901
|
Kim SP, Hwang MS, Cho YR, Kwon SY, Kang YN, Kim IH, Sohn SS, Mun KC, Kwon TK, Lee SR, Suh SI. Mutations of the BAK gene are infrequent in advanced gastric adenocarcinomas in Koreans. Cancer Lett 2003; 195:87-91. [PMID: 12767516 DOI: 10.1016/s0304-3835(02)00585-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bcl-2 homologue antagonist/killer (BAK) is a potently apoptosis-inducing gene and plays an important role in modulating apoptosis in epithelial cells. We have analyzed the mutation of the entire coding region of BAK gene in 107 Korean advanced gastric adenocarcinomas by polymerase chain reaction-single strand conformation polymorphism and sequencing. Homozygous deletions were not found in these samples. Only three cases of 107 gastric adenocarcinomas (2.8%) exhibited the BAK mutations. Two of them exhibited missense mutations and the remaining one had a silent mutation. All of these mutations were exclusively detected in exon 2. Mutations in the BAK gene were observed only in advanced gastric adenocarcinomas with extensive metastases of regional lymph nodes. The data presented here suggest that the mutations of BAK gene rarely occurred in advanced gastric adenocarcinomas.
Collapse
Affiliation(s)
- Sang-Pyo Kim
- Department of Pathology, School of Medicine, Keimyung University, #194 DongSan Dong Jung-Gu, 700-712 Daegu, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
902
|
Kawatani M, Imoto M. Deletion of the BH1 domain of Bcl-2 accelerates apoptosis by acting in a dominant negative fashion. J Biol Chem 2003; 278:19732-42. [PMID: 12644466 DOI: 10.1074/jbc.m213038200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To investigate the exact biochemical functions by which Bcl-2 regulates apoptosis, we established a stable human small cell lung carcinoma cell line, Ms-1, overexpressing wild-type human Bcl-2 or various deletion and point mutants thereof, and examined the effect of these Bcl-2 mutants on apoptosis induced by antitumor drugs such as camptothecin. Cytochrome c release, caspase-3-(-like) protease activation, and apoptosis induced by antitumor drugs were accelerated by overexpression of Bcl-2 lacking a Bcl-2 homology (BH) 1 domain (Bcl-2/ DeltaBH1), but not by that of BH2, BH3, or BH4 domain-deleted Bcl-2. A similar result was obtained upon the substitution of glycine 145 with alanine in the BH1 domain (Bcl-2/G145A), which failed to interact with either Bax or Bak. Pro-apoptotic Bax and Bak have been known to be activated in response to antitumor drugs, and Bcl-2/G145A as well as Bcl-2/DeltaBH1 also accelerated Bax- or Bak-induced apoptosis in HEK293T cells. These two mutants still retained the ability to interact with wild-type Bcl-2 and Bcl-xL, and abrogated the inhibitory effect of wild-type Bcl-2 or Bcl-xL on Bax- or Bak-induced apoptosis. In addition, immunoprecipitation studies revealed that Bcl-2/DeltaBH1 and Bcl-2/G145A interrupted the association between wild-type Bcl-2 and Bax/Bak. Taken together, our results demonstrate that Bcl-2/DeltaBH1 or Bcl-2/G145A acts as a dominant negative of endogenous anti-apoptotic proteins such as Bcl-2 and Bcl-xL, thereby enhancing antitumor drug-induced apoptosis, and that this dominant negative activity requires both a failure of interaction with Bax and Bak through the BH1 domain of Bcl-2 and retention of the ability to interact with Bcl-2 and Bcl-xL.
Collapse
Affiliation(s)
- Makoto Kawatani
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | | |
Collapse
|
903
|
Moreau C, Cartron PF, Hunt A, Meflah K, Green DR, Evan G, Vallette FM, Juin P. Minimal BH3 peptides promote cell death by antagonizing anti-apoptotic proteins. J Biol Chem 2003; 278:19426-35. [PMID: 12642586 DOI: 10.1074/jbc.m209472200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pro-apoptotic "BH3 domain-only" proteins of the Bcl-2 family (e.g. Bid and Bad) transduce multiple death signals to the mitochondrion. They interact with the anti-apoptotic Bcl-2 family members and induce apoptosis by a mechanism that requires the presence of at least one of the multidomain pro-apoptotic proteins Bax or Bak. Although the BH3 domain of Bid can promote the pro-apoptotic assembly and function of Bax/Bak by itself, other BH3 domains do not function as such. The latter point raises the question of whether, and how, these BH3 domains induce apoptosis. We show here that a peptide comprising the minimal BH3 domain from Bax induces apoptosis but is unable to stimulate the apoptotic activity of microinjected recombinant Bax. This relies on the inability of the peptide to directly induce Bax translocation to mitochondria or a change in its conformation. This peptide nevertheless interferes with Bax/Bcl-xL interactions in vitro and stimulates the apoptotic activity of Bax when combined with Bcl-xL. Similarly, a peptide derived from the BH3 domain of Bad stimulates Bax activity only in the presence of Bcl-xL. Thus, BH3 domains do not necessarily activate multidomain pro-apoptotic proteins directly but promote apoptosis by releasing active multidomain pro-apoptotic proteins from their anti-apoptotic counterparts.
Collapse
|
904
|
Kawatani M, Uchi M, Simizu S, Osada H, Imoto M. Transmembrane domain of Bcl-2 is required for inhibition of ceramide synthesis, but not cytochrome c release in the pathway of inostamycin-induced apoptosis. Exp Cell Res 2003; 286:57-66. [PMID: 12729794 DOI: 10.1016/s0014-4827(03)00098-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bcl-2 protein plays important roles in the regulation of apoptosis. However, the exact mechanism by which Bcl-2 blocks apoptosis is still unclear. In the present study, we found that overexpression of Bcl-2 in human small cell lung carcinoma Ms-1 cells inhibited not only the release of cytochrome c from mitochondria into cytosol but also de novo ceramide synthesis induced by inostamycin, a phosphatidylinositol turnover inhibitor. To investigate the correlation between the structure of Bcl-2 and its inhibitory function in inostamycin-induced apoptosis, Ms-1 cells that stably overexpress domain-deletional mutants of Bcl-2 were established. Transmembrane domain-deleted Bcl-2 failed to inhibit inostamycin-induced de novo ceramide synthesis, whereas it inhibited inostamycin-induced cytochrome c release, indicating that anchoring of Bcl-2 to membrane was a requirement for its inhibitory effect on inostamycin-induced ceramide synthesis, but not cytochrome c release. Thus, the deletion mutant of tarnsmembrane domain of Bcl-2 can suppress inostamycin-induced apoptosis by inhibiting cytochrome c release, a downstream event of ceramide synthesis in the pathway of inostamycin-induced apoptosis. We also found that the BH3 and BH4 domains of Bcl-2 were necessary for inhibition of inostamycin-induced apoptosis, and deletion of BH1 or BH2 did not affect the inhibitory effect of Bcl-2 to inostamycin-induced apoptotic events.
Collapse
Affiliation(s)
- Makoto Kawatani
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyohi, Kohoku-ku, Yokohama 223-8522, Japan
| | | | | | | | | |
Collapse
|
905
|
Abstract
Recent studies on cells derived from mice deficient in both multi-domain pro-apoptotic genes of the Bcl-2 family, Bax and Bak, suggest that one or other of these proteins are required for the release of apoptogens such as cytochrome c from mitochondria. In addition BH-3 only proteins of this family such as Bid are suggested to act as critical death inducing ligands via interactions with pro- and anti-apoptotic Bcl-2 family proteins with Bax or Bak at the mitochondrial surface. Despite this increase in knowledge it remains unclear precisely how Bak and Bax promote outer mitochondrial membrane (OMM) permeabilisation. We suggest that Bax and Bak may not operate in precisely the same manner and evaluate the current models for their function. We also consider the emerging information that lipid-protein interactions may be crucial to the actions of Bax and Bak.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Cancer Research UK Cellular and Molecular Pharmacology Group, School of Biological Sciences, University of Manchester, G38 Stopford Building, Oxford Road, Manchester M134 9PT, UK
| | | |
Collapse
|
906
|
Sun YF, Yu LY, Saarma M, Arumäe U. Mutational analysis of N-Bak reveals different structural requirements for antiapoptotic activity in neurons and proapoptotic activity in nonneuronal cells. Mol Cell Neurosci 2003; 23:134-43. [PMID: 12799143 DOI: 10.1016/s1044-7431(03)00023-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
N-Bak, a neuron-specific BH3-only splice variant of Bak, is proapoptotic when overexpressed in nonneuronal cells, but antiapoptotic in NGF-deprived sympathetic neurons. We generated mutants of N-Bak and compared their activities in COS-7 or Neuro2A cells to those in NGF-deprived sympathetic neurons. A C-terminal deletion shortly after the BH3 domain of N-Bak compromised its neuroprotective activity but had little effect on its cytotoxic activity in nonneuronal cells. Amino acid changes in the BH3 domain of N-Bak differently affected its function in nonneuronal cells and in neurons. The same changes in the BH3 domain of longer Bak isoform affected its function similarly in nonneuronal cells and neurons. C-terminally truncated Bax, a structural analogue of N-Bak, was also neuroprotective, whereas Blk, a different BH3-only protein was apoptotic in neurons. Thus, neuron-specific antiapoptotic interactions require a "N-Bak-type" conformation, not just a BH3 domain, whereas the presence of a BH3 domain in the Bak protein is sufficient to kill nonneuronal cells.
Collapse
Affiliation(s)
- Yun-Fu Sun
- Program in Molecular Neurobiology, Institute of Biotechnology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Finland
| | | | | | | |
Collapse
|
907
|
Unoki M, Nakamura Y. EGR2 induces apoptosis in various cancer cell lines by direct transactivation of BNIP3L and BAK. Oncogene 2003; 22:2172-85. [PMID: 12687019 DOI: 10.1038/sj.onc.1206222] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
EGR2 plays a key role in the PTEN-induced apoptotic pathway. Using adenovirus-mediated gene transfer to 39 cancer cell lines, we found that EGR2 could induce apoptosis in a large proportion of these lines by altering the permeability of mitochondrial membranes, releasing cytochrome c and activating caspase-3, -8, and -9. Analysis by cDNA microarray and subsequent functional studies revealed that EGR2 directly transactivates expression of BNIP3L and BAK. Our results helped to clarify the molecular mechanism of the apoptotic pathway induced by PTEN-EGR2, and suggested that EGR2 may be an excellent target molecule for gene therapy to treat a variety of cancers.
Collapse
Affiliation(s)
- Motoko Unoki
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japam
| | | |
Collapse
|
908
|
Hockenbery DM, Giedt CD, O'Neill JW, Manion MK, Banker DE. Mitochondria and apoptosis: new therapeutic targets. Adv Cancer Res 2003; 85:203-42. [PMID: 12374287 DOI: 10.1016/s0065-230x(02)85007-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David M Hockenbery
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
909
|
Umeda J, Sano S, Kogawa K, Motoyama N, Yoshikawa K, Itami S, Kondoh G, Watanabe T, Takeda J. In vivo cooperation between Bcl-xL and the phosphoinositide 3-kinase-Akt signaling pathway for the protection of epidermal keratinocytes from apoptosis. FASEB J 2003; 17:610-20. [PMID: 12665473 DOI: 10.1096/fj.02-0597com] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To investigate the function of Bcl-xL in the skin, we established keratinocyte-specific Bcl-x gene-targeted mice under the keratin 5 promoter (K5). K5.Bcl-xL-/- mice were viable, devoid of alteration in the development of skin or appendages. However, they harbored spontaneous apoptotic keratinocytes in the epidermis. Bcl-xL-deficient keratinocytes cultured in vitro readily underwent apoptosis in the absence of growth factors, but the addition of HGF or EGF resulted in restoration of cell survival, which was reversed by treatment with wortmannin, an inhibitor of phosphoinositide-3 kinase (PI3K). Topical treatment of K5.Bcl-xL-/- mice with wortmannin sensitized the skin for apoptosis induced by UV (UV) B, although wild-type epidermis was only marginally affected by this treatment, suggesting that the resistance to UVB largely depended on PI3K-Akt signaling in Bcl-xL-deficient mice but not in wild-type mice. Furthermore, UVB irradiation resulted in redistribution of phosphorylated Akt from the basal layer to the suprabasal layer, indicating that Akt could spatially cooperate with Bcl-xL upon UVB exposure in the upper epidermis where Bcl-xL is normally localized. These results suggest that Bcl-xL and the PI3K-Akt pathway form a cooperative, intercompensatory axis for the protection of epidermal keratinocytes from apoptosis in vivo.
Collapse
Affiliation(s)
- Jiro Umeda
- Department of Dermatology, Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
910
|
Mund T, Gewies A, Schoenfeld N, Bauer MKA, Grimm S. Spike, a novel BH3-only protein, regulates apoptosis at the endoplasmic reticulum. FASEB J 2003; 17:696-8. [PMID: 12594175 DOI: 10.1096/fj.02-0657fje] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have isolated Spike, a novel and evolutionary conserved BH3-only protein. BH3-only proteins constitute a family of apoptosis inducers that mediate proapoptotic signals. In contrast to most proteins of this family, Spike was not found to be associated with mitochondria. Furthermore, unlike the known BH3-only proteins, Spike could not interact with all tested Bcl-2 family members, despite its BH3 domain being necessary for cell killing. Our findings indicate that Spike is localized to the endoplasmic reticulum. The endoplasmic reticulum is an organelle that has only recently been implicated in regulation of apoptosis. At this locale, Spike interacts with Bap31, an adaptor protein for pro-caspase-8 and Bcl-XL. In doing so, Spike is able to inhibit the formation of a complex between Bap31 and the antiapoptotic Bcl-XL protein. Furthermore, Spike transmits the signal of specific death receptors. Its down-regulation in certain tumors suggests that Spike may also play a role in tumorigenesis. Our findings add new insight for how BH3-only and antiapoptotic Bcl-2 proteins regulate cell death.
Collapse
Affiliation(s)
- Thomas Mund
- Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | | | | | | | | |
Collapse
|
911
|
Abstract
Seminal studies on the proto-oncogene bcl-2 have first demonstrated that mutations that inhibit programmed cell death (apoptosis) can promote lymphomagenesis and influence the sensitivity of tumour cells to chemotherapy or radiotherapy. It is now widely believed that neoplastic transformation of many, perhaps even all, cell types requires mutational changes that interfere with the cell death programme. In this review, we describe current knowledge of the molecular control of cell death and discuss the role of pro- and anti-apoptotic members of the Bcl-2 protein family in tumourigenesis and anti-cancer therapy.
Collapse
Affiliation(s)
- Leigh Coultas
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Vic. 3050, Australia
| | | |
Collapse
|
912
|
Hinds MG, Lackmann M, Skea GL, Harrison PJ, Huang DCS, Day CL. The structure of Bcl-w reveals a role for the C-terminal residues in modulating biological activity. EMBO J 2003; 22:1497-507. [PMID: 12660157 PMCID: PMC152889 DOI: 10.1093/emboj/cdg144] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pro-survival Bcl-2-related proteins, critical regulators of apoptosis, contain a hydrophobic groove targeted for binding by the BH3 domain of the pro-apoptotic BH3-only proteins. The solution structure of the pro-survival protein Bcl-w, presented here, reveals that the binding groove is not freely accessible as predicted by previous structures of pro-survival Bcl-2-like molecules. Unexpectedly, the groove appears to be occluded by the C-terminal residues. Binding and kinetic data suggest that the C-terminal residues of Bcl-w and Bcl-x(L) modulate pro-survival activity by regulating ligand access to the groove. Binding of the BH3-only proteins, critical for cell death initiation, is likely to displace the hydrophobic C-terminal region of Bcl-w and Bcl-x(L). Moreover, Bcl-w does not act only by sequestering the BH3-only proteins. There fore, pro-survival Bcl-2-like molecules probably control the activation of downstream effectors by a mechanism that remains to be elucidated.
Collapse
Affiliation(s)
- Mark G Hinds
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
| | | | | | | | | | | |
Collapse
|
913
|
Brewis ND, Phelan A, Normand N, Choolun E, O'Hare P. Particle assembly incorporating a VP22-BH3 fusion protein, facilitating intracellular delivery, regulated release, and apoptosis. Mol Ther 2003; 7:262-70. [PMID: 12597915 DOI: 10.1016/s1525-0016(02)00054-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously we showed that addition of purified VP22, a structural protein of herpes simplex virus, to short oligonucleotides (ODN) induced the spontaneous assembly of novel particles incorporating both protein and ODN. These particles were not toxic, entered cells, and resided stably in the cytoplasm. Surprisingly the particles could be activated by light in a regulated synchronous manner to release ODN and protein to the cell cytosol and nuclei. Here we construct a fusion protein containing a short peptide from the proapoptotic BH3 domain family member Bak. The BH3-VP22 protein was recruited into particles that entered cells and remained stable in the cytoplasm without toxicity. Light activation rapidly disrupted the particles, a process captured in living cells by time-lapse microscopy, and this synchronized regulated release resulted in subsequent cell death by apoptosis. In control experiments, particles containing a mutant BH3 peptide, although indistinguishable in cell uptake and regulated release, showed no apoptotic effect. Regulated release of VP22-based particles may find application in mechanistic analysis of apoptotic pathways, in cell-based screening assays both of peptides and of oligonucleotides, or as therapeutic agents incorporating specific additional components.
Collapse
Affiliation(s)
- N D Brewis
- Phogen Laboratories, Marie Curie Research Institute, Oxted, RH 8 OTL, Surrey, United Kingdom
| | | | | | | | | |
Collapse
|
914
|
Kaufmann T, Schlipf S, Sanz J, Neubert K, Stein R, Borner C. Characterization of the signal that directs Bcl-x(L), but not Bcl-2, to the mitochondrial outer membrane. J Cell Biol 2003; 160:53-64. [PMID: 12515824 PMCID: PMC2172731 DOI: 10.1083/jcb.200210084] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is assumed that the survival factors Bcl-2 and Bcl-x(L) are mainly functional on mitochondria and therefore must contain mitochondrial targeting sequences. Here we show, however, that only Bcl-x(L) is specifically targeted to the mitochondrial outer membrane (MOM) whereas Bcl-2 distributes on several intracellular membranes. Mitochondrial targeting of Bcl-x(L) requires the COOH-terminal transmembrane (TM) domain flanked at both ends by at least two basic amino acids. This sequence is a bona fide targeting signal for the MOM as it confers specific mitochondrial localization to soluble EGFP. The signal is present in numerous proteins known to be directed to the MOM. Bcl-2 lacks the signal and therefore localizes to several intracellular membranes. The COOH-terminal region of Bcl-2 can be converted into a targeting signal for the MOM by increasing the basicity surrounding its TM. These data define a new targeting sequence for the MOM and propose that Bcl-2 acts on several intracellular membranes whereas Bcl-x(L) specifically functions on the MOM.
Collapse
Affiliation(s)
- Thomas Kaufmann
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, D-79106 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
915
|
Abstract
Abstract
Even during this past year, further advances have been made in understanding the molecular genetics of the disease, the mechanisms involved in the generation of myeloma-associated bone disease and elucidation of critical signaling pathways as therapeutic targets. New agents (thalidomide, Revimid, Velcade) providing effective salvage therapy for end-stage myeloma, have broadened the therapeutic armamentarium markedly.
As evidenced in Section I by Drs. Kuehl and Bergsagel, five recurrent primary translocations resulting from errors in IgH switch recombination during B-cell development in germinal centers involve 11q13 (cyclin D1), 4p16.3 (FGFR3 and MMSET), 6p21 (cyclin D3), 16q23 (c-maf), and 20q11 (mafB), which account for about 40% of all myeloma tumors.
Based on gene expression profiling data from two laboratories, the authors propose 5 multiple myeloma (MM) subtypes defined by the expression of translocation oncogenes and cyclins (TC molecular classification of MM) with different prognostic implications. In Section II, Drs. Barillé-Nion and Bataille review new insights into osteoclast activation through the RANK Ligand/OPG and MIP-1 chemokine axes and osteoblast inactivation in the context of recent data on DKK1. The observation that myeloma cells enhance the formation of osteoclasts whose activity or products, in turn, are essential for the survival and growth of myeloma cells forms the basis for a new treatment paradigm aimed at reducing the RANKL/OPG ratio by treatment with RANKL inhibitors and/or MIP inhibitors.
In Section III, Dr. Fenton reviews apoptotic pathways as they relate to MM therapy. Defects in the mitochrondrial intrinsic pathway result from imbalances in expression levels of Bcl-2, Bcl-XL and Mcl-1. Mcl-1 is a candidate target gene for rapid induction of apoptosis by flavoperidol. Antisense oglionucleotides (ASO) lead to the rapid induction of caspace activity and apoptosis, which was potentiated by dexamethasone. Similar clinical trials with Bcl-2 ASO molecules alone and in combination with doxorubicin and dexamethasone or thalidomide showed promising results.
The extrinsic pathway can be activated upon binding of the ligand TRAIL. OPG, released by osteoblasts and other stromal cells, can act as a decoy receptor for TRAIL, thereby blocking its apoptosis-inducing activity. MM cells inhibit OPG release by stromal cells, thereby promoting osteoclast activation and lytic bone disease (by enhancing RANKL availability) while at the same time exposing themselves to higher levels of ambient TRAIL. Thus, as a recurring theme, the relative levels of pro- versus anti-apoptotic molecules that act in a cell autonomous manner or in the milieu of the bone marrow microenvironment determine the outcome of potentially lethal signals.
In Section IV, Dr. Barlogie and colleagues review data on single and tandem autotransplants for newly diagnosed myeloma. CR rates of 60%–70% can be reached with tandem transplants extending median survival to ~7 years. Dose adjustments of melphalan in the setting of renal failure and age > 70 may be required to reduce mucositis and other toxicities in such patients, especially in the context of amyloidosis with cardiac involvement.
In Total Therapy II the Arkansas group is evaluating the role of added thalidomide in a randomized trial design. While data are still blinded as to the contribution of thalidomide, the overriding adverse importance of cytogenetic abnormalities, previously reported for Total Therapy I, also pertain to this successor trial. In these two-thirds of patients without cytogenetic abnormalities, Total Therapy II effected a doubling of the 4-year EFS estimate from 37% to 75% (P < .0001) and increased the 4-year OS estimate from 63% to 84% (P = .0009).
The well-documented graft-vs-MM effect of allotransplants can be more safely examined in the context of non-myeloablative regimens, applied as consolidation after a single autologous transplant with melphalan 200 mg/m2, have been found to be much better tolerated than standard myeloablative conditioning regimens and yielding promising results even in the high-risk entity of MM with cytogenetic abnormalities.
For previously treated patients, the thalidomide congener Revimid and the proteasome inhibitor Velcade both are active in advanced and refractory MM (~30% PR).
Gene expression profiling (GEP) has unraveled distinct MM subtypes with different response and survival expectations, can distinguish the presence of or future development of bone disease, and, through serial investigations, can elucidate mechanisms of actions of new agents also in the context of the bone marrow microenvironment. By providing prognostically relevant distinction of MM subgroups, GEP should aid in the development of individualized treatment for MM.
Collapse
|
916
|
Abstract
Members of the Bcl-2 family are crucial integrators of survival and death signals in higher eukaryotes. Although recent studies have provided novel and quite unexpected insights into the mechanisms by which these proteins might issue life permits or death sentences in cells, we are still on the way to fully understand their modes of action. This review provides a snapshot on where we are on this journey and how we may exploit our knowledge on this family of proteins to unveil the mysteries of immune regulation.
Collapse
Affiliation(s)
- Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany.
| |
Collapse
|
917
|
Vander Heiden MG, Choy JS, VanderWeele DJ, Brace JL, Harris MH, Bauer DE, Prange B, Kron SJ, Thompson CB, Rudin CM. Bcl-x Complements Saccharomyces cerevisiae Genes That Facilitate the Switch from Glycolytic to Oxidative Metabolism. J Biol Chem 2002; 277:44870-6. [PMID: 12244097 DOI: 10.1074/jbc.m204888200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All eukaryotic organisms have mechanisms to adapt to changing metabolic conditions. The mammalian cell survival gene Bcl-x(L) enables cells to adapt to changes in cellular metabolism. To identify genes whose function can be substituted by Bcl-x(L) in a unicellular eukaryote, a genetic screen was performed using the yeast Saccharomyces cerevisiae. S. cerevisiae grows by anaerobic glycolysis when glucose is available, switching to oxidative phosphorylation when carbohydrate in the media becomes limiting (diauxic shift). Given that Bcl-x(L) appears to facilitate the switch from glycolytic to oxidative metabolism in mammalian cells, a library of yeast mutants was tested for the ability to efficiently undergo diauxic shift in the presence and absence of Bcl-x(L). Several mutants were identified that have a defect in growth when switched from a fermentable to a nonfermentable carbon source that is corrected by the expression of Bcl-x(L). These genes include the mitochondrial chaperonin TCM62, as well as previously uncharacterized genes. One of these uncharacterized genes, SVF1, promotes cell survival in mammalian cells in response to multiple apoptotic stimuli. The finding that TCM62 and the analogous human prohibitin gene also inhibit mammalian cell death following growth factor withdrawal implicates mitochondrial chaperones as regulators of apoptosis. Further characterization of the genes identified in this screen may enhance our understanding of Bcl-x(L) function in mammalian cells, and of cell survival pathways in general.
Collapse
|
918
|
Kutzki O, Park HS, Ernst JT, Orner BP, Yin H, Hamilton AD. Development of a potent Bcl-x(L) antagonist based on alpha-helix mimicry. J Am Chem Soc 2002; 124:11838-9. [PMID: 12358513 DOI: 10.1021/ja026861k] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rational design of low-molecular weight ligands that disrupt protein-protein interactions is still a challenging goal in medicinal chemistry. Our approach to this problem involves the design of molecular scaffolds that mimic the surface functionality projected along one face of an alpha-helix. Using a terphenyl scaffold, which in a staggered conformation closely reproduces the projection of functionality on the surface of an alpha-helix, we designed mimics of the pro-apoptotic alpha-helical Bak-peptide as inhibitors of the Bak/Bcl-xL interaction. This led to the development of a potent Bcl-xL antagonist (KD = 114 nM), whose binding affinity for Bcl-xL was assessed by a fluorescence polarization assay. To determine the binding site of the developed inhibitor we used docking studies and an HSQC-NMR experiment with 15N-labeled Bcl-xL protein. These studies suggest that the inhibitor is binding in the same hydrophobic cleft as the Bak- and Bad-peptides.
Collapse
Affiliation(s)
- Olaf Kutzki
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107, USA
| | | | | | | | | | | |
Collapse
|
919
|
Huang Z. The chemical biology of apoptosis. Exploring protein-protein interactions and the life and death of cells with small molecules. CHEMISTRY & BIOLOGY 2002; 9:1059-72. [PMID: 12401491 DOI: 10.1016/s1074-5521(02)00247-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apoptosis, a fundamental process for both human health and disease, is initiated and regulated by protein-protein interactions, notable examples of which are the interactions involving Bcl-2 and IAP protein families. This article discusses recent advances in the use of chemical approaches in discovering and studying small molecules targeted to proteins of the Bcl-2 and IAP families. These small molecules and their complexes with receptors provide the tools and model systems to probe the basic mechanism of molecule recognition underling the life and death of cells and develop novel strategies for therapeutic intervention of the dysregulated apoptotic process. The review of these studies highlights the opportunity and challenge in this emerging area of chemical and chemical biological research.
Collapse
Affiliation(s)
- Ziwei Huang
- Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
| |
Collapse
|
920
|
Cuconati A, White E. Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection. Genes Dev 2002; 16:2465-78. [PMID: 12368257 DOI: 10.1101/gad.1012702] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Andrea Cuconati
- Howard Hughes Medical Institute, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
921
|
Salgado J, García-Sáez AJ, Malet G, Mingarro I, Pérez-Payá E. Peptides in apoptosis research. J Pept Sci 2002; 8:543-60. [PMID: 12450324 DOI: 10.1002/psc.414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Apoptosis is a complex process that plays a central role in physiological and pathological cell death. This fast evolving research area has experienced incredible development in the past few years. Progress in the knowledge of the structure of many of the main molecular actors of the apoptotic signal transduction pathways has driven the design of synthetic peptides that in some cases can function as simplified versions of their parent proteins. These molecules are contributing to a better understanding of the activity and regulation of apoptotic proteins and also are setting the basis for the discovery of effective drugs to combat important diseases related to apoptosis. Most applications of peptides in apoptosis research are so far related to caspases, caspase regulatory proteins, such as LAPs and Smac, and proteins of the Bcl-2 family. Additionally, important perspectives are open to other systems, such as the macromolecular assemblies that are responsible for the activation of initiator caspases.
Collapse
Affiliation(s)
- Jesús Salgado
- Departament de Bíoquimica i Biologia Molecular, Universitat de València, E-461 00 Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
922
|
Epand RF, Martinou JC, Fornallaz-Mulhauser M, Hughes DW, Epand RM. The apoptotic protein tBid promotes leakage by altering membrane curvature. J Biol Chem 2002; 277:32632-9. [PMID: 12082098 DOI: 10.1074/jbc.m202396200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apoptotic protein tBid is effective in promoting both leakage and lipid mixing in liposomes composed of cardiolipin and phosphatidylcholine at a molar ratio of 1:2 in the presence of calcium. When half of the phosphatidylcholine component of these liposomes is replaced with phosphatidylethanolamine, a lipid that promotes negative membrane curvature, the rates of both leakage and lipid mixing caused by tBid are substantially increased. Replacement of cardiolipin with phosphatidylglycerol, a lipid that is structurally similar to cardiolipin but does not promote negative membrane curvature in the presence of calcium, prevents the tBid from promoting leakage. The promotion of leakage by tBid is also inhibited by several substances that promote positive membrane curvature, including lysophosphatidylcholine, tritrpticin, a potent antimicrobial peptide, and cyclosporin A, a known inhibitor of cytochrome c release from mitochondria. We directly measured the effect of tBid on membrane curvature by (31)P NMR. We found that tBid promotes the formation of highly curved non-lamellar phases. All of these data are consistent with the hypothesis that tBid promotes negative curvature, and as a result it destabilizes bilayer membranes. Bcl-X(L) inhibits leakage and lipid mixing induced by tBid. Bcl-X(L) is anti-apoptotic. It reduces the promotion of non-bilayer phases by tBid, although by itself Bcl-X(L) is capable of promoting their formation. Bcl-X(L) has little effect on liposomal integrity. Our results suggest that the anti-apoptotic activity of Bcl-X(L) is not a consequence of its interaction with membranes, but rather with other proteins, such as tBid.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry, McMaster University Health Sciences Centre, Hamilton, Ontario L8N 3Z5, Canada.
| | | | | | | | | |
Collapse
|
923
|
Abstract
In this study, murine leukemia L1210 cells were used to compare the effects of photodynamic therapy (PDT) with those of the apoptotic nonpeptidic Bcl-2 ligand ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA14-1). The photosensitizing agent capronyloxy-tetrakis methyloxyethyl porphycene (CPO) was selected from a group of sensitizers previously shown to target the antiapoptotic protein Bcl-2 for photodamage. Like PDT with CPO, HA14-1 caused the rapid activation of procaspase-3, followed by the appearance of an apoptotic morphology within 60 min. Caspase activation after a sublethal dose of either PDT or HA14-1 was enhanced by staurosporine or the bile acid ursodeoxycholic acid. Moreover, PDT promoted procaspase activation and lethality of HA14-1 and vice versa. Effects of PDT versus HA14-1 could not be distinguished on the basis of the reactive oxygen species formation. Both caused the rapid oxidation of 2',7'-dichlorofluorescein. These results are consistent with the hypothesis that Bcl-2 photodamage is a target for some photosensitizing agents.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit MI 48201, USA.
| | | | | |
Collapse
|
924
|
Juin P, Hunt A, Littlewood T, Griffiths B, Swigart LB, Korsmeyer S, Evan G. c-Myc functionally cooperates with Bax to induce apoptosis. Mol Cell Biol 2002; 22:6158-69. [PMID: 12167710 PMCID: PMC133996 DOI: 10.1128/mcb.22.17.6158-6169.2002] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
c-Myc promotes apoptosis by destabilizing mitochondrial integrity, leading to the release of proapoptotic effectors including holocytochrome c. Candidate mediators of c-Myc in this process are the proapoptotic members of the Bcl-2 family. We show here that fibroblasts lacking Bak remain susceptible to c-Myc-induced apoptosis whereas bax-deficient fibroblasts are resistant. However, despite this requirement for Bax, c-Myc activation exerts no detectable effects on Bax expression, localization, or conformation. Moreover, susceptibility to c-Myc-induced apoptosis can be restored in bax-deficient cells by ectopic expression of Bax or by microinjection of a peptide comprising a minimal BH3 domain. Microinjection of BH3 peptide also restores sensitivity to c-Myc-induced apoptosis in p53-deficient primary fibroblasts that are otherwise resistant. By contrast, there is no synergy between BH3 peptide and c-Myc in fibroblasts deficient in both Bax and Bak. We conclude that c-Myc triggers a proapoptotic mitochondrial destabilizing activity that cooperates with proapoptotic members of the Bcl-2 family.
Collapse
Affiliation(s)
- Philippe Juin
- University of California at San Francisco Cancer Center, San Francisco, California 94143-0128, USA
| | | | | | | | | | | | | |
Collapse
|
925
|
Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002; 2:183-92. [PMID: 12242151 DOI: 10.1016/s1535-6108(02)00127-7] [Citation(s) in RCA: 1242] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The "BH3-only" proteins of the BCL-2 family require "multidomain" proapoptotic members BAX and BAK to release cytochrome c from mitochondria and kill cells. We find short peptides representing the alpha-helical BH3 domains of BID or BIM are capable of inducing oligomerization of BAK and BAX to release cytochrome c. Another subset characterized by the BH3 peptides from BAD and BIK cannot directly activate BAX, BAK but instead binds antiapoptotic BCL-2, resulting in the displacement of BID-like BH3 domains that initiate mitochondrial dysfunction. Transduced BAD-like and BID-like BH3 peptides also displayed synergy in killing leukemic cells. These data support a two-class model for BH3 domains: BID-like domains that "activate" BAX, BAK and BAD-like domains that "sensitize" by occupying the pocket of antiapoptotic members.
Collapse
Affiliation(s)
- Anthony Letai
- Howard Hughes Medical Institute, Department of Pathology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
926
|
Baell JB, Huang DCS. Prospects for targeting the Bcl-2 family of proteins to develop novel cytotoxic drugs. Biochem Pharmacol 2002; 64:851-63. [PMID: 12213579 DOI: 10.1016/s0006-2952(02)01148-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Over the last decade the molecular mechanisms controlling programmed cell death (apoptosis) have become clearer. It appears that many physiological and damage signals activate the cell death machinery by inhibiting the pro-survival Bcl-2 proteins. Since many chemotherapeutic drugs used to treat cancers activate the cell death machinery indirectly, there is much interest in developing peptide and non-peptide mimics of the BH3-only proteins, a family of proteins that act as direct antagonists of Bcl-2, as novel anti-cancer agents. This commentary review current progress in our search for such drugs and discusses recent findings in light of our current understanding of the cell death signaling. The potential for discovering novel agents that may form a useful part of the treatment of malignant disease is enormous but we still lack critical understanding of precisely how Bcl-2 function. However, the frequency of mutations affecting proteins that (directly or indirectly) impinge on apoptosis suggests that the approach of targeting Bcl-2 might be a profitable one.
Collapse
Affiliation(s)
- Jonathan B Baell
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Vic. 3050, Australia
| | | |
Collapse
|
927
|
Abstract
Tissue homeostasis is regulated by apoptosis, the cell-suicide programme that is executed by proteases called caspases. The Bcl2 family of intracellular proteins is the central regulator of caspase activation, and its opposing factions of anti- and pro-apoptotic members arbitrate the life-or-death decision. Apoptosis is often impaired in cancer and can limit conventional therapy. A better understanding of how the Bcl2 family controls caspase activation should result in new, more effective therapeutic approaches.
Collapse
Affiliation(s)
- Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Victoria 3050, Australia.
| | | |
Collapse
|
928
|
Zhang H, Nimmer P, Rosenberg SH, Ng SC, Joseph M. Development of a high-throughput fluorescence polarization assay for Bcl-x(L). Anal Biochem 2002; 307:70-5. [PMID: 12137781 DOI: 10.1016/s0003-2697(02)00028-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antiapoptotic protein Bcl-x(L) has been demonstrated to play a very important role in a variety of diseases such as cancer. Its biological function can be inhibited by proapoptotic proteins such Bak, Bad, and Bax by forming complexes mediated primarily by the Bcl-2 homology 3 (BH3) domain. To facilitate drug discovery for Bcl-x(L) inhibitors, we have developed and optimized a fluorescence polarization assay based on the interaction between Bcl-x(L) and BH3 domain peptides. We observed that the fluorescein-labeled Bad BH3 peptide [NLWAAQRYGRELRRMSDK(fluorescein)FVD or fluorescent Bad peptide] generates best overall results. Fluorescent Bad peptide interacts strongly with Bcl-x(L) with a K(d) of 21.48nM. The assay is stable over a 24-h period and can tolerate the presence of dimethyl sulfoxide up to 8%. By using a competition assay, several peptides derived from the BH3 region of Bak, Bad, Bax, and Bcl-2 were investigated. Bad and Bak BH3 peptides compete efficiently with IC(50) values of 0.048 and 1.14 microM, respectively, while the peptides from the BH3 region of Bcl-2 and Bax compete weakly. A mutated Bak peptide, which has been shown to be inactive for binding to Bcl-x(L), did not compete. The relative binding order of the peptides (Bad>Bak>Bcl-2>Bax>mutated Bak) correlates well with previously published results. When tested in high-throughput formats, the assay has a signal-to-noise ratio of 15.37 and a Z(') factor of at least 0.73. The plate-to-plate variability for free peptide control and bound peptide control is minimal. This validates the assay not only for investigating the nature of Bcl-x(L)-peptide interaction, but also for high-throughput screening of Bcl-x(L) inhibitors.
Collapse
Affiliation(s)
- Haichao Zhang
- Department 4N6, Cancer Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | |
Collapse
|
929
|
Abstract
Apoptosis is the essential process of programmed cell death that, in multicellular organisms, regulates development and maintains homeostasis. Defects in the apoptotic molecular machinery that result in either excessive or insufficient apoptosis are observed in a remarkably wide range of human disease, prompting intense interest in pro- and anti-apoptotic proteins as therapeutic targets. A number of recent reports have described the discovery of ligands for anti-apoptotic Bcl-2 family proteins by a variety of approaches, including computational, combinatorial and evolutionary strategies. Both the design of ligands and the exploration of their mechanisms of action have been greatly enhanced by recent high-resolution structure determinations of proteins from this family. Several of the newly discovered ligands promote apoptosis, and some do so even in the face of overexpressed anti-apoptotic Bcl-2 proteins. Ligands that overcome the protective effects associated with up-regulation of anti-apoptotic Bcl-2 proteins represent especially promising therapeutic leads.
Collapse
Affiliation(s)
- Stacey E Rutledge
- Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520-8107, USA
| | | | | |
Collapse
|
930
|
Peherstorfer E, Mayer B, Boehm S, Lukas A, Hauser P, Mayer G, Oberbauer R. Effects of microinjection of synthetic Bcl-2 domain peptides on apoptosis of renal tubular epithelial cells. Am J Physiol Renal Physiol 2002; 283:F190-6. [PMID: 12060601 DOI: 10.1152/ajprenal.00317.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bcl-2 protein family members are among the key regulators of the apoptosis effector phase. Therefore, we investigated the ability of synthetic peptides derived from proteins of the Bcl-2 family, namely, the NH2-terminal region of Bcl-2 (Bcl2_syn), a central domain of Bax (Bax_syn), and a central domain of Bak (Bak_syn) to interfere with the apoptotic process in LLC-PK1 cells. Apoptosis was induced by tacrolimus or lipopolysaccharide treatment, and microinjection of Bcl2_syn into stimulated LLC-PK1 cells significantly reduced the percentage of apoptotic cells detected within 4 h after the treatment. Microinjection of Bax_syn or Bax_syn, in contrast, induced apoptosis in otherwise untreated LLC-PK1 cells during the same period of time. A random sequence control peptide (Control_syn), which served as a negative control, as well as FITC-labeled dextran, which was coinjected in all experiments for visualization, were ineffective in either preventing or inducing apoptosis. These results suggest that synthetic peptides mimicking the functional domains of proteins of the Bcl-2 family are capable of regulating apoptosis when microinjected into LLC-PK1 cells in vivo. Analogs to these regulatory peptides could therefore provide valuable lead compounds in the therapeutical context.
Collapse
Affiliation(s)
- Elisabeth Peherstorfer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
931
|
Wang HW, Sharp TV, Koumi A, Koentges G, Boshoff C. Characterization of an anti-apoptotic glycoprotein encoded by Kaposi's sarcoma-associated herpesvirus which resembles a spliced variant of human survivin. EMBO J 2002; 21:2602-15. [PMID: 12032073 PMCID: PMC126038 DOI: 10.1093/emboj/21.11.2602] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have investigated the expression and function of a novel protein encoded by open reading frame (ORF) K7 of Kaposi's sarcoma-associated herpesvirus (KSHV). Computational analyses revealed that K7 is structurally related to survivin-DeltaEx3, a splice variant of human survivin that protects cells from apoptosis by an undefined mechanism. Both K7 and survivin-DeltaEx3 contain a mitochondrial-targeting sequence, an N-terminal region of a BIR (baculovirus IAP repeat) domain and a putative BH2 (Bcl-2 homology)-like domain. These suggested that K7 is a new viral anti-apoptotic protein and survivin-DeltaEx3 is its likely cellular homologue. We show that K7 is a glycoprotein, which can inhibit apoptosis and anchor to intracellular membranes where Bcl-2 resides. K7 does not associate with Bax, but does bind to Bcl-2 via its putative BH2 domain. In addition, K7 binds to active caspase-3 via its BIR domain and thus inhibits the activity of caspase-3. The BH2 domain of K7 is crucial for the inhibition of caspase-3 activity and is therefore essential for its anti-apoptotic function. Furthermore, K7 bridges Bcl-2 and activated caspase-3 into a protein complex. K7 therefore appears to be an adaptor protein and part of an anti-apoptotic complex that presents effector caspases to Bcl-2, enabling Bcl-2 to inhibit caspase activity. These data also suggest that survivin-DeltaEx3 might function by a similar mechanism to that of K7. We denote K7 as vIAP (viral inhibitor-of-apoptosis protein).
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Apoptosis
- Blotting, Northern
- Caspase 3
- Caspases/metabolism
- Cell Line
- Chromosomal Proteins, Non-Histone/chemistry
- Cloning, Molecular
- DNA, Complementary/metabolism
- Endoplasmic Reticulum/metabolism
- Glutathione Transferase/metabolism
- Glycoproteins/metabolism
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/metabolism
- Humans
- Inhibitor of Apoptosis Proteins
- Microscopy, Fluorescence
- Microtubule-Associated Proteins
- Mitochondria/metabolism
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Neoplasm Proteins
- Oligonucleotide Array Sequence Analysis
- Open Reading Frames
- Phylogeny
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sequence Homology, Amino Acid
- Software
- Subcellular Fractions/metabolism
- Survivin
- Transfection
Collapse
Affiliation(s)
| | | | | | | | - Chris Boshoff
- The Cancer Research UK Viral Oncology Group, Wolfson Institute for Biomedical Research, Cruciform Building, University College London, London WC1E 6BT, UK
Corresponding author e-mail:
| |
Collapse
|
932
|
Galarneau A, Primeau M, Trudeau LE, Michnick SW. Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat Biotechnol 2002; 20:619-22. [PMID: 12042868 DOI: 10.1038/nbt0602-619] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously described a strategy for detecting protein protein interactions based on protein interaction assisted folding of rationally designed fragments of enzymes. We call this strategy the protein fragment complementation assay (PCA). Here we describe PCAs based on the enzyme TEM-1 beta-lactamase (EC: 3.5.2.6), which include simple colorimetric in vitro assays using the cephalosporin nitrocefin and assays in intact cells using the fluorescent substrate CCF2/AM (ref. 6). Constitutive protein protein interactions of the GCN4 leucine zippers and of apoptotic proteins Bcl2 and Bad, and the homodimerization of Smad3, were tested in an in vitro assay using cell lysates. With the same in vitro assay, we also demonstrate interactions of protein kinase PKB with substrate Bad. The in vitro assay is facile and amenable to high-throughput modes of screening with signal-to-background ratios in the range of 10:1 to 250:1, which is superior to other PCAs developed to date. Furthermore, we show that the in vitro assay can be used for quantitative analysis of a small molecule induced protein interaction, the rapamycin-induced interaction of FKBP and yeast FRB (the FKBP-rapamycin binding domain of TOR (target of rapamycin)). The assay reproduces the known dissociation constant and number of sites for this interaction. The combination of in vitro colorimetric and in vivo fluorescence assays of beta-lactamase in mammalian cells suggests a wide variety of sensitive and high-throughput large-scale applications, including in vitro protein array analysis of protein protein or enzyme protein interactions and in vivo applications such as clonal selection for cells expressing interacting protein partners.
Collapse
Affiliation(s)
- André Galarneau
- Département de Biochimie, C.P. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | | | | | | |
Collapse
|
933
|
Stahura FL, Xue L, Godden JW, Bajorath J. Methods for compound selection focused on hits and application in drug discovery. J Mol Graph Model 2002; 20:439-46. [PMID: 12071278 DOI: 10.1016/s1093-3263(01)00145-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the context of virtual screening calculations, a multiple fingerprint-based metric is applied to generate focused compound libraries by database searching. Different fingerprints are used to facilitate a similarity step for database mining, followed by a diversity step to assemble the final library. The method is applied, for example, to build libraries of limited size for hit-to-lead development efforts. In studies designed to inhibit a therapeutically relevant protein-protein interaction, small molecular hits were initially obtained by combined fingerprint- and structure-based virtual screening and used for the design of focused libraries. We review the applied virtual screening approach and report the statistics and results of screening as well as focused library design. While the structures of lead compounds cannot be disclosed, the analysis is thought to provide an example of the interplay of different methods applied in practical lead identification.
Collapse
Affiliation(s)
- Florence L Stahura
- Computer-Aided Drug Discovery, Albany Molecular Bothell Research Center Inc., Washington 98011, USA
| | | | | | | |
Collapse
|
934
|
Xue L, Chu F, Cheng Y, Sun X, Borthakur A, Ramarao M, Pandey P, Wu M, Schlossman SF, Prasad KVS. Siva-1 binds to and inhibits BCL-X(L)-mediated protection against UV radiation-induced apoptosis. Proc Natl Acad Sci U S A 2002; 99:6925-30. [PMID: 12011449 PMCID: PMC124505 DOI: 10.1073/pnas.102182299] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2002] [Indexed: 11/18/2022] Open
Abstract
We previously cloned Siva-1 by using the cytoplasmic tail of CD27, a member of the tumor necrosis factor receptor family, as the bait in the yeast two-hybrid system. The Siva gene is organized into four exons that code for the predominant full-length Siva-1 transcript, whereas its alternate splice form, Siva-2, lacks exon 2 coding sequence. Various groups have demonstrated a role for Siva-1 in several apoptotic pathways. Interestingly, the proapoptotic properties of Siva-1 are lacking in Siva-2. The fact that Siva-1 is partly localized to mitochondria despite the absence of any mitochondrial targeting signal, it harbors a 20-aa-long putative amphipathic helical structure that is absent in Siva-2, and that its expression is restricted to double-positive (CD3(+), CD4(+), CD8(+)) thymocytes like BCL-X(L), prompted us to test for a potential interaction between Siva-1 and BCL-X(L). Here, we show that Siva-1 binds to and inhibits BCL-X(L)-mediated protection against UV radiation-induced apoptosis. Indeed, the unique amphipathic helical region (SAH) present in Siva-1 is required for its binding to BCL-X(L) and sensitizing cells to UV radiation. Natural complexes of Siva-1/BCL-X(L) are detected in HUT78 and murine thymocyte, suggesting a potential role for Siva-1 in regulating T cell homeostasis.
Collapse
Affiliation(s)
- Li Xue
- Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
935
|
Degenhardt K, Sundararajan R, Lindsten T, Thompson C, White E. Bax and Bak independently promote cytochrome C release from mitochondria. J Biol Chem 2002; 277:14127-34. [PMID: 11836241 DOI: 10.1074/jbc.m109939200] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pro-apoptotic Bax and Bak have been implicated in the regulation of p53-dependent apoptosis. We assessed the ability of primary baby mouse kidney (BMK) epithelial cells from bax(-/-), bak(-/-), and bax(-/-) bak(-/-) mice to be transformed by E1A alone or in conjunction with dominant-negative p53 (p53DD). Although E1A alone transformed BMK cells from p53-deficient mice, E1A alone did not transform BMK cells from bax(-/-), bak(-/-), or bax(-/-) bak(-/-) mice. Thus, the loss of both Bax and Bak was not sufficient to relieve p53-dependent suppression of transformation in epithelial cells. To test the requirement for Bax and Bak in other death signaling pathways, stable E1A plus p53DD-transformed BMK cell lines were derived from the bax(-/-), bak(-/-), and bax(-/-) bak(-/-) mice and characterized for their response to tumor necrosis factor-alpha (TNF-alpha)-mediated apoptosis. The loss of both Bax and Bak severely impaired TNF-alpha-mediated apoptosis, but the presence of either Bax or Bak alone was sufficient for cell death. Cytochrome c was released from mitochondria, and caspase-9 was activated in Bax- or Bak-deficient cells in response to TNF-alpha but not in cells deficient in both. Thus, either Bax or Bak is required for death signaling through mitochondria in response to TNF-alpha, but both are dispensable for p53-dependent transformation inhibition.
Collapse
Affiliation(s)
- Kurt Degenhardt
- Department of Molecular Biology, the Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
936
|
Bouillet P, Strasser A. BH3-only proteins — evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci 2002; 115:1567-74. [PMID: 11950875 DOI: 10.1242/jcs.115.8.1567] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The BH3-only members of the Bcl-2 protein family are essential initiators of programmed cell death and are required for apoptosis induced by cytotoxic stimuli. These proteins have evolved to recognise distinct forms of cell stress. In response, they unleash the apoptotic cascade by inactivating the protective function of the pro-survival members of the Bcl-2 family and by activating the Bax/Bax-like pro-apoptotic family members.
Collapse
Affiliation(s)
- Philippe Bouillet
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.
| | | |
Collapse
|
937
|
|
938
|
Vieira HLA, Boya P, Cohen I, El Hamel C, Haouzi D, Druillenec S, Belzacq AS, Brenner C, Roques B, Kroemer G. Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-X(L). Oncogene 2002; 21:1963-77. [PMID: 11960369 DOI: 10.1038/sj.onc.1205270] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2001] [Revised: 12/13/2001] [Accepted: 12/19/2001] [Indexed: 11/08/2022]
Abstract
Peptides corresponding to the BH3 domains of Bax (BaxBH3) or Bcl-2 (Bcl2BH3) are potent inducers of apoptosis when fused to the Atennapedia plasma membrane translocation domain (Ant). BaxBH3Ant and Bcl2BH3Ant caused a mitochondrial membrane permeabilization (MMP) and apoptosis, via a mechanism that was not inhibited by overexpressed Bcl-2 or Bcl-X(L), yet partially inhibited by cyclosporin A (CsA), an inhibitor of the mitochondrial permeability transition pore. When added to isolated mitochondria, BaxBH3 and Bcl2BH3 induced MMP, which was inhibited by CsA. However, Bcl-2 or Bcl-X(L) failed to inhibit MMP induced by BaxBH3 and Bc2BH3 in vitro, while they efficiently suppressed the induction of MMP by the Vpr protein (from human immunodeficiency virus-1), a ligand of the adenine nucleotide translocator (ANT). BaxBH3 but not Bcl2BH3 was found to interact with ANT, and only BaxBH3 (not Bcl2BH3) permeabilized ANT proteoliposomes and induced ANT to form non-specific channels in electrophysiological experiments. In contrast, both BaxBH3 and Bcl2BH3 were able to stimulate channel formation by recombinant Bax protein. Thus, BaxBH3 might induce MMP via an action on at least two targets, ANT and Bax-like proteins. In contrast, Bcl2BH3 would elicit MMP in an ANT-independent fashion. In purified mitochondria, two ligands of ANT, bongkrekic acid and the protein vMIA from cytomegalovirus, failed to prevent MMP induced by BaxBH3 or Bcl2BH3. In conclusion, BaxBH3 and Bcl2BH3 induce MMP and apoptosis through a mechanism which overcomes cytoprotection by Bcl-2 and Bcl-X(L).
Collapse
Affiliation(s)
- Helena L A Vieira
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, 39 rue Camille-Desmoulins, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
939
|
Huang Q, Petros AM, Virgin HW, Fesik SW, Olejniczak ET. Solution structure of a Bcl-2 homolog from Kaposi sarcoma virus. Proc Natl Acad Sci U S A 2002; 99:3428-33. [PMID: 11904405 PMCID: PMC122540 DOI: 10.1073/pnas.062525799] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2001] [Indexed: 11/18/2022] Open
Abstract
Kaposi sarcoma-associated herpes virus (KSHV) contains a gene that has functional and sequence homology to the apoptotic Bcl-2 family of proteins [Sarid, R., Sato, T., Bohenzky, R. A., Russo, J. J. & Chang, Y. (1997) Nat. Med. 3, 293-298]. The viral Bcl-2 protein promotes survival of infected cells and may contribute to the development of Kaposi sarcoma tumors [Boshoff, C. & Chang, Y. (2001) Annu. Rev. Med. 52, 453-470]. Here we describe the solution structure of the viral Bcl-2 homolog from KSHV. Comparison of the KSHV Bcl-2 structure to that of Bcl-2 and Bcl-x(L) shows that although the overall fold is the same, there are key differences in the lengths of the helices and loops. Binding studies on peptides derived from the Bcl-2 homology region 3 of proapoptotic family members indicate that the specificity of the viral protein is very different from what was previously observed for Bcl-x(L) and Bcl-2, suggesting that the viral protein has evolved to have a different mechanism of action than the host proteins.
Collapse
Affiliation(s)
- Qiulong Huang
- Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064, USA
| | | | | | | | | |
Collapse
|
940
|
Bellows DS, Howell M, Pearson C, Hazlewood SA, Hardwick JM. Epstein-Barr virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins. J Virol 2002; 76:2469-79. [PMID: 11836425 PMCID: PMC153809 DOI: 10.1128/jvi.76.5.2469-2479.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular BCL-2 family proteins can inhibit or induce programmed cell death in part by counteracting the activity of other BCL-2 family members. All sequenced gammaherpesviruses encode a BCL-2 homologue that potently inhibits apoptosis and apparently escapes some of the regulatory mechanisms that govern the functions of their cellular counterparts. Examples of these protective proteins include BHRF1 of Epstein-Barr virus (EBV) and KSBcl-2 of Kaposi's sarcoma-associated herpesvirus, also known as human herpesvirus 8. The gamma-1 subgroup of these viruses, such as EBV, encodes a second BCL-2 homologue. We have now found that this second BCL-2 homologue encoded by EBV, BALF1, inhibits the antiapoptotic activity of EBV BHRF1 and of KSBcl-2 in several transfected cell lines. However, BALF1 failed to inhibit the cellular BCL-2 family member, BCL-x(L). Thus, BALF1 acts as a negative regulator of the survival function of BHRF1, similar to the counterbalance observed between cellular BCL-2 family members. Unlike the cellular BCL-2 family antagonists, BALF1 lacked proapoptotic activity and could not be converted into a proapoptotic factor in a manner similar to cellular BCL-2 proteins by caspase cleavage or truncation of the N terminus. Coimmunoprecipitation experiments and immunofluorescence assays suggest that a minimal amount, if any, of the BHRF1 and BALF1 proteins colocalizes inside cells, suggesting that mechanisms other than direct interaction explain the suppressive function of BALF1.
Collapse
Affiliation(s)
- David S Bellows
- Department of Pharmacology and Molecular Science, The Johns Hopkins University Schools of Medicine and Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
941
|
Lugovskoy AA, Degterev AI, Fahmy AF, Zhou P, Gross JD, Yuan J, Wagner G. A novel approach for characterizing protein ligand complexes: molecular basis for specificity of small-molecule Bcl-2 inhibitors. J Am Chem Soc 2002; 124:1234-40. [PMID: 11841292 DOI: 10.1021/ja011239y] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The increasing diversity of small molecule libraries has been an important source for the development of new drugs and, more recently, for unraveling the mechanisms of cellular events-a process termed chemical genetics.(1) Unfortunately, the majority of currently available compounds are mechanism-based enzyme inhibitors, whereas most of cellular activity regulation proceeds on the level of protein-protein interactions. Hence, the development of small molecule inhibitors of protein-protein interactions is important. When screening compound libraries, low-micromolar inhibitors of protein interactions can be routinely found. The enhancement of affinities and rationalization of the binding mechanism require structural information about the protein-ligand complexes. Crystallization of low-affinity complexes is difficult, and their NMR analysis suffers from exchange broadening, which limits the number of obtainable intermolecular constraints. Here we present a novel method of ligand validation and optimization, which is based on the combination of structural and computational approaches. We successfully used this method to analyze the basis for structure-activity relationships of previously selected (2) small molecule inhibitors of the antiapoptotic protein Bcl-xL and identified new members of this inhibitor family.
Collapse
Affiliation(s)
- Alexey A Lugovskoy
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
942
|
Vu CC, Cidlowski JA. Mechanisms of apoptosis repression. GENETIC ENGINEERING 2002; 23:11-33. [PMID: 11570099 DOI: 10.1007/0-306-47572-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- C C Vu
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
943
|
Abstract
Many of today's medical illnesses can be attributed directly or indirectly to problems with apoptosis--a programmed cell-suicide mechanism. Disorders in which defective regulation of apoptosis contributes to disease pathogenesis or progression can involve either cell accumulation, in which cell eradication or cell turnover is impaired, or cell loss, in which the cell-suicide programme is inappropriately triggered. Identification of the genes and gene products that are responsible for apoptosis, together with emerging information about the mechanisms of action and structures of apoptotic regulatory and effector proteins, has laid a foundation for the discovery of drugs, some of which are now undergoing evaluation in human clinical trials.
Collapse
Affiliation(s)
- John C Reed
- Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
944
|
Krajewska M, Mai JK, Zapata JM, Ashwell KWS, Schendel SL, Reed JC, Krajewski S. Dynamics of expression of apoptosis-regulatory proteins Bid, Bcl-2, Bcl-X, Bax and Bak during development of murine nervous system. Cell Death Differ 2002; 9:145-57. [PMID: 11840165 DOI: 10.1038/sj.cdd.4400934] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2000] [Revised: 04/20/2001] [Accepted: 07/10/2001] [Indexed: 11/09/2022] Open
Abstract
We have used immunohistochemistry and immunoblotting to examine the expression of Bid and four other Bcl-2 family proteins (Bcl-2, Bcl-X, Bax and Bak) in the developing and adult murine central nervous system (CNS). Bid protein is widespread in embryonic and postnatal brain, and its expression is maintained at a high level late into the adulthood. Bid is expressed both in the germ disc, early neural tube, proliferating stem cells of ventricular zones, and in postmitotic, differentiated neurons of the developing central and peripheral nervous system. As the differentiation proceeds, the neurons express higher levels of Bid than the stem cells of the paraventricular zone. Both in embryonic and postnatal life, Bid protein is present in the most vital regions of brain, such as the limbic system, basal ganglia, mesencephalic tectum, Purkinje cells in cerebellum, and the ventral columns of spinal cord. The p15 cleaved form of Bid was detectable in the brain specimens at fetal stages of development, consistent with caspase-mediated activation of this pro-apoptotic Bcl-2 family protein. Among the Bcl-2 family proteins only Bid and Bcl-XL continue to be expressed at high levels in the adult brain.
Collapse
Affiliation(s)
- M Krajewska
- The Burnham Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
945
|
Moriishi K, Koura M, Matsuura Y. Induction of Bad-mediated apoptosis by Sindbis virus infection: involvement of pro-survival members of the Bcl-2 family. Virology 2002; 292:258-71. [PMID: 11878929 DOI: 10.1006/viro.2001.1206] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is known that infection with Sindbis virus (SNV) induces apoptosis, which is inhibited by two pro-survival members of the Bcl-2 family, Bcl-2 and Bcl-xL. However, the mechanism of involvement of the other members of the Bcl-2 family in SNV-induced apoptosis remains unclear. In this study we report that Bad protein, one of the pro-apoptotic Bcl-2 family members, mediates apoptosis in the mammalian cells infected with SNV. Expression of Bad was shown to promote SNV-induced apoptosis in human embryonic kidney 293T and baby hamster kidney cells. SNV infection also induced translocation of endogenous Bad into mitochondria and heterodimerization of Bad with Bcl-xL. On the other hand, the structurally most similar pro-survival members, Bcl-2, Bcl-xL, and Bcl-w, suppressed SNV-induced apoptosis in the absence of Bad, whereas Mcl-1 and A1 did not. Bcl-w could inhibit SNV-induced apoptosis in the presence of Bad, but Bcl-xL could not. Bad could be coimmunoprecipitated with Bcl-xL or Bcl-2, but not with Bcl-w. Two viral Bcl-2 homologs, E1B19K and BHRF1, also suppressed SNV-induced apoptosis irrespective of the presence of Bad and no physical association with Bad was observed. These results suggest that direct interaction of Bad with pro-survival members of the Bcl-2 family contributes to the progress of SNV-induced apoptosis and that nonbinding members restrain SNV-induced apoptosis irrespective of Bad expression.
Collapse
Affiliation(s)
- Kohji Moriishi
- Research Center for Emerging Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
946
|
Knight SMG, Umezawa N, Lee HS, Gellman SH, Kay BK. A fluorescence polarization assay for the identification of inhibitors of the p53-DM2 protein-protein interaction. Anal Biochem 2002; 300:230-6. [PMID: 11779115 DOI: 10.1006/abio.2001.5468] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Improper function of the tumor suppressor protein p53 is a contributing factor in many human cancers. In normal cells, p53 acts to arrest the cell cycle in response to DNA damage or nucleotide depletion. One mechanism of regulating the amount of p53 in the cell is through the action of the Double Minute 2 protein, DM2 (also known as MDM2), which ubiquitinates p53 and targets it for proteosomal degradation. In a number of human cancers, the DM2 gene is amplified or overexpressed, leading to inadequate levels of p53 for cell cycle arrest or apoptosis. With the goal of restoring p53 function in cancers that overexpress DM2, we are developing inhibitors of the p53-DM2 protein-protein interaction that structurally mimic the N-terminal segment of p53 that binds to DM2. To assist this effort, we have devised a fluorescence polarization assay that quantifies the interaction between the N-terminal regions of both proteins in 384-well microtiter plates. Using this assay, we have demonstrated that a peptide with a nonhydrolyzable beta-amino acid substitution binds DM2 with an affinity comparable to a p53 peptide that is composed of only alpha-amino acids.
Collapse
Affiliation(s)
- Stephen M G Knight
- Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin 53706-1532, USA
| | | | | | | | | |
Collapse
|
947
|
Abstract
The p53 tumor suppressor limits cellular proliferation by inducing cell cycle arrest and apoptosis in response to cellular stresses such as DNA damage, hypoxia, and oncogene activation. Many apoptosis-related genes that are transcriptionally regulated by p53 have been identified. These are candidates for implementing p53 effector functions. In response to oncogene activation, p53 mediates apoptosis through a linear pathway involving bax transactivation, Bax translocation from the cytosol to membranes, cytochrome c release from mitochondria, and caspase-9 activation, followed by the activation of caspase-3, -6, and -7. p53-mediated apoptosis can be blocked at multiple death checkpoints, by inhibiting p53 activity directly, by Bcl-2 family members regulating mitochondrial function, by E1B 19K blocking caspase-9 activation, and by caspase inhibitors. Understanding the mechanisms by which p53 induces apoptosis, and the reasons why cell death is bypassed in transformed cells, is of fundamental importance in cancer research, and has great implications in the design of anticancer therapeutics.
Collapse
Affiliation(s)
- Y Shen
- Howard Hughes Medical Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
948
|
Martínez-Senac MDM, Corbalán-García S, Gómez-Fernández JC. The structure of the C-terminal domain of the pro-apoptotic protein Bak and its interaction with model membranes. Biophys J 2002; 82:233-43. [PMID: 11751312 PMCID: PMC1302465 DOI: 10.1016/s0006-3495(02)75390-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bak is a pro-apoptotic protein widely distributed in different cell types that is associated with the mitochondrial outer membrane, apparently through a C-terminal hydrophobic domain. We used infrared spectroscopy to study the secondary structure of a synthetic peptide ((+)(3)HN-(188)ILNVLVVLGVVLLGQFVVRRFFKS(211)-COO(-)) with the same sequence as the C-terminal domain of Bak. The spectrum of this peptide in D(2)O buffer shows an amide I' band with a maximum at 1636 cm(-1), which clearly indicates the predominance of an extended beta-structure in aqueous solvent. However, the peptide incorporated in multilamellar dimyristoylphosphatidylcholine (DMPC) membranes shows a different amide I' band spectrum, with a maximum at 1658 cm(-1), indicating a predominantly alpha-helical structure induced by its interaction with the membrane. It was observed that through differential scanning calorimetry the transition of the phospholipid model membrane was broadened in the presence of the peptide. Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) in fluid DMPC vesicles showed that increasing concentrations of the peptide produced increased polarization values, which is compatible with the peptide being inserted into the membrane. High concentrations of the peptide considerably broaden the phase transition of DMPC multilamellar vesicles, and DPH polarization increased, especially at temperatures above the T(c) transition temperature of the pure phospholipid. The addition of peptide destabilized unilamellar vesicles and released encapsulated carboxyfluorescein. These results indicate that this domain is able to insert itself into membranes, where it adopts an alpha-helical structure and considerably perturbs the physical properties of the membrane.
Collapse
Affiliation(s)
- María del Mar Martínez-Senac
- Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | | | | |
Collapse
|
949
|
Wu X, Blanck A, Olovsson M, Henriksen R, Lindblom B. Expression of Bcl-2, Bcl-x, Mcl-1, Bax and Bak in human uterine leiomyomas and myometrium during the menstrual cycle and after menopause. J Steroid Biochem Mol Biol 2002; 80:77-83. [PMID: 11867266 DOI: 10.1016/s0960-0760(01)00177-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the expression of Bcl-2, Bcl-x, Mcl-1, Bax and Bak proteins in human uterine leiomyomas and homologous myometrium during the menstrual cycle and after menopause. The expression of Bcl-2, Bcl-x, Mcl-1, Bax and Bak in leiomyomas (n=24) and myometrial samples (n=22) from women with leiomyomas was measured by immunohistochemistry and Western blot. Measured by immunohistochemistry, a significant difference between leiomyomas and myometrium was observed only for the Bax protein, in tissues obtained from women in the secretory phase of the menstrual cycle. The Bcl-2 staining was more abundant in leiomyomas than in myometrium only in tissues obtained in the proliferative phase of the cycle. Bcl-2 was more abundant in leiomyomas from women of fertile age than in leiomyomas from menopausal women. No significant differences were observed for the Bcl-x or Bak proteins, whereas the Mcl-1 protein was significantly less abundant in secretory phase leiomyomas than in leiomyomas from menopausal women. Western blot analysis based on pools of tissue extracts from the different groups essentially confirmed the data obtained by immunohistochemistry. Bcl-2 family proteins are expressed in leiomyomas and myometrium in different phases related to and influenced by gonadal steroids. These proteins are suggested to interact with each other in the regulation of programmed cell death, apoptosis, but their specific role in growth control of uterine leiomyomas remains to be investigated.
Collapse
Affiliation(s)
- Xuxia Wu
- Section for Obstetrics and Gynecology, Department of Women's and Children's Health, Uppsala University, SE-751 85 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
950
|
Morrison RS, Kinoshita Y, Johnson MD, Ghatan S, Ho JT, Garden G. Neuronal survival and cell death signaling pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 513:41-86. [PMID: 12575817 DOI: 10.1007/978-1-4615-0123-7_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuronal viability is maintained through a complex interacting network of signaling pathways that can be perturbed in response to a multitude of cellular stresses. A shift in the balance of signaling pathways after stress or in response to pathology can have drastic consequences for the function or the fate of a neuron. There is significant evidence that acutely injured and degenerating neurons may die by an active mechanism of cell death. This process involves the activation of discrete signaling pathways that ultimately compromise mitochondrial structure, energy metabolism and nuclear integrity. In this review we examine recent evidence pertaining to the presence and activation of anti- and pro-cell death regulatory pathways in nervous system injury and degeneration.
Collapse
Affiliation(s)
- Richard S Morrison
- Department of Neurological Surgery, University of Washington School of Medicine, Box 356470, Seattle, Washington 98195-6470, USA
| | | | | | | | | | | |
Collapse
|