel Abeta(17-42) oligomers and an assembly of Abeta(17-42) oligomers that includes both parallel and antiparallel organizations contribute to amyloid fibril formation. Finally, since a U-turn motif generally appears in amyloids formed by full proteins or long fragments, and since to date these have been shown to exist only in parallel architectures, our results apply to a broad range of oligomers and fibrils.
Collapse
|
940
|
Comparison of Alzheimer Abeta(1-40) and Abeta(1-42) amyloid fibrils reveals similar protofilament structures. Proc Natl Acad Sci U S A 2009; 106:19813-8. [PMID: 19843697 DOI: 10.1073/pnas.0905007106] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We performed mass-per-length (MPL) measurements and electron cryomicroscopy (cryo-EM) with 3D reconstruction on an Abeta(1-42) amyloid fibril morphology formed under physiological pH conditions. The data show that the examined Abeta(1-42) fibril morphology has only one protofilament, although two protofilaments were observed with a previously studied Abeta(1-40) fibril. The latter fibril was resolved at 8 A resolution showing pairs of beta-sheets at the cores of the two protofilaments making up a fibril. Detailed comparison of the Abeta(1-42) and Abeta(1-40) fibril structures reveals that they share an axial twofold symmetry and a similar protofilament structure. Furthermore, the MPL data indicate that the protofilaments of the examined Abeta(1-40) and Abeta(1-42) fibrils have the same number of Abeta molecules per cross-beta repeat. Based on this data and the previously studied Abeta(1-40) fibril structure, we describe a model for the arrangement of peptides within the Abeta(1-42) fibril.
Collapse
|
941
|
2D IR provides evidence for mobile water molecules in beta-amyloid fibrils. Proc Natl Acad Sci U S A 2009; 106:17751-6. [PMID: 19815514 DOI: 10.1073/pnas.0909888106] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The motion of water molecules close to amide groups causes their vibrational frequencies to vary rapidly in time. These variations are uniquely sensed by 2-dimensional infrared spectroscopy (2D IR). Here, it is proposed from 2-dimensional experiments on fibrils of amyloid beta (Abeta)40 that there are water molecules in the fibrils. The spatial locations of the water (D(2)O) were inferred from the responses of 18 amide modes of Abeta40 labeled with (13)C = (18)O. Fast frequency variations were found for residues L17 and V18 and for the apposed residues L34 and V36, suggesting cavities or channels containing mobile water molecules can form between the 2 sheets. Spectroscopic analysis showed that there are 1.2 water molecules per strand in the fibrils. The (13)C = (18)O substitution of 1 residue per strand creates a linear array of isotopologs along the fibril axis that manifests clearly identifiable vibrational transitions. Here, it is shown from the distributions of amide-I' vibrational frequencies that the regularity of these chains is strongly residue dependent and in most cases the distorted regions are also those associated with the putative mobile water molecules. It is proposed that Abeta40 fibrils contain structurally significant mobile water molecules within the intersheet region.
Collapse
|
942
|
Shewmaker F, McGlinchey RP, Thurber KR, McPhie P, Dyda F, Tycko R, Wickner RB. The functional curli amyloid is not based on in-register parallel beta-sheet structure. J Biol Chem 2009; 284:25065-76. [PMID: 19574225 PMCID: PMC2757210 DOI: 10.1074/jbc.m109.007054] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/23/2009] [Indexed: 11/06/2022] Open
Abstract
The extracellular curli proteins of Enterobacteriaceae form fibrous structures that are involved in biofilm formation and adhesion to host cells. These curli fibrils are considered a functional amyloid because they are not a consequence of misfolding, but they have many of the properties of protein amyloid. We confirm that fibrils formed by CsgA and CsgB, the primary curli proteins of Escherichia coli, possess many of the hallmarks typical of amyloid. Moreover we demonstrate that curli fibrils possess the cross-beta structure that distinguishes protein amyloid. However, solid state NMR experiments indicate that curli structure is not based on an in-register parallel beta-sheet architecture, which is common to many human disease-associated amyloids and the yeast prion amyloids. Solid state NMR and electron microscopy data are consistent with a beta-helix-like structure but are not sufficient to establish such a structure definitively.
Collapse
Affiliation(s)
| | | | | | - Peter McPhie
- From the Laboratories of Biochemistry and Genetics
| | - Fred Dyda
- Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830
| | | | | |
Collapse
|
943
|
Thermodynamic selection of steric zipper patterns in the amyloid cross-beta spine. PLoS Comput Biol 2009; 5:e1000492. [PMID: 19730673 PMCID: PMC2723932 DOI: 10.1371/journal.pcbi.1000492] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 07/28/2009] [Indexed: 11/19/2022] Open
Abstract
At the core of amyloid fibrils is the cross-beta spine, a long tape of beta-sheets formed by the constituent proteins. Recent high-resolution x-ray studies show that the unit of this filamentous structure is a beta-sheet bilayer with side chains within the bilayer forming a tightly interdigitating "steric zipper" interface. However, for a given peptide, different bilayer patterns are possible, and no quantitative explanation exists regarding which pattern is selected or under what condition there can be more than one pattern observed, exhibiting molecular polymorphism. We address the structural selection mechanism by performing molecular dynamics simulations to calculate the free energy of incorporating a peptide monomer into a beta-sheet bilayer. We test filaments formed by several types of peptides including GNNQQNY, NNQQ, VEALYL, KLVFFAE and STVIIE, and find that the patterns with the lowest binding free energy correspond to available atomistic structures with high accuracy. Molecular polymorphism, as exhibited by NNQQ, is likely because there are more than one most stable structures whose binding free energies differ by less than the thermal energy. Detailed analysis of individual energy terms reveals that these short peptides are not strained nor do they lose much conformational entropy upon incorporating into a beta-sheet bilayer. The selection of a bilayer pattern is determined mainly by the van der Waals and hydrophobic forces as a quantitative measure of shape complementarity among side chains between the beta-sheets. The requirement for self-complementary steric zipper formation supports that amyloid fibrils form more easily among similar or same sequences, and it also makes parallel beta-sheets generally preferred over anti-parallel ones. But the presence of charged side chains appears to kinetically drive anti-parallel beta-sheets to form at early stages of assembly, after which the bilayer formation is likely driven by energetics.
Collapse
|
944
|
Castillo V, Ventura S. Amyloidogenic regions and interaction surfaces overlap in globular proteins related to conformational diseases. PLoS Comput Biol 2009; 5:e1000476. [PMID: 19696882 PMCID: PMC2719061 DOI: 10.1371/journal.pcbi.1000476] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 07/20/2009] [Indexed: 11/26/2022] Open
Abstract
Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins. The aggregation of proteins in tissues is associated with the pathogenesis of more than 40 human diseases. The polypeptides underlying disorders such as Alzheimer's and Parkinson's are devoid of any regular structure, whereas the polypeptides causing familial amyotrophic lateral sclerosis or nonneuropathic systemic amyloidosis correspond to globular proteins. Little is known about the mechanism by which globular proteins under physiological conditions aggregate from their initially folded and soluble conformations. Interestingly, several of these pathogenic proteins display quaternary structure or are bound to other proteins in their physiological context. In the present work, we show that protein-protein interaction surfaces and regions with high aggregation propensity significantly overlap in these polypeptides. This suggests that the formation of native complexes and self-aggregation reactions probably compete in the cell, explaining why point mutations affecting the interface or the stability of the protein complex lead in many cases to the formation of toxic aggregates. This study proposes general strategies to fight against diseases associated with the deposition of globular polypeptides.
Collapse
Affiliation(s)
- Virginia Castillo
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
945
|
Molecular mechanisms for protein-encoded inheritance. Nat Struct Mol Biol 2009; 16:973-8. [PMID: 19684598 DOI: 10.1038/nsmb.1643] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 06/17/2009] [Indexed: 01/21/2023]
Abstract
In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of beta-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct beta-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.
Collapse
|
946
|
Measurement of amyloid fibril mass-per-length by tilted-beam transmission electron microscopy. Proc Natl Acad Sci U S A 2009; 106:14339-44. [PMID: 19706519 DOI: 10.1073/pnas.0907821106] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We demonstrate that accurate values of mass-per-length (MPL), which serve as strong constraints on molecular structure, can be determined for amyloid fibrils by quantification of intensities in dark-field electron microscope images obtained in the tilted-beam mode of a transmission electron microscope. MPL values for fibrils formed by residues 218-289 of the HET-s fungal prion protein, for 2-fold- and 3-fold-symmetric fibrils formed by the 40-residue beta-amyloid peptide, and for fibrils formed by the yeast prion protein Sup35NM are in good agreement with previous results from scanning transmission electron microscopy. Results for fibrils formed by the yeast prion protein Rnq1, for which the MPL value has not been previously reported, support an in-register parallel beta-sheet structure, with one Rnq1 molecule per 0.47-nm beta-sheet repeat spacing. Since tilted-beam dark-field images can be obtained on many transmission electron microscopes, this work should facilitate MPL determination by a large number of research groups engaged in studies of amyloid fibrils and similar supramolecular assemblies.
Collapse
|
947
|
Maji SK, Wang L, Greenwald J, Riek R. Structure-activity relationship of amyloid fibrils. FEBS Lett 2009; 583:2610-7. [PMID: 19596006 DOI: 10.1016/j.febslet.2009.07.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 11/18/2022]
Abstract
Protein aggregation is a process in which proteins self-associate into imperfectly ordered macroscopic entities. Such aggregates are generally classified as either amorphous or highly ordered, the most common form of the latter being amyloid fibrils. Amyloid fibrils composed of cross-beta-sheet structure are the pathological hallmarks of several diseases including Alzheimer's disease, but are also associated with functional states such as the fungal HET-s prion. This review aims to summarize the recent high-resolution structural studies of amyloid fibrils in light of their (potential) activities. We propose that the repetitive nature of the cross-beta-sheet structure of amyloids is key for their multiple properties: the repeating motifs can translate a rather non-specific interaction into a specific one through cooperativity.
Collapse
Affiliation(s)
- Samir K Maji
- School of Bioscience and Bioengineering, IIT-Bombay, Powai, Mumbai, India.
| | | | | | | |
Collapse
|
948
|
Tycko R, Sciarretta KL, Orgel JPRO, Meredith SC. Evidence for novel beta-sheet structures in Iowa mutant beta-amyloid fibrils. Biochemistry 2009; 48:6072-84. [PMID: 19358576 PMCID: PMC2910621 DOI: 10.1021/bi9002666] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Asp23-to-Asn mutation within the coding sequence of beta-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Abeta40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Abeta40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10(-3) min(-1) and 1.07 x 10(-4) min(-1) for D23N-Abeta40 and the wild-type peptide WT-Abeta40, respectively) and without a lag phase. Electron microscopy shows that D23N-Abeta40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-beta pattern, with a sharp reflection at 4.7 A and a broad reflection at 9.4 A, which is notably smaller than the value for WT-Abeta40 fibrils (10.4 A). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Abeta40 fibrils containing the in-register, parallel beta-sheet structure commonly found in WT-Abeta40 fibrils and most other amyloid fibrils. Antiparallel beta-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through (13)C-(13)C and (15)N-(13)C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Abeta40 fibrils and the unusual vasculotropic clinical picture in these patients.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | | | |
Collapse
|
949
|
Abstract
Sequence-dependent variations in the growth mechanism and stability of amyloid fibrils, which are implicated in a number of neurodegenerative diseases, are poorly understood. We have carried out extensive all-atom molecular dynamics simulations to monitor the structural changes that occur upon addition of random coil (RC) monomer fragments from the yeast prion Sup35 and Abeta-peptide onto a preformed fibril. Using the atomic resolution structures of the microcrystals as the starting points, we show that the RC --> beta-strand transition for the Sup35 fragment occurs abruptly over a very narrow time interval, whereas the acquisition of strand content is less dramatic for the hydrophobic-rich Abeta-peptide. Expulsion of water, resulting in the formation of a dry interface between 2 adjacent sheets of the Sup35 fibril, occurs in 2 stages. Ejection of a small number of discrete water molecules in the second stage follows a rapid decrease in the number of water molecules in the first stage. Stability of the Sup35 fibril is increased by a network of hydrogen bonds involving both backbone and side chains, whereas the marginal stability of the Abeta-fibrils is largely due to the formation of weak dispersion interaction between the hydrophobic side chains. The importance of the network of hydrogen bonds is further illustrated by mutational studies, which show that substitution of the Asn and Gln residues to Ala compromises the Sup35 fibril stability. Despite the similarity in the architecture of the amyloid fibrils, the growth mechanism and stability of the fibrils depend dramatically on the sequence.
Collapse
|
950
|
Ramamoorthy A. Beyond NMR spectra of antimicrobial peptides: dynamical images at atomic resolution and functional insights. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2009; 35:201-7. [PMID: 19386477 PMCID: PMC2694728 DOI: 10.1016/j.ssnmr.2009.03.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 03/04/2009] [Accepted: 03/08/2009] [Indexed: 05/21/2023]
Abstract
There is a considerable current interest in understanding the function of antimicrobial peptides for the development of potent novel antibiotic compounds with a very high selectivity. Since their interaction with the cell membrane is the major driving force for their function, solid-state NMR spectroscopy is the unique method of choice to study these insoluble, non-crystalline, membrane-peptide complexes. Here I discuss solid-state NMR studies of antimicrobial peptides that have reported high-resolution structure, dynamics, orientation, and oligomeric states of antimicrobial peptides in a membrane environment, and also address important questions about the mechanism of action at atomic-level resolution. Increasing number of solid-state NMR applications to antimicrobial peptides are expected in the near future, as these compounds are promising candidates to overcome ever-increasing antibiotic resistance problem and are well suited for the development and applications of solid-state NMR techniques.
Collapse
Affiliation(s)
- Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
| |
Collapse
|