99801
|
Hakozaki M, Hojo H, Sato M, Tajino T, Yamada H, Kikuchi S, Abe M. Establishment and characterization of a novel human malignant peripheral nerve sheath tumor cell line, FMS-1, that overexpresses epidermal growth factor receptor and cyclooxygenase-2. Virchows Arch 2009; 455:517-26. [PMID: 19921253 DOI: 10.1007/s00428-009-0848-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 08/10/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a rare soft tissue sarcoma. We established a new human MPNST cell line (designated FMS-1) from MPNST of the right brachial plexus of a 69-year-old woman with NF1. The cell line has been maintained for >24 months with >100 passages. FMS-1 cells showed a fibrosarcoma-like or epithelioid pattern in the heterotransplanted tumor, compared with a fascicular growth pattern of short-spindle tumor cells in the primary tumor. Immunophenotypically, FMS-1 cells showed almost the same characteristics as the primary tumor. Cytogenetic and molecular analyses revealed a deletion in exons 5-8 of the p53 gene. Epidermal growth factor receptor (EGFR) and cyclooxygenase (COX)-2 were expressed in FMS-1 cells. To improve the highly aggressive course and poor prognosis and establish new therapeutic methods, molecular genetic and biological characterizations of MPNST are required. Thus, FMS-1 cells might be useful for investigating biological behaviors and developing new molecular-targeting antitumor drugs for MPNST expressing EGFR or COX-2.
Collapse
Affiliation(s)
- Michiyuki Hakozaki
- First Department of Pathology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima-shi, Fukushima, 960-1295, Japan.
| | | | | | | | | | | | | |
Collapse
|
99802
|
Kim KC, Kang KA, Zhang R, Piao MJ, Kim GY, Kang MY, Lee SJ, Lee NH, Surh YJ, Hyun JW. Up-regulation of Nrf2-mediated heme oxygenase-1 expression by eckol, a phlorotannin compound, through activation of Erk and PI3K/Akt. Int J Biochem Cell Biol 2009; 42:297-305. [PMID: 19931411 DOI: 10.1016/j.biocel.2009.11.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/30/2009] [Accepted: 11/10/2009] [Indexed: 12/30/2022]
Abstract
The aim of the present study was to examine the cytoprotective effect of eckol, a phlorotannin found in Ecklonia cava and to elucidate underlying mechanisms. Heme oxygenase-1 (HO-1) is an important antioxidant enzyme that plays a role in cytoprotection against oxidative stress. Eckol-induced HO-1 expression both at the level of mRNA and protein in Chinese hamster lung fibroblast (V79-4) cells, resulting in increased HO-1 activity. The transcription factor NF-E2-related factor 2 (Nrf2) is a critical regulator of HO-1, achieved by binding to the antioxidant response element (ARE). Eckol treatment resulted in the enhanced level of phosphorylated form, nuclear translocation, ARE-binding, and transcriptional activity of Nrf2. Extracellular regulated kinase (Erk) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, Akt) contributed to ARE-driven HO-1 expression. Eckol activated both Erk and Akt, and treatments with U0126 (an Erk kinase inhibitor), LY294002 (a PI3K inhibitor), specific Erk1 siRNA, and Akt siRNA suppressed the eckol-induced activation of Nrf2, resulting in a decrease in HO-1 expression. ZnPP (a HO-1 inhibitor), HO-1 siRNA, and Nrf2 siRNA markedly abolished the cytoprotective effect of eckol against hydrogen peroxide-induced cell damage. Likewise, U0126 and LY294002 inhibited the eckol-induced cytoprotective effect against oxidative cell damage. These studies demonstrate that eckol attenuates oxidative stress by activating Nrf2-mediated HO-1 induction via Erk and PI3K/Akt signaling.
Collapse
Affiliation(s)
- Ki Cheon Kim
- School of Applied Marine Science, Jeju National University, Jeju-si, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99803
|
Herz K, Rimon A, Olkhova E, Kozachkov L, Padan E. Transmembrane segment II of NhaA Na+/H+ antiporter lines the cation passage, and Asp65 is critical for pH activation of the antiporter. J Biol Chem 2009; 285:2211-20. [PMID: 19923224 DOI: 10.1074/jbc.m109.047134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5-8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent K(m) to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent K(m) of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp(65) negative charge for pH activation of the antiporter.
Collapse
Affiliation(s)
- Katia Herz
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
99804
|
Salloway S, Sperling R, Gilman S, Fox NC, Blennow K, Raskind M, Sabbagh M, Honig LS, Doody R, van Dyck CH, Mulnard R, Barakos J, Gregg KM, Liu E, Lieberburg I, Schenk D, Black R, Grundman M. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 2009; 73:2061-70. [PMID: 19923550 DOI: 10.1212/wnl.0b013e3181c67808] [Citation(s) in RCA: 529] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bapineuzumab, a humanized anti-amyloid-beta (Abeta) monoclonal antibody for the potential treatment of Alzheimer disease (AD), was evaluated in a multiple ascending dose, safety, and efficacy study in mild to moderate AD. METHODS The study enrolled 234 patients, randomly assigned to IV bapineuzumab or placebo in 4 dose cohorts (0.15, 0.5, 1.0, or 2.0 mg/kg). Patients received 6 infusions, 13 weeks apart, with final assessments at week 78. The prespecified primary efficacy analysis in the modified intent-to-treat population assumed linear decline and compared treatment differences within dose cohorts on the Alzheimer's Disease Assessment Scale-Cognitive and Disability Assessment for Dementia. Exploratory analyses combined dose cohorts and did not assume a specific pattern of decline. RESULTS No significant differences were found in the primary efficacy analysis. Exploratory analyses showed potential treatment differences (p < 0.05, unadjusted for multiple comparisons) on cognitive and functional endpoints in study "completers" and APOE epsilon4 noncarriers. Reversible vasogenic edema, detected on brain MRI in 12/124 (9.7%) bapineuzumab-treated patients, was more frequent in higher dose groups and APOE epsilon4 carriers. Six vasogenic edema patients were asymptomatic; 6 experienced transient symptoms. CONCLUSIONS Primary efficacy outcomes in this phase 2 trial were not significant. Potential treatment differences in the exploratory analyses support further investigation of bapineuzumab in phase 3 with special attention to APOE epsilon4 carrier status. CLASSIFICATION OF EVIDENCE Due to varying doses and a lack of statistical precision, this Class II ascending dose trial provides insufficient evidence to support or refute a benefit of bapineuzumab.
Collapse
Affiliation(s)
- S Salloway
- Butler Hospital, The Warren Alpert Medical School of Brown University, 345 Blackstone Blvd., Providence, RI 02906, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99805
|
Hovda KE, Guo C, Austin R, McMartin KE. Renal toxicity of ethylene glycol results from internalization of calcium oxalate crystals by proximal tubule cells. Toxicol Lett 2009; 192:365-72. [PMID: 19931368 DOI: 10.1016/j.toxlet.2009.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 11/17/2022]
Abstract
Ethylene glycol exposure can lead to the development of renal failure due to the metabolic formation of calcium oxalate monohydrate (COM) crystals. The renal damage is closely linked to the degree of COM accumulation in the kidney and most likely results from a COM-induced injury to proximal tubule (PT) cells. The present studies have measured the binding and internalization of COM by primary cultures of normal PT cells from humans and from Wistar and Fischer-344 rats in order to examine the roles of these uptake processes in the resulting cytotoxicity. Internalization was determined by incubation of cells with [(14)C]-COM at 37 degrees C, removal of bound COM with an EDTA incubation, followed by solubilization of cells, as well as by transmission electron microscopy of COM-exposed cells. COM crystals were internalized by PT cells in time- and concentration-dependent manners. COM crystals were bound to and internalized by rat cells about five times more than by human cells. Binding and internalization values were similar between PT cells from Wistar and Fischer-344 rats, indicating that a differential uptake of COM does not explain the known strain difference in sensitivity to ethylene glycol renal toxicity. Internalization of COM correlated highly with the degree of cell death, which is greater in rat cells than in human cells. Thus, surface binding and internalization of COM by cells play critical roles in cytotoxicity and explain why rat cells are more sensitive to COM crystals. At the same level of COM accumulation after ethylene glycol exposure or hyperoxaluria in vivo, rats would be more susceptible than humans to COM-induced damage.
Collapse
Affiliation(s)
- Knut Erik Hovda
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
99806
|
Takada M, Fukusaki M, Terao Y, Yamashita K, Takada M, Ando Y, Sumikawa K. Postoperative analgesic effect of preoperative intravenous flurbiprofen in arthroscopic rotator cuff repair. J Anesth 2009; 23:500-3. [PMID: 19921357 DOI: 10.1007/s00540-009-0799-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 05/28/2009] [Indexed: 11/26/2022]
Abstract
PURPOSE This study was carried out to evaluate the postoperative analgesic effects of preoperative intravenous flurbiprofen in patients undergoing arthroscopic rotator cuff repair under general anesthesia. METHODS We studied 44 patients who underwent an elective arthroscopic rotator cuff repair in a prospective, randomized, and double-blind fashion. The patients were divided into two groups. Group A (n = 22) received lipid emulsion 0.1 ml kg(-1) as a placebo, and group B (n = 22) received flurbiprofen 1 mg kg(-1) before the surgery. Intralipid or flurbiprofen was given intravenously 5 min before the surgery. General anesthesia was maintained with sevoflurane and nitrous oxide, and 10 ml of 0.75% ropivacaine was administered intraarticularly at the end of the surgery. Postoperative analgesia was supplied with intravenous 0.1 mg buprenorphine according to the patient's demand. The effectiveness of flurbiprofen's analgesic effect was measured by a visual analog scale (VAS) and by the amount of buprenorphine consumption at 0.5, 1, 2, 4, 6, 12, and 24 h after the surgery. Time to the first analgesic was also recorded. RESULTS VAS in group B was significantly (P < 0.01) lower than that in group A during the first 6 h postoperatively. The amount of buprenorphine consumption in group B was also significantly (P < 0.01) less than that in group A within the first 2 h postoperatively. The time to first analgesic request in group B was significantly (P < 0.01) longer than that in group A. CONCLUSION These results show that preoperative intravenous flurbiprofen facilitates the analgesic effect in the early postoperative period after arthroscopic rotator cuff repair.
Collapse
Affiliation(s)
- Masafumi Takada
- Department of Anesthesia, Nagasaki Rosai Hospital, Sasebo, Japan
| | | | | | | | | | | | | |
Collapse
|
99807
|
Croyle MA. Long-term virus-induced alterations of CYP3A-mediated drug metabolism: a look at the virology, immunology and molecular biology of a multi-faceted problem. Expert Opin Drug Metab Toxicol 2009; 5:1189-211. [PMID: 19732028 DOI: 10.1517/17425250903136748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Virus infections are on the rise. Although the first description of CYP expression during virus infection was recorded 50 years ago, mechanistic studies of this phenomenon only began to appear in the last decade due to breakthroughs in molecular biology, genomic and transgenic technology. This review describes the relationship(s) among CYP-mediated drug metabolism, virus infection and the immune response and evaluates in vitro and in vivo models for mechanistic studies. The first studies that assessed CYP expression during infection focused on inflammatory mediators and the innate immune response at early time points. Recent studies assessing virus infection and its effect on hepatic CYP expression noted more long-term effects. An obvious approach toward understanding how viruses affect hepatic CYP3A expression and function would be to assess key regulators of CYP during infection. Improvements in techniques to identify post-translational modifications of CYP and systems that focus on virus-receptor interactions which allow subtraction and addition of immunological and regulatory elements that drive CYP will demonstrate that long-term changes in drug metabolism start from the time the virus enters the circulation, are reinforced by virus binding to cellular targets and further solidified by changes in cellular processes long after the virus is cleared.
Collapse
Affiliation(s)
- Maria A Croyle
- The University of Texas at Austin, College of Pharmacy, Division of Pharmaceutics and Institute of Cellular and Molecular Biology, PHR 4.214D, 2409 W University Avenue, Austin, TX 78712-1074, USA.
| |
Collapse
|
99808
|
Cederbaum A. Nrf2 and antioxidant defense against CYP2E1 toxicity. Expert Opin Drug Metab Toxicol 2009; 5:1223-44. [PMID: 19671018 DOI: 10.1517/17425250903143769] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The transcription factor Nrf2 regulates the expression of important cytoprotective enzymes. Induction of CYP2E1 is one of the central pathways by which ethanol generates oxidative stress. CYP2E1 can be induced by ethanol and several low molecular mass chemicals such as pyrazole. This review discusses biochemical and toxicological effects of CYP2E1 and the effects of Nrf2 in modulating these actions of CYP2E1. Besides ethanol, CYP2E1 metabolizes and activates many other toxicologic important compounds. One approach to try to understand the basic effects and actions of CYP2E1 was to establish HepG2 cell lines that constitutively express human CYP2E1. Ethanol, polyunsaturated fatty acids and iron were toxic to the HepG2 cells, which express CYP2E1 (E47 cells) but not control C34HepG2 cells, which do not express CYP2E1. Toxicity was associated with enhanced oxidant stress and could be prevented by antioxidants and potentiated if glutathione was removed. The E47 cells had higher glutathione levels and a twofold increase in catalase, cytosolic and microsomal glutathione transferase, and heme oxygenase-1 than control HepG2 cells due to activation of their respective genes. These activations were prevented by antioxidants, suggesting that reactive oxygen species generated by CYP2E1 were responsible for the upregulation of these antioxidant genes. This upregulation may reflect an adaptive mechanism to remove CYP2E1-derived oxidants. Increases in Nrf2 protein and mRNA were observed in livers of chronic alcohol-fed mice or rats and of pyrzole-treated rats or mice, conditions known to elevate CYP2E1. E47 cells showed increased Nrf2 mRNA and protein expression compared with control HepG2 C34 cells. Upregulation of antioxidant genes in E47 cells is dependent on Nrf2 and is prevented by siRNA-Nrf2. Blocking Nrf2 by siRNA-Nrf2 decreases glutathione and increases reactive oxygen species and lipid peroxidation, resulting in decreased mitochondrial membrane potential and loss of cell viability of E47 cells, but not C34 cells. Nrf2 is activated and levels of Nrf2 protein and mRNA are increased when CYP2E1 is elevated. These results suggest that Nrf2 plays a key role in the adaptive response against increased oxidative stress caused by CYP2E1 in the HepG2 cells. However, it is not clear whether Nrf2 is protective against CYP2E1 toxicity in vivo as pyrazole which elevates CYP2E1 in wild-type mice did not elevate CYP2E1 in Nrf2 knockout mice, although pyrazole produced toxicity in the Nrf2 knockout mice.
Collapse
Affiliation(s)
- Arthur Cederbaum
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, Box 1603, One Gustave L Levy Place, New York, NY 10029, USA.
| |
Collapse
|
99809
|
Baskin SI, Rockwood GA. Neurotoxicological and Behavioral Effects of Cyanide and Its Potential Therapies. MILITARY PSYCHOLOGY 2009. [DOI: 10.1207/s15327876mp1402_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Steven I. Baskin
- Pharmacology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Gary A. Rockwood
- Drug Assessment Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| |
Collapse
|
99810
|
Cheng L, Ramesh AV, Flesken-Nikitin A, Choi J, Nikitin AY. Mouse models for cancer stem cell research. Toxicol Pathol 2009; 38:62-71. [PMID: 19920280 DOI: 10.1177/0192623309354109] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cancer stem cell concept assumes that cancers are mainly sustained by a small pool of neoplastic cells, known as cancer stem cells or tumor initiating cells, which are able to reproduce themselves and produce phenotypically heterogeneous cells with lesser tumorigenic potential. Cancer stem cells represent an appealing target for development of more selective and efficient therapies. However, direct testing of the cancer stem cell concept and assessment of its therapeutic implications in human cancers have been complicated by the use of immunocompromised mice. Genetically defined immunocompetent autochthonous mouse models of human cancer provide a valuable tool to address this problem. Furthermore, they allow for a better understanding of the relevance of mechanisms controlling normal stem cell compartment to carcinogenesis. Advantages and disadvantages of some of the existing mouse models are reviewed, and future challenges in cancer stem cell research are outlined.
Collapse
Affiliation(s)
- Le Cheng
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
99811
|
Central sensitization: a generator of pain hypersensitivity by central neural plasticity. THE JOURNAL OF PAIN 2009; 10:895-926. [PMID: 19712899 DOI: 10.1016/j.jpain.2009.06.012] [Citation(s) in RCA: 2286] [Impact Index Per Article: 152.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 02/08/2023]
Abstract
UNLABELLED Central sensitization represents an enhancement in the function of neurons and circuits in nociceptive pathways caused by increases in membrane excitability and synaptic efficacy as well as to reduced inhibition and is a manifestation of the remarkable plasticity of the somatosensory nervous system in response to activity, inflammation, and neural injury. The net effect of central sensitization is to recruit previously subthreshold synaptic inputs to nociceptive neurons, generating an increased or augmented action potential output: a state of facilitation, potentiation, augmentation, or amplification. Central sensitization is responsible for many of the temporal, spatial, and threshold changes in pain sensibility in acute and chronic clinical pain settings and exemplifies the fundamental contribution of the central nervous system to the generation of pain hypersensitivity. Because central sensitization results from changes in the properties of neurons in the central nervous system, the pain is no longer coupled, as acute nociceptive pain is, to the presence, intensity, or duration of noxious peripheral stimuli. Instead, central sensitization produces pain hypersensitivity by changing the sensory response elicited by normal inputs, including those that usually evoke innocuous sensations. PERSPECTIVE In this article, we review the major triggers that initiate and maintain central sensitization in healthy individuals in response to nociceptor input and in patients with inflammatory and neuropathic pain, emphasizing the fundamental contribution and multiple mechanisms of synaptic plasticity caused by changes in the density, nature, and properties of ionotropic and metabotropic glutamate receptors.
Collapse
|
99812
|
Abstract
Inflammation is a multicomponent response to tissue stress, injury and infection, and a crucial point of its control is at the level of gene transcription. The inducible inflammatory gene expression programme--such as that triggered by Toll-like receptor signalling in macrophages--is comprised of several coordinately regulated sets of genes that encode key functional programmes; these are controlled by three classes of transcription factors, as well as various transcriptional co-regulators and chromatin modifications. Here, we discuss the mechanisms of and the emerging principles in the transcriptional regulation of inflammatory responses in diverse physiological settings.
Collapse
|
99813
|
Amitay M, Shurki A. The structure of G117H mutant of butyrylcholinesterase: nerve agents scavenger. Proteins 2009; 77:370-7. [PMID: 19452557 DOI: 10.1002/prot.22442] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Organophosphate ester (OP) compounds are known for their ubiquitous use as insecticides. At the same time, these chemicals are highly toxic and can be used as nerve agents. G117H mutant of human Butyrylcholinesterase (BChE) was found to be capable of hydrolyzing certain OPs and protect against their toxicity. However, for therapeutic use, the rate of hydrolysis is too low. Its catalytic power can be improved by rational design, but the structure of the G117H mutant is first required. In this work, we determined, computationally, the three dimensional structure of the G117H BChE mutant. The structure was then validated by simulating acetylation of acetylthiocholine (ATC). Several plausible conformers of G117H BChE were examined but only the (62,-75) conformer fully reproduced catalytic effect. The (62,-75) conformer is, therefore, suggested as the structure adopted by the G117H BChE mutant. This conformer is shown to explain the loss of esterase activity observed for the G122H Acetylcholinesterase mutant together with its recovery when additional mutations are placed turning the enzyme also into an OP hydrolase. Furthermore, similarity of the structure to the structure of RNase A, which is known to hydrolyze the O--P bond in RNA, grants it further credibility and suggests a mechanism for the OP hydrolysis.
Collapse
Affiliation(s)
- Moshe Amitay
- Department of Medicinal Chemistry and Natural Products, The Lise Meitner-Minerva Center for Computational Quantum Chemistry, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | |
Collapse
|
99814
|
Tekpli X, Rissel M, Huc L, Catheline D, Sergent O, Rioux V, Legrand P, Holme JA, Dimanche-Boitrel MT, Lagadic-Gossmann D. Membrane remodeling, an early event in benzo[a]pyrene-induced apoptosis. Toxicol Appl Pharmacol 2009; 243:68-76. [PMID: 19931295 DOI: 10.1016/j.taap.2009.11.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 11/01/2009] [Accepted: 11/10/2009] [Indexed: 11/24/2022]
Abstract
Benzo[alpha]pyrene (B[alpha]P) often serves as a model for mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAHs). Our previous work suggested a role of membrane fluidity in B[alpha]P-induced apoptotic process. In this study, we report that B[alpha]P modifies the composition of cholesterol-rich microdomains (lipid rafts) in rat liver F258 epithelial cells. The cellular distribution of the ganglioside-GM1 was markedly changed following B[alpha]P exposure. B[alpha]P also modified fatty acid composition and decreased the cholesterol content of cholesterol-rich microdomains. B[alpha]P-induced depletion of cholesterol in lipid rafts was linked to a reduced expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase). Aryl hydrocarbon receptor (AhR) and B[alpha]P-related H(2)O(2) formation were involved in the reduced expression of HMG-CoA reductase and in the remodeling of membrane microdomains. The B[alpha]P-induced membrane remodeling resulted in an intracellular alkalinization observed during the early phase of apoptosis. In conclusion, B[alpha]P altered the composition of plasma membrane microstructures through AhR and H(2)O(2) dependent-regulation of lipid biosynthesis. In F258 cells, the B[alpha]P-induced membrane remodeling was identified as an early apoptotic event leading to an intracellular alkalinization.
Collapse
Affiliation(s)
- Xavier Tekpli
- EA 4427 SeRAIC, Equipe labellisée Ligue contre le Cancer, Université de Rennes 1, IFR 140, 35043 Rennes cédex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99815
|
Parker RB, Laizure SC. The effect of ethanol on oral cocaine pharmacokinetics reveals an unrecognized class of ethanol-mediated drug interactions. Drug Metab Dispos 2009; 38:317-22. [PMID: 19920055 DOI: 10.1124/dmd.109.030056] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ethanol decreases the clearance of cocaine by inhibiting the hydrolysis of cocaine to benzoylecgonine and ecgonine methyl ester by carboxylesterases, and there is a large body of literature describing this interaction as it relates to the abuse of cocaine. In this study, we describe the effect of intravenous ethanol on the pharmacokinetics of cocaine after intravenous and oral administration in the dog. The intent is to determine the effect ethanol has on metabolic hydrolysis using cocaine metabolism as a surrogate marker of carboxylesterase activity. Five dogs were administered intravenous cocaine alone, intravenous cocaine after ethanol, oral cocaine alone, and oral cocaine after ethanol on separate study days. Cocaine, benzoylecgonine, and cocaethylene concentrations were determined by high-performance liquid chromatography. Cocaine had poor systemic bioavailability with an area under the plasma concentration-time curve that was approximately 4-fold higher after intravenous than after oral administration. The coadministration of ethanol and cocaine resulted in a 23% decrease in the clearance of intravenous cocaine and a 300% increase in the bioavailability of oral cocaine. Cocaine behaves as a high extraction drug, which undergoes first-pass metabolism in the intestines and liver that is profoundly inhibited by ethanol. We infer from these results that ethanol could inhibit the hydrolysis of other drug compounds subject to hydrolysis by carboxylesterases. Indeed, there are numerous commonly prescribed drugs with significant carboxylesterase-mediated metabolism such as enalapril, lovastatin, irinotecan, clopidogrel, prasugrel, methylphenidate, meperidine, and oseltamivir that may interact with ethanol. The clinical significance of the interaction of ethanol with specific drugs subject to carboxylesterase hydrolysis is not well recognized and has not been adequately studied.
Collapse
Affiliation(s)
- Robert B Parker
- College of Pharmacy, Department of Clinical Pharmacy, University of Tennessee, 910 Madison Ave., Memphis, TN 38163, USA
| | | |
Collapse
|
99816
|
Holst B, Nygaard R, Valentin-Hansen L, Bach A, Engelstoft MS, Petersen PS, Frimurer TM, Schwartz TW. A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors. J Biol Chem 2009; 285:3973-3985. [PMID: 19920139 DOI: 10.1074/jbc.m109.064725] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved tryptophan in position 13 of TM-VI (Trp-VI:13 or Trp-6.48) of the CWXP motif located at the bottom of the main ligand-binding pocket in TM-VI is believed to function as a rotameric microswitch in the activation process of seven-transmembrane (7TM) receptors. Molecular dynamics simulations in rhodopsin demonstrated that rotation around the chi1 torsion angle of Trp-VI:13 brings its side chain close to the equally highly conserved Phe-V:13 (Phe-5.47) in TM-V. In the ghrelin receptor, engineering of high affinity metal-ion sites between these positions confirmed their close spatial proximity. Mutational analysis was performed in the ghrelin receptor with multiple substitutions and with Ala substitutions in GPR119, GPR39, and the beta(2)-adrenergic receptor as well as the NK1 receptor. In all of these cases, it was found that mutation of the Trp-VI:13 rotameric switch itself eliminated the constitutive signaling and strongly impaired agonist-induced signaling without affecting agonist affinity and potency. Ala substitution of Phe-V:13, the presumed interaction partner for Trp-VI:13, also in all cases impaired both the constitutive and the agonist-induced receptor signaling, but not to the same degree as observed in the constructs where Trp-VI:13 itself was mutated, but again without affecting agonist potency. In a proposed active receptor conformation generated by molecular simulations, where the extracellular segment of TM-VI is tilted inwards in the main ligand-binding pocket, Trp-VI:13 could rotate into a position where it obtained an ideal aromatic-aromatic interaction with Phe-V:13. It is concluded that Phe-V:13 can serve as an aromatic lock for the proposed active conformation of the Trp-VI:13 rotameric switch, being involved in the global movement of TM-V and TM-VI in 7TM receptor activation.
Collapse
Affiliation(s)
- Birgitte Holst
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and.
| | - Rie Nygaard
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and; 7TM Pharma A/S, Fremtidsvej 3, DK5700 Hørsholm, Denmark
| | - Louise Valentin-Hansen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | - Anders Bach
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | - Maja S Engelstoft
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | - Pia S Petersen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | | | - Thue W Schwartz
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and; 7TM Pharma A/S, Fremtidsvej 3, DK5700 Hørsholm, Denmark.
| |
Collapse
|
99817
|
P2 receptor-mediated signaling in mast cell biology. Purinergic Signal 2009; 6:3-17. [PMID: 19921464 DOI: 10.1007/s11302-009-9173-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 10/23/2009] [Indexed: 12/22/2022] Open
Abstract
Mast cells are widely recognized as effector cells of allergic inflammatory reactions. They contribute to the pathogenesis of different chronic inflammatory diseases, wound healing, fibrosis, thrombosis/fibrinolysis, and anti-tumor immune responses. In this paper, we summarized the role of P2X and P2Y receptors in mast cell activation and effector functions. Mast cells are an abundant source of ATP which is stored in their granules and secreted upon activation. We discuss the contribution of mast cells to the extracellular ATP release and to the maintenance of extracellular nucleotides pool. Recent publications highlight the importance of purinergic signaling for the pathogenesis of chronic airway inflammation. Therefore, the role of ATP and P2 receptors in allergic inflammation with focus on mast cells was analyzed. Finally, ATP functions as mast cell autocrine/paracrine factor and as messenger in intercellular communication between mast cells, nerves, and glia in the central nervous system.
Collapse
|
99818
|
Abstract
Cytochrome P450 (CYP450) enzymes are predominantly involved in the Phase I metabolism of xenobiotics. Metabolic inhibition and induction can give rise to clinically important drug-drug interactions. Metabolic stability is a prerequisite for sustaining the therapeutically relevant concentrations, and very often drug candidates are sacrificed due to poor metabolic profiles. Computational tools such as quantitative structure-activity relationships are widely used to study different metabolic end points successfully to accelerate the drug discovery process. There are a lot of computational studies on clinically important CYPs already reported in recent years. But other clinically significant families are to yet be explored computationally. Powerfulness of quantitative structure-activity relationship will drive computational chemists to develop new potent and selective inhibitors of different classes of CYPs for the treatment of different diseases with least drug-drug interactions. Furthermore, there is a need to enhance the accuracy, interpretability and confidence in the computational models in accelerating the drug discovery pathways.
Collapse
Affiliation(s)
- Kunal Roy
- Jadavpur University, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Drug Theoretics and Cheminformatics Lab, Kolkata 700 032, India.
| | | |
Collapse
|
99819
|
MacLeod AK, Kelly VP, Higgins LG, Kelleher MO, Price SA, Bigley AL, Betton GR, Hayes JD. Expression and localization of rat aldo-keto reductases and induction of the 1B13 and 1D2 isoforms by phenolic antioxidants. Drug Metab Dispos 2009; 38:341-6. [PMID: 19920056 DOI: 10.1124/dmd.109.030544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aldo-keto reductase (AKR) phase I drug metabolism enzyme superfamily is implicated in detoxification or bioactivation of a wide variety of carbonyl-bearing compounds. In this study, we have used antibodies raised against purified recombinant rat AKR isoforms 1A3, 1B4, 1C9, 1D2, and 7A1 to characterize the expression profile of these superfamily members in the rat and define their localization by immunohistochemistry. Western blotting showed that AKR1A3, AKR1B4, and AKR1C9 are ubiquitously expressed, whereas AKR1D2 and AKR7A1 are present in liver, adrenal gland, and kidney, with the latter also present in testis, spleen, and stomach. Immunohistochemical analysis of the kidney demonstrated the localization of AKR1A3 in proximal convoluted tubules, AKR1B4 in the loop of Henle, and AKR1C9 in the pars recta S3 segment of proximal tubules. We also report localization of AKR1B4 in the adrenal gland (parenchymal cells of the zona reticularis) and testis (Sertoli cells and late spermatids), of AKR1D2 in the liver (hepatocyte nuclei), and of AKR7A1 in the pancreatic duct and bronchiolar epithelium. Previous studies have shown that expression of AKR7A1 is induced in response to dietary administration of the phenolic antioxidants butylated hydroxyanisole and ethoxyquin. Here we identify AKR1B13 and AKR1D2 as further inducible members of the rat AKR superfamily.
Collapse
Affiliation(s)
- A Kenneth MacLeod
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
99820
|
Wittbrodt ET, Baum C, Peura DA. Delayed release dexlansoprazole in the treatment of GERD and erosive esophagitis. Clin Exp Gastroenterol 2009; 2:117-28. [PMID: 21694835 PMCID: PMC3108635 DOI: 10.2147/ceg.s5765] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Indexed: 12/16/2022] Open
Abstract
Although proton pump inhibitors (PPI) have a record of remarkable effectiveness and safety in the management of gastroesophageal reflux disease (GERD), several treatment challenges with PPI have emerged. Dexlansoprazole MR is the (R)-enantiomer of lansoprazole contained in a formulation that produces two distinct releases of drug and significantly extends the duration of active plasma concentrations and % time pH > 4 beyond that of conventional single-release PPI. Dexlansoprazole MR can be administered without regard to meals or the timing of meals in most patients. Dexlansoprazole MR 60 mg demonstrated similar efficacy for healing of erosive esophagitis at 8 weeks compared with lansoprazole 30 mg, and dexlansoprazole MR 30 mg was superior to placebo for maintenance of healed erosive esophagitis at 6 months with 99% of nights and 96% of days heartburn-free over 6 months in patients taking dexlansoprazole MR 30 mg. Superior relief of heartburn occurred in patients taking dexlansoprazole MR 30 mg (55% heartburn-free 24-hour periods) vs placebo (14%) for symptomatic nonerosive GERD. The safety profile of dexlansoprazole MR is similar to that of lansoprazole. The extended pharmacodynamic effects, added convenience, and efficacy and safety of dexlansoprazole MR offer a novel approach to gastric pH control in patients with acid-related disorders.
Collapse
Affiliation(s)
| | - Charles Baum
- Takeda Pharmaceuticals International, Inc., Deerfield, IL, USA
| | - David A Peura
- University of Virginia, School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
99821
|
Kita JM, Kile BM, Parker LE, Wightman RM. In vivo measurement of somatodendritic release of dopamine in the ventral tegmental area. Synapse 2009; 63:951-60. [PMID: 19593821 DOI: 10.1002/syn.20676] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ventral tegmental area (VTA), the locus of mesolimbic dopamine cell bodies, contains dopamine. Experiments in brain slices have demonstrated that VTA dopamine can be released by local electrical stimulation. Measurements with both push-pull cannula and microdialysis in intact animals have also obtained evidence for releasable dopamine. Here we demonstrate that dopamine release in the VTA can be evoked by remote stimulations of the medial forebrain bundle (MFB) in the anesthetized rat. In initial experiments, the MFB was electrically stimulated while a carbon-fiber electrode was lowered to the VTA, with recording by fast-scan cyclic voltammetry. While release was not observed with the carbon fiber 4-6 mm below dura, a voltammetric response was observed at 6-8 mm below dura, but the voltammogram was poorly defined. At lower depths, in the VTA, dopamine release was evoked. Immunohistochemistry experiments with antibodies for tyrosine hydroxylase (TH) confirmed that dopamine processes were primarily found below 8 mm. Similarly, tissue content determined by liquid chromatography revealed serotonin but not dopamine dorsal to 8 mm with both dopamine and serotonin at lower depths. Evaluation of the VTA signal by pharmacological means showed that it increased with inhibitors of dopamine uptake, but release was not altered by D2 agents. Dopamine release in the VTA was frequency dependent and could be exhausted by stimulations longer than 5 s. Thus, VTA dopamine release can be evoked in vivo by remote stimulations and it resembles release in terminal regions, possessing a similar uptake mechanism and a finite releasable storage pool.
Collapse
Affiliation(s)
- Justin M Kita
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | |
Collapse
|
99822
|
Valant C, Maillet E, Bourguignon JJ, Bucher B, Utard V, Galzi JL, Hibert M. Allosteric functional switch of neurokinin A-mediated signaling at the neurokinin NK2 receptor: structural exploration. J Med Chem 2009; 52:5999-6011. [PMID: 19746979 DOI: 10.1021/jm900671k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The neurokinin NK2 receptor is known to pre-exist in equilibrium between at least three states: resting-inactive, calcium-triggering, and cAMP-producing. Its endogeneous ligand, NKA, mainly induces the calcium response. Using a FRET-based assay, we have previously discovered an allosteric modulator of the NK2 receptor that has the unique ability to discriminate among the two signaling pathways: calcium-signaling is not affected while cAMP signaling is significantly decreased. A series of compounds have been prepared and studied in order to better understand the structural determinants of this allosteric functional switch of a GPCR. Most of them display the same allosteric profile, with smooth pharmacomodulation. One compound however exhibits significantly improved modulatory properties of NKA induced signaling when compared to the original modulator.
Collapse
Affiliation(s)
- Céline Valant
- UMR UdS/CNRS 7200, Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
99823
|
Cheng CY, Mruk DD. Regulation of blood-testis barrier dynamics by focal adhesion kinase (FAK): an unexpected turn of events. Cell Cycle 2009; 8:3493-9. [PMID: 19823026 DOI: 10.4161/cc.8.21.9833] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The blood-testis barrier (BTB) is conferred by co-existing tight junctions (TJs), basal ectoplasmic specializations (basal ES), desmosome-like junctions and gap junctions (GJs) between adjacent Sertoli cells near the basement membrane in the seminiferous epithelium. While the concept of the BTB has been known for more than a century and its significance to spermatogenesis discerned for more than five decades, its regulation has remained largely unknown. Recent studies, however, have demonstrated that focal adhesion kinase (FAK), a modulator of the integrin-based signaling that plays a crucial role in cell movement, apoptosis, cell survival and gene expression at the focal adhesion complex (FAC, also known as focal contact, a cell-matrix anchoring junction type), is an integrated component of the BTB, associated with the TJ-integral membrane protein occludin and its adaptor zonula occludens-1 (ZO-1). Herein, we summarize recent findings in the field regarding the significance of FAK in conferring BTB integrity based on some unexpected observations. We also critically discuss the role of FAK in regulating the timely "opening" and "closing" of the BTB to facilitate the transit of primary preleptotene spermatocytes across the BTB at stage VIII of the seminiferous epithelial cycle of spermatogenesis. Lastly, we describe a working model, which can be used to design future functional experiments to explore the involvement of FAK in BTB dynamics by investigators in the field.
Collapse
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.
| | | |
Collapse
|
99824
|
Clinckers R, Smolders I, Vermoesen K, Michotte Y, Danhof M, Voskuyl R, Della Pasqua O. Prediction of antiepileptic drug efficacy: the use of intracerebral microdialysis to monitor biophase concentrations. Expert Opin Drug Metab Toxicol 2009; 5:1267-77. [PMID: 19611404 DOI: 10.1517/17425250903146903] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Biophase concentrations of antiepileptic drugs can differ significantly from pharmacokinetics in plasma. A crucial determinant in the disposition of antiepileptic drugs to the brain is represented by the blood-brain barrier. There is growing evidence that this barrier can alter the availability of antiepileptic drugs at the target site. The permeability of the blood-brain barrier becomes particularly relevant in epileptic conditions and in drug refractory situations. In vivo, intracerebral microdialysis is a valuable technique to determine biophase drug concentrations as it enables investigation of antiepileptic drug transport and distribution in the brain as a function of time. The present review illustrates that intracerebral microdialysis is an indispensable tool for the assessment of the pharmacokinetics of antiepileptic drugs. In addition, we demonstrate how microdialysis data can be used in conjunction with mechanism-based pharmacokinetic/pharmacodynamic modeling for dose selection and optimization of the therapeutic regimen for novel compounds.
Collapse
Affiliation(s)
- Ralph Clinckers
- Vrije Universiteit Brussel (VUB), Pharmaceutical Institute, Research Group Experimental Pharmacology, Department of Pharmaceutical Chemistry and Drug Analysis (labo FASC), Laarbeeklaan 103, Building G, 1090 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
99825
|
Gu L, Lau SK, Loera S, Somlo G, Kane SE. Protein kinase A activation confers resistance to trastuzumab in human breast cancer cell lines. Clin Cancer Res 2009; 15:7196-206. [PMID: 19920112 DOI: 10.1158/1078-0432.ccr-09-0585] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Trastuzumab is a monoclonal antibody targeted to the Her2 receptor and approved for treatment of Her2-positive breast cancer. Among patients who initially respond to trastuzumab therapy, resistance typically arises within 1 year. BT/Her(R) cells are trastuzumab-resistant variants of Her2-positive BT474 breast cancer cells. The salient feature of BT/Her(R) cells is failure to downregulate phosphoinositide 3-kinase/Akt signaling on trastuzumab binding. The current work addresses the mechanism of sustained signaling in BT/Her(R) cells, focusing on the protein kinase A (PKA) pathway. EXPERIMENTAL DESIGN We performed microarray analysis on BT/Her(R) and BT474 cell lines to identify genes that were upregulated or downregulated in trastuzumab-resistant cells. Specific genes in the PKA pathway were quantified using reverse transcription-PCR and Western hybridization. Small interfering RNA transfection was used to determine the effects of gene knockdown on cellular response to trastuzumab. Electrophoretic mobility shift assays were used to measure cyclic AMP-responsive element binding activity under defined conditions. Immunohistochemistry was used to analyze protein expression in clinical samples. RESULTS BT/Her(R) cells had elevated PKA signaling activity and several genes in the PKA regulatory network had altered expression in these cells. Downregulation of one such gene, the PKA-RIIalpha regulatory subunit, conferred partial trastuzumab resistance in Her2-positive BT474 and SK-Br-3 cell lines. Forskolin activation of PKA also produced significant protection against trastuzumab-mediated Akt dephosphorylation. In patient samples, PKA signaling appeared to be enhanced in residual disease remaining after trastuzumab-containing neoadjuvant therapy. CONCLUSIONS Activation of PKA signaling may be one mechanism contributing to trastuzumab resistance in Her2-positive breast cancer. We propose a molecular model by which PKA confers its effects.
Collapse
Affiliation(s)
- Long Gu
- Division of Tumor Cell Biology, City of Hope Comprehensive Cancer Center, Duarte, California 91107, USA
| | | | | | | | | |
Collapse
|
99826
|
Shen QJ, Zhao YM, Cao DX, Wang XL. Contribution of Kv channel subunits to glutamate-induced apoptosis in cultured rat hippocampal neurons. J Neurosci Res 2009; 87:3153-60. [PMID: 19472219 DOI: 10.1002/jnr.22136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Potassium channel dysfunction has been implicated in apoptosis in many pathological conditions. However, which Kv channel subunit is involved in glutamate-induced apoptosis remains unknown. In this study, the contributions of nine Kv alpha and three Kv beta subunits to glutamate-induced hippocampal neuronal apoptosis were investigated. Results showed that neuronal apoptosis was not obvious with 12 hr incubation of glutamate but increased markedly after 18 hr, which was attenuated by the Kv channel blocker TEA. Among all the Kv subunits investigated, gene and protein expression of Kv2.1 increased significantly before the appearance of neuronal apoptosis, whereas the Kv1.1 mRNA level decreased quickly, and protein expression was reduced gradually after the insult. Seven other Kv alpha subunits and three Kv beta subunits were not obviously affected over time. In addition, Kv1.1 overexpression could reduce glutamate-induced hippocampal neuronal apoptosis. Therefore, the alterations of Kv1.1 and Kv2.1 might contribute to glutamate-induced toxicity in hippocampal neurons. These findings suggest that these two Kv channel subunits may represent potential therapeutic targets for neuropathological conditions in which glutamate-induced toxicity is thought to contribute to neuronal dysfunction.
Collapse
Affiliation(s)
- Qi-Jun Shen
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
99827
|
Nett M, Gulder TAM, Kale AJ, Hughes CC, Moore BS. Function-oriented biosynthesis of beta-lactone proteasome inhibitors in Salinispora tropica. J Med Chem 2009; 52:6163-7. [PMID: 19746976 DOI: 10.1021/jm901098m] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The natural proteasome inhibitor salinosporamide A from the marine bacterium Salinispora tropica is a promising drug candidate for the treatment of multiple myeloma and mantle cell lymphoma. Using a comprehensive approach that combined chemical synthesis with metabolic engineering, we generated a series of salinosporamide analogues with altered proteasome binding affinity. One of the engineered compounds is equipotent to salinosporamide A in inhibition of the chymotrypsin-like activity of the proteasome yet exhibits superior activity in the cell-based HCT-116 assay.
Collapse
Affiliation(s)
- Markus Nett
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
99828
|
Giove TJ, Deshpande MM, Eldred WD. Identification of alternate transcripts of neuronal nitric oxide synthase in the mouse retina. J Neurosci Res 2009; 87:3134-42. [PMID: 19479987 DOI: 10.1002/jnr.22133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitric oxide (NO) is a major signaling molecule in the retina and CNS, with physiological roles in every cell type in the retina. Previous work shows that neuronal nitric oxide synthase (nNOS) is an important source of NO in the vertebrate retina. There are distinct, active alternative transcripts of nNOS observed in many tissues, including testes and brain, that may differ in both localization and enzyme kinetics. The present study characterized nNOS and the NO production from nNOS in the mouse retina in terms of its alternate transcripts, namely, nNOS alpha, nNOS beta, and nNOS gamma. We examined both basal and light-stimulated NO production as imaged using the NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate-FM (DAF-FM), and we compared the NO production with the immunocytochemical localization of nNOS using antisera that recognize nNOS alpha/beta or nNOS alpha/beta/gamma. Western blots suggested the presence of NOS alpha/gamma protein in retina, but not nNOS beta, and we confirmed this at the message level by using a combination of RT-PCR and quantitative real-time PCR. Our findings indicated that the primary source of NO in the mammalian retina is nNOS alpha and that nNOS gamma may contribute to NO production as well.
Collapse
Affiliation(s)
- Thomas J Giove
- Laboratory of Visual Neurobiology, Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
99829
|
McMartin K. Are calcium oxalate crystals involved in the mechanism of acute renal failure in ethylene glycol poisoning? Clin Toxicol (Phila) 2009; 47:859-69. [PMID: 19852621 DOI: 10.3109/15563650903344793] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Ethylene glycol (EG) poisoning often results in acute renal failure, particularly if treatment with fomepizole or ethanol is delayed because of late presentation or diagnosis. The mechanism has not been established but is thought to result from the production of a toxic metabolite. METHODS A literature review utilizing PubMed identified papers dealing with renal toxicity and EG or oxalate. The list of papers was culled to those relevant to the mechanism and treatment of the renal toxicity associated with either compound. ROLE OF METABOLITES: Although the "aldehyde" metabolites of EG, glycolaldehyde, and glyoxalate, have been suggested as the metabolites responsible, recent studies have shown definitively that the accumulation of calcium oxalate monohydrate (COM) crystals in kidney tissue produces renal tubular necrosis that leads to kidney failure. In vivo studies in EG-dosed rats have correlated the severity of renal damage with the total accumulation of COM crystals in kidney tissue. Studies in cultured kidney cells, including human proximal tubule (HPT) cells, have demonstrated that only COM crystals, not the oxalate ion, glycolaldehyde, or glyoxylate, produce a necrotic cell death at toxicologically relevant concentrations. COM CRYSTAL ACCUMULATION: In EG poisoning, COM crystals accumulate to high concentrations in the kidney through a process involving adherence to tubular cell membranes, followed by internalization of the crystals. MECHANISM OF TOXICITY: COM crystals have been shown to alter membrane structure and function, to increase reactive oxygen species and to produce mitochondrial dysfunction. These processes are likely to be involved in the mechanism of cell death. CONCLUSIONS Accumulation of COM crystals in the kidney is responsible for producing the renal toxicity associated with EG poisoning. The development of a pharmacological approach to reduce COM crystal adherence to tubular cells and its cellular interactions would be valuable as this would decrease the renal toxicity not only in late treated cases of EG poisoning, but also in other hyperoxaluric diseases such as primary hyperoxaluria and kidney stone formation.
Collapse
Affiliation(s)
- Kenneth McMartin
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
99830
|
Abstract
Hypertension in association with oxidative stress belongs to the most discussed topics within the literature on cardiovascular diseases. It is generally believed that elevated production of reactive oxygen species (ROS) plays an important role in hypertension, but clinical studies on chronic antioxidant therapy of hypertension fail to confirm this hypothesis. This discrepancy may be partly determined by the different effects of short and long-lasting treatment with antioxidants or scavengers. Elevated ROS production in hypertension need not be only harmful. It may also stimulate the activity of the antioxidant defence system and improve the nitric oxide (NO)/cyclic 3', 5'-guanosine monophosphate pathway, resulting in the establishment of a new equilibrium between enhanced oxidative load and the stimulated NO pathway, thus maintaining sufficient NO bioavailability. It has been suggested that antioxidant treatment might be beneficial for a short time, until increased NO generation predominates over ROS production. Further weakening of ROS formation by antioxidants may attenuate nuclear factor kappa B activation resulting in decreased endothelial NO synthase expression and activity. Prolonged antioxidant therapy may thus attenuate the beneficial regulatory effect of ROS, leading to decreased NO generation and the re-establishment of the undesirable disproportion between deleterious and protective forces. As a consequence prolonged antioxidant treatment in human hypertension may fail to provide the expected clinical profit.
Collapse
|
99831
|
Knezevic N, Tauseef M, Thennes T, Mehta D. The G protein betagamma subunit mediates reannealing of adherens junctions to reverse endothelial permeability increase by thrombin. ACTA ACUST UNITED AC 2009; 206:2761-77. [PMID: 19917775 PMCID: PMC2806626 DOI: 10.1084/jem.20090652] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The inflammatory mediator thrombin proteolytically activates protease-activated receptor (PAR1) eliciting a transient, but reversible increase in vascular permeability. PAR1-induced dissociation of Gα subunit from heterotrimeric Gq and G12/G13 proteins is known to signal the increase in endothelial permeability. However, the role of released Gβγ is unknown. We now show that impairment of Gβγ function does not affect the permeability increase induced by PAR1, but prevents reannealing of adherens junctions (AJ), thereby persistently elevating endothelial permeability. We observed that in the naive endothelium Gβ1, the predominant Gβ isoform is sequestered by receptor for activated C kinase 1 (RACK1). Thrombin induced dissociation of Gβ1 from RACK1, resulting in Gβ1 interaction with Fyn and focal adhesion kinase (FAK) required for FAK activation. RACK1 depletion triggered Gβ1 activation of FAK and endothelial barrier recovery, whereas Fyn knockdown interrupted with Gβ1-induced barrier recovery indicating RACK1 negatively regulates Gβ1-Fyn signaling. Activated FAK associated with AJ and stimulated AJ reassembly in a Fyn-dependent manner. Fyn deletion prevented FAK activation and augmented lung vascular permeability increase induced by PAR1 agonist. Rescuing FAK activation in fyn−/− mice attenuated the rise in lung vascular permeability. Our results demonstrate that Gβ1-mediated Fyn activation integrates FAK with AJ, preventing persistent endothelial barrier leakiness.
Collapse
Affiliation(s)
- Nebojsa Knezevic
- Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
99832
|
Barhoover MA, Hall JM, Greenlee WF, Thomas RS. Aryl hydrocarbon receptor regulates cell cycle progression in human breast cancer cells via a functional interaction with cyclin-dependent kinase 4. Mol Pharmacol 2009; 77:195-201. [PMID: 19917880 DOI: 10.1124/mol.109.059675] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor with constitutive activities and those induced by xenobiotic ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). One unexplained cellular role for the AHR is its ability to promote cell cycle progression in the absence of exogenous ligands, whereas treatment with exogenous ligands induces cell cycle arrest. Within the cell cycle, progression from G(1) to S phase is controlled by sequential phosphorylation of the retinoblastoma protein (RB1) by cyclin D-cyclin-dependent kinase (CDK) 4/6 complexes. In this study, the functional interactions between the AHR, CDK4, and cyclin D1 (CCND1) were investigated as a potential mechanism for the cell cycle regulation by the AHR. Time course cell cycle and molecular experiments were performed in human breast cancer cells. The results demonstrated that the AHR and CDK4 interact within the cell cycle, and the interaction was disrupted upon TCDD treatment. The disruption was temporally correlated with G(1) cell cycle arrest and decreased phosphorylation of RB1. Biochemical reconstitution assays using in vitro-translated protein recapitulated the AHR and CDK4 interaction and showed that CCND1 was also part of the complex. In vitro assays for CDK4 kinase activity demonstrated that RB1 phosphorylation by the AHR/CDK4/CCND1 complex was reduced in the presence of TCDD. The results suggest that the AHR interacts in a complex with CDK4 and CCND1 in the absence of exogenous ligands to facilitate cell cycle progression. This interaction is disrupted by exogenous ligands, such as TCDD, to induce G(1) cell cycle arrest.
Collapse
Affiliation(s)
- Melissa A Barhoover
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
99833
|
Kim MJ, Kim HI, Chung J, Jeong TS, Park HR. (-)-Epigallocatechin-3-gallate (EGCG) increases the viability of serum-starved A549 cells through its effect on Akt. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2009; 37:723-34. [PMID: 19655410 DOI: 10.1142/s0192415x09007193] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effect of epigallocatechin gallate (EGCG) on cell survival was studied by using serum-starved A549 non-small cell lung carcinoma (NSCLC) cells. A MTT assay showed that EGCG significantly increased the viability of serum-starved A549 cells compared to the control cells, though EGCG at high concentration (approximately 300 microM) had no protective effect against serum withdrawal-induced cell apoptosis. Western blots showed increased immunoreactivity for phospho-Akt and phospho-GSK3beta in EGCG-treated cells. To determine the mechanism for Akt phosphorylation, cells were pretreated with various kinase inhibitors before exposure to EGCG. Only LY294002 inhibited Akt activation induced by EGCG, implying that EGCG-induced Akt activation is PI3K dependent. Both phospho-Raf-1 and Raf-1 proteins were significantly decreased, whereas B-raf expression was not altered. This suggests that the Raf kinases have no role in the increased cell survival caused by EGCG. This study has shown that EGCG protects A549 cells from apoptosis induced by serum deprivation via Akt activation and this protective effect may limit the clinical use of EGCG in treating and preventing NSCLC.
Collapse
Affiliation(s)
- Myung Jin Kim
- Department of Oral Pathology, Pusan National University, Yang San, South Korea
| | | | | | | | | |
Collapse
|
99834
|
Yakel JL. Gating of nicotinic ACh receptors: latest insights into ligand binding and function. J Physiol 2009; 588:597-602. [PMID: 19917567 DOI: 10.1113/jphysiol.2009.182691] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are in the superfamily of cys-loop receptors, and are widely expressed in the nervous system where they participate in a variety of physiological functions, including regulating excitability and neurotransmitter release, as well as neuromuscular contraction. Members of the cys-loop family of receptors, which also includes the molluscan ACh-binding protein (AChBP), a soluble protein that is analogous to the extracellular ligand-binding domain of the cys-loop receptors, are pentameric assemblies of five subunits, with each subunit arranged around a central pore. The binding of ACh to the extracellular interface between two subunits induces channel opening. With the recent 4 A resolution of the Torpedo nAChR, and the crystal structure of the AChBP, much has been learned about the structure of the ligand-binding domain and the channel pore, as well as major structural rearrangements that may confer channel opening, including a major rearrangement of the C-loop within the ligand binding pocket, and perhaps other regions including the F-loop (the beta8-beta9 linker), the beta1-beta2 linker and the cys-loop. Here I will review the latest findings from my lab aimed at a further understanding of the function of the neuronal nAChR channels (and in particular the role of desensitization), and our search for novel AChBP species that may lead to a further understanding of the function of the cys-loop receptor family.
Collapse
Affiliation(s)
- Jerrel L Yakel
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Department of Health and Human Services, PO Box 12233, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
99835
|
Rojas E, Mussali P, Tovar E, Valverde M. DNA-AP sites generation by etoposide in whole blood cells. BMC Cancer 2009; 9:398. [PMID: 19917085 PMCID: PMC2785836 DOI: 10.1186/1471-2407-9-398] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 11/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Etoposide is currently one of the most commonly used antitumor drugs. The mechanisms of action proposed for its antitumor activity are based mainly on its interaction with topoisomerase II. Etoposide effects in transformed cells have been described previously. The aim of the present study was to evaluate the genotoxic effects of this drug in non-transformed whole blood cells, such as occurs as collateral damage induced by some chemotherapies. METHODS To determine etoposide genotoxicity, we employed Comet assay in two alkaline versions. To evaluate single strand breaks and delay repair sites we use pH 12.3 conditions and pH >13 to evidence alkali labile sites. With the purpose to quantified apurinic or apyrimidine (AP) sites we employed a specific restriction enzyme. Etoposide effects were determined on whole blood cells cultured in absence or presence of phytohemagglutinin (PHA) treated during 2 and 24 hours of cultured. RESULTS Alkaline (pH > 13) single cell gel electrophoresis (SCGE) assay experiments revealed etoposide-induced increases in DNA damage in phytohemaglutinine (PHA)-stimulated blood and non-stimulated blood cells. When the assay was performed at a less alkaline pH, 12.3, we observed DNA damage in PHA-stimulated blood cells consistent with the existence of alkali labile sites (ALSs). In an effort to elucidate the molecular events underlying this result, we applied exonuclease III (Exo III) in conjunction with a SCGE assay, enabling detection of DNA-AP sites along the genome. More DNA AP-sites were revealed by Exo III and ALSs were recognized by the SCGE assay only in the non-stimulated blood cells treated with etoposide. CONCLUSION Our results indicate that etoposide induces DNA damage specifically at DNA-AP sites in quiescent blood cells. This effect could be involved in the development of secondary malignancies associated with etoposide chemotherapy.
Collapse
Affiliation(s)
- Emilio Rojas
- Departamento de Medicina Genómica y Toxicología Ambiental Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México D.F. C.P. 04510, México
| | - Patricia Mussali
- Departamento de Medicina Genómica y Toxicología Ambiental Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México D.F. C.P. 04510, México
| | - Efrain Tovar
- Centro de Educación Ambiental e Investigación, Sierra de Huautla (CEAMISH), UAEM. Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, México
| | - Mahara Valverde
- Departamento de Medicina Genómica y Toxicología Ambiental Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México D.F. C.P. 04510, México
| |
Collapse
|
99836
|
Grayson DR, Kundakovic M, Sharma RP. Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Mol Pharmacol 2009; 77:126-35. [PMID: 19917878 DOI: 10.1124/mol.109.061333] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In recent years, it has become widely recognized that a comprehensive understanding of chromatin biology is necessary to better appreciate its role in a wide range of diseases. The histone code has developed as a new layer of our appreciation of transcription factor-based mechanisms of gene expression. Although epigenetic regulation refers to a host of chromatin modifications that occur at the level of DNA, histones, and histone-associated proteins, how this regulation is orchestrated is still incompletely understood. Of those processes that comprise the epigenetic regulatory machinery, DNA methylation and histone acetylation/deacetylation have been the most thoroughly studied. Compounds that act as inhibitors of DNA methyltransferases or histone deacetylases (HDACs) activate a variety of intracellular signaling pathways that ultimately affect the coordinated expression of multiple genes. The altered patterns of mRNA and protein expression collectively converge on pathways linked to apoptosis and cell cycle arrest, among others. This has prompted a widespread search for epigenetic inhibitors that could be used as chemotherapeutic agents, and several are undergoing clinical evaluation. More recently, there has been interest in the use of HDAC inhibitors to activate the expression of mRNAs that are down-regulated in various neurological and psychiatric conditions. Considerably less is known regarding the effect these drugs have on postmitotic cells such as neurons. Before we consider the clinical use of additional HDAC inhibitors to treat schizophrenia or unipolar depression, there are a number of key issues that need to be resolved.
Collapse
Affiliation(s)
- Dennis R Grayson
- Department of Psychiatry, University of Illinois, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
99837
|
Bowles J, Feng CW, Knight D, Smith CA, Roeszler KN, Bagheri-Fam S, Harley VR, Sinclair AH, Koopman P. Male-specific expression of Aldh1a1 in mouse and chicken fetal testes: implications for retinoid balance in gonad development. Dev Dyn 2009; 238:2073-80. [PMID: 19618468 DOI: 10.1002/dvdy.22024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Balanced production and degradation of retinoids is important in regulating development of several organ systems in the vertebrate embryo. Among these, it is known that retinoic acid (RA), and the retinoid-catabolyzing enzyme CYP26B1 together regulate the sex-specific behavior of germ cells in developing mouse gonads. We report here that the gene encoding a cytosolic class-1 aldehyde dehydrogenase, ALDH1A1, a weak catalyst of RA production, is strongly expressed in a male-specific manner in somatic cells of the developing mouse testis, beginning shortly after Sry expression is first detectable. This expression pattern is conserved in the developing male gonad of the chicken and is dependent on the testis-specific transcription factor SOX9. Our data suggest that low levels of RA may be required for early developmental events in the testis, or that Aldh1a1 expression in the fetus may prefigure a later requirement for ALDH1A1 in regulating spermatogenesis postnatally.
Collapse
Affiliation(s)
- Josephine Bowles
- Division of Molecular Genetics and Development, Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
99838
|
Efficient serum clearance of botulinum neurotoxin achieved using a pool of small antitoxin binding agents. Infect Immun 2009; 78:756-63. [PMID: 19917718 DOI: 10.1128/iai.01084-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antitoxins for botulinum neurotoxins (BoNTs) and other toxins are needed that can be produced economically with improved safety and shelf-life properties compared to conventional therapeutics with large-animal antisera. Here we show that protection from BoNT lethality and rapid BoNT clearance through the liver can be elicited in mice by administration of a pool of epitope-tagged small protein binding agents together with a single anti-tag monoclonal antibody (MAb). The protein binding agents used in this study were single-chain Fv domains (scFvs) with high affinity for BoNT serotype A (BoNT/A). The addition of increasing numbers of differently tagged scFvs synergistically increased the level of protection against BoNT/A. It was not necessary that any of the BoNT/A binding agents possess toxin-neutralizing activity. Mice were protected from a dose equivalent to 1,000 to 10,000 50% lethal doses (LD(50)) of BoNT/A when given three or four different anti-BoNT scFvs, each fused to an E-tag peptide, and an anti-E-tag IgG1 MAb. Toxin protection was enhanced when an scFv contained two copies of the E tag. Pharmacokinetic studies demonstrated that BoNT/A was rapidly cleared from the sera of mice given a pool of anti-BoNT/A scFvs and an anti-tag MAb but not from the sera of mice given scFvs alone or anti-tag MAb alone. The scFv pool and anti-tag MAb protected mice from lethality when administered up to 2 h following exposure of mice to a dose equivalent to 10 LD(50) of BoNT/A. These results suggest that it will be possible to rapidly and economically develop and produce therapeutic antitoxins consisting of pools of tagged binding agents that are administered with a single, stockpiled anti-tag MAb.
Collapse
|
99839
|
Myers JM, Myers CR. The effects of hexavalent chromium on thioredoxin reductase and peroxiredoxins in human bronchial epithelial cells. Free Radic Biol Med 2009; 47:1477-85. [PMID: 19703554 PMCID: PMC2767428 DOI: 10.1016/j.freeradbiomed.2009.08.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 07/27/2009] [Accepted: 08/19/2009] [Indexed: 11/29/2022]
Abstract
Inhalational exposure to hexavalent chromium (Cr(VI)) compounds (e.g., chromates) is of concern in many Cr-related industries and their surrounding environments. The bronchial epithelium is directly exposed to inhaled Cr(VI). Cr(VI) species gain easy access inside cells, where they are reduced to reactive Cr species, which may also contribute to the generation of reactive oxygen species. The thioredoxin (Trx) system promotes cell survival and has a major role in maintaining intracellular thiol redox balance. Previous studies with normal human bronchial epithelial cells (BEAS-2B) demonstrated that chromates cause dose- and time-dependent oxidation of Trx1 and Trx2. The Trx's keep many intracellular proteins reduced, including the peroxiredoxins (Prx's). Prx1 (cytosolic) and Prx3 (mitochondrial) were oxidized by Cr(VI) treatments that oxidized all, or nearly all, of the respective Trx's. Prx oxidation is therefore probably the result of a lack of reducing equivalents from Trx. Trx reductases (TrxR's) keep the Trx's largely in the reduced state. Cr(VI) caused pronounced inhibition of TrxR, but the levels of TrxR protein remained unchanged. The inhibition of TrxR was not reversed by removal of residual Cr(VI) or by NADPH, the endogenous electron donor for TrxR. In contrast, the oxidation of Trx1, Trx2, and Prx3 was reversible by disulfide reductants. Prolonged inhibition of TrxR in Cr(VI)-treated cells might contribute to the sustained oxidation of Trx's and Prx's. Reduced Trx binds to an N-terminal domain of apoptosis signaling kinase (ASK1), keeping ASK1 inactive. Cr(VI) treatments that significantly oxidized Trx1 resulted in pronounced dissociation of Trx1 from ASK1. Overall, the effects of Cr(VI) on the redox state and function of the Trx's, Prx's, and TrxR in the bronchial epithelium could have important implications for redox-sensitive cell signaling and tolerance of oxidant insults.
Collapse
Affiliation(s)
- Judith M. Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Charles R. Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Corresponding author: Charles R. Myers, Ph.D., Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA, , phone: 414-456-8593, fax: 414-456-6545
| |
Collapse
|
99840
|
Lesgards JF, Frayne IR, Comte B, Busseuil D, Rhéaume E, Tardif JC, Rosiers CD. Differential distribution of 4-hydroxynonenal adducts to sulfur and nitrogen residues in blood proteins as revealed using Raney nickel and gas chromatography-mass spectrometry. Free Radic Biol Med 2009; 47:1375-85. [PMID: 19682568 DOI: 10.1016/j.freeradbiomed.2009.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 07/13/2009] [Accepted: 08/06/2009] [Indexed: 12/29/2022]
Abstract
Quantification of 4-hydroxy-2-nonenal (HNE) bound to circulating proteins may prove to be useful in evaluating the role of this bioactive lipoperoxidation by-product in the pathogenesis of various diseases. Recently, we developed a quantitative gas chromatography-mass spectrometry (GCMS) assay of total protein-bound HNE (HNE-P) in blood after reduction with NaB(2)H(4) and cleavage with Raney nickel. Whereas it has been assumed that Raney nickel cleaves only Michael adducts of HNE to cysteine via a thioether bond (HNE-SP), results from this study demonstrate that our GCMS method also detects with precision picomoles of HNE adducts via nitrogen residues (HNE-NP). Specifically, evidence was obtained using various study models, including polyamino acids consisting of cysteine, lysine, and histidine and a biologically relevant molecule, albumin. Furthermore, we show that dinitrophenylhydrazine treatment before Raney nickel treatment can be used to discriminate and quantify the various HNE-P molecular species in plasma and blood samples from normal rats, which range between 0.15 and 3 pmol/mg protein or 10 to 600 nM. However, whereas HNE-SP predominated in whole blood, we detected HNE-NP only in plasma. We also identified another significant MS signal, which we attribute to protein-bound 1,4-dihydroxynonane (DHN-P) presumably formed from the enzymatic reduction of HNE-P. The distribution profile of all these species in plasma differed from that observed when physiologically relevant concentrations of albumin and HNE were incubated in vitro. Furthermore, interestingly, hypercholesterolemic rabbits showed higher plasma levels of HNE-NP, but not of DHN-P. Beyond documenting the presence of various types of HNE-P in circulating proteins, our results emphasize the importance of enzymatic mechanisms in situ as a factor determining their distribution in the various blood compartments under various conditions.
Collapse
|
99841
|
Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet 2009; 41:1303-7. [PMID: 19915576 DOI: 10.1038/ng.485] [Citation(s) in RCA: 1003] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 10/21/2009] [Indexed: 12/11/2022]
Abstract
To identify susceptibility variants for Parkinson's disease (PD), we performed a genome-wide association study (GWAS) and two replication studies in a total of 2,011 cases and 18,381 controls from Japan. We identified a new susceptibility locus on 1q32 (P = 1.52 x 10(-12)) and designated this as PARK16, and we also identified BST1 on 4p15 as a second new risk locus (P = 3.94 x 10(-9)). We also detected strong associations at SNCA on 4q22 (P = 7.35 x 10(-17)) and LRRK2 on 12q12 (P = 2.72 x 10(-8)), both of which are implicated in autosomal dominant forms of parkinsonism. By comparing results of a GWAS performed on individuals of European ancestry, we identified PARK16, SNCA and LRRK2 as shared risk loci for PD and BST1 and MAPT as loci showing population differences. Our results identify two new PD susceptibility loci, show involvement of autosomal dominant parkinsonism loci in typical PD and suggest that population differences contribute to genetic heterogeneity in PD.
Collapse
|
99842
|
SLITRK1 binds 14-3-3 and regulates neurite outgrowth in a phosphorylation-dependent manner. Biol Psychiatry 2009; 66:918-25. [PMID: 19640509 DOI: 10.1016/j.biopsych.2009.05.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 05/18/2009] [Accepted: 05/21/2009] [Indexed: 11/20/2022]
Abstract
BACKGROUND Rare genetic variants of SLITRK1 have been previously associated with Tourette syndrome (TS), attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD) symptoms. METHODS We studied SLITRK1 processing and phosphorylation. To explore potential signaling pathways of the cytoplasmic domain of SLITRK1, we made use of the yeast two-hybrid screen. RESULTS We observed that the extracellular domain of SLITRK1 is secreted in vitro and in vivo and that this process is activated by protein kinase C and inhibited by an inhibitor of tumor necrosis factor-alpha converting enzyme (TACE). We observed that SLITRK1 undergoes gamma-secretase cleavage to release a SLITRK1 intracellular domain (SICD). We identified an interaction between SLITRK1 and 14-3-3 proteins and observed that these proteins co-localized in cortical neuronal cultures and were coprecipitated from rat brain lysates, consistent with an interaction in vivo. We mapped the binding site to the very COOH-terminus of SLITRK1, as deletion of the last six amino acids of SLITRK1 abolished the interaction. We demonstrated phosphorylation of SLITRK1 by protein kinase A (PKA), protein kinase C (PKC), and casein kinase II (CK2) and observed that CK2 phosphorylates SLITRK1 in the 14-3-3 binding site. Mutating the CK2 phosphorylation site of SLITRK1 decreased binding to 14-3-3 and inhibited SLITRK1-mediated neurite outgrowth. CONCLUSIONS Our results shed light on the cell biology of SLITRK1, including its protein phosphorylation and potential molecular pathways for SLITRK1 function, and should contribute to further understanding the role of SLIRTK1 in developmental neuropsychiatric conditions such TS, OCD, and ADHD.
Collapse
|
99843
|
Roche CJ, Friedman JM. NO reactions with sol-gel and solution phase samples of the ferric nitrite derivative of HbA. Nitric Oxide 2009; 22:180-90. [PMID: 19919854 DOI: 10.1016/j.niox.2009.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 02/07/2023]
Abstract
The reaction of nitric oxide (NO) with the ferric (met) nitrite derivative of human adult hemoglobin Hb is probed for both solution phase and sol-gel encapsulated populations. The evolution of both the Q band absorption spectrum and fitted populations of Hb derivatives are used to show the sequence of events occurring when NO interacts with nitrite bound to a ferric heme in Hb. The sol-gel is used to compare the evolving populations as a function of quaternary state for the starting met-nitrite populations. The redox status of intermediates is probed using the CN(-) anion to trap ferric heme species. The emergent presence of reactive NO species such as N(2)O(3) during the course of the reaction is probed using the fluorescent probe DAF-2 whereas the fluorophore Chemifluor is used as an indirect measure of the ability of the reaction to create S-nitrosothiols on glutathione. The results are consistent with the formation of a stable reactive intermediate capable of generating bioactive forms of NO. The patterns observed are consistent with a proposed mechanism whereby NO reacts with the ferric nitrite derivative to generate N(2)O(3).
Collapse
Affiliation(s)
- Camille J Roche
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
99844
|
Jarvis MF. The neural-glial purinergic receptor ensemble in chronic pain states. Trends Neurosci 2009; 33:48-57. [PMID: 19914722 DOI: 10.1016/j.tins.2009.10.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 10/05/2009] [Accepted: 10/13/2009] [Indexed: 12/13/2022]
Abstract
Chronic pain is characterized by enhanced sensory neurotransmission that underlies increased sensitivity to noxious stimuli and the perception of non-noxious stimuli as painful. Evidence from neurophysiological and pharmacological studies demonstrates that ATP produces pain by directly enhancing neuronal excitability via the activation of specific ligand-gated ion channels, the P2X3 and P2X2/3 receptors. In addition, ATP activates CNS glial cells (e.g. microglia) in response to persistent nociceptive stimulation. This latter effect involves several distinct receptor-mediated signaling pathways linked to the P2X4, P2X7 and P2Y(12) receptors. This review summarizes new data that places these purinergic signaling events in a mechanistic context that illustrates the ability of ATP to initiate and maintain states of heightened sensory neuron excitability associated with persistent pain.
Collapse
Affiliation(s)
- Michael F Jarvis
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6123, USA.
| |
Collapse
|
99845
|
Purohit R, Sethumadhavan R. Structural basis for the resilience of Darunavir (TMC114) resistance major flap mutations of HIV-1 protease. Interdiscip Sci 2009; 1:320-8. [DOI: 10.1007/s12539-009-0043-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 11/24/2022]
|
99846
|
Ceylan-Isik AF, Zhao P, Zhang B, Xiao X, Su G, Ren J. Cardiac overexpression of metallothionein rescues cardiac contractile dysfunction and endoplasmic reticulum stress but not autophagy in sepsis. J Mol Cell Cardiol 2009; 48:367-78. [PMID: 19914257 DOI: 10.1016/j.yjmcc.2009.11.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 10/21/2009] [Accepted: 11/06/2009] [Indexed: 01/01/2023]
Abstract
Sepsis is characterized by systematic inflammation where oxidative damage plays a key role in organ failure. This study was designed to examine the impact of the antioxidant metallothionein (MT) on lipopolysaccharide (LPS)-induced cardiac contractile and intracellular Ca(2+) dysfunction, oxidative stress, endoplasmic reticulum (ER) stress and autophagy. Mechanical and intracellular Ca(2+) properties were examined in hearts from FVB and cardiac-specific MT overexpression mice treated with LPS. Oxidative stress, activation of mitogen-activated protein kinase pathways (ERK, JNK and p38), ER stress, autophagy and inflammatory markers iNOS and TNFalpha were evaluated. Our data revealed enlarged end systolic diameter, decreased fractional shortening, myocyte peak shortening and maximal velocity of shortening/relengthening as well as prolonged duration of relengthening in LPS-treated FVB mice associated with reduced intracellular Ca(2+) release and decay. LPS treatment promoted oxidative stress (reduced glutathione/glutathione disulfide ratio and ROS generation). Western blot analysis revealed greater iNOS and TNFalpha, activation of ERK, JNK and p38, upregulation of ER stress markers GRP78, Gadd153, PERK and IRE1alpha, as well as the autophagy markers Beclin-1, LCB3 and Atg7 in LPS-treated mouse hearts without any change in total ERK, JNK and p38. Interestingly, these LPS-induced changes in echocardiographic, cardiomyocyte mechanical and intracellular Ca(2+) properties, ROS, stress signaling and ER stress (but not autophagy, iNOS and TNFalpha) were ablated by MT. Antioxidant N-acetylcysteine and the ER stress inhibitor tauroursodeoxycholic acid reversed LPS-elicited depression in cardiomyocyte contractile function. LPS activated AMPK and its downstream signaling ACC in conjunction with an elevated AMP/ATP ratio, which was unaffected by MT. Taken together, our data favor a beneficial effect of MT in the management of cardiac dysfunction in sepsis.
Collapse
Affiliation(s)
- Asli F Ceylan-Isik
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | | | | | | | | |
Collapse
|
99847
|
Belloni D, Veschini L, Foglieni C, Dell'Antonio G, Caligaris-Cappio F, Ferrarini M, Ferrero E. Bortezomib induces autophagic death in proliferating human endothelial cells. Exp Cell Res 2009; 316:1010-8. [PMID: 19917281 DOI: 10.1016/j.yexcr.2009.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
Abstract
The proteasome inhibitor Bortezomib has been approved for the treatment of relapsed/refractory multiple myeloma (MM), thanks to its ability to induce MM cell apoptosis. Moreover, Bortezomib has antiangiogenic properties. We report that endothelial cells (EC) exposed to Bortezomib undergo death to an extent that depends strictly on their activation state. Indeed, while quiescent EC are resistant to Bortezomib, the drug results maximally toxic in EC switched toward angiogenesis with FGF, and exerts a moderate effect on subconfluent HUVEC. Moreover, EC activation state deeply influences the death pathway elicited by Bortezomib: after treatment, angiogenesis-triggered EC display typical features of apoptosis. Conversely, death of subconfluent EC is preceded by ROS generation and signs typical of autophagy, including intense cytoplasmic vacuolization with evidence of autophagosomes at electron microscopy, and conversion of the cytosolic MAP LC3 I form toward the autophagosome-associated LC3 II form. Treatment with the specific autophagy inhibitor 3-MA prevents both LC3 I/LC3 II conversion and HUVEC cell death. Finally, early removal of Bortezomib is accompanied by the recovery of cell shape and viability. These findings strongly suggest that Bortezomib induces either apoptosis or autophagy in EC; interfering with the autophagic response may potentiate the antiangiogenic effect of the drug.
Collapse
Affiliation(s)
- Daniela Belloni
- Myeloma Unit, Department of Oncology, IRCCS H San Raffaele, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
99848
|
Guillin O, Abi-Dargham A, Laruelle M. Neurobiology of dopamine in schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 78:1-39. [PMID: 17349856 DOI: 10.1016/s0074-7742(06)78001-1] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter is an update on the dopamine (DA) imbalance in schizophrenia, including the evidence for subcortical hyperstimulation of D2 receptors underlying positive symptoms and cortical hypodopaminergia-mediating cognitive disturbances and negative symptoms. After a brief review of the anatomical neurocircuitry of this transmitter system as a background, we summarize the evidence for dopaminergic alterations deriving from pharmacological, postmortem, and imaging studies. This evidence supports a prominent role for D2 antagonism in the treatment of positive symptoms of schizophrenia and strongly suggests the need for alternative approaches to address the more challenging problem of negative symptoms and cognitive disturbances.
Collapse
Affiliation(s)
- Olivier Guillin
- Department of Psychiatry, Columbia College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York 10032, USA
| | | | | |
Collapse
|
99849
|
Abstract
Seeing begins in the photoreceptors, where light is absorbed and signaled to the nervous system. Throughout the animal kingdom, photoreceptors are diverse in design and purpose. Nonetheless, phototransduction-the mechanism by which absorbed photons are converted into an electrical response-is highly conserved and based almost exclusively on a single class of photoproteins, the opsins. In this Review, we survey the G protein-coupled signaling cascades downstream from opsins in photoreceptors across vertebrate and invertebrate species, noting their similarities as well as differences.
Collapse
Affiliation(s)
- King-Wai Yau
- Solomon H. Snyder Department of Neuroscience and Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
99850
|
Hayashi T, Thomas GM, Huganir RL. Dual palmitoylation of NR2 subunits regulates NMDA receptor trafficking. Neuron 2009; 64:213-26. [PMID: 19874789 DOI: 10.1016/j.neuron.2009.08.017] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 11/15/2022]
Abstract
Modification of NMDA receptor function and trafficking contributes to the regulation of synaptic transmission and is important for several forms of synaptic plasticity. Here, we report that NMDA receptor subunits NR2A and NR2B have two distinct clusters of palmitoylation sites in their C-terminal region. Palmitoylation within the first cluster on a membrane-proximal region increases tyrosine phosphorylation of tyrosine-based internalization motifs by Src family protein tyrosine kinases, leading to enhanced stable surface expression of NMDA receptors. In addition, palmitoylation of these sites regulates constitutive internalization of the NMDA receptor in developing neurons. In marked contrast, palmitoylation of the second cluster in the middle of C terminus by distinct palmitoyl transferases causes receptors to accumulate in the Golgi apparatus and reduces receptor surface expression. These data suggest that regulated palmitoylation of NR2 subunits differentially modulates receptor trafficking and might be important for NMDA-receptor-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Takashi Hayashi
- Howard Hughes Medical Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|