901
|
Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, Matsuda N. Phosphorylated ubiquitin chain is the genuine Parkin receptor. ACTA ACUST UNITED AC 2015; 209:111-28. [PMID: 25847540 PMCID: PMC4395490 DOI: 10.1083/jcb.201410050] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/25/2015] [Indexed: 11/22/2022]
Abstract
PINK1-phosphorylated ubiquitin chain is the genuine Parkin receptor that recruits Parkin to depolarized mitochondria. PINK1 selectively recruits Parkin to depolarized mitochondria for quarantine and removal of damaged mitochondria via ubiquitylation. Dysfunction of this process predisposes development of familial recessive Parkinson’s disease. Although various models for the recruitment process have been proposed, none of them adequately explain the accumulated data, and thus the molecular basis for PINK1 recruitment of Parkin remains to be fully elucidated. In this study, we show that a linear ubiquitin chain of phosphomimetic tetra-ubiquitin(S65D) recruits Parkin to energized mitochondria in the absence of PINK1, whereas a wild-type tetra-ubiquitin chain does not. Under more physiologically relevant conditions, a lysosomal phosphorylated polyubiquitin chain recruited phosphomimetic Parkin to the lysosome. A cellular ubiquitin replacement system confirmed that ubiquitin phosphorylation is indeed essential for Parkin translocation. Furthermore, physical interactions between phosphomimetic Parkin and phosphorylated polyubiquitin chain were detected by immunoprecipitation from cells and in vitro reconstitution using recombinant proteins. We thus propose that the phosphorylated ubiquitin chain functions as the genuine Parkin receptor for recruitment to depolarized mitochondria.
Collapse
Affiliation(s)
- Kei Okatsu
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Fumika Koyano
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Mayumi Kimura
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Noriyuki Matsuda
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
902
|
Pellegrino MW, Haynes CM. Mitophagy and the mitochondrial unfolded protein response in neurodegeneration and bacterial infection. BMC Biol 2015; 13:22. [PMID: 25857750 PMCID: PMC4384303 DOI: 10.1186/s12915-015-0129-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are highly dynamic and structurally complex organelles that provide multiple essential metabolic functions. Mitochondrial dysfunction is associated with neurodegenerative conditions such as Parkinson’s disease, as well as bacterial infection. Here, we explore the roles of mitochondrial autophagy (mitophagy) and the mitochondrial unfolded protein response (UPRmt) in the response to mitochondrial dysfunction, focusing in particular on recent evidence on the role of mitochondrial import efficiency in the regulation of these stress pathways and how they may interact to protect the mitochondrial pool while initiating an innate immune response to protect against bacterial pathogens.
Collapse
|
903
|
Wang Y, Serricchio M, Jauregui M, Shanbhag R, Stoltz T, Di Paolo CT, Kim PK, McQuibban GA. Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 2015; 11:595-606. [PMID: 25915564 PMCID: PMC4502823 DOI: 10.1080/15548627.2015.1034408] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 02/20/2015] [Accepted: 02/26/2015] [Indexed: 12/11/2022] Open
Abstract
The selective degradation of mitochondria by the process of autophagy, termed mitophagy, is one of the major mechanisms of mitochondrial quality control. The best-studied mitophagy pathway is the one mediated by PINK1 and PARK2/Parkin. From recent studies it has become clear that ubiquitin-ligation plays a pivotal role and most of the focus has been on the role of ubiquitination of mitochondrial proteins in mitophagy. Even though ubiquitination is a reversible process, very little is known about the role of deubiquitinating enzymes (DUBs) in mitophagy. Here, we report that 2 mitochondrial DUBs, USP30 and USP35, regulate PARK2-mediated mitophagy. We show that USP30 and USP35 can delay PARK2-mediated mitophagy using a quantitative mitophagy assay. Furthermore, we show that USP30 delays mitophagy by delaying PARK2 recruitment to the mitochondria during mitophagy. USP35 does not delay PARK2 recruitment, suggesting that it regulates mitophagy through an alternative mechanism. Interestingly, USP35 only associates with polarized mitochondria, and rapidly translocates to the cytosol during CCCP-induced mitophagy. It is clear that PARK2-mediated mitophagy is regulated at many steps in this important quality control pathway. Taken together, these findings demonstrate an important role of mitochondrial-associated DUBs in mitophagy. Because defects in mitochondria quality control are implicated in many neurodegenerative disorders, our study provides clear rationales for the design and development of drugs for the therapeutic treatment of neurodegenerative diseases such as Parkinson and Alzheimer diseases.
Collapse
Key Words
- CCCP
- Cer, cerulean
- DMSO, dimethyl sulfoxide
- DUB
- DsRed, Discosoma sp. red fluorescent protein
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GFP, green fluorescent protein
- HA, human influenza hemagglutinin
- MFN2, mitofusin 2
- MTS
- OMM, outer mitochondrial membrane
- PARK2
- PARK2, parkin RBR E3 ubiquitin protein ligase
- PINK1, PTEN-induced putative kinase 1
- SYNJ2BP, synaptojanin 2 binding protein
- TOMM20, translocase of outer mitochondrial membrane 20 homolog (yeast)
- USP, ubiquitin specific peptidase
- USP30
- USP35
- autophagy
- carbonyl cyanide m-chlorophenylhydrazone
- deubiquitinating enzyme
- deubiquitinating enzymes
- l-USP35, long form of ubiquitin specific peptidase 35
- mitochondrial dynamics
- mitochondrial targeting sequence
- mitophagy
- neurodegenerative diseases
- s-USP35, short form of ubiquitin specific peptidase 35
- ubiquitin
Collapse
Affiliation(s)
- Yuqing Wang
- Cell Biology Program; The Hospital for Sick Children; Toronto, ON Canada
- Department of Biochemistry; University of Toronto; Toronto, ON Canada
| | - Mauro Serricchio
- Department of Biochemistry; University of Toronto; Toronto, ON Canada
| | - Miluska Jauregui
- Cell Biology Program; The Hospital for Sick Children; Toronto, ON Canada
| | - Riya Shanbhag
- Department of Biochemistry; University of Toronto; Toronto, ON Canada
| | - Tasha Stoltz
- Cell Biology Program; The Hospital for Sick Children; Toronto, ON Canada
- Department of Biochemistry; University of Toronto; Toronto, ON Canada
| | - Caitlin T Di Paolo
- Cell Biology Program; The Hospital for Sick Children; Toronto, ON Canada
- Department of Biochemistry; University of Toronto; Toronto, ON Canada
| | - Peter K Kim
- Cell Biology Program; The Hospital for Sick Children; Toronto, ON Canada
- Department of Biochemistry; University of Toronto; Toronto, ON Canada
| | - G Angus McQuibban
- Department of Biochemistry; University of Toronto; Toronto, ON Canada
| |
Collapse
|
904
|
Bondalapati S, Mansour W, Nakasone MA, Maity SK, Glickman MH, Brik A. Chemical synthesis of phosphorylated ubiquitin and diubiquitin exposes positional sensitivities of e1-e2 enzymes and deubiquitinases. Chemistry 2015; 21:7360-4. [PMID: 25829361 DOI: 10.1002/chem.201500540] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/22/2022]
Abstract
Modification of ubiquitin by phosphorylation extends the signaling possibilities of this dynamic signal, as it could affect the activity of ligases and the processing of ubiquitin chains by deubiquitinases. The first chemical synthesis of phosphorylated ubiquitin and of Lys63-linked diubiquitin at the proximal, distal or both ubiquitins is reported. This enabled the examination of how such a modification alters E1-E2 activities of the ubiquitination machinery. It is found that E1 charging was not affected, while the assembly of phosphorylated ubiquitin chains was differentially inhibited with E2 enzymes tested. Moreover, this study shows that phosphorylation interferes with the recognition of linkage specific antibodies and the activities of several deubiquitinases. Notably, phosphorylation in the proximal or distal ubiquitin unit has differential effects on specific deubiquitinases. These results support a unique role of phosphorylation in the dynamics of the ubiquitin signal.
Collapse
Affiliation(s)
- Somasekhar Bondalapati
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653 Beer-Sheva 8410501 (Israel); Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, 3200008 Haifa (Israel)
| | | | | | | | | | | |
Collapse
|
905
|
Wei H, Liu L, Chen Q. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2784-90. [PMID: 25840011 DOI: 10.1016/j.bbamcr.2015.03.013] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/17/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022]
Abstract
The efficient and selective elimination of damaged or excessive mitochondria in response to bioenergetic and environmental cues is critical for maintaining a healthy and appropriate population of mitochondria. Mitophagy is considered to be the central mechanism of mitochondrial quality and quantity control. Atg32, a mitophagy receptor in yeast, recruits mitochondria targeted for degradation into the isolation membrane via both direct and indirect interactions with Atg8. In mammals, different mitophagy effectors, including the mitophagy receptors NIX, BNIP3 and FUDNC1 and the PINK1/Parkin pathway, have been identified to participate in the selective clearance of mitochondria. One common feature of mitophagy receptors is that they harbor an LC3-interacting region (LIR) that interacts with LC3, thus promoting the sequestration of mitochondria into the isolation membrane. Additionally, both receptor- and Parkin/PINK1-mediated mitophagy have been found to be regulated by reversible phosphorylation. Here, we review the recent progress in the understanding of the molecular mechanisms involved in selective mitophagy at multiple levels. We also discuss different mitophagy receptors from an evolutionary perspective and highlight the specific functions of and possible cooperation between distinct mechanisms of mitophagy.
Collapse
Affiliation(s)
- Huifang Wei
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
906
|
Short B. Damaged mitochondria get a Parkin ticket. J Cell Biol 2015; 208:865. [PMID: 25825513 PMCID: PMC4384733 DOI: 10.1083/jcb.2087fta] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In 2008, Narendra et al. revealed that a protein associated with Parkinson’s disease promotes the turnover of dysfunctional mitochondria.
Collapse
|
907
|
Abstract
The global prevalence of metabolic disorders is an immediate threat to human health. Genetic features, environmental aspects and lifestyle changes are the major risk factors determining metabolic dysfunction in the body. Autophagy is a housekeeping stress-induced lysosomal degradation pathway, which recycles macromolecules and metabolites for new protein synthesis and energy production and regulates cellular homeostasis by clearance of damaged protein or organelles. Recently, a dramatically increasing number of literatures has shown that defects of the autophagic machinery is associated with dysfunction of multiple metabolic tissues including pancreatic β cells, liver, adipose tissue and muscle, and is implicated in metabolic disorders such as obesity and insulin resistance. Here in this review, we summarize the representative works on these topics and discuss the versatile roles of autophagy in the regulation of cellular metabolism and its possible implication in metabolic diseases.
Collapse
Affiliation(s)
- Altea Rocchi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Congcong He
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
908
|
Abstract
Mitophagy is a selective form of macro-autophagy in which mitochondria are selectively targeted for degradation in autophagolysosomes. Mitophagy can have the beneficial effect of eliminating old and/or damaged mitochondria, thus maintaining the integrity of the mitochondrial pool. However, mitophagy is not only limited to the turnover of dysfunctional mitochondria but also promotes reduction of overall mitochondrial mass in response to certain stresses, such as hypoxia and nutrient starvation. This prevents generation of reactive oxygen species and conserves valuable nutrients (such as oxygen) from being consumed inefficiently, thereby promoting cellular survival under conditions of energetic stress. The failure to properly modulate mitochondrial turnover in response to oncogenic stresses has been implicated both positively and negatively in tumorigenesis, while the potential of targeting mitophagy specifically as opposed to autophagy in general as a therapeutic strategy remains to be explored. The challenges and opportunities that come with our heightened understanding of the role of mitophagy in cancer are reviewed here.
Collapse
Affiliation(s)
- Aparajita H Chourasia
- The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 USA ; The Committee on Cancer Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 USA
| | - Michelle L Boland
- The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 USA ; The Committee on Molecular Metabolism & Nutrition, 929 East 57th Street, Chicago, IL 60637 USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 USA ; The Committee on Cancer Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 USA ; The Committee on Molecular Metabolism & Nutrition, 929 East 57th Street, Chicago, IL 60637 USA ; The Ben May Department for Cancer Research, The University of Chicago Comprehensive Cancer Center, The Gordon Center for Integrative Sciences, W338 929 East 57th Street, Chicago, IL 60637 USA
| |
Collapse
|
909
|
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 2015; 85:257-73. [PMID: 25611507 DOI: 10.1016/j.neuron.2014.12.007] [Citation(s) in RCA: 1556] [Impact Index Per Article: 155.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the function of genes mutated in hereditary forms of Parkinson's disease yields insight into disease etiology and reveals new pathways in cell biology. Although mutations or variants in many genes increase the susceptibility to Parkinson's disease, only a handful of monogenic causes of parkinsonism have been identified. Biochemical and genetic studies reveal that the products of two genes that are mutated in autosomal recessive parkinsonism, PINK1 and Parkin, normally work together in the same pathway to govern mitochondrial quality control, bolstering previous evidence that mitochondrial damage is involved in Parkinson's disease. PINK1 accumulates on the outer membrane of damaged mitochondria, activates Parkin's E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins to trigger selective autophagy. This review covers the normal functions that PINK1 and Parkin play within cells, their molecular mechanisms of action, and the pathophysiological consequences of their loss.
Collapse
Affiliation(s)
- Alicia M Pickrell
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
910
|
Nakamura T, Prikhodko OA, Pirie E, Nagar S, Akhtar MW, Oh CK, McKercher SR, Ambasudhan R, Okamoto SI, Lipton SA. Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiol Dis 2015; 84:99-108. [PMID: 25796565 DOI: 10.1016/j.nbd.2015.03.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 11/29/2022] Open
Abstract
Nitric oxide (NO) is a gasotransmitter that impacts fundamental aspects of neuronal function in large measure through S-nitrosylation, a redox reaction that occurs on regulatory cysteine thiol groups. For instance, S-nitrosylation regulates enzymatic activity of target proteins via inhibition of active site cysteine residues or via allosteric regulation of protein structure. During normal brain function, protein S-nitrosylation serves as an important cellular mechanism that modulates a diverse array of physiological processes, including transcriptional activity, synaptic plasticity, and neuronal survival. In contrast, emerging evidence suggests that aging and disease-linked environmental risk factors exacerbate nitrosative stress via excessive production of NO. Consequently, aberrant S-nitrosylation occurs and represents a common pathological feature that contributes to the onset and progression of multiple neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases. In the current review, we highlight recent key findings on aberrant protein S-nitrosylation showing that this reaction triggers protein misfolding, mitochondrial dysfunction, transcriptional dysregulation, synaptic damage, and neuronal injury. Specifically, we discuss the pathological consequences of S-nitrosylated parkin, myocyte enhancer factor 2 (MEF2), dynamin-related protein 1 (Drp1), protein disulfide isomerase (PDI), X-linked inhibitor of apoptosis protein (XIAP), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) under neurodegenerative conditions. We also speculate that intervention to prevent these aberrant S-nitrosylation events may produce novel therapeutic agents to combat neurodegenerative diseases.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Olga A Prikhodko
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Elaine Pirie
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Saumya Nagar
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mohd Waseem Akhtar
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chang-Ki Oh
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Scott R McKercher
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rajesh Ambasudhan
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shu-ichi Okamoto
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stuart A Lipton
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Neurosciences, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
911
|
Seirafi M, Kozlov G, Gehring K. Parkin structure and function. FEBS J 2015; 282:2076-88. [PMID: 25712550 PMCID: PMC4672691 DOI: 10.1111/febs.13249] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/05/2015] [Accepted: 02/24/2015] [Indexed: 02/06/2023]
Abstract
Mutations in the parkin or PINK1 genes are the leading cause of the autosomal recessive form of Parkinson’s disease. The gene products, the E3 ubiquitin ligase parkin and the serine/threonine kinase PINK1, are neuroprotective proteins, which act together in a mitochondrial quality control pathway. Here, we review the structure of parkin and mechanisms of its autoinhibition and function as a ubiquitin ligase. We present a model for the recruitment and activation of parkin as a key regulatory step in the clearance of depolarized or damaged mitochondria by autophagy (mitophagy). We conclude with a brief overview of other functions of parkin and considerations for drug discovery in the mitochondrial quality control pathway.
Collapse
Affiliation(s)
- Marjan Seirafi
- Department of Biochemistry and the Groupe de Recherche axé sur la Structure des Protéines, McGill University, Montréal, Québec, Canada
| | - Guennadi Kozlov
- Department of Biochemistry and the Groupe de Recherche axé sur la Structure des Protéines, McGill University, Montréal, Québec, Canada
| | - Kalle Gehring
- Department of Biochemistry and the Groupe de Recherche axé sur la Structure des Protéines, McGill University, Montréal, Québec, Canada
| |
Collapse
|
912
|
Ryan BJ, Hoek S, Fon EA, Wade-Martins R. Mitochondrial dysfunction and mitophagy in Parkinson's: from familial to sporadic disease. Trends Biochem Sci 2015; 40:200-10. [PMID: 25757399 DOI: 10.1016/j.tibs.2015.02.003] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterised by the preferential loss of dopaminergic neurons in the substantia nigra. Mitochondrial dysfunction is increasingly appreciated as a key determinant of dopaminergic neuronal susceptibility in PD and is a feature of both familial and sporadic disease, as well as in toxin-induced Parkinsonism. Recently, the mechanisms by which PD-associated mitochondrial proteins phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-induced putative kinase 1 (PINK1) and parkin function and induce neurodegeneration have been identified. In addition, increasing evidence implicates other PD-associated proteins such as α-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) in mitochondrial dysfunction in genetic cases of PD with the potential for a large functional overlap with sporadic disease. This review highlights how recent advances in understanding familial PD-associated proteins have identified novel mechanisms and therapeutic strategies for addressing mitochondrial dysfunction in PD.
Collapse
Affiliation(s)
- Brent J Ryan
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Selim Hoek
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Edward A Fon
- McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
913
|
Zhu M, Li X, Tian X, Wu C. Mask loss-of-function rescues mitochondrial impairment and muscle degeneration of Drosophila pink1 and parkin mutants. Hum Mol Genet 2015; 24:3272-85. [PMID: 25743185 DOI: 10.1093/hmg/ddv081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/02/2015] [Indexed: 12/29/2022] Open
Abstract
PTEN-induced kinase 1 (Pink1) and ubiquitin E3 ligase Parkin function in a linear pathway to maintain healthy mitochondria via regulating mitochondrial clearance and trafficking. Mutations in the two enzymes cause the familial form of Parkinson's disease (PD) in humans, as well as accumulation of defective mitochondria and cellular degeneration in flies. Here, we show that loss of function of a scaffolding protein Mask, also known as ANKHD1 (Ankyrin repeats and KH domain containing protein 1) in humans, rescues the behavioral, anatomical and cellular defects caused by pink1 or parkin mutations in a cell-autonomous manner. Moreover, similar rescue can also be achieved if Mask knock-down is induced in parkin adult flies when the mitochondrial dystrophy is already manifested. We found that Mask genetically interacts with Parkin to modulate mitochondrial morphology and negatively regulates the recruitment of Parkin to mitochondria. We also provide evidence that loss of Mask activity promotes co-localization of the autophagosome marker with mitochondria in developing larval muscle, and that an intact autophagy pathway is required for the rescue of parkin mutant defects by mask loss of function. Together, our data strongly suggest that Mask/ANKHD1 activity can be inhibited in a tissue- and timely-controlled fashion to restore mitochondrial integrity under PD-linked pathological conditions.
Collapse
Affiliation(s)
- Mingwei Zhu
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Xia Li
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Xiaolin Tian
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Chunlai Wu
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
914
|
Liu Y, Ao X, Jia Z, Bai XY, Xu Z, Hu G, Jiang X, Chen M, Wu H. FOXK2 transcription factor suppresses ERα-positive breast cancer cell growth through down-regulating the stability of ERα via mechanism involving BRCA1/BARD1. Sci Rep 2015; 5:8796. [PMID: 25740706 PMCID: PMC4350111 DOI: 10.1038/srep08796] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/04/2015] [Indexed: 01/05/2023] Open
Abstract
Estrogen receptors (ERs) are critical regulators of breast cancer development. Identification of molecules that regulate the function of ERs may facilitate the development of more effective breast cancer treatment strategies. In this study, we showed that the forkhead transcription factor FOXK2 interacted with ERα, and inhibited ERα-regulated transcriptional activities by enhancing the ubiquitin-mediated degradation of ERα. This process involved the interaction between FOXK2 and BRCA1/BARD1, the E3 ubiquitin ligase of ERα. FOXK2 interacted with BARD1 and acted as a scaffold protein for BRCA1/BARD1 and ERα, leading to enhanced degradation of ERα, which eventually accounted for its decreased transcriptional activity. Consistent with these observations, overexpression of FOXK2 inhibited the transcriptional activity of ERα, decreased the transcription of ERα target genes, and suppressed the proliferation of ERα-positive breast cancer cells. In contract, knockdown of FOXK2 in MCF-7 cells promoted cell proliferation. However, when ERα was also knocked down, knockdown of FOXK2 had no effect on cell proliferation. These findings suggested that FOXK2 might act as a negative regulator of ERα, and its association with both ERα and BRCA1/BARD1 could lead to the down-regulation of ERα transcriptional activity, effectively regulating the function of ERα.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xiang Ao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Zhaojun Jia
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xiao-Yan Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Zhaowei Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Gaolei Hu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xiao Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Min Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Huijian Wu
- 1] School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China [2] School of Life Science and Medicine, Dalian University of Technology, Panjin 114221, Liaoning, China
| |
Collapse
|
915
|
Liang JR, Martinez A, Lane JD, Mayor U, Clague MJ, Urbé S. USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep 2015; 16:618-27. [PMID: 25739811 PMCID: PMC4428036 DOI: 10.15252/embr.201439820] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/11/2015] [Indexed: 12/21/2022] Open
Abstract
Mitochondria play a pivotal role in the orchestration of cell death pathways. Here, we show that the control of ubiquitin dynamics at mitochondria contributes to the regulation of apoptotic cell death. The unique mitochondrial deubiquitylase, USP30, opposes Parkin-dependent ubiquitylation of TOM20, and its depletion enhances depolarization-induced cell death in Parkin-overexpressing cells. Importantly, USP30 also regulates BAX/BAK-dependent apoptosis, and its depletion sensitizes cancer cells to BH3-mimetics. These results provide the first evidence for a fundamental role of USP30 in determining the threshold for mitochondrial cell death and suggest USP30 as a potential target for combinatorial anti-cancer therapy.
Collapse
Affiliation(s)
- Jin-Rui Liang
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Aitor Martinez
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK CIC Biogune Bizkaia Teknologi Parkea, Derio, Spain IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Jon D Lane
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Ugo Mayor
- CIC Biogune Bizkaia Teknologi Parkea, Derio, Spain IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
916
|
Han JY, Kang MJ, Kim KH, Han PL, Kim HS, Ha JY, Son JH. Nitric oxide induction of Parkin translocation in PTEN-induced putative kinase 1 (PINK1) deficiency: functional role of neuronal nitric oxide synthase during mitophagy. J Biol Chem 2015; 290:10325-35. [PMID: 25716315 DOI: 10.1074/jbc.m114.624767] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 11/06/2022] Open
Abstract
The failure to trigger mitophagy is implicated in the pathogenesis of familial Parkinson disease that is caused by PINK1 or Parkin mutations. According to the prevailing PINK1-Parkin signaling model, mitophagy is promoted by the mitochondrial translocation of Parkin, an essential PINK1-dependent step that occurs via a previously unknown mechanism. Here we determined that critical concentrations of NO was sufficient to induce the mitochondrial translocation of Parkin even in PINK1 deficiency, with apparent increased interaction of full-length PINK1 accumulated during mitophagy, with neuronal nitric oxide synthase (nNOS). Specifically, optimum levels of NO enabled PINK1-null dopaminergic neuronal cells to regain the mitochondrial translocation of Parkin, which appeared to be significantly suppressed by nNOS-null mutation. Moreover, nNOS-null mutation resulted in the same mitochondrial electron transport chain (ETC) enzyme deficits as PINK1-null mutation. The involvement of mitochondrial nNOS activation in mitophagy was further confirmed by the greatly increased interactions of full-length PINK1 with nNOS, accompanied by mitochondrial accumulation of phospho-nNOS (Ser(1412)) during mitophagy. Of great interest is that the L347P PINK1 mutant failed to bind to nNOS. The loss of nNOS phosphorylation and Parkin accumulation on PINK1-deficient mitochondria could be reversed in a PINK1-dependent manner. Finally, non-toxic levels of NO treatment aided in the recovery of PINK1-null dopaminergic neuronal cells from mitochondrial ETC enzyme deficits. In summary, we demonstrated the full-length PINK1-dependent recruitment of nNOS, its activation in the induction of Parkin translocation, and the feasibility of NO-based pharmacotherapy for defective mitophagy and ETC enzyme deficits in Parkinson disease.
Collapse
Affiliation(s)
- Ji-Young Han
- From the Department of Brain and Cognitive Sciences, Brain Disease Research Institute
| | - Min-Ji Kang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, and
| | - Kyung-Hee Kim
- From the Department of Brain and Cognitive Sciences, Brain Disease Research Institute
| | - Pyung-Lim Han
- From the Department of Brain and Cognitive Sciences, Brain Disease Research Institute
| | - Hyun-Seok Kim
- Department of Life Science, Ewha Womans University, Seoul 120-750, South Korea
| | - Ji-Young Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, and
| | - Jin H Son
- From the Department of Brain and Cognitive Sciences, Brain Disease Research Institute, Graduate School of Pharmaceutical Sciences, College of Pharmacy, and
| |
Collapse
|
917
|
Oxidative and other posttranslational modifications in extracellular vesicle biology. Semin Cell Dev Biol 2015; 40:8-16. [PMID: 25721811 DOI: 10.1016/j.semcdb.2015.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles including exosomes, microvesicles and apoptotic vesicles, are phospholipid bilayer surrounded structures secreted by cells universally, in an evolutionarily conserved fashion. Posttranslational modifications such as oxidation, citrullination, phosphorylation and glycosylation play diverse roles in extracellular vesicle biology. Posttranslational modifications orchestrate the biogenesis of extracellular vesicles. The signals extracellular vesicles transmit between cells also often function via modulating posttranslational modifications of target molecules, given that extracellular vesicles are carriers of several active enzymes catalysing posttranslational modifications. Posttranslational modifications of extracellular vesicles can also contribute to disease pathology by e.g. amplifying inflammation, generating neoepitopes or carrying neoepitopes themselves.
Collapse
|
918
|
Vanhauwaert R, Verstreken P. Flies with Parkinson's disease. Exp Neurol 2015; 274:42-51. [PMID: 25708988 DOI: 10.1016/j.expneurol.2015.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is an incurable neurodegenerative disease. Most cases of the disease are of sporadic origin, but about 10% of the cases are familial. The genes thus far identified in Parkinson's disease are well conserved. Drosophila is ideally suited to study the molecular neuronal cell biology of these genes and the pathogenic mutations in Parkinson's disease. Flies reproduce quickly, and their elaborate genetic tools in combination with their small size allow researchers to analyze identified cells and neurons in large numbers of animals. Furthermore, fruit flies recapitulate many of the cellular and molecular defects also seen in patients, and these defects often result in clear locomotor and behavioral phenotypes, facilitating genetic modifier screens. Hence, Drosophila has played a prominent role in Parkinson's disease research and has provided invaluable insight into the molecular mechanisms of this disease.
Collapse
Affiliation(s)
- Roeland Vanhauwaert
- VIB Center for the Biology of Disease, KU Leuven, Herestraat 49,3000 Leuven, Belgium; Laboratory of Neuronal Communication, Leuven Institute for Neurodegenerative Disease (LIND), Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB Center for the Biology of Disease, KU Leuven, Herestraat 49,3000 Leuven, Belgium; Laboratory of Neuronal Communication, Leuven Institute for Neurodegenerative Disease (LIND), Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
919
|
Koyano F, Matsuda N. Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2791-6. [PMID: 25700839 DOI: 10.1016/j.bbamcr.2015.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/08/2015] [Accepted: 02/10/2015] [Indexed: 11/27/2022]
Abstract
PINK1 and Parkin are gene products that cause genetic recessive Parkinsonism. PINK1 is a protein kinase and Parkin is a ubiquitin ligase (E3) that links ubiquitin to a substrate. Importantly, under steady state conditions, the enzymatic activity of Parkin is completely suppressed, but is activated when mitochondria become abnormal. In 2013 and 2014, biochemical and structure-function analyses revealed a number of critical mechanistic insights. First, Parkin is a self-inhibitory E3 that suppresses its E3 activity via intramolecular interactions. Second, in response to a decrease in mitochondrial membrane potential, PINK1 phosphorylates Ser65 in both the Parkin ubiquitin-like domain and ubiquitin itself. These phosphorylation events cooperate to relieve the Parkin autoinhibition. Third, activated Parkin forms a ubiquitin-thioester bond at Cys431 to produce a reaction intermediate that catalyzes ubiquitylation of substrates on damaged mitochondria. While the molecular mechanism regulating Parkin enzymatic activity has largely eluded clarification, a complete picture is now emerging.
Collapse
Affiliation(s)
- Fumika Koyano
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Room 202, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Noriyuki Matsuda
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Room 202, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
920
|
Charan RA, LaVoie MJ. Pathologic and therapeutic implications for the cell biology of parkin. Mol Cell Neurosci 2015; 66:62-71. [PMID: 25697646 DOI: 10.1016/j.mcn.2015.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/07/2015] [Accepted: 02/15/2015] [Indexed: 01/07/2023] Open
Abstract
Mutations in the E3 ligase parkin are the most common cause of autosomal recessive Parkinson's disease (PD), but it is believed that parkin dysfunction may also contribute to idiopathic PD. Since its discovery, parkin has been implicated in supporting multiple neuroprotective pathways, many revolving around the maintenance of mitochondrial health quality control and governance of cell survival. Recent advances across the structure, biochemistry, and cell biology of parkin have provided great insights into the etiology of parkin-linked and idiopathic PD and may ultimately generate novel therapeutic strategies to slow or halt disease progression. This review describes the various pathways in which parkin acts and the mechanisms by which parkin may be targeted for therapeutic intervention. This article is part of a Special Issue entitled 'Neuronal Protein'.
Collapse
Affiliation(s)
- Rakshita A Charan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | - Matthew J LaVoie
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, USA; Harvard Medical School, Boston, USA
| |
Collapse
|
921
|
Eiyama A, Okamoto K. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol 2015; 33:95-101. [PMID: 25697963 DOI: 10.1016/j.ceb.2015.01.002] [Citation(s) in RCA: 410] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/09/2015] [Indexed: 12/11/2022]
Abstract
Mitochondria-specific autophagy (mitophagy) is a fundamental process critical for maintaining mitochondrial fitness in a myriad of cell types. Particularly, mitophagy contributes to mitochondrial quality control by selectively eliminating dysfunctional mitochondria. In mammalian cells, the Ser/Thr kinase PINK1 and the E3 ubiquitin ligase Parkin act cooperatively in sensing mitochondrial functional state and marking damaged mitochondria for disposal via the autophagy pathway. Notably, ubiquitin and deubiquitinases play vital roles in modulating Parkin activity and mitophagy efficiency. In this review, we highlight recent breakthroughs addressing the key issues of how PINK1 activates Parkin in response to mitochondrial malfunction, how Parkin localizes specifically to impaired mitochondria, and how ubiquitination and deubiquitination regulate PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Akinori Eiyama
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Koji Okamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
922
|
Aguileta MA, Korac J, Durcan TM, Trempe JF, Haber M, Gehring K, Elsasser S, Waidmann O, Fon EA, Husnjak K. The E3 ubiquitin ligase parkin is recruited to the 26 S proteasome via the proteasomal ubiquitin receptor Rpn13. J Biol Chem 2015; 290:7492-505. [PMID: 25666615 DOI: 10.1074/jbc.m114.614925] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in the Park2 gene, encoding the RING-HECT hybrid E3 ubiquitin ligase parkin, are responsible for a common familial form of Parkinson disease. By mono- and polyubiquitinating target proteins, parkin regulates various cellular processes, including degradation of proteins within the 26 S proteasome, a large multimeric degradation machine. In our attempt to further elucidate the function of parkin, we have identified the proteasomal ubiquitin receptor Rpn13/ADRM1 as a parkin-interacting protein. We show that the N-terminal ubiquitin-like (Ubl) domain of parkin binds directly to the pleckstrin-like receptor for ubiquitin (Pru) domain within Rpn13. Using mutational analysis and NMR, we find that Pru binding involves the hydrophobic patch surrounding Ile-44 in the parkin Ubl, a region that is highly conserved between ubiquitin and Ubl domains. However, compared with ubiquitin, the parkin Ubl exhibits greater than 10-fold higher affinity for the Pru domain. Moreover, knockdown of Rpn13 in cells increases parkin levels and abrogates parkin recruitment to the 26 S proteasome, establishing Rpn13 as the major proteasomal receptor for parkin. In contrast, silencing Rpn13 did not impair parkin recruitment to mitochondria or parkin-mediated mitophagy upon carbonyl cyanide m-chlorophenyl hydrazone-induced mitochondrial depolarization. However, it did delay the clearance of mitochondrial proteins (TIM23, TIM44, and TOM20) and enhance parkin autoubiquitination. Taken together, these findings implicate Rpn13 in linking parkin to the 26 S proteasome and regulating the clearance of mitochondrial proteins during mitophagy.
Collapse
Affiliation(s)
- Miguel A Aguileta
- From the McGill Parkinson Program and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jelena Korac
- the School of Medicine, University of Split, 21000 Split, Croatia
| | - Thomas M Durcan
- From the McGill Parkinson Program and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jean-François Trempe
- the Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Michael Haber
- From the McGill Parkinson Program and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Kalle Gehring
- the Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Suzanne Elsasser
- the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Oliver Waidmann
- Goethe University Medical School, D-60590 Frankfurt am Main, Germany
| | - Edward A Fon
- From the McGill Parkinson Program and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Koraljka Husnjak
- Goethe University Medical School, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
923
|
Senft D, Ronai ZA. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci 2015; 40:141-8. [PMID: 25656104 DOI: 10.1016/j.tibs.2015.01.002] [Citation(s) in RCA: 785] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 12/18/2022]
Abstract
Cellular stress, induced by external or internal cues, activates several well-orchestrated processes aimed at either restoring cellular homeostasis or committing to cell death. Those processes include the unfolded protein response (UPR), autophagy, hypoxia, and mitochondrial function, which are part of the global endoplasmic reticulum (ER) stress (ERS) response. When one of the ERS elements is impaired, as often occurs under pathological conditions, overall cellular homeostasis may be perturbed. Further, activation of the UPR could trigger changes in mitochondrial function or autophagy, which could modulate the UPR, exemplifying crosstalk processes. Among the numerous factors that control the magnitude or duration of these processes are ubiquitin ligases, which govern overall cellular stress outcomes. Here we summarize crosstalk among the fundamental processes governing ERS responses.
Collapse
Affiliation(s)
- Daniela Senft
- Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037, USA.
| | - Ze'ev A Ronai
- Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
924
|
Autophagy machinery in the context of mammalian mitophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2797-801. [PMID: 25634658 DOI: 10.1016/j.bbamcr.2015.01.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/18/2015] [Accepted: 01/20/2015] [Indexed: 01/02/2023]
Abstract
Autophagy is an intracellular catabolic system that degrades cytoplasmic proteins and organelles. Damaged mitochondria can be degraded by a selective type of autophagy, which is termed mitophagy. PINK1-Parkin-dependent mitophagy has been extensively studied in the mammalian system. PINK1 accumulates on damaged mitochondria to recruit Parkin, which subsequently ubiquitinates a broad range of outer mitochondrial membrane proteins. Ubiquitinated mitochondria associate with the autophagosome formation site, and are selectively incorporated into autophagosomes. During this process, damaged mitochondria first associate with the autophagosome formation site together with upstream autophagy factors, then are efficiently incorporated into autophagosomes through binding with autophagosome adaptors. This "two-step model" may be applied to other selective types of autophagy.
Collapse
|
925
|
Mitophagy and heart failure. J Mol Med (Berl) 2015; 93:253-62. [PMID: 25609139 DOI: 10.1007/s00109-015-1254-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/29/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
Abstract
Cardiac mitochondria are responsible for generating energy in the form of ATP through oxidative phosphorylation and are crucial for cardiac function. Mitochondrial dysfunction is a major contributor to loss of myocytes and development of heart failure. Myocytes have quality control mechanisms in place to ensure a network of functional mitochondria. Damaged mitochondria are degraded by a process called mitochondrial autophagy, or mitophagy, where the organelle is engulfed by an autophagosome and subsequently delivered to a lysosome for degradation. Evidence suggests that mitophagy is important for cellular homeostasis, and reduced mitophagy leads to inadequate removal of dysfunctional mitochondria. In this review, we discuss the regulation of mitophagy and the emerging evidence of the cardioprotective role of mitophagy. We also address the prospect of therapeutically targeting mitophagy to treat patients with cardiovascular disease.
Collapse
|
926
|
Affiliation(s)
- Brigit E. Riley
- Sangamo BioSciences Inc., Richmond, California, United States of America
- * E-mail: (BER); (JAO)
| | - James A. Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (BER); (JAO)
| |
Collapse
|
927
|
Okatsu K, Kimura M, Oka T, Tanaka K, Matsuda N. Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment. J Cell Sci 2015; 128:964-78. [PMID: 25609704 PMCID: PMC4342580 DOI: 10.1242/jcs.161000] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dysfunction of PTEN-induced putative kinase 1 (PINK1), a Ser/Thr kinase with an N-terminal mitochondrial-targeting sequence (MTS), causes familial recessive parkinsonism. Reduction of the mitochondrial membrane potential limits MTS-mediated matrix import and promotes PINK1 accumulation on the outer mitochondrial membrane (OMM) of depolarized mitochondria. PINK1 then undergoes autophosphorylation and phosphorylates ubiquitin and Parkin, a cytosolic ubiquitin ligase, for clearance of damaged mitochondria. The molecular basis for PINK1 localization on the OMM of depolarized mitochondria rather than release to the cytosol is poorly understood. Here, we disentangle the PINK1 localization mechanism using deletion mutants and a newly established constitutively active PINK1 mutant. Disruption of the MTS through N-terminal insertion of aspartic acid residues results in OMM localization of PINK1 in energized mitochondria. Unexpectedly, the MTS and putative transmembrane domain (TMD) are dispensable for OMM localization, whereas mitochondrial translocase Tom40 (also known as TOMM40) and an alternative mitochondrial localization signal that resides between the MTS and TMD are required. PINK1 utilizes a mitochondrial localization mechanism that is distinct from that of conventional MTS proteins and that presumably functions in conjunction with the Tom complex in OMM localization when the conventional N-terminal MTS is inhibited.
Collapse
Affiliation(s)
- Kei Okatsu
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Mayumi Kimura
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Toshihiko Oka
- Department of Life Science, College of Science, Rikkyo University, Nishi-Ikebukuro, Tokyo 171-8501, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Noriyuki Matsuda
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
928
|
Mitochondrial quality control: Easy come, easy go. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2802-11. [PMID: 25596427 DOI: 10.1016/j.bbamcr.2014.12.041] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/09/2014] [Accepted: 12/25/2014] [Indexed: 02/03/2023]
Abstract
"Friends come and go but enemies accumulate." - Arthur Bloch Mitochondrial networks in eukaryotic cells are maintained via regular cycles of degradation and biogenesis. These complex processes function in concert with one another to eliminate dysfunctional mitochondria in a specific and targeted manner and coordinate the biogenesis of new organelles. This review covers the two aspects of mitochondrial turnover, focusing on the main pathways and mechanisms involved. The review also summarizes the current methods and techniques for analyzing mitochondrial turnover in vivo and in vitro, from the whole animal proteome level to the level of single organelle.
Collapse
|
929
|
Ryter SW, Choi AMK. Autophagy in lung disease pathogenesis and therapeutics. Redox Biol 2015; 4:215-25. [PMID: 25617802 PMCID: PMC4803789 DOI: 10.1016/j.redox.2014.12.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022] Open
Abstract
Autophagy, a cellular pathway for the degradation of damaged organelles and proteins, has gained increasing importance in human pulmonary diseases, both as a modulator of pathogenesis and as a potential therapeutic target. In this pathway, cytosolic cargos are sequestered into autophagosomes, which are delivered to the lysosomes where they are enzymatically degraded and then recycled as metabolic precursors. Autophagy exerts an important effector function in the regulation of inflammation, and immune system functions. Selective pathways for autophagic degradation of cargoes may have variable significance in disease pathogenesis. Among these, the autophagic clearance of bacteria (xenophagy) may represent a crucial host defense mechanism in the pathogenesis of sepsis and inflammatory diseases. Our recent studies indicate that the autophagic clearance of mitochondria, a potentially protective program, may aggravate the pathogenesis of chronic obstructive pulmonary disease by activating cell death programs. We report similar findings with respect to the autophagic clearance of cilia components, which can contribute to airways dysfunction in chronic lung disease. In certain diseases such as pulmonary hypertension, autophagy may confer protection by modulating proliferation and cell death. In other disorders, such as idiopathic pulmonary fibrosis and cystic fibrosis, impaired autophagy may contribute to pathogenesis. In lung cancer, autophagy has multiple consequences by limiting carcinogenesis, modulating therapeutic effectiveness, and promoting tumor cell survival. In this review we highlight the multiple functions of autophagy and its selective autophagy subtypes that may be of significance to the pathogenesis of human disease, with an emphasis on lung disease and therapeutics. Autophagy may impact the pathogenesis of pulmonary diseases. Mitophagy may exert deleterious effects in the pathogenesis of COPD. Autophagy can exert pleiotropic effects in lung cancer. Targeting autophagy may represent a promising therapeutic strategy in human diseases.
Collapse
Affiliation(s)
- Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY, USA.
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
930
|
Aerts L, Craessaerts K, De Strooper B, Morais VA. PINK1 kinase catalytic activity is regulated by phosphorylation on serines 228 and 402. J Biol Chem 2014; 290:2798-811. [PMID: 25527497 DOI: 10.1074/jbc.m114.620906] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the PINK1 gene cause early-onset recessive Parkinson disease. PINK1 is a mitochondrially targeted kinase that regulates multiple aspects of mitochondrial biology, from oxidative phosphorylation to mitochondrial clearance. PINK1 itself is also phosphorylated, and this might be linked to the regulation of its multiple activities. Here we systematically analyze four previously identified phosphorylation sites in PINK1 for their role in autophosphorylation, substrate phosphorylation, and mitophagy. Our data indicate that two of these sites, Ser-228 and Ser-402, are autophosphorylated on truncated PINK1 but not on full-length PINK1, suggesting that the N terminus has an inhibitory effect on phosphorylation. We furthermore establish that phosphorylation of these PINK1 residues regulates the phosphorylation of the substrates Parkin and Ubiquitin. Especially Ser-402 phosphorylation appears to be important for PINK1 function because it is involved in Parkin recruitment and the induction of mitophagy. Finally, we identify Thr-313 as a residue that is critical for PINK1 catalytic activity, but, in contrast to previous reports, we find no evidence that this activity is regulated by phosphorylation. These data clarify the regulation of PINK1 through multisite phosphorylation.
Collapse
Affiliation(s)
- Liesbeth Aerts
- From the Center for the Biology of Disease, Flemish Institute for Biotechnology (VIB) and Center for Human Genetics, Leuven Institute for Neurodegenerative Disorders and University Hospitals Leuven, University of Leuven, 3000 Leuven, Belgium and
| | - Katleen Craessaerts
- From the Center for the Biology of Disease, Flemish Institute for Biotechnology (VIB) and Center for Human Genetics, Leuven Institute for Neurodegenerative Disorders and University Hospitals Leuven, University of Leuven, 3000 Leuven, Belgium and
| | - Bart De Strooper
- From the Center for the Biology of Disease, Flemish Institute for Biotechnology (VIB) and Center for Human Genetics, Leuven Institute for Neurodegenerative Disorders and University Hospitals Leuven, University of Leuven, 3000 Leuven, Belgium and the University College London, Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Vanessa A Morais
- From the Center for the Biology of Disease, Flemish Institute for Biotechnology (VIB) and Center for Human Genetics, Leuven Institute for Neurodegenerative Disorders and University Hospitals Leuven, University of Leuven, 3000 Leuven, Belgium and
| |
Collapse
|
931
|
Wauer T, Swatek KN, Wagstaff JL, Gladkova C, Pruneda JN, Michel MA, Gersch M, Johnson CM, Freund SMV, Komander D. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J 2014; 34:307-25. [PMID: 25527291 PMCID: PMC4339119 DOI: 10.15252/embj.201489847] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The protein kinase PINK1 was recently shown to phosphorylate ubiquitin (Ub) on Ser65, and phosphoUb activates the E3 ligase Parkin allosterically. Here, we show that PINK1 can phosphorylate every Ub in Ub chains. Moreover, Ser65 phosphorylation alters Ub structure, generating two conformations in solution. A crystal structure of the major conformation resembles Ub but has altered surface properties. NMR reveals a second phosphoUb conformation in which β5-strand slippage retracts the C-terminal tail by two residues into the Ub core. We further show that phosphoUb has no effect on E1-mediated E2 charging but can affect discharging of E2 enzymes to form polyUb chains. Notably, UBE2R1- (CDC34), UBE2N/UBE2V1- (UBC13/UEV1A), TRAF6- and HOIP-mediated chain assembly is inhibited by phosphoUb. While Lys63-linked poly-phosphoUb is recognized by the TAB2 NZF Ub binding domain (UBD), 10 out of 12 deubiquitinases (DUBs), including USP8, USP15 and USP30, are impaired in hydrolyzing phosphoUb chains. Hence, Ub phosphorylation has repercussions for ubiquitination and deubiquitination cascades beyond Parkin activation and may provide an independent layer of regulation in the Ub system.
Collapse
Affiliation(s)
- Tobias Wauer
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kirby N Swatek
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jane L Wagstaff
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Martin A Michel
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Malte Gersch
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Stefan M V Freund
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
932
|
Ohtake F, Saeki Y, Sakamoto K, Ohtake K, Nishikawa H, Tsuchiya H, Ohta T, Tanaka K, Kanno J. Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Rep 2014; 16:192-201. [PMID: 25527407 DOI: 10.15252/embr.201439152] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ubiquitylation is a versatile post-translational modification (PTM). The diversity of ubiquitylation topologies, which encompasses different chain lengths and linkages, underlies its widespread cellular roles. Here, we show that endogenous ubiquitin is acetylated at lysine (K)-6 (AcK6) or K48. Acetylated ubiquitin does not affect substrate monoubiquitylation, but inhibits K11-, K48-, and K63-linked polyubiquitin chain elongation by several E2 enzymes in vitro. In cells, AcK6-mimetic ubiquitin stabilizes the monoubiquitylation of histone H2B-which we identify as an endogenous substrate of acetylated ubiquitin-and of artificial ubiquitin fusion degradation substrates. These results characterize a mechanism whereby ubiquitin, itself a PTM, is subject to another PTM to modulate mono- and polyubiquitylation, thus adding a new regulatory layer to ubiquitin biology.
Collapse
Affiliation(s)
- Fumiaki Ohtake
- Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku Tokyo, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Sciences, Setagaya-ku Tokyo, Japan
| | - Kensaku Sakamoto
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi Yokohama, Japan
| | - Kazumasa Ohtake
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi Yokohama, Japan
| | - Hiroyuki Nishikawa
- Institute of Advanced Medical Science, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Hikaru Tsuchiya
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Sciences, Setagaya-ku Tokyo, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Sciences, Setagaya-ku Tokyo, Japan
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku Tokyo, Japan
| |
Collapse
|
933
|
Olszewska DA, Fearon C, Lynch T. New Perception of Mitochondrial Regulatory Pathway in Parkinsonism - Ubiquitin, PINK1, and Parkin. Front Neurol 2014; 5:247. [PMID: 25505445 PMCID: PMC4241835 DOI: 10.3389/fneur.2014.00247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/12/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Diana Angelika Olszewska
- Department of Neurology at the Dublin Neurological Institute, Mater Misericordiae University Hospital , Dublin , Ireland
| | - Conor Fearon
- Department of Neurology at the Dublin Neurological Institute, Mater Misericordiae University Hospital , Dublin , Ireland
| | - Tim Lynch
- Department of Neurology at the Dublin Neurological Institute, Mater Misericordiae University Hospital , Dublin , Ireland
| |
Collapse
|
934
|
Han JY, Kim JS, Son JH. Mitochondrial homeostasis molecules: regulation by a trio of recessive Parkinson's disease genes. Exp Neurobiol 2014; 23:345-51. [PMID: 25548534 PMCID: PMC4276805 DOI: 10.5607/en.2014.23.4.345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 01/26/2023] Open
Abstract
Mitochondria are small organelles that produce the majority of cellular energy as ATP. Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD), and rare familial forms of PD provide valuable insight into the pathogenic mechanism underlying mitochondrial impairment, even though the majority of PD cases are sporadic. The regulation of mitochondria is crucial for the maintenance of energy-demanding neuronal functions in the brain. Mitochondrial biogenesis and mitophagic degradation are the major regulatory pathways that preserve optimal mitochondrial content, structure and function. In this mini-review, we provide an overview of the mitochondrial quality control mechanisms, emphasizing regulatory molecules in mitophagy and biogenesis that specifically interact with the protein products of three major recessive familial PD genes, PINK1, Parkin and DJ-1.
Collapse
Affiliation(s)
- Ji-Young Han
- Department of Brain and Cognitive Sciences, Brain Disease Research Institute, Ewha Womans University, Seoul 120-750, Korea
| | - Ji-Soo Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jin H Son
- Department of Brain and Cognitive Sciences, Brain Disease Research Institute, Ewha Womans University, Seoul 120-750, Korea. ; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
935
|
A chemical genetic approach to probe the function of PINK1 in regulating mitochondrial dynamics. Cell Res 2014; 25:394-7. [PMID: 25475060 DOI: 10.1038/cr.2014.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
936
|
Shiba-Fukushima K, Arano T, Matsumoto G, Inoshita T, Yoshida S, Ishihama Y, Ryu KY, Nukina N, Hattori N, Imai Y. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet 2014; 10:e1004861. [PMID: 25474007 PMCID: PMC4256268 DOI: 10.1371/journal.pgen.1004861] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022] Open
Abstract
The kinase PINK1 and the E3 ubiquitin (Ub) ligase Parkin participate in mitochondrial quality control. The phosphorylation of Ser65 in Parkin's ubiquitin-like (UBl) domain by PINK1 stimulates Parkin activation and translocation to damaged mitochondria, which induces mitophagy generating polyUb chain. However, Parkin Ser65 phosphorylation is insufficient for Parkin mitochondrial translocation. Here we report that Ser65 in polyUb chain is also phosphorylated by PINK1, and that phosphorylated polyUb chain on mitochondria tethers Parkin at mitochondria. The expression of Tom70MTS-4xUb SE, which mimics phospho-Ser65 polyUb chains on the mitochondria, activated Parkin E3 activity and its mitochondrial translocation. An E3-dead form of Parkin translocated to mitochondria with reduced membrane potential in the presence of Tom70MTS-4xUb SE, whereas non-phospho-polyUb mutant Tom70MTS-4xUb SA abrogated Parkin translocation. Parkin binds to the phospho-polyUb chain through its RING1-In-Between-RING (IBR) domains, but its RING0-linker is also required for mitochondrial translocation. Moreover, the expression of Tom70MTS-4xUb SE improved mitochondrial degeneration in PINK1-deficient, but not Parkin-deficient, Drosophila. Our study suggests that the phosphorylation of mitochondrial polyUb by PINK1 is implicated in both Parkin activation and mitochondrial translocation, predicting a chain reaction mechanism of mitochondrial phospho-polyUb production by which rapid translocation of Parkin is achieved. Parkinson's disease is a neurodegenerative disorder caused by degeneration of the midbrain dopaminergic system in addition to other nervous systems. PINK1 and parkin, which encode mitochondrial protein kinase and cytosolic Ub ligase, respectively, were identified as the genes responsible for the autosomal recessive form of juvenile Parkinson's disease. Activation of PINK1 upon reduction of mitochondrial membrane potential recruits Parkin from the cytosol activating its Ub ligase activity, which ensures removal of damaged mitochondria through mitophagy. However, how PINK1 recruits Parkin to the damaged mitochondria remained unclear. Here, we describe that the phosphorylation of polyUb chain by PINK1 is a key event to recruit Parkin on the mitochondria. Parkin binds to, and is activated by, phospho-polyUb generated by Parkin in collaboration with PINK1. Expression of a phospho-polyUb mimetic protein on mitochondria rescued mitochondrial degeneration caused by loss of PINK1 in Drosophila. Our study suggests the existence of an amplification cascade of Parkin activation and mitochondrial translocation, in which a ‘seed' of phosphorylated polyUb on the mitochondria, generated by PINK1 and Parkin, triggers a chain reaction of Parkin recruitment and activation.
Collapse
Affiliation(s)
| | - Taku Arano
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Gen Matsumoto
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Inoshita
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeharu Yoshida
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Nobuyuki Nukina
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
937
|
Moyzis AG, Sadoshima J, Gustafsson ÅB. Mending a broken heart: the role of mitophagy in cardioprotection. Am J Physiol Heart Circ Physiol 2014; 308:H183-92. [PMID: 25437922 DOI: 10.1152/ajpheart.00708.2014] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The heart is highly energy dependent with most of its energy provided by mitochondrial oxidative phosphorylation. Mitochondria also play a role in many other essential cellular processes including metabolite synthesis and calcium storage. Therefore, maintaining a functional population of mitochondria is critical for cardiac function. Efficient degradation and replacement of dysfunctional mitochondria ensures cell survival, particularly in terminally differentiated cells such as cardiac myocytes. Mitochondria are eliminated via mitochondrial autophagy or mitophagy. In the heart, mitophagy is an essential housekeeping process and required for cardiac homeostasis. Reduced autophagy and accumulation of impaired mitochondria have been linked to progression of heart failure and aging. In this review, we discuss the pathways that regulate mitophagy in cells and highlight the cardioprotective role of mitophagy in response to stress and aging. We also discuss the therapeutic potential of targeting mitophagy and directions for future investigation.
Collapse
Affiliation(s)
- Alexandra G Moyzis
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California; and
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
938
|
Kazlauskaite A, Muqit MMK. PINK1 and Parkin – mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease. FEBS J 2014; 282:215-23. [PMID: 25345844 PMCID: PMC4368378 DOI: 10.1111/febs.13127] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/06/2014] [Accepted: 10/20/2014] [Indexed: 12/26/2022]
Abstract
The discovery of mutations in genes encoding protein kinase PTEN-induced kinase 1 (PINK1) and E3 ubiquitin ligase Parkin in familial Parkinson's disease and their association with mitochondria provides compelling evidence that mitochondrial dysfunction is a major contributor to neurodegeneration in Parkinson's disease. In recent years, tremendous progress has been made in the understanding of how PINK1 and Parkin enzymes are regulated and how they influence downstream mitochondrial signalling processes. We provide a critical overview of the key advances in the field and also discuss the outstanding questions, including novel ways in which this knowledge could be exploited to develop therapies against Parkinson's disease.
Collapse
Affiliation(s)
- Agne Kazlauskaite
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, UK
| | | |
Collapse
|
939
|
Ni HM, Williams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control. Redox Biol 2014; 4:6-13. [PMID: 25479550 PMCID: PMC4309858 DOI: 10.1016/j.redox.2014.11.006] [Citation(s) in RCA: 657] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are cellular energy powerhouses that play important roles in maintaining cell survival, cell death and cellular metabolic homeostasis. Timely removal of damaged mitochondria via autophagy (mitophagy) is thus critical for cellular homeostasis and function. Mitochondria are reticular organelles that have high plasticity for their dynamic structures and constantly undergo fission and fusion as well as movement through the cytoskeleton. In this review, we discuss the most recent progress on the molecular mechanisms and roles of mitochondrial fission/fusion and mitochondrial motility in mitophagy. We also discuss multiple pathways leading to the quality control of mitochondria in addition to the traditional mitophagy pathway under different conditions. Mitochondrial dynamics including mitochondrial fission/fusion and mitochondrial movement regulate mitochondrial homeostasis and quality. Damaged mitochondria are removed via multiple mechanisms including mitophagy, mitochondrial derived vesicles and mitochondrial spheroids. Mitophagy can occur in a Parkin-dependent or independent manner. Parkin also regulates the formation of mitochondrial derived vesicles and mitochondrial spheroids.
Collapse
Affiliation(s)
- Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
940
|
Maejima Y, Chen Y, Isobe M, Gustafsson ÅB, Kitsis RN, Sadoshima J. Recent progress in research on molecular mechanisms of autophagy in the heart. Am J Physiol Heart Circ Physiol 2014; 308:H259-68. [PMID: 25398984 DOI: 10.1152/ajpheart.00711.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulation of autophagy, an evolutionarily conserved process for degradation of long-lived proteins and organelles, has been implicated in the pathogenesis of human disease. Recent research has uncovered pathways that control autophagy in the heart and molecular mechanisms by which alterations in this process affect cardiac structure and function. Although initially thought to be a nonselective degradation process, autophagy, as it has become increasingly clear, can exhibit specificity in the degradation of molecules and organelles, such as mitochondria. Furthermore, it has been shown that autophagy is involved in a wide variety of previously unrecognized cellular functions, such as cell death and metabolism. A growing body of evidence suggests that deviation from appropriate levels of autophagy causes cellular dysfunction and death, which in turn leads to heart disease. Here, we review recent advances in understanding the role of autophagy in heart disease, highlight unsolved issues, and discuss the therapeutic potential of modulating autophagy in heart disease.
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey; Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan; and
| | - Yun Chen
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Diabetes Research Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan; and
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Diabetes Research Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey;
| |
Collapse
|
941
|
Carroll RG, Hollville E, Martin SJ. Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep 2014; 9:1538-53. [PMID: 25456142 DOI: 10.1016/j.celrep.2014.10.046] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/12/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial depolarization promotes Parkin- and PTEN-induced kinase 1 (PINK1)-dependent polyubiquitination of multiple proteins on mitochondrial outer membranes, resulting in the removal of defective mitochondria via mitophagy. Because Parkin mutations occur in Parkinson's disease, a condition associated with the death of dopaminergic neurons in the midbrain, wild-type Parkin is thought to promote neuronal survival. However, here we show that wild-type Parkin greatly sensitized toward apoptosis induced by mitochondrial depolarization but not by proapoptotic stimuli that failed to activate Parkin. Parkin-dependent apoptosis required PINK1 and was efficiently blocked by prosurvival members of the Bcl-2 family or knockdown of Bax and Bak. Upon mitochondrial depolarization, the Bcl-2 family member Mcl-1 underwent rapid Parkin- and PINK1-dependent polyubiquitination and degradation, which sensitized toward apoptosis via opening of the Bax/Bak channel. These data suggest that similar to other sensors of cell stress, such as p53, Parkin has cytoprotective (mitophagy) or cytotoxic modes (apoptosis), depending on the degree of mitochondrial damage.
Collapse
Affiliation(s)
- Richard G Carroll
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Emilie Hollville
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
942
|
Tsai PI, Course MM, Lovas JR, Hsieh CH, Babic M, Zinsmaier KE, Wang X. PINK1-mediated phosphorylation of Miro inhibits synaptic growth and protects dopaminergic neurons in Drosophila. Sci Rep 2014; 4:6962. [PMID: 25376463 PMCID: PMC4223694 DOI: 10.1038/srep06962] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/22/2014] [Indexed: 12/02/2022] Open
Abstract
Mutations in the mitochondrial Ser/Thr kinase PINK1 cause Parkinson's disease. One of the substrates of PINK1 is the outer mitochondrial membrane protein Miro, which regulates mitochondrial transport. In this study, we uncovered novel physiological functions of PINK1-mediated phosphorylation of Miro, using Drosophila as a model. We replaced endogenous Drosophila Miro (DMiro) with transgenically expressed wildtype, or mutant DMiro predicted to resist PINK1-mediated phosphorylation. We found that the expression of phospho-resistant DMiro in a DMiro null mutant background phenocopied a subset of phenotypes of PINK1 null. Specifically, phospho-resistant DMiro increased mitochondrial movement and synaptic growth at larval neuromuscular junctions, and decreased the number of dopaminergic neurons in adult brains. Therefore, PINK1 may inhibit synaptic growth and protect dopaminergic neurons by phosphorylating DMiro. Furthermore, muscle degeneration, swollen mitochondria and locomotor defects found in PINK1 null flies were not observed in phospho-resistant DMiro flies. Thus, our study established an in vivo platform to define functional consequences of PINK1-mediated phosphorylation of its substrates.
Collapse
Affiliation(s)
- Pei-I Tsai
- Department of Neurosurgery, Stanford University School of Medicine, Stanford. CA94304
| | - Meredith M Course
- 1] Department of Neurosurgery, Stanford University School of Medicine, Stanford. CA94304 [2] Neurosciences Program, Stanford University, Stanford. CA94304
| | - Jonathan R Lovas
- Department of Neurosurgery, Stanford University School of Medicine, Stanford. CA94304
| | - Chung-Han Hsieh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford. CA94304
| | - Milos Babic
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson. AZ85721
| | - Konrad E Zinsmaier
- 1] Department of Neuroscience, University of Arizona, Tucson. AZ85721 [2] Department of Molecular and Cellular Biology, University of Arizona, TucsonAZ85721
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford. CA94304
| |
Collapse
|
943
|
Caulfield TR, Fiesel FC, Moussaud-Lamodière EL, Dourado DFAR, Flores SC, Springer W. Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin. PLoS Comput Biol 2014; 10:e1003935. [PMID: 25375667 PMCID: PMC4222639 DOI: 10.1371/journal.pcbi.1003935] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022] Open
Abstract
Loss-of-function mutations in PINK1 or PARKIN are the most common causes of autosomal recessive Parkinson's disease. Both gene products, the Ser/Thr kinase PINK1 and the E3 Ubiquitin ligase Parkin, functionally cooperate in a mitochondrial quality control pathway. Upon stress, PINK1 activates Parkin and enables its translocation to and ubiquitination of damaged mitochondria to facilitate their clearance from the cell. Though PINK1-dependent phosphorylation of Ser65 is an important initial step, the molecular mechanisms underlying the activation of Parkin's enzymatic functions remain unclear. Using molecular modeling, we generated a complete structural model of human Parkin at all atom resolution. At steady state, the Ub ligase is maintained inactive in a closed, auto-inhibited conformation that results from intra-molecular interactions. Evidently, Parkin has to undergo major structural rearrangements in order to unleash its catalytic activity. As a spark, we have modeled PINK1-dependent Ser65 phosphorylation in silico and provide the first molecular dynamics simulation of Parkin conformations along a sequential unfolding pathway that could release its intertwined domains and enable its catalytic activity. We combined free (unbiased) molecular dynamics simulation, Monte Carlo algorithms, and minimal-biasing methods with cell-based high content imaging and biochemical assays. Phosphorylation of Ser65 results in widening of a newly defined cleft and dissociation of the regulatory N-terminal UBL domain. This motion propagates through further opening conformations that allow binding of an Ub-loaded E2 co-enzyme. Subsequent spatial reorientation of the catalytic centers of both enzymes might facilitate the transfer of the Ub moiety to charge Parkin. Our structure-function study provides the basis to elucidate regulatory mechanisms and activity of the neuroprotective Parkin. This may open up new avenues for the development of small molecule Parkin activators through targeted drug design. Parkinson's disease (PD) is a devastating neurological condition caused by the selective and progressive degeneration of dopaminergic neurons in the brain. Loss-of-function mutations in the PINK1 or PARKIN genes are the most common causes of recessively inherited PD. Together the encoded proteins coordinate a protective cellular quality control pathway that allows elimination of impaired mitochondria in order to prevent further cellular damage and ultimately death. Although it is known that the kinase PINK1 operates upstream and activates the E3 Ubiquitin ligase Parkin, the molecular mechanisms remain elusive. Here, we combined state-of-the art computational and functional biological methods to demonstrate that Parkin is sequentially activated through PINK1-dependent phosphorylation and subsequent structural rearrangement. The induced motions result in release of Parkin's closed, auto-inhibited conformation to liberate its enzymatic functions. We provide for the first time a complete protein structure of Parkin at an all atom resolution and a comprehensive molecular dynamics simulation of its activation and opening conformations. The generated models will allow uncovering the exact mechanisms of regulation and enzymatic activity of Parkin and potentially the development of novel therapeutics through a structure-function-based drug design.
Collapse
Affiliation(s)
- Thomas R. Caulfield
- Department of Neuroscience, Mayo Clinic Jacksonville, Florida, United States of America
- * E-mail: (TRC); (WS)
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic Jacksonville, Florida, United States of America
| | | | - Daniel F. A. R. Dourado
- Department of Cell & Molecular Biology, Computational & Systems Biology, Uppsala University, Uppsala, Sweden
| | - Samuel C. Flores
- Department of Cell & Molecular Biology, Computational & Systems Biology, Uppsala University, Uppsala, Sweden
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic Jacksonville, Florida, United States of America
- Mayo Graduate School, Neurobiology of Disease, Mayo Clinic, Jacksonville, Florida, United States of America
- * E-mail: (TRC); (WS)
| |
Collapse
|
944
|
Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med 2014; 20:1242-53. [PMID: 25375928 DOI: 10.1038/nm.3739] [Citation(s) in RCA: 874] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/29/2014] [Indexed: 02/07/2023]
Abstract
Ubiquitination is crucial for a plethora of physiological processes, including cell survival and differentiation and innate and adaptive immunity. In recent years, considerable progress has been made in the understanding of the molecular action of ubiquitin in signaling pathways and how alterations in the ubiquitin system lead to the development of distinct human diseases. Here we describe the role of ubiquitination in the onset and progression of cancer, metabolic syndromes, neurodegenerative diseases, autoimmunity, inflammatory disorders, infection and muscle dystrophies. Moreover, we indicate how current knowledge could be exploited for the development of new clinical therapies.
Collapse
Affiliation(s)
- Doris Popovic
- 1] Institute of Biochemistry II, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [2] Buchmann Institute for Molecular Life Sciences, Goethe University School of Medicine, University Hospital, Frankfurt, Germany
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California, USA
| | - Ivan Dikic
- 1] Institute of Biochemistry II, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [2] Buchmann Institute for Molecular Life Sciences, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [3] Department of Immunology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
945
|
Abstract
By using quantitative proteomics, Ordureau et al. (2014) provide a comprehensive view on the regulatory steps by which PINK1-mediated phosphorylation of PARKIN and ubiquitin triggers the recruitment of the ubiquitin ligase PARKIN to damaged mitochondria.
Collapse
Affiliation(s)
- Alexandra Stolz
- Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
946
|
Ordureau A, Sarraf SA, Duda DM, Heo JM, Jedrychowski MP, Sviderskiy VO, Olszewski JL, Koerber JT, Xie T, Beausoleil SA, Wells JA, Gygi SP, Schulman BA, Harper JW. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell 2014; 56:360-375. [PMID: 25284222 PMCID: PMC4254048 DOI: 10.1016/j.molcel.2014.09.007] [Citation(s) in RCA: 529] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 01/20/2023]
Abstract
Phosphorylation is often used to promote protein ubiquitylation, yet we rarely understand quantitatively how ligase activation and ubiquitin (UB) chain assembly are integrated with phosphoregulation. Here we employ quantitative proteomics and live-cell imaging to dissect individual steps in the PINK1 kinase-PARKIN UB ligase mitochondrial control pathway disrupted in Parkinson's disease. PINK1 plays a dual role by phosphorylating PARKIN on its UB-like domain and poly-UB chains on mitochondria. PARKIN activation by PINK1 produces canonical and noncanonical UB chains on mitochondria, and PARKIN-dependent chain assembly is required for accumulation of poly-phospho-UB (poly-p-UB) on mitochondria. In vitro, PINK1 directly activates PARKIN's ability to assemble canonical and noncanonical UB chains and promotes association of PARKIN with both p-UB and poly-p-UB. Our data reveal a feedforward mechanism that explains how PINK1 phosphorylation of both PARKIN and poly-UB chains synthesized by PARKIN drives a program of PARKIN recruitment and mitochondrial ubiquitylation in response to mitochondrial damage.
Collapse
Affiliation(s)
- Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shireen A Sarraf
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David M Duda
- Department of Structural Biology and Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jin-Mi Heo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Vladislav O Sviderskiy
- Department of Structural Biology and Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer L Olszewski
- Department of Structural Biology and Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - James T Koerber
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tiao Xie
- Data and Imaging Analysis Core, Harvard Medical School, Boston, MA 02115, USA
| | | | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Brenda A Schulman
- Department of Structural Biology and Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
947
|
PINK1 signalling in cancer biology. Biochim Biophys Acta Rev Cancer 2014; 1846:590-8. [PMID: 25450579 DOI: 10.1016/j.bbcan.2014.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/29/2014] [Accepted: 10/20/2014] [Indexed: 02/08/2023]
Abstract
PTEN-induced kinase 1 (PINK1) was identified initially in cancer cells as a gene up-regulated by overexpression of the major tumor suppressor, PTEN. Loss-of-function mutations in PINK1 were discovered subsequently to cause autosomal recessive Parkinson's disease. Substantial work during the past decade has revealed that PINK1 regulates several primary cellular processes of significance in cancer cell biology, including cell survival, stress resistance, mitochondrial homeostasis and the cell cycle. Mechanistically, PINK1 has been shown to interact on a number of levels with the pivotal oncogenic PI3-kinase/Akt/mTOR signalling axis and to control critical mitochondrial and metabolic functions that regulate cancer survival, growth, stress resistance and the cell cycle. A cytoprotective and chemoresistant function for PINK1 has been highlighted by some studies, supporting PINK1 as a target in cancer therapeutics. This article reviews the function of PINK1 in cancer cell biology, with an emphasis on the mechanisms by which PINK1 interacts with PI3-kinase/Akt signalling, mitochondrial homeostasis, and the potential context-dependent pro- and anti-tumorigenic functions of PINK1.
Collapse
|
948
|
Shiba-Fukushima K, Inoshita T, Hattori N, Imai Y. Lysine 63-linked polyubiquitination is dispensable for Parkin-mediated mitophagy. J Biol Chem 2014; 289:33131-6. [PMID: 25336644 DOI: 10.1074/jbc.c114.580944] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PINK1/Parkin-mediated mitophagy is thought to ensure mitochondrial quality control in neurons as well as other cells. Upon the loss of mitochondrial membrane potential (ΔΨm), Lys-63-linked polyubiquitin chains accumulate on the mitochondrial outer membrane in a Parkin-dependent manner. However, the physiological significance of Lys-63-linked polyubiquitination during mitophagy is not fully understood. Here, we report that the suppression of Lys-63-linked polyubiquitination through the removal of Ubc13 activity essentially affects neither PINK1 activation nor the degradation of depolarized mitochondria. Moreover, the inactivation of Ubc13 did not modulate the mitochondrial phenotypes of PINK1 knockdown Drosophila. Our data indicate that the formation of Lys-63-linked polyubiquitin chains on depolarized mitochondria is not a key factor for the PINK1-Parkin pathway as was once thought.
Collapse
Affiliation(s)
| | - Tsuyoshi Inoshita
- Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- From the Departments of Neurology and Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuzuru Imai
- Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
949
|
Dorn GW, Kitsis RN. The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. Circ Res 2014; 116:167-82. [PMID: 25323859 DOI: 10.1161/circresaha.116.303554] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mitochondrial research is experiencing a renaissance, in part, because of the recognition that these endosymbiotic descendants of primordial protobacteria seem to be pursuing their own biological agendas. Not only is mitochondrial metabolism required to produce most of the biochemical energy that supports their eukaryotic hosts (us) but mitochondria can actively (through apoptosis and programmed necrosis) or passively (through reactive oxygen species toxicity) drive cellular dysfunction or demise. The cellular mitochondrial collective autoregulates its population through biogenic renewal and mitophagic culling; mitochondrial fission and fusion, 2 components of mitochondrial dynamism, are increasingly recognized as playing central roles as orchestrators of these processes. Mitochondrial dynamism is rare in striated muscle cells, so cardiac-specific genetic manipulation of mitochondrial fission and fusion factors has proven useful for revealing noncanonical functions of mitochondrial dynamics proteins. Here, we review newly described functions of mitochondrial fusion/fission proteins in cardiac mitochondrial quality control, cell death, calcium signaling, and cardiac development. A mechanistic conceptual paradigm is proposed in which cell death and selective organelle culling are not distinct processes, but are components of a unified and integrated quality control mechanism that exerts different effects when invoked to different degrees, depending on pathophysiological context. This offers a plausible explanation for seemingly paradoxical expression of mitochondrial dynamics and death factors in cardiomyocytes wherein mitochondrial morphometric remodeling does not normally occur and the ability to recover from cell suicide is severely limited.
Collapse
Affiliation(s)
- Gerald W Dorn
- From the Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (G.W.D.); and Departments of Medicine (Cardiology) and Cell Biology and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (R.N.K.).
| | - Richard N Kitsis
- From the Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (G.W.D.); and Departments of Medicine (Cardiology) and Cell Biology and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (R.N.K.)
| |
Collapse
|
950
|
Choi YB, Harhaj EW. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses. ACTA ACUST UNITED AC 2014; 9:423-436. [PMID: 25580106 DOI: 10.1007/s11515-014-1332-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Between 15-20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis.
Collapse
Affiliation(s)
- Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns HopkinsSchool of Medicine, Baltimore, MD 21287, USA
| | - Edward William Harhaj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns HopkinsSchool of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|