99851
|
Seydoux E, Homad LJ, MacCamy AJ, Parks KR, Hurlburt NK, Jennewein MF, Akins NR, Stuart AB, Wan YH, Feng J, Nelson RE, Singh S, Cohen KW, McElrath MJ, Englund JA, Chu HY, Pancera M, McGuire AT, Stamatatos L. Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511342 PMCID: PMC7241105 DOI: 10.1101/2020.05.12.091298] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
B cells specific for the SARS-CoV-2 S envelope glycoprotein spike were isolated from a COVID-19-infected subject using a stabilized spike-derived ectodomain (S2P) twenty-one days post-infection. Forty-four S2P-specific monoclonal antibodies were generated, three of which bound to the receptor binding domain (RBD). The antibodies were minimally mutated from germline and were derived from different B cell lineages. Only two antibodies displayed neutralizing activity against SARS-CoV-2 pseudo-virus. The most potent antibody bound the RBD in a manner that prevented binding to the ACE2 receptor, while the other bound outside the RBD. Our study indicates that the majority of antibodies against the viral envelope spike that were generated during the first weeks of COVID-19 infection are non-neutralizing and target epitopes outside the RBD. Antibodies that disrupt the SARS-CoV-2 spike-ACE2 interaction can potently neutralize the virus without undergoing extensive maturation. Such antibodies have potential preventive/therapeutic potential and can serve as templates for vaccine-design.
Collapse
Affiliation(s)
- Emilie Seydoux
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Leah J Homad
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Anna J MacCamy
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - K Rachael Parks
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA.,University of Washington, Department of Global Health, Seattle, WA, USA
| | - Nicholas K Hurlburt
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Madeleine F Jennewein
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Nicholas R Akins
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Andrew B Stuart
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Rachael E Nelson
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Suruchi Singh
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Kristen W Cohen
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - M Juliana McElrath
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA.,University of Washington, Department of Global Health, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Janet A Englund
- Department of Pediatrics, University of Washington and Seattle Children's Research, Seattle, WA, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA.,Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA.,University of Washington, Department of Global Health, Seattle, WA, USA
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA.,University of Washington, Department of Global Health, Seattle, WA, USA
| |
Collapse
|
99852
|
Wang LJ, Ren M, Wang HX, Qiu JG, Jiang B, Zhang CY. Construction of a Quencher-Free Cascade Amplification System for Highly Specific and Sensitive Detection of Serum Circulating miRNAs. Anal Chem 2020; 92:8546-8552. [DOI: 10.1021/acs.analchem.0c01385] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li-juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Ming Ren
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Hou-xiu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - BingHua Jiang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
99853
|
Kiang JG, Smith JT, Cannon G, Anderson MN, Ho C, Zhai M, Cui W, Xiao M. Ghrelin, a novel therapy, corrects cytokine and NF-κB-AKT-MAPK network and mitigates intestinal injury induced by combined radiation and skin-wound trauma. Cell Biosci 2020; 10:63. [PMID: 32426105 PMCID: PMC7216502 DOI: 10.1186/s13578-020-00425-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/04/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Compared to radiation injury alone (RI), radiation injury combined wound (CI) further enhances acute radiation syndrome and subsequently mortality. We previously reported that therapy with Ghrelin, the 28-amino-acid-peptide secreted from the stomach, significantly increased 30-day survival and mitigated hematopoietic death by enhancing and sustaining granulocyte-colony stimulating factor (G-CSF) and keratinocyte chemoattractant (KC) in the blood and bone marrow; increasing circulating white blood cell depletion; inhibiting splenocytopenia; and accelerating skin-wound healing on day 30 after CI. Herein, we aimed to study the efficacy of Ghrelin on intestinal injury at early time points after CI. METHODS B6D2F1/J female mice were exposed to 60Co-γ-photon radiation (9.5 Gy, 0.4 Gy/min, bilateral), followed by 15% total-body-surface-area skin wounds. Several endpoints were measured: at 4-5 h and on days 1, 3, 7, and 15. RESULTS Ghrelin therapy mitigated CI-induced increases in IL-1β, IL-6, IL-17A, IL-18, KC, and TNF-α in serum but sustained G-CSF, KC and MIP-1α increases in ileum. Histological analysis of ileum on day 15 showed that Ghrelin treatment mitigated ileum injury by increasing villus height, crypt depth and counts, as well as decreasing villus width and mucosal injury score. Ghrelin therapy increased AKT activation and ERK activation; suppressed JNK activation and caspase-3 activation in ileum; and reduced NF-κB, iNOS, BAX and Bcl-2 in ileum. This therapy recovered the tight junction protein and mitigated bacterial translocation and lipopolysaccharides levels. The results suggest that the capacity of Ghrelin therapy to reduce CI-induced ileum injury is mediated by a balanced NF-κB-AKT-MAPK network that leads to homeostasis of pro-inflammatory and anti-inflammatory cytokines. CONCLUSIONS Our novel results are the first to suggest that Ghrelin therapy effectively decreases intestinal injury after CI.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services, University of the Health Sciences, Bethesda, MD 20814 USA
- Department of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, MD 20814 USA
| | - Joan T. Smith
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| | - Georgetta Cannon
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| | - Marsha N. Anderson
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| | - Connie Ho
- Department of Biochemistry, University of California, Berkeley, CA 94720 USA
| | - Min Zhai
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| | - Wanchang Cui
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| | - Mang Xiao
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| |
Collapse
|
99854
|
Li Y, Ludford PT, Fin A, Rovira AR, Tor Y. Enzymatic Syntheses and Applications of Fluorescent Cyclic Dinucleotides. Chemistry 2020; 26:6076-6084. [PMID: 32157755 PMCID: PMC7220823 DOI: 10.1002/chem.202001194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 11/07/2022]
Abstract
Bacterial cyclic dinucleotides (CDNs) play important roles in regulating biofilm formation, motility and virulence. In eukaryotic cells, theses bacterial CDNs are recognized as pathogen-associated molecular patterns (PAMPs) and trigger an innate immune response. We report the photophysical analyses of a novel group of enzymatically synthesized emissive CDN analogues comprised of two families of isomorphic ribonucleotides. The highly favorable photophysical features of the CDN analogues, when compared to their non-emissive natural counterparts, are used to monitor in real time the dinucleotide cyclase-mediated synthesis and phosphodiesterase (PDE)-mediated hydrolysis of homodimeric and mixed CDNs, providing effective means to probe the activities of two classes of bacterial enzymes and insight into their biomolecular recognition and catalytic features.
Collapse
Affiliation(s)
- Yao Li
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Paul T Ludford
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Andrea Fin
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Alexander R Rovira
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
99855
|
Leukemogenic Chromatin Alterations Promote AML Leukemia Stem Cells via a KDM4C-ALKBH5-AXL Signaling Axis. Cell Stem Cell 2020; 27:81-97.e8. [PMID: 32402251 DOI: 10.1016/j.stem.2020.04.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/13/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
N6-methyladenosine (m6A) is a commonly present modification of mammalian mRNAs and plays key roles in various cellular processes. m6A modifiers catalyze this reversible modification. However, the underlying mechanisms by which these m6A modifiers are regulated remain elusive. Here we show that expression of m6A demethylase ALKBH5 is regulated by chromatin state alteration during leukemogenesis of human acute myeloid leukemia (AML), and ALKBH5 is required for maintaining leukemia stem cell (LSC) function but is dispensable for normal hematopoiesis. Mechanistically, KDM4C regulates ALKBH5 expression via increasing chromatin accessibility of ALKBH5 locus, by reducing H3K9me3 levels and promoting recruitment of MYB and Pol II. Moreover, ALKBH5 affects mRNA stability of receptor tyrosine kinase AXL in an m6A-dependent way. Thus, our findings link chromatin state dynamics with expression regulation of m6A modifiers and uncover a selective and critical role of ALKBH5 in AML that might act as a therapeutic target of specific targeting LSCs.
Collapse
|
99856
|
He Y, Huang H, Jin L, Zhang F, Zeng M, Wei L, Tang S, Chen D, Wang W. CircZNF609 enhances hepatocellular carcinoma cell proliferation, metastasis, and stemness by activating the Hedgehog pathway through the regulation of miR-15a-5p/15b-5p and GLI2 expressions. Cell Death Dis 2020; 11:358. [PMID: 32398664 PMCID: PMC7217914 DOI: 10.1038/s41419-020-2441-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022]
Abstract
Emerging evidence has revealed that aberrantly expressed circular RNAs (circRNAs) play vital roles in tumorigenesis and progression of diverse human malignancies. Although an existing literature has elucidated the regulatory role of circZNF609 in breast cancer, the crucial function that circZNF609 exerted on hepatocellular carcinoma (HCC) remains unclear. Herein, we determined to explore the molecular mechanism of circZNF609 in HCC. In this study, circZNF609 was conspicuously overexpressed and featured with loop structure in HCC. Functional tests revealed that decreased expression of circZNF609 suppressed cell proliferation, metastasis and stemness, whereas induced cell apoptosis in HCC. Subsequent molecular mechanism assays indicated that circZNF609 contributed to HCC progression through activation of Hedgehog pathway. Moreover, circZNF609 was found to be negatively correlated with miR-15a-5p/15b-5p but positively correlated with GLI2. Moreover, there was a negative correlation between miR-15a-5p/15b-5p and GLI2. Rescue experiments testified that GLI2 overexpression could recover circZNF609 depletion-mediated function on HCC development while miR-15a-5p/15b-5p inhibition could partially rescue circZNF609 silencing-mediated effect on HCC progression. Final experiments in vivo further elucidated the suppressive function of circZNF609 knockdown on the tumorigenesis of HCC. Briefly, circZNF609 enhances HCC cell proliferation, metastasis, and stemness by activating the Hedgehog pathway through the regulation of miR-15a-5p/15b-5p and GLI2 expressions.
Collapse
Affiliation(s)
- Yangke He
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.,Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Hui Huang
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.,Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Li Jin
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55# Renmin South Road, 610041, Chengdu, Sichuan, China
| | - Fang Zhang
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55# Renmin South Road, 610041, Chengdu, Sichuan, China.,Department of Burn and Plastic Surgery, Affiliated hospital of Chengdu Medical College, 610000, Chengdu, Sichuan, China
| | - Ming Zeng
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.,Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Liang Wei
- Department of Burn and Plastic Surgery, Affiliated hospital of Chengdu Medical College, 610000, Chengdu, Sichuan, China
| | - Shijia Tang
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.,Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Dongqin Chen
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Pudong New District, 200127, Shanghai, China. .,Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University&Jiangsu Cancer Hospital&Jiangsu Institute of Cancer Research, No. 42 Baiziting Road, Xuanwu District, 210009, Nanjing, China. .,Department of Medical Oncology, the First Affiliated Hospital of Soochow University, No.188, Shizi Street, Gusu District, 215006, Suzhou, Jiangsu, China.
| | - Wansheng Wang
- Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Gusu District, 215006, Suzhou, Jiangsu, China
| |
Collapse
|
99857
|
Automated Cell-Free Multiprotein Synthesis Facilitates the Identification of a Secretory, Oligopeptide Elicitor-Like, Immunoreactive Protein of the Oomycete Pythium insidiosum. mSystems 2020; 5:5/3/e00196-20. [PMID: 32398276 PMCID: PMC7219551 DOI: 10.1128/msystems.00196-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Technical limitations of conventional biotechnological methods (i.e., genetic engineering and protein synthesis) prevent extensive functional studies of the massive amounts of genetic information available today. We employed a cell-free protein synthesis system to rapidly and simultaneously generate multiple proteins from genetic codes of the oomycete Pythium insidiosum, which causes the life-threatening disease called pythiosis, in humans and animals worldwide. We aimed to screen for potential diagnostic and therapeutic protein targets of this pathogen. Eighteen proteins were synthesized. Of the 18 proteins, one was a secreted immunoreactive protein, called I06, that triggered host immunity and was recognized explicitly by all tested sera from pythiosis patients. It is one of the OPEL proteins; these proteins are present only in the unique group of microorganisms called oomycetes. Here, we demonstrated that cell-free protein synthesis was useful for the production of multiple proteins to facilitate functional studies and identify a potential target for diagnosis and treatment of pythiosis. Protein production relies on time-consuming genetic engineering and in vivo expression, which is a bottleneck for functional studies in the postgenomic era. Cell-free protein synthesis (CFPS) overcomes the limitation of in vivo protein biosynthesis by processing in vitro transcription and translation of multiple genes to proteins within hours. We employed an automated CFPS to simultaneously synthesize proteins from 24 genes of the oomycete Pythium insidiosum (which causes the life-threatening disease pythiosis) and screen for a diagnostic and therapeutic target. CFPS successfully synthesized 18 proteins (∼75% success rate). One protein, namely, I06, was explicitly recognized by all pythiosis sera, but not control sera, tested. Py. insidiosum secreted a significant amount of I06. The protein architecture of I06 is compatible with the oligopeptide elicitor (OPEL) of the phylogenetically related plant-pathogenic oomycete Phytophthora parasitica. The OPEL-like I06 protein of Py. insidiosum can stimulate host antibody responses, similar to the P. parasitica OPEL that triggers plant defense mechanisms. OPEL-like I06 homologs are present only in the oomycetes. Py. insidiosum contains two OPEL-like I06 homologs, but only one of the two homologs was expressed during hyphal growth. Twenty-nine homologs derived from 15 oomycetes can be phylogenetically divided into two groups. The OPEL-like genes might occur in the common ancestor, before independently undergoing gene gain and loss during the oomycete speciation. In conclusion, CFPS offers a fast in vitro protein synthesis. CFPS simultaneously generated multiple proteins of Py. insidiosum and facilitated the identification of the secretory OPEL-like I06 protein, a potential target for the development of a control measure against the pathogen. IMPORTANCE Technical limitations of conventional biotechnological methods (i.e., genetic engineering and protein synthesis) prevent extensive functional studies of the massive amounts of genetic information available today. We employed a cell-free protein synthesis system to rapidly and simultaneously generate multiple proteins from genetic codes of the oomycete Pythium insidiosum, which causes the life-threatening disease called pythiosis, in humans and animals worldwide. We aimed to screen for potential diagnostic and therapeutic protein targets of this pathogen. Eighteen proteins were synthesized. Of the 18 proteins, one was a secreted immunoreactive protein, called I06, that triggered host immunity and was recognized explicitly by all tested sera from pythiosis patients. It is one of the OPEL proteins; these proteins are present only in the unique group of microorganisms called oomycetes. Here, we demonstrated that cell-free protein synthesis was useful for the production of multiple proteins to facilitate functional studies and identify a potential target for diagnosis and treatment of pythiosis.
Collapse
|
99858
|
Liu Z, Tardat M, Gill ME, Royo H, Thierry R, Ozonov EA, Peters AH. SUMOylated PRC1 controls histone H3.3 deposition and genome integrity of embryonic heterochromatin. EMBO J 2020; 39:e103697. [PMID: 32395866 PMCID: PMC7327501 DOI: 10.15252/embj.2019103697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Chromatin integrity is essential for cellular homeostasis. Polycomb group proteins modulate chromatin states and transcriptionally repress developmental genes to maintain cell identity. They also repress repetitive sequences such as major satellites and constitute an alternative state of pericentromeric constitutive heterochromatin at paternal chromosomes (pat‐PCH) in mouse pre‐implantation embryos. Remarkably, pat‐PCH contains the histone H3.3 variant, which is absent from canonical PCH at maternal chromosomes, which is marked by histone H3 lysine 9 trimethylation (H3K9me3), HP1, and ATRX proteins. Here, we show that SUMO2‐modified CBX2‐containing Polycomb Repressive Complex 1 (PRC1) recruits the H3.3‐specific chaperone DAXX to pat‐PCH, enabling H3.3 incorporation at these loci. Deficiency of Daxx or PRC1 components Ring1 and Rnf2 abrogates H3.3 incorporation, induces chromatin decompaction and breakage at PCH of exclusively paternal chromosomes, and causes their mis‐segregation. Complementation assays show that DAXX‐mediated H3.3 deposition is required for chromosome stability in early embryos. DAXX also regulates repression of PRC1 target genes during oogenesis and early embryogenesis. The study identifies a novel critical role for Polycomb in ensuring heterochromatin integrity and chromosome stability in mouse early development.
Collapse
Affiliation(s)
- Zichuan Liu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mathieu Tardat
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Helene Royo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Raphael Thierry
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
99859
|
Ciliberto G, Mancini R, Paggi MG. Drug repurposing against COVID-19: focus on anticancer agents. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:86. [PMID: 32398164 PMCID: PMC7214852 DOI: 10.1186/s13046-020-01590-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
Background The very limited time allowed to face the COVID-19 pandemic poses a pressing challenge to find proper therapeutic approaches. However, synthesis and full investigation from preclinical studies to phase III trials of new medications is a time-consuming procedure, and not viable in a global emergency, such as the one we are facing. Main Body Drug repurposing/repositioning, a strategy effectively employed in cancer treatment, can represent a valid alternative. Most drugs considered for repurposing/repositioning in the therapy of the COVID-19 outbreak are commercially available and their dosage and toxicity in humans is well known, due to years (or even decades) of clinical use. This can allow their fast-track evaluation in phase II–III clinical trials, or even within straightforward compassionate use. Several drugs being re-considered for COVID-19 therapy are or have been used in cancer therapy. Indeed, virus-infected cells are pushed to enhance the synthesis of nucleic acids, protein and lipid synthesis and boost their energy metabolism, in order to comply to the “viral program”. Indeed, the same features are seen in cancer cells, making it likely that drugs interfering with specific cancer cell pathways may be effective as well in defeating viral replication. Short Conclusion To our knowledge, cancer drugs potentially suitable for facing SARS-CoV-2 infection have not been carefully reviewed. We present here a comprehensive analysis of available information on potential candidate cancer drugs that can be repurposed for the treatment of COIVD-19.
Collapse
Affiliation(s)
- Gennaro Ciliberto
- Scientific Director, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Marco G Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
99860
|
Herman MA, Campbell JE, D'Alessio DA. One small step for mice, one giant leap for GWAS? J Clin Invest 2020; 129:4083-4085. [PMID: 31498152 DOI: 10.1172/jci131650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have provided a wealth of information on potential disease-associated genes in the human population. In particular, several loci have been associated with type 2 diabetes (T2D). However, due to the complexity of the disease, it has been a challenge to unravel the exact effects of specific loci on T2D pathogenesis. In this issue of the JCI, Keller and colleagues developed a systems genetic approach to identify insulin secretion-associated genes in nondiabetic mice followed by tissue-level and functional phenotyping. Several of the loci identified were syntenic with human T2D-related loci, indicating that this approach may be feasible for discerning genetic variation in nondiabetic individuals that may lead to the development of T2D.
Collapse
Affiliation(s)
- Mark A Herman
- Duke Molecular Physiology Institute, Department of Medicine, Division of Endocrinology, and.,Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Department of Medicine, Division of Endocrinology, and.,Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Department of Medicine, Division of Endocrinology, and
| |
Collapse
|
99861
|
Gao C, Sun X, Wu Z, Yuan H, Han H, Huang H, Shu Y, Xu M, Gao R, Li S, Zhang J, Tian J. A Novel Benzofuran Derivative Moracin N Induces Autophagy and Apoptosis Through ROS Generation in Lung Cancer. Front Pharmacol 2020; 11:391. [PMID: 32477104 PMCID: PMC7235196 DOI: 10.3389/fphar.2020.00391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction The leaves of Morus alba L is a traditional Chinese medicine widely applied in lung diseases. Moracin N (MAN), a secondary metabolite extracted form the leaves of Morus alba L, is a potent anticancer agent. But its molecular mechanism remains unveiled. Objective In this study, we aimed to examine the effect of MAN on human lung cancer and reveal the underlying molecular mechanism. Methods MTT assay was conducted to measure cell viability. Annexin V-FITC/PI staining was used to detect cell apoptosis. Confocal microscope was performed to determine the formation of autophagosomes and autolysosomes. Flow cytometry was performed to quantify cell death. Western blotting was used to determine the related-signaling pathway. Results In the present study, we demonstrated for the first time that MAN inhibitd cell proliferation and induced cell apoptosis in human non-small-cell lung carcinoma (NSCLC) cells. We found that MAN treatment dysregulated mitochondrial function and led to mitochondrial apoptosis in A549 and PC9 cells. Meanwhile, MAN enhanced autophagy flux by the increase of autophagosome formation, the fusion of autophagsomes and lysosomes and lysosomal function. Moreover, mTOR signaling pathway, a classical pathway regualting autophagy, was inhibited by MAN in a time- and dose-dependent mannner, resulting in autophagy induction. Interestingly, autophagy inhibition by CQ or Atg5 knockdown attenuated cell apoptosis by MAN, indicating that autophagy serves as cell death. Furthermore, autophagy-mediated cell death by MAN can be blocked by reactive oxygen species (ROS) scavenger NAC, indicating that ROS accumulation is the inducing factor of apoptosis and autophagy. In summary, we revealed the molecular mechanism of MAN against lung cancer through apoptosis and autophagy, suggesting that MAN might be a novel therapeutic agent for NSCLC treatment.
Collapse
Affiliation(s)
- Chengcheng Gao
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xin Sun
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zhipan Wu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Huahua Yuan
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Haote Han
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Hongliang Huang
- School of Biosciences & Biopharmaceutics and Center for Bioresources & Drug Discovery, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuhan Shu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Mengting Xu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Ruilan Gao
- Institution of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shouxin Li
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, China
| | - Jianbin Zhang
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jingkui Tian
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
99862
|
Lee MS, Wan J, Goldman D. Tgfb3 collaborates with PP2A and notch signaling pathways to inhibit retina regeneration. eLife 2020; 9:55137. [PMID: 32396062 PMCID: PMC7250569 DOI: 10.7554/elife.55137] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Neuronal degeneration in the zebrafish retina stimulates Müller glia (MG) to proliferate and generate multipotent progenitors for retinal repair. Controlling this proliferation is critical to successful regeneration. Previous studies reported that retinal injury stimulates pSmad3 signaling in injury-responsive MG. Contrary to these findings, we report pSmad3 expression is restricted to quiescent MG and suppressed in injury-responsive MG. Our data indicates that Tgfb3 is the ligand responsible for regulating pSmad3 expression. Remarkably, although overexpression of either Tgfb1b or Tgfb3 can stimulate pSmad3 expression in the injured retina, only Tgfb3 inhibits injury-dependent MG proliferation; suggesting the involvement of a non-canonical Tgfb signaling pathway. Furthermore, inhibition of Alk5, PP2A or Notch signaling rescues MG proliferation in Tgfb3 overexpressing zebrafish. Finally, we report that this Tgfb3 signaling pathway is active in zebrafish MG, but not those in mice, which may contribute to the different regenerative capabilities of MG from fish and mammals.
Collapse
Affiliation(s)
- Mi-Sun Lee
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Jin Wan
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Daniel Goldman
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| |
Collapse
|
99863
|
Li B, Li Y, Hu L, Liu Y, Zhou Q, Wang M, An Y, Li P. Role of Circular RNAs in the Pathogenesis of Cardiovascular Disease. J Cardiovasc Transl Res 2020; 13:572-583. [PMID: 32399680 DOI: 10.1007/s12265-019-09912-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are single-strand covalently closed circular noncoding RNAs that are endogenous transcripts generated from linear precursor mRNA through a backsplicing mechanism. With the development of high-throughput sequencing technology, a number of circRNAs have been identified and proved to play key roles in various pathophysiological processes, such as metabolic diseases, cancers, and cardiovascular diseases. An increasing number of studies have shown that circRNAs are widely expressed in cardiac tissues and play important roles in the development of multiple cardiovascular diseases. Here, we review the current understanding of circRNA biogenesis and functions and the roles of circRNAs in cardiovascular diseases. We also highlight the molecular mechanisms underlying the role of circRNAs in the pathogenesis of cardiovascular diseases. A better understanding of the biological function of circRNAs in cardiovascular diseases will be helpful for the development of effective biomarkers for the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Baowei Li
- Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Yuzhen Li
- Department of Pathophysiology, Institute of Basic Medical Science, PLA General Hospital, Beijing, 100853, China
| | - Longgang Hu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Ying Liu
- Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Qihui Zhou
- Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Man Wang
- Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China.
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
99864
|
Amir M, Mohammad T, Dohare R, Islam A, Ahmad F, Imtaiyaz Hassan M. Structure, function and therapeutic implications of OB-fold proteins: A lesson from past to present. Brief Funct Genomics 2020; 19:377-389. [PMID: 32393969 DOI: 10.1093/bfgp/elaa008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oligonucleotide/oligosaccharide-binding (OB)-fold proteins play essential roles in the regulation of genome and its correct transformation to the subsequent generation. To maintain the genomic stability, OB-fold proteins are implicated in various cellular processes including DNA replication, DNA repair, cell cycle regulation and maintenance of telomere. The diverse functional spectrums of OB-fold proteins are mainly due to their involvement in protein-DNA and protein-protein complexes. Mutations and consequential structural alteration in the OB-fold proteins often lead to severe diseases. Here, we have investigated the structure, function and mode of action of OB-fold proteins (RPA, BRCA2, DNA ligases and SSBs1/2) in cellular pathways and their relationship with diseases and their possible use in therapeutic intervention. Due to the crucial role of OB-fold proteins in regulating the key physiological process, a detailed structural understanding in the context of underlying mechanism of action and cellular complexity offers a new avenue to target OB-proteins for therapeutic intervention.
Collapse
|
99865
|
Hirata A, Okada K, Yoshii K, Shiraishi H, Saijo S, Yonezawa K, Shimizu N, Hori H. Structure of tRNA methyltransferase complex of Trm7 and Trm734 reveals a novel binding interface for tRNA recognition. Nucleic Acids Res 2020; 47:10942-10955. [PMID: 31586407 PMCID: PMC6847430 DOI: 10.1093/nar/gkz856] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022] Open
Abstract
The complex between Trm7 and Trm734 (Trm7–Trm734) from Saccharomyces cerevisiae catalyzes 2′-O-methylation at position 34 in tRNA. We report biochemical and structural studies of the Trm7–Trm734 complex. Purified recombinant Trm7–Trm734 preferentially methylates tRNAPhe transcript variants possessing two of three factors (Cm32, m1G37 and pyrimidine34). Therefore, tRNAPhe, tRNATrp and tRNALeu are specifically methylated by Trm7–Trm734. We have solved the crystal structures of the apo and S-adenosyl-L-methionine bound forms of Trm7–Trm734. Small angle X-ray scattering reveals that Trm7–Trm734 exists as a hetero-dimer in solution. Trm7 possesses a Rossmann-fold catalytic domain, while Trm734 consists of three WD40 β-propeller domains (termed BPA, BPB and BPC). BPA and BPC form a unique V-shaped cleft, which docks to Trm7. The C-terminal region of Trm7 is required for binding to Trm734. The D-arm of substrate tRNA is required for methylation by Trm7–Trm734. If the D-arm in tRNAPhe is docked onto the positively charged area of BPB in Trm734, the anticodon-loop is located near the catalytic pocket of Trm7. This model suggests that Trm734 is required for correct positioning of tRNA for methylation. Additionally, a point-mutation in Trm7, which is observed in FTSJ1 (human Trm7 ortholog) of nosyndromic X-linked intellectual disability patients, decreases the methylation activity.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Keisuke Okada
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kazuaki Yoshii
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Shiraishi
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shinya Saijo
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kento Yonezawa
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- To whom correspondence should be addressed. Tel: +81 89 927 8548; Fax: +81 89 927 9941;
| |
Collapse
|
99866
|
Lavalett L, Ortega H, Barrera LF. Infection of Monocytes From Tuberculosis Patients With Two Virulent Clinical Isolates of Mycobacterium tuberculosis Induces Alterations in Myeloid Effector Functions. Front Cell Infect Microbiol 2020; 10:163. [PMID: 32391286 PMCID: PMC7190864 DOI: 10.3389/fcimb.2020.00163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Monocytes play a critical role during infection with Mycobacterium tuberculosis (Mtb). They are recruited to the lung, where they participate in the control of infection during active tuberculosis (TB). Alternatively, inflammatory monocytes may participate in inflammation or serve as niches for Mtb infection. Monocytes response to infection may vary depending on the particularities of the clinical isolate of Mtb from which they are infected. In this pilot study, we have examined the baseline mRNA profiles of circulating human monocytes from patients with active TB (MoTB) compared with monocytes from healthy individuals (MoCT). Circulating MoTB displayed a pro-inflammatory transcriptome characterized by increased gene expression of genes associated with cytokines, monocytopoiesis, and down-regulation of MHC class II gene expression. In response to in vitro infection with two clinical isolates of the LAM family of Mtb (UT127 and UT205), MoTB displayed an attenuated inflammatory mRNA profile associated with down-regulation the TREM1 signaling pathway. Furthermore, the gene expression signature induced by Mtb UT205 clinical strain was characterized by the enrichment of genes in pathways and biological processes mainly associated with a signature of IFN-inducible genes and the inhibition of cell death mechanisms compared to MoTB-127, which could favor the establishment and survival of Mtb within the monocytes. These results suggest that circulating MoTB have an altered transcriptome that upon infection with Mtb may help to maintain chronic inflammation and infection. Moreover, this functional abnormality of monocytes may also depend on potential differences in virulence of circulating clinical strains of Mtb.
Collapse
Affiliation(s)
- Lelia Lavalett
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Hector Ortega
- Clínica Cardiovascular Santa María, Medellín, Colombia
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
99867
|
Abstract
Extracellular vesicles (EVs), primarily exosomes and microvesicles, are critical intercellular mediators of communication. Over the past decade, improved knowledge and methodologies have enabled the detection and quantification of RNA species in EVs, despite their extremely low levels. Recently, EV-associated long RNAs (exLRs) have been drawing much attention. Delivered by EVs, they have higher stability, greater difference in temporal and spatial expression, and the capacity to remodel both proximal and distal recipient cells. These properties guarantee their roles as biomarkers, therapeutic targets, vaccines, and gene therapy agents in a wide range of human diseases. Despite the progress in this area of research, limitations in both knowledge and methodologies have hindered its further development. Herein, we comprehensively reviewed studies related to exLRs, including protein-coding messenger RNAs (mRNAs) and noncoding RNAs (long noncoding RNAs and circular RNAs) in EVs to indicate their value in the diagnosis and treatment of human diseases; we also present a series of yet unsettled issues in this novel area, hence providing insights for future studies.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
99868
|
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020; 323:1824-1836. [PMID: 32282022 DOI: 10.1001/jama.2020.6019] [Citation(s) in RCA: 1253] [Impact Index Per Article: 313.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE The pandemic of coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents an unprecedented challenge to identify effective drugs for prevention and treatment. Given the rapid pace of scientific discovery and clinical data generated by the large number of people rapidly infected by SARS-CoV-2, clinicians need accurate evidence regarding effective medical treatments for this infection. OBSERVATIONS No proven effective therapies for this virus currently exist. The rapidly expanding knowledge regarding SARS-CoV-2 virology provides a significant number of potential drug targets. The most promising therapy is remdesivir. Remdesivir has potent in vitro activity against SARS-CoV-2, but it is not US Food and Drug Administration approved and currently is being tested in ongoing randomized trials. Oseltamivir has not been shown to have efficacy, and corticosteroids are currently not recommended. Current clinical evidence does not support stopping angiotensin-converting enzyme inhibitors or angiotensin receptor blockers in patients with COVID-19. CONCLUSIONS AND RELEVANCE The COVID-19 pandemic represents the greatest global public health crisis of this generation and, potentially, since the pandemic influenza outbreak of 1918. The speed and volume of clinical trials launched to investigate potential therapies for COVID-19 highlight both the need and capability to produce high-quality evidence even in the middle of a pandemic. No therapies have been shown effective to date.
Collapse
Affiliation(s)
- James M Sanders
- Department of Pharmacy, University of Texas Southwestern Medical Center, Dallas
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Marguerite L Monogue
- Department of Pharmacy, University of Texas Southwestern Medical Center, Dallas
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, University of Texas Southwestern Medical Center, Dallas
| | | | - James B Cutrell
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
99869
|
Yu T, Wang H, Zhang Y, Wang X, Han B. The Delivery of RNA-Interference Therapies Based on Engineered Hydrogels for Bone Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:445. [PMID: 32478058 PMCID: PMC7235334 DOI: 10.3389/fbioe.2020.00445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
RNA interference (RNAi) is an efficient post-transcriptional gene modulation strategy mediated by small interfering RNAs (siRNAs) and microRNAs (miRNAs). Since its discovery, RNAi has been utilized extensively to diagnose and treat diseases at both the cellular and molecular levels. However, the application of RNAi therapies in bone regeneration has not progressed to clinical trials. One of the major challenges for RNAi therapies is the lack of efficient and safe delivery vehicles that can actualize sustained release of RNA molecules at the target bone defect site and in surrounding cells. One promising approach to achieve these requirements is encapsulating RNAi molecules into hydrogels for delivery, which enables the nucleic acids to be delivered as RNA conjugates or within nanoparticles. Herein, we reviewed recent investigations into RNAi therapies for bone regeneration where RNA delivery was performed by hydrogels.
Collapse
Affiliation(s)
- Tingting Yu
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunfan Zhang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Han
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
99870
|
Abstract
Bromodomain-containing proteins are often part of chromatin-modifying complexes, and their activity can lead to altered expression of genes that drive cancer, inflammation and neurological disorders in humans. Bromodomain-PHD finger protein 1 (BRPF1) is part of the MOZ (monocytic leukemic zinc-finger protein) HAT (histone acetyltransferase) complex, which is associated with chromosomal translocations known to contribute to the development of acute myeloid leukemia (AML). BRPF1 contains a unique combination of chromatin reader domains including two plant homeodomain (PHD) fingers separated by a zinc knuckle (PZP domain), a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. BRPF1 is known to recruit the MOZ HAT complex to chromatin by recognizing acetylated lysine residues on the N-terminal histone tail region through its bromodomain. However, histone proteins can contain several acetylation modifications on their N-terminus, and it is unknown how additional marks influence bromodomain recruitment to chromatin. Here, we identify the BRPF1 bromodomain as a selective reader of di-acetyllysine modifications on histone H4. We used ITC assays to characterize the binding of di-acetylated histone ligands to the BRPF1 bromodomain and found that the domain binds preferentially to histone peptides H4K5acK8ac and H4K5acK12ac. Analytical ultracentrifugation (AUC) experiments revealed that the monomeric state of the BRPF1 bromodomain coordinates di-acetylated histone ligands. NMR chemical shift perturbation studies, along with binding and mutational analyses, revealed non-canonical regions of the bromodomain-binding pocket that are important for histone tail recognition. Together, our findings provide critical information on how the combinatorial action of post-translational modifications can modulate BRPF1 bromodomain binding and specificity.
Collapse
|
99871
|
Sarvepalli D. Coronavirus Disease 2019: A Comprehensive Review of Etiology, Pathogenesis, Diagnosis, and Ongoing Clinical Trials. Cureus 2020; 12:e8076. [PMID: 32542131 PMCID: PMC7292713 DOI: 10.7759/cureus.8076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 01/15/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease outbreak started in China in late December 2019 and quickly spread to the rest of the world, resulting in a pandemic. The incidence of cases is increasing every day, affecting millions of people around the globe and resulting in a public health emergency. Furthermore, disease management has been challenging for the clinicians and other medical personnel in terms of treatment options and availability of personal protective equipment. The off-label use of drugs such as hydroxychloroquine and emergency use authorization of remdesivir can hopefully help the clinicians while treating critically ill patients. The use of convalescent serum has also shown some interim benefit until a definitive treatment and preventive options are uncovered, such as vaccines and other effective treatment regimens.
Collapse
|
99872
|
Gomes I, de Almeida BP, Dâmaso S, Mansinho A, Correia I, Henriques S, Cruz-Duarte R, Vilhais G, Félix P, Alves P, Corredeira P, Barbosa-Morais NL, Costa L, Casimiro S. Expression of receptor activator of NFkB (RANK) drives stemness and resistance to therapy in ER+HER2- breast cancer. Oncotarget 2020; 11:1714-1728. [PMID: 32477461 PMCID: PMC7233807 DOI: 10.18632/oncotarget.27576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/10/2020] [Indexed: 12/30/2022] Open
Abstract
The role of RANKL-RANK pathway in progesterone-driven mammary carcinogenesis and triple negative breast cancer tumorigenesis has been well characterized. However, and despite evidences of the existence of RANK-positive hormone receptor (HR)-positive breast tumors, the implication of RANK expression in HR-positive breast cancers has not been addressed before. Here, we report that RANK pathway affects the expression of cell cycle regulators and decreases sensitivity to fulvestrant of estrogen receptor (ER)-positive (ER+)/HER2- breast cancer cells, MCF-7 and T47D. Moreover, RANK overexpressing cells had a staminal and mesenchymal phenotype, with decreased proliferation rate and decreased susceptibility to chemotherapy, but were more invasive in vivo. In silico analysis of the transcriptome of human breast tumors, confirmed the association between RANK expression and stem cell and mesenchymal markers in ER+HER2- tumors. Importantly, exposure of ER+HER2- cells to continuous RANK pathway activation by exogenous RANKL, in vitro and in vivo, induced a negative feedback effect, independent of RANK levels, leading to the downregulation of HR and increased resistance to hormone therapy. These results suggest that ER+HER2- RANK-positive cells may constitute an important reservoir of slow cycling, therapy-resistance cancer cells; and that RANK pathway activation is deleterious in all ER+HER2- breast cancer cells, independently of RANK levels.
Collapse
Affiliation(s)
- Inês Gomes
- Luis Costa Laboratory, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Bernardo P. de Almeida
- Nuno Morais Laboratory, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Current affiliation: Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Sara Dâmaso
- Serviço de Oncologia, Hospital de Santa Maria-CHULN, Lisboa, Portugal
| | - André Mansinho
- Luis Costa Laboratory, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Serviço de Oncologia, Hospital de Santa Maria-CHULN, Lisboa, Portugal
| | - Inês Correia
- Luis Costa Laboratory, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Sara Henriques
- Luis Costa Laboratory, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Raquel Cruz-Duarte
- Luis Costa Laboratory, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Guilherme Vilhais
- Luis Costa Laboratory, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Félix
- Luis Costa Laboratory, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia Alves
- Luis Costa Laboratory, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia Corredeira
- Luis Costa Laboratory, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Nuno L. Barbosa-Morais
- Nuno Morais Laboratory, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Luis Costa
- Luis Costa Laboratory, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Serviço de Oncologia, Hospital de Santa Maria-CHULN, Lisboa, Portugal
| | - Sandra Casimiro
- Luis Costa Laboratory, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
99873
|
Lin J, Feng M, Zhang H, She Q. Characterization of a novel type III CRISPR-Cas effector provides new insights into the allosteric activation and suppression of the Cas10 DNase. Cell Discov 2020; 6:29. [PMID: 32411384 PMCID: PMC7214462 DOI: 10.1038/s41421-020-0160-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023] Open
Abstract
Antiviral defense by type III CRISPR-Cas systems relies on two distinct activities of their effectors: the RNA-activated DNA cleavage and synthesis of cyclic oligoadenylate. Both activities are featured as indiscriminate nucleic acid cleavage and subjected to the spatiotemporal regulation. To yield further insights into the involved mechanisms, we reconstituted LdCsm, a lactobacilli III-A system in Escherichia coli. Upon activation by target RNA, this immune system mediates robust DNA degradation but lacks the synthesis of cyclic oligoadenylates. Mutagenesis of the Csm3 and Cas10 conserved residues revealed that Csm3 and multiple structural domains in Cas10 function in the allosteric regulation to yield an active enzyme. Target RNAs carrying various truncations in the 3' anti-tag were designed and tested for their influence on DNA binding and DNA cleavage of LdCsm. Three distinct states of ternary LdCsm complexes were identified. In particular, binding of target RNAs carrying a single nucleotide in the 3' anti-tag to LdCsm yielded an active LdCsm DNase regardless whether the nucleotide shows a mismatch, as in the cognate target RNA (CTR), or a match, as in the noncognate target RNA (NTR), to the 5' tag of crRNA. In addition, further increasing the number of 3' anti-tag in CTR facilitated the substrate binding and enhanced the substrate degradation whereas doing the same as in NTR gradually decreased the substrate binding and eventually shut off the DNA cleavage by the enzyme. Together, these results provide the mechanistic insights into the allosteric activation and repression of LdCsm enzymes.
Collapse
Affiliation(s)
- Jinzhong Lin
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Mingxia Feng
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, China
| | - Qunxin She
- Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Jimo, 266237 Qingdao, Shandong China
| |
Collapse
|
99874
|
Liu W, Xi J, Cao Y, You X, Chen R, Zhang X, Han L, Pan G, Luan Y. An Adaption of Human-Induced Hepatocytes to In Vitro Genetic Toxicity Tests. Mutagenesis 2020; 34:165-171. [PMID: 30590776 DOI: 10.1093/mutage/gey041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metabolic activation is essential in standard in vitro genotoxicity test systems. At present, there is a lack of suitable cell models that can express the major characteristics of liver function for predicting substance toxicity in humans. Human-induced hepatocytes (hiHeps), which have been generated from fibroblasts by lentiviral expression of liver transcription factors, can express hepatic gene programs and can be expanded in vitro and display functional characteristics of mature hepatocytes, including cytochrome P450 enzyme activity and biliary drug clearance. Our purpose was to investigate whether hiHeps could be used as a more suitable model for genotoxicity evaluation of chemicals. Therefore, a direct mutagen, methylmethanesulfonate (MMS), and five promutagens [2-nitrofluorene (2-NF), benzo[a]pyrene (B[a]P), aflatoxin B1, cyclophosphamide and N-nitrosodiethylamine] were tested by the cytokinesis-block micronucleus test and the comet assay. Results from genotoxicity tests showed that the micronucleus frequencies were significantly increased by all of the six clastogens tested. Moreover, MMS, 2-NF and B[a]P induced significant increases in the % Tail DNA in the comet assay. In conclusion, our findings from the preliminary study demonstrated that hiHeps could detect the genotoxicity of indirect carcinogens, suggesting their potential to be applied as an effective tool for in vitro genotoxicity assessments.
Collapse
Affiliation(s)
- Weiying Liu
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xi
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyi Cao
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue You
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixue Chen
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Zhang
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang Luan
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
99875
|
Ghosh RD, Pattatheyil A, Roychoudhury S. Functional Landscape of Dysregulated MicroRNAs in Oral Squamous Cell Carcinoma: Clinical Implications. Front Oncol 2020; 10:619. [PMID: 32547936 PMCID: PMC7274490 DOI: 10.3389/fonc.2020.00619] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miRNA) dysregulation is associated with the pathogenesis of oral squamous cell carcinoma (OSCC), and its elucidation could potentially provide information on patient outcome. A growing body of translational research on miRNA biology is focusing on precision oncology, aiming to decode the miRNA regulatory network in the development and progression of cancer. Tissue-specific expression and stable presence in all body fluids are unique features of miRNAs, which could be potentially exploited in the clinical setting. Recent understanding of miRNA properties has led them to be useful, attractive, and potential tools either as biomarkers (distinct miRNA expression signature) for diagnosis and prognostic outcomes or as targets for novel therapeutic entities, enabling personalized treatment for OSCC. In this review, we discuss recent research on different aspects of alterations in miRNA profiles along with their clinical significance and strive to identify probable potential miRNA biomarkers for diagnosis and prognosis of OSCC. We also discuss the current understanding and scope of development of miRNA-based therapeutics against OSCC.
Collapse
Affiliation(s)
- Ruma Dey Ghosh
- Tata Translational Cancer Research Center, Tata Medical Center, Kolkata, India
| | - Arun Pattatheyil
- Department of Head and Neck Surgical Oncology, Tata Medical Center, Kolkata, India
| | | |
Collapse
|
99876
|
Bartoloni S, Leone S, Acconcia F. Unexpected Impact of a Hepatitis C Virus Inhibitor on 17β-Estradiol Signaling in Breast Cancer. Int J Mol Sci 2020; 21:ijms21103418. [PMID: 32408555 PMCID: PMC7279444 DOI: 10.3390/ijms21103418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/10/2023] Open
Abstract
17β-Estradiol (E2) controls diverse physiological processes, including cell proliferation, through its binding to estrogen receptor α (ERα). E2:ERα signaling depends on both the receptor subcellular localization (e.g., nucleus, plasma membrane) and intracellular ERα abundance. Indeed, the control of ERα levels is necessary for the effects of E2, and E2 itself induces ERα degradation and cell proliferation in parallel. Thus, the modulation of intracellular ERα levels is a critical parameter for E2-induced cell proliferation. Therefore, we used this parameter as a bait to identify compounds that influence ERα levels and E2-dependent proliferation in breast cancer (BC) cells from a library of Food and Drug Administration (FDA)-approved drugs. We found that telaprevir (Tel) reduces ERα levels and inhibits BC cell proliferation. Tel is an inhibitor of the hepatitis C virus (HCV) NS3/4A serine protease, but its effect on E2:ERα signaling has not been investigated. Here, for the first time, we analyzed the effects of Tel on intracellular ERα levels and E2:ERα signaling to cell proliferation in different ERα-expressing BC cell lines. Overall, our findings demonstrate that Tel reduces intracellular ERα levels, deregulates E2:ERα signaling and inhibits E2-induced proliferation in BC cells and suggest the potential drug repurposing of Tel for the treatment of BC.
Collapse
|
99877
|
Abstract
Opportunistic pathogens such as Candida species can use carboxylic acids, like acetate and lactate, to survive and successfully thrive in different environmental niches. These nonfermentable substrates are frequently the major carbon sources present in certain human body sites, and their efficient uptake by regulated plasma membrane transporters plays a critical role in such nutrient-limited conditions. Here, we cover the physiology and regulation of these proteins and their potential role in Candida virulence. Opportunistic pathogens such as Candida species can use carboxylic acids, like acetate and lactate, to survive and successfully thrive in different environmental niches. These nonfermentable substrates are frequently the major carbon sources present in certain human body sites, and their efficient uptake by regulated plasma membrane transporters plays a critical role in such nutrient-limited conditions. Here, we cover the physiology and regulation of these proteins and their potential role in Candida virulence. This review also presents an evolutionary analysis of orthologues of the Saccharomyces cerevisiae Jen1 lactate and Ady2 acetate transporters, including a phylogenetic analysis of 101 putative carboxylate transporters in twelve medically relevant Candida species. These proteins are assigned to distinct clades according to their amino acid sequence homology and represent the major carboxylic acid uptake systems in yeast. While Jen transporters belong to the sialate:H+ symporter (SHS) family, the Ady2 homologue members are assigned to the acetate uptake transporter (AceTr) family. Here, we reclassify the later members as ATO (acetate transporter ortholog). The new nomenclature will facilitate the study of these transporters, as well as the analysis of their relevance for Candida pathogenesis.
Collapse
|
99878
|
Oxidized mitochondrial DNA sensing by STING signaling promotes the antitumor effect of an irradiated immunogenic cancer cell vaccine. Cell Mol Immunol 2020; 18:2211-2223. [PMID: 32398808 PMCID: PMC8429462 DOI: 10.1038/s41423-020-0456-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/21/2020] [Indexed: 02/05/2023] Open
Abstract
Exposure to ionizing radiation, a physical treatment that inactivates live tumor cells, has been extensively applied to enhance the antitumor responses induced by cancer cell vaccines in both animal research and human clinical trials. However, the mechanisms by which irradiated cells function as immunogenic tumor vaccines and induce effective antitumor responses have not been fully explored. Here, we demonstrate that oxidized mitochondrial DNA (mtDNA) and stimulator of interferon genes (STING) signaling play a key roles in the enhanced antitumor effect achieved with an irradiated tumor cell vaccine. Elevations in ROS and oxidized mtDNA 8-OHG content could be induced in irradiated tumor cells. Oxidized mtDNA derived from irradiated tumor cells gained access to the cytosol of dendritic cells (DCs). Oxidized mtDNA, as a DAMP or adjuvant, activated the STING-TBK1-IRF3-IFN-β pathway in DCs, which subsequently cross-presented irradiated tumor cell-derived antigens to CD8+ T cells and elicited antitumor immunity. The results of our study provide insight into the mechanism by which an irradiated cell vaccine mediates antitumor immunity, which may have implications for new strategies to improve the efficacy of irradiated vaccines.
Collapse
|
99879
|
Hernández-García J, Briones-Moreno A, Blázquez MA. Origin and evolution of gibberellin signaling and metabolism in plants. Semin Cell Dev Biol 2020; 109:46-54. [PMID: 32414681 DOI: 10.1016/j.semcdb.2020.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
Gibberellins modulate multiple aspects of plant behavior. The molecular mechanism by which these hormones are perceived and how this information is translated into transcriptional changes has been elucidated in vascular plants: gibberellins are perceived by the nuclear receptor GID1, which then interacts with the DELLA nuclear proteins and promote their degradation, resulting in the modification of the activity of transcription factors with which DELLAs interact physically. However, several important questions are still pending: how does a single molecule perform such a vast array of functions along plant development? What property do gibberellins add to plant behavior? A closer look at gibberellin action from an evolutionary perspective can help answer these questions. DELLA proteins are conserved in all land plants, and predate the emergence of a full gibberellin metabolic pathway and the GID1 receptor in the ancestor of vascular plants. The origin of gibberellin signaling is linked to the exaptation by GID1 of the N-terminal domain in DELLA, which already acted as a transcriptional coactivator domain in the ancestral DELLA proteins. At least the ability to control plant growth seems to be encoded already in the ancestral DELLA protein too, suggesting that gibberellins' functional diversity is the direct consequence of DELLA protein activity. Finally, comparative network analysis suggests that gibberellin signaling increases the coordination of transcriptional responses, providing a theoretical framework for the role of gibberellins in plant adaptation at the evolutionary scale, which further needs experimental testing.
Collapse
Affiliation(s)
- Jorge Hernández-García
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Spain
| | - Asier Briones-Moreno
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Spain.
| |
Collapse
|
99880
|
Ishida T, Nakao S, Ueyama T, Harada Y, Kawamura T. Metabolic remodeling during somatic cell reprogramming to induced pluripotent stem cells: involvement of hypoxia-inducible factor 1. Inflamm Regen 2020; 40:8. [PMID: 32426078 PMCID: PMC7216665 DOI: 10.1186/s41232-020-00117-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) were first established from differentiated somatic cells by gene introduction of key transcription factors, OCT4, SOX2, KLF4, and c-MYC, over a decade ago. Although iPSCs can be applicable for regenerative medicine, disease modeling and drug screening, several issues associated with the utilization of iPSCs such as low reprogramming efficiency and the risk of tumorigenesis, still need to be resolved. In addition, the molecular mechanisms involved in the somatic cell reprogramming to pluripotency are yet to be elucidated. Compared with their somatic counterparts, pluripotent stem cells, including embryonic stem cells and iPSCs, exhibit a high rate of glycolysis akin to aerobic glycolysis in cancer cells. This is known as the Warburg effect and is essential for maintaining stem cell properties. This unique glycolytic metabolism in iPSCs can provide energy and drive the pentose phosphate pathway, which is the preferred pathway for rapid cell proliferation. During reprogramming, somatic cells undergo a metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis trigged by a transient OXPHOS burst, resulting in the initiation and progression of reprogramming to iPSCs. Metabolic intermediates and mitochondrial functions are also involved in the epigenetic modification necessary for the process of iPSC reprogramming. Among the key regulatory molecules that have been reported to be involved in metabolic shift so far, hypoxia-inducible factor 1 (HIF1) controls the transcription of many target genes to initiate metabolic changes in the early stage and maintains glycolytic metabolism in the later phase of reprogramming. This review summarizes the current understanding of the unique metabolism of pluripotent stem cells and the metabolic shift during reprogramming, and details the relevance of HIF1 in the metabolic shift.
Collapse
Affiliation(s)
- Tomoaki Ishida
- 1Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,2Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Shu Nakao
- 1Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,2Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Tomoe Ueyama
- 1Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,2Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Yukihiro Harada
- 1Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,2Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Teruhisa Kawamura
- 1Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,2Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
99881
|
Talreja J, Bauerfeld C, Sendler E, Pique-Regi R, Luca F, Samavati L. Derangement of Metabolic and Lysosomal Gene Profiles in Response to Dexamethasone Treatment in Sarcoidosis. Front Immunol 2020; 11:779. [PMID: 32477331 PMCID: PMC7235403 DOI: 10.3389/fimmu.2020.00779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) play a central role in modulation of inflammation in various diseases, including respiratory diseases such as sarcoidosis. Surprisingly, the specific anti-inflammatory effects of GCs on different myeloid cells especially in macrophages remain poorly understood. Sarcoidosis is a systemic granulomatous disease of unknown etiology that occurs worldwide and is characterized by granuloma formation in different organs. Alveolar macrophages play a role in sarcoidosis granuloma formation and progressive lung disease. The goal of the present study is to identify the effect of GCs on transcriptomic profiles and the cellular pathways in sarcoidosis alveolar macrophages and their corresponding blood myeloid cells. We determined and compared the whole transcriptional signatures of alveolar macrophages from sarcoidosis patients and blood CD14+ monocytes of the same subjects in response to in vitro treatment with dexamethasone (DEX) via RNA-sequencing. In response to DEX, we identified 2,834 genes that were differentially expressed in AM. Predominant pathways affected were as following: metabolic pathway (FDR = 4.1 × 10−10), lysosome (FDR = 6.3 × 10−9), phagosome (FDR = 3.9 × 10−5). The DEX effect on AMs is associated with metabolic derangements involving glycolysis, oxidative phosphorylation and lipid metabolisms. In contrast, the top impacted pathways in response to DEX treatment in blood CD14+ monocytes were as following; cytokine-cytokine receptor interaction (FDR = 6 × 10−6) and transcriptional misregulation in cancer (FDR = 1 × 10−4). Pathways similarly affected in both cell types were genes involved in lysosomes, cytoskeleton and transcriptional misregulation in cancer. These data suggest that the different effects of DEX on AMs and peripheral blood monocytes are partly dictated by lineage specific transcriptional programs and their physiological functions.
Collapse
Affiliation(s)
- Jaya Talreja
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine and Detroit Medical Center, Wayne State University, Detroit, MI, United States
| | - Christian Bauerfeld
- Division of Critical Care, Department of Pediatrics, School of Medicine and Detroit Medical Center, Wayne State University, Detroit, MI, United States
| | - Edward Sendler
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States.,Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States.,Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Lobelia Samavati
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine and Detroit Medical Center, Wayne State University, Detroit, MI, United States.,Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
99882
|
Devarasetty M, Forsythe SD, Shelkey E, Soker S. In Vitro Modeling of the Tumor Microenvironment in Tumor Organoids. Tissue Eng Regen Med 2020; 17:759-771. [PMID: 32399776 DOI: 10.1007/s13770-020-00258-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The tumor microenvironment (TME) represents the many components occupying the space within and surrounding a tumor, including cells, signaling factors, extracellular matrix, and vasculature. Each component has the potential to assume many forms and functions which in turn contribute to the overall state of the TME, and further contribute to the progression and disposition of the tumor itself. The sum of these components can drive a tumor towards progression, keep a migratory tumor at bay, or even control chemotherapeutic response. The wide potential for interaction that the TME is an integral part of a tumor's ecosystem, and it is imperative to include it when studying and modeling cancer in vitro. Fortunately, the development of tissue engineering and biofabrication technologies and methodologies have allowed widespread inclusion of TME-based factors into in vitro tissue-equivalent models. METHODS In this review, we compiled contemporary literature sources to provide an overview of the field of TME models, ranging from simple to complex. RESULTS We have identified important components of the TME, how they can be included in in vitro study, and cover examples across a range of cancer types. CONCLUSION Our goal with this text is to provide a foundation for prospective research into the TME.
Collapse
Affiliation(s)
- Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Steven D Forsythe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Ethan Shelkey
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
99883
|
Iwasaki Y, Takeshima Y, Fujio K. Basic mechanism of immune system activation by mitochondria. Immunol Med 2020; 43:142-147. [PMID: 32393116 DOI: 10.1080/25785826.2020.1756609] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Almost 160 years after the discovery of mitochondria, they are known for their production of energy and are called "the powerhouse of the cell". Recently, immune-metabolism has been revealed as a key factor controlling immune cell proliferation and differentiation. Resting lymphocytes generate energy through oxidative phosphorylation and fatty acid oxidation, whereas activated lymphocytes rapidly shift to glycolysis. Oxidative phosphorylation (OXPHOS) as well as mitochondrial reactive oxygen species (mtROS) generated through the electron transport chain (ETC) are involved in many immune cell functions. Moreover, mitochondria are dynamic organelles that can provide immunogenic molecules, such as mitochondrial DNA (mtDNA) resulting in innate immune system activation. Here, we describe the role of mitochondria in immune system regulation, highlighting metabolism-dependent and other immunogenic aspects.
Collapse
Affiliation(s)
- Yukiko Iwasaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Takeshima
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
99884
|
Ku AA, Hu HM, Zhao X, Shah KN, Kongara S, Wu D, McCormick F, Balmain A, Bandyopadhyay S. Integration of multiple biological contexts reveals principles of synthetic lethality that affect reproducibility. Nat Commun 2020; 11:2375. [PMID: 32398776 PMCID: PMC7217969 DOI: 10.1038/s41467-020-16078-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/08/2020] [Indexed: 12/30/2022] Open
Abstract
Synthetic lethal screens have the potential to identify new vulnerabilities incurred by specific cancer mutations but have been hindered by lack of agreement between studies. In the case of KRAS, we identify that published synthetic lethal screen hits significantly overlap at the pathway rather than gene level. Analysis of pathways encoded as protein networks could identify synthetic lethal candidates that are more reproducible than those previously reported. Lack of overlap likely stems from biological rather than technical limitations as most synthetic lethal phenotypes are strongly modulated by changes in cellular conditions or genetic context, the latter determined using a pairwise genetic interaction map that identifies numerous interactions that suppress synthetic lethal effects. Accounting for pathway, cellular and genetic context nominates a DNA repair dependency in KRAS-mutant cells, mediated by a network containing BRCA1. We provide evidence for why most reported synthetic lethals are not reproducible which is addressable using a multi-faceted testing framework.
Collapse
Affiliation(s)
- Angel A Ku
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Hsien-Ming Hu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Xin Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Khyati N Shah
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Sameera Kongara
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Di Wu
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Sourav Bandyopadhyay
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
99885
|
Webber CJ, Lei SE, Wolozin B. The pathophysiology of neurodegenerative disease: Disturbing the balance between phase separation and irreversible aggregation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:187-223. [PMID: 32828466 DOI: 10.1016/bs.pmbts.2020.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liquid-liquid phase separation (LLPS) brings together functionally related proteins through the intrinsic biophysics of proteins in a process that is driven by reducing free energy and maximizing entropy. The process of LLPS allows proteins to form structures, termed membrane-less organelles. These diverse, dynamic organelles are active in a wide range of processes in the nucleus, cytoplasm, mitochondria and synapse, and ranging from bacteria to plants to eukaryotes. RNA and DNA present long chained charged polymers that promote LLPS. Consequently, many RNA binding proteins (RBPs) and DNA binding proteins form membrane-less organelles. However, the highly concentrated phase separated state creates conditions that also promote formation of irreversible protein aggregates. Mutations in RNA and DNA binding proteins that increase the stability of irreversible aggregates also increase the accumulation of irreversible aggregates directly and from membrane-less organelles. Many of the RBPs that exhibit disease-linked mutations carry out cytoplasmic actions through stress granules, which are a pleiotropic type of RNA granule that regulates the translational response to stress. Phosphorylation and oligomerization of tau facilitates its interactions with RBPs and ribosomal proteins, affecting RNA translation; we propose that this is a major reason that tau becomes phosphorylated with stress. Persistent stress leads to the accumulation of irreversible aggregates composed of RBPs or tau, which then cause toxicity and form many of the hallmark pathologies of major neurodegenerative diseases. This pathophysiology ultimately leads to multiple forms of neurodegenerative diseases, the specific type of which reflects the temporal and spatial accumulation of different aggregating proteins.
Collapse
Affiliation(s)
- Chelsea J Webber
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, United States
| | - Shuwen Eric Lei
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin Wolozin
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, United States; Department of Neurology, Boston University School of Medicine, Boston, MA, United States; Program in Neuroscience, Boston University, Boston, MA, United States; Neurophotonics Center, Boston University, Boston, MA, United States.
| |
Collapse
|
99886
|
Liang CY, Rengasamy KP, Huang LM, Hsu CC, Jeng MF, Chen WH, Chen HH. Assessment of violet-blue color formation in Phalaenopsis orchids. BMC PLANT BIOLOGY 2020; 20:212. [PMID: 32397954 PMCID: PMC7218627 DOI: 10.1186/s12870-020-02402-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/22/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Phalaenopsis represents an important cash crop worldwide. Abundant flower colors observed in Phalaenopsis orchids range from red-purple, purple, purple-violet, violet, and violet-blue. However, violet-blue orchids are less bred than are those of other colors. Anthocyanin, vacuolar pH and metal ions are three major factors influencing flower color. This study aimed to identify the factors causing the violet-blue color in Phalaenopsis flowers and to analyze whether delphinidin accumulation and blue pigmentation formation can be achieved by transient overexpression of heterologous F3'5'H in Phalaenopsis. RESULTS Cyanidin-based anthocyanin was highly accumulated in Phalaenopsis flowers with red-purple, purple, purple-violet, and violet to violet-blue color, but no true-blue color and no delphinidin was detected. Concomitantly, the expression of PeF3'H (Phalaenopsis equestrsis) was high, but that of PhF3'5'H (Phalaenopsis hybrid) was low or absent in various-colored Phalaenopsis flowers. Transient overexpression of DgF3'5'H (Delphinium grandiflorum) and PeMYB2 in a white Phalaenopsis cultivar resulted a 53.6% delphinidin accumulation and a novel blue color formation. In contrast, transient overexpression of both PhF3'5'H and PeMYB2 did not lead to delphinidin accumulation. Sequence analysis showed that the substrate recognition site 6 (SRS6) of PhF3'5'H was consistently different from DgF3'5'Hs at positions 5, 8 and 10. Prediction of molecular docking of the substrates showed a contrary binding direction of aromatic rings (B-ring) with the SRS6 domain of DgF3'5'H and PhF3'5'H. In addition, the pH values of violet-blue and purple Phalaenopsis flowers ranged from 5.33 to 5.54 and 4.77 to 5.04, respectively. Furthermore, the molar ratio of metal ions (including Al3+, Ca2+ and Fe3+) to anthocyanin in violet-blue color Phalaenopsis was 190-, 49-, and 51-fold higher, respectively, than those in purple-color Phalaenopsis. CONCLUSION Cyanidin-based anthocyanin was detected in violet-blue color Phalaenopsis and was concomitant with a high pH value and high molar ratio of Al3+, Ca2+ and Fe3+ to anthocyanin content. Enhanced expression of delphinidin is needed to produce true-blue Phalaenopsis.
Collapse
Affiliation(s)
- Che-Yu Liang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | | | - Li-Min Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chia-Chi Hsu
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Mei-Fen Jeng
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Huei Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan.
- , Nantou City, Taiwan.
| |
Collapse
|
99887
|
Xu Y, Guo X, Wang G, Zhou C. Vitamin C Inhibits Metastasis of Peritoneal Tumors By Preventing Spheroid Formation in ID8 Murine Epithelial Peritoneal Cancer Model. Front Pharmacol 2020; 11:645. [PMID: 32477126 PMCID: PMC7236773 DOI: 10.3389/fphar.2020.00645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
High mortality is associated with exclusively metastasis within the peritoneal cavity among patients with epithelial ovarian cancer that is the most lethal gynecologic cancer. There is an unmet need to develop more effective therapies to prevent metastasis of peritoneal cancer. Multicellular spheroid formation, during which cancer cells migrate and adhere to tumor-associated macrophages, is a critical step of ovarian cancer metastasis. Here, we showed that vitamin C inhibited spheroid formation and metastasis in ID8 ovarian cancer-bearing mice. We further found that vitamin C treatment decreased the levels of M2 macrophages in tumor nodules and suppressed the epithelial-mesenchymal transition (EMT). In vitro studies revealed that vitamin C inhibited proliferation, arrested cell cycle, attenuated migration, and prevented the spheroid formation of ID8 ovarian cancer cells. Vitamin C induced apoptosis of ID8 cells, which was confirmed by membrane potential collapse, cytosolic calcium overload, ATP depletion, and caspase-3 activation in vitamin C-treated cells. Intriguingly, vitamin C treatment caused striking morphological change and apoptosis of macrophages. The presented proof of concept study strategically identifies new anticancer mechanisms of vitamin C.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Xing Guo
- Department of Pharmacy, People's Hospital of Rizhao, Rizhao, China
| | - Ganyu Wang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Changkuo Zhou
- Department of Urology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
99888
|
Affiliation(s)
- Huiyin Lan
- The Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Department of Radiation Oncology, Zhejiang Key Lab of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yi Sun
- The Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
99889
|
Ebrahimi SO, Reiisi S, Shareef S. miRNAs, oxidative stress, and cancer: A comprehensive and updated review. J Cell Physiol 2020; 235:8812-8825. [PMID: 32394436 DOI: 10.1002/jcp.29724] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/07/2020] [Indexed: 01/17/2023]
Abstract
Oxidative stress refers to elevated levels of intracellular reactive oxygen species (ROS). ROS homeostasis functions as a signaling pathway for normal cell survival and appropriate cell signaling. Chronic inflammation induced by imbalanced levels of ROS contributes to many diseases and different types of cancer. ROS can alter the expression of oncogenes and tumor suppressor genes through epigenetic modifications, transcription factors, and non-coding RNAs. MicroRNAs (miRNAs) are small non-coding RNAs that play a key role in most biological pathways. Each miRNA regulates hundreds of target genes by inhibiting protein translation and/or promoting messenger RNA degradation. In normal conditions, miRNAs play a physiological role in cell proliferation, differentiation, and apoptosis. However, different factors that can dysregulate cell signaling and cellular homeostasis can also affect miRNA expression. The alteration of miRNA expression can work against disturbing factors or mediate their effects. Oxidative stress is one of these factors. Considering the complex interplay between ROS level and miRNA regulation and both of these with cancer development, we review the role of miRNAs in cancer, focusing on their function in oxidative stress.
Collapse
Affiliation(s)
- Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Salar Shareef
- Department of Medical Laboratory Science, College of Sciences, University of Raparin, Ranya, Kurdistan Region, Iraq
| |
Collapse
|
99890
|
Berk JM, Lim C, Ronau JA, Chaudhuri A, Chen H, Beckmann JF, Loria JP, Xiong Y, Hochstrasser M. A deubiquitylase with an unusually high-affinity ubiquitin-binding domain from the scrub typhus pathogen Orientia tsutsugamushi. Nat Commun 2020; 11:2343. [PMID: 32393759 PMCID: PMC7214410 DOI: 10.1038/s41467-020-15985-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/02/2020] [Indexed: 01/07/2023] Open
Abstract
Ubiquitin mediated signaling contributes critically to host cell defenses during pathogen infection. Many pathogens manipulate the ubiquitin system to evade these defenses. Here we characterize a likely effector protein bearing a deubiquitylase (DUB) domain from the obligate intracellular bacterium Orientia tsutsugamushi, the causative agent of scrub typhus. The Ulp1-like DUB prefers ubiquitin substrates over ubiquitin-like proteins and efficiently cleaves polyubiquitin chains of three or more ubiquitins. The co-crystal structure of the DUB (OtDUB) domain with ubiquitin revealed three bound ubiquitins: one engages the S1 site, the second binds an S2 site contributing to chain specificity and the third binds a unique ubiquitin-binding domain (UBD). The UBD modulates OtDUB activity, undergoes a pronounced structural transition upon binding ubiquitin, and binds monoubiquitin with an unprecedented ~5 nM dissociation constant. The characterization and high-resolution structure determination of this enzyme should aid in its development as a drug target to counter Orientia infections.
Collapse
Affiliation(s)
- Jason M Berk
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Christopher Lim
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Judith A Ronau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Discovery, Research and Development, AbbVie, Inc., North Chicago, IL, 60064, USA
| | - Apala Chaudhuri
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Hongli Chen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - John F Beckmann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36830, USA
| | - J Patrick Loria
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
99891
|
Wang J, Zhang P, Lu Y, Li Y, Zheng Y, Kan Y, Chen R, He S. piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res 2020; 47:D175-D180. [PMID: 30371818 PMCID: PMC6323959 DOI: 10.1093/nar/gky1043] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
PIWI-interacting RNAs are a class of small RNAs that is most abundantly expressed in animal germline. Substantial research is going on to reveal the functions of piRNAs in the epigenetic and post-transcriptional regulation of transposons and genes. To collect and annotate these data, we developed piRBase, a database assisting piRNA functional study. Since its launch in 2014, piRBase has integrated 264 data sets from 21 organisms, and the number of collected piRNAs has reached 173 million. The latest piRBase release (v2.0, 2018) was more focused on the comprehensive annotation of piRNA sequences, as well as the increasing number of piRNAs. In addition, piRBase release v2.0 also contained the potential information of piRNA targets and disease related piRNA. All datasets in piRBase is free to access, and available for browse, search and bulk downloads at http://www.regulatoryrna.org/database/piRNA/.
Collapse
Affiliation(s)
- Jiajia Wang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiping Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001,China
| | - Yanyan Li
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Yu Zheng
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Yunchao Kan
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, Henan 473061,China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
99892
|
Position Statement on the Management of Cardiac Electrophysiology and Cardiac Implantable Electronic Devices in Australia During the COVID-19 Pandemic: A Living Document. Heart Lung Circ 2020; 29:e57-e68. [PMID: 32451232 PMCID: PMC7213961 DOI: 10.1016/j.hlc.2020.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic poses a significant stress on health resources in Australia. The Heart Rhythm Council of the Cardiac Society of Australia and New Zealand aims to provide a framework for efficient resource utilisation balanced with competing risks when appropriately treating patients with cardiac arrhythmias. This document provides practical recommendations for the electrophysiology (EP) and cardiac implantable electronic devices (CIED) services in Australia. The document will be updated regularly as new evidence and knowledge is gained with time.
Collapse
|
99893
|
|
99894
|
Tsatsakis A, Petrakis D, Nikolouzakis TK, Docea AO, Calina D, Vinceti M, Goumenou M, Kostoff RN, Mamoulakis C, Aschner M, Hernández AF. COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. Food Chem Toxicol 2020; 141:111418. [PMID: 32437891 PMCID: PMC7211730 DOI: 10.1016/j.fct.2020.111418] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Occupational, residential, dietary and environmental exposures to mixtures of synthetic anthropogenic chemicals after World War II have a strong relationship with the increase of chronic diseases, health cost and environmental pollution. The link between environment and immunity is particularly intriguing as it is known that chemicals and drugs can cause immunotoxicity (e.g., allergies and autoimmune diseases). In this review, we emphasize the relationship between long-term exposure to xenobiotic mixtures and immune deficiency inherent to chronic diseases and epidemics/pandemics. We also address the immunotoxicologic risk of vulnerable groups, taking into account biochemical and biophysical properties of SARS-CoV-2 and its immunopathological implications. We particularly underline the common mechanisms by which xenobiotics and SARS-CoV-2 act at the cellular and molecular level. We discuss how long-term exposure to thousand chemicals in mixtures, mostly fossil fuel derivatives, exposure toparticle matters, metals, ultraviolet (UV)–B radiation, ionizing radiation and lifestyle contribute to immunodeficiency observed in the contemporary pandemic, such as COVID-19, and thus threaten global public health, human prosperity and achievements, and global economy. Finally, we propose metrics which are needed to address the diverse health effects of anthropogenic COVID-19 crisis at present and those required to prevent similar future pandemics. Developmental exposure to environmental factors can disrupt the immune system. Long-term low-dose exposure to chemical mixtures is linked to imunodeficiency Immunodeficiency contributes to chronic diseases and the current Covid-19 pandemics. Environmental chemicals and microorganisms share similar molecular pathomechanisms (AhR pathway). Understanding the underlying pathomechanisms helps to improve public health.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece; Department of Analytical and Forensic Medical Toxicology, Sechenov University, 2-4 Bolshaya Pirogovskaya st., 119991 Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | - Demetrious Petrakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece.
| | | | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I-41125 Modena, Italy.
| | - Marina Goumenou
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Ronald N Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA, 20155, USA.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Michael Aschner
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 2-4 Bolshaya Pirogovskaya st., 119991 Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, 180016 Granada, Spain.
| |
Collapse
|
99895
|
Bjeije H, Soltani BM, Behmanesh M, Zali MR. YWHAE long non-coding RNA competes with miR-323a-3p and miR-532-5p through activating K-Ras/Erk1/2 and PI3K/Akt signaling pathways in HCT116 cells. Hum Mol Genet 2020; 28:3219-3231. [PMID: 31238337 DOI: 10.1093/hmg/ddz146] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/25/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022] Open
Abstract
YWHAE gene product belongs to the 14-3-3 protein family that mediates signal transduction in plants and mammals. Protein-coding and non-coding RNA (lncRNA) transcripts have been reported for this gene in human. Here, we aimed to functionally characterize YWHAE-encoded lncRNA in colorectal cancer-originated cells. RNA-seq analysis showed that YWHAE gene is upregulated in colorectal cancer specimens. Additionally, bioinformatics analysis suggested that YWHAE lncRNA sponges miR-323a-3p and miR-532-5p that were predicted to target K-Ras 3'UTR sequence. Overexpression of YWHAE lncRNA resulted in upregulation of K-Ras gene expression, while overexpression of both miR-323a-3p and miR-532-5p had an inverse effect, detected by RT-qPCR. Consistently, western blot analysis confirmed that YWHAE lncRNA overexpression upregulated K-Ras/Erk1/2 and PI3K/Akt signaling pathways, while miR-323a-3p and miR-532-5p overexpression suppressed both pathways in HCT116 cells. Furthermore, dual luciferase assay validated the direct interaction of miR-323a-3p and miR-532-5p with K-Ras 3'UTR sequence and supported the sponging effect of YWHAE lncRNA over both miRNAs. These results suggested YWHAE lncRNA as an oncogene that exerts its effect through sponging miR-323a-3p and miR-532-5p and in turn, upregulates K-Ras/Erk1/2 and PI3K/Akt signaling pathways. Consistently, flow cytometry analysis, MTT assay and measuring cyclin D1 gene expression, confirmed the cell cycle stimulatory effect of YWHAE lncRNA, while miR-323a-3p and miR-532-5p showed an inhibitory effect on cell cycle progression. Finally, wound-healing assay supported the cell migratory effect of YWHAE lncRNA in HCT116 cells. This study identified a novel mechanism involving YWHAE-encoded lncRNA, miR-323a-3p and miR-532-5p in regulating HCT116 cell survival and suggested a potential therapeutic avenue for colorectal cancer.
Collapse
Affiliation(s)
- Hassan Bjeije
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Mohammad Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
99896
|
Nishana M, Ha C, Rodriguez-Hernaez J, Ranjbaran A, Chio E, Nora EP, Badri SB, Kloetgen A, Bruneau BG, Tsirigos A, Skok JA. Defining the relative and combined contribution of CTCF and CTCFL to genomic regulation. Genome Biol 2020; 21:108. [PMID: 32393311 PMCID: PMC7212617 DOI: 10.1186/s13059-020-02024-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ubiquitously expressed CTCF is involved in numerous cellular functions, such as organizing chromatin into TAD structures. In contrast, its paralog, CTCFL, is normally only present in the testis. However, it is also aberrantly expressed in many cancers. While it is known that shared and unique zinc finger sequences in CTCF and CTCFL enable CTCFL to bind competitively to a subset of CTCF binding sites as well as its own unique locations, the impact of CTCFL on chromosome organization and gene expression has not been comprehensively analyzed in the context of CTCF function. Using an inducible complementation system, we analyze the impact of expressing CTCFL and CTCF-CTCFL chimeric proteins in the presence or absence of endogenous CTCF to clarify the relative and combined contribution of CTCF and CTCFL to chromosome organization and transcription. RESULTS We demonstrate that the N terminus of CTCF interacts with cohesin which explains the requirement for convergent CTCF binding sites in loop formation. By analyzing CTCF and CTCFL binding in tandem, we identify phenotypically distinct sites with respect to motifs, targeting to promoter/intronic intergenic regions and chromatin folding. Finally, we reveal that the N, C, and zinc finger terminal domains play unique roles in targeting each paralog to distinct binding sites to regulate transcription, chromatin looping, and insulation. CONCLUSION This study clarifies the unique and combined contribution of CTCF and CTCFL to chromosome organization and transcription, with direct implications for understanding how their co-expression deregulates transcription in cancer.
Collapse
Affiliation(s)
| | - Caryn Ha
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | | | - Ali Ranjbaran
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Erica Chio
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Elphege P Nora
- Gladstone Institutes, San Francisco, CA, 94158, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, 94158, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA, 94158, USA
| | - Sana B Badri
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Andreas Kloetgen
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, 10016, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, 94158, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, 94158, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA, 94158, USA.,Department of Pediatrics, University of California, San Francisco, CA, 94158, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA.,Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, 10016, USA
| | - Jane A Skok
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA. .,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
99897
|
Yu S, Zhou C, Cao S, He J, Cai B, Wu K, Qin Y, Huang X, Xiao L, Ye J, Xu S, Xie W, Kuang J, Chu S, Guo J, Liu H, Pang W, Guo L, Zeng M, Wang X, Luo R, Li C, Zhao G, Wang B, Wu L, Chen J, Liu J, Pei D. BMP4 resets mouse epiblast stem cells to naive pluripotency through ZBTB7A/B-mediated chromatin remodelling. Nat Cell Biol 2020; 22:651-662. [PMID: 32393886 DOI: 10.1038/s41556-020-0516-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/03/2020] [Indexed: 01/09/2023]
Abstract
BMP4 regulates a plethora of developmental processes, including the dorsal-ventral axis and neural patterning. Here, we report that BMP4 reconfigures the nuclear architecture during the primed-to-naive transition (PNT). We first established a BMP4-driven PNT and show that BMP4 orchestrates the chromatin accessibility dynamics during PNT. Among the loci opened early by BMP4, we identified Zbtb7a and Zbtb7b (Zbtb7a/b) as targets that drive PNT. ZBTB7A/B in turn facilitate the opening of naive pluripotent chromatin loci and the activation of nearby genes. Mechanistically, ZBTB7A not only binds to chromatin loci near to the genes that are activated, but also strategically occupies those that are silenced, consistent with a role of BMP4 in both activating and suppressing gene expression during PNT at the chromatin level. Our results reveal a previously unknown function of BMP4 in regulating nuclear architecture and link its targets ZBTB7A/B to chromatin remodelling and pluripotent fate control.
Collapse
Affiliation(s)
- Shengyong Yu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Chunhua Zhou
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Shangtao Cao
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jiangping He
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Baomei Cai
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Kaixin Wu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yue Qin
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xingnan Huang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Branch of the Supercomputing Center, Chinese Academy of Sciences, Guangzhou, China
| | - Lizhan Xiao
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jing Ye
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Shuyang Xu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Wenxiu Xie
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Junqi Kuang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Shilong Chu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jing Guo
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - He Liu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Wei Pang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Lin Guo
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Mengying Zeng
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xiaoshan Wang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Guangzhou Branch of the Supercomputing Center, Chinese Academy of Sciences, Guangzhou, China
| | - Rongping Luo
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Chen Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Guoqing Zhao
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Laboratory of Regenerative Biology, Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Bo Wang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Linlin Wu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Guangzhou Branch of the Supercomputing Center, Chinese Academy of Sciences, Guangzhou, China.,Laboratory of Regenerative Biology, Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China. .,Guangzhou Branch of the Supercomputing Center, Chinese Academy of Sciences, Guangzhou, China. .,Laboratory of Regenerative Biology, Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China. .,Guangzhou Branch of the Supercomputing Center, Chinese Academy of Sciences, Guangzhou, China. .,Laboratory of Regenerative Biology, Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
99898
|
Abstract
Opioids, such as morphine and fentanyl, are widely used for the treatment of severe pain; however, prolonged treatment with these drugs leads to the development of tolerance and can lead to opioid use disorder. The "Opioid Epidemic" has generated a drive for a deeper understanding of the fundamental signaling mechanisms of opioid receptors. It is generally thought that the three types of opioid receptors (μ, δ, κ) are activated by endogenous peptides derived from three different precursors: Proopiomelanocortin, proenkephalin, and prodynorphin. Posttranslational processing of these precursors generates >20 peptides with opioid receptor activity, leading to a long-standing question of the significance of this repertoire of peptides. Here, we address some aspects of this question using a technical tour de force approach to systematically evaluate ligand binding and signaling properties ([35S]GTPγS binding and β-arrestin recruitment) of 22 peptides at each of the three opioid receptors. We show that nearly all tested peptides are able to activate the three opioid receptors, and many of them exhibit agonist-directed receptor signaling (functional selectivity). Our data also challenge the dogma that shorter forms of β-endorphin do not exhibit receptor activity; we show that they exhibit robust signaling in cultured cells and in an acute brain slice preparation. Collectively, this information lays the groundwork for improved understanding of the endogenous opioid system that will help in developing more effective treatments for pain and addiction.
Collapse
|
99899
|
Goh KJ, Wong J, Tien JCC, Ng SY, Duu Wen S, Phua GC, Leong CKL. Preparing your intensive care unit for the COVID-19 pandemic: practical considerations and strategies. Crit Care 2020; 24:215. [PMID: 32393325 PMCID: PMC7213774 DOI: 10.1186/s13054-020-02916-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) has rapidly evolved into a worldwide pandemic. Preparing intensive care units (ICU) is an integral part of any pandemic response. In this review, we discuss the key principles and strategies for ICU preparedness. We also describe our initial outbreak measures and share some of the challenges faced. To achieve sustainable ICU services, we propose the need to 1) prepare and implement rapid identification and isolation protocols, and a surge in ICU bed capacity; (2) provide a sustainable workforce with a focus on infection control; (3) ensure adequate supplies to equip ICUs and protect healthcare workers; and (4) maintain quality clinical management, as well as effective communication.
Collapse
Affiliation(s)
- Ken Junyang Goh
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
| | - Jolin Wong
- Division of Anaesthesiology, Singapore General Hospital, Singapore, Singapore
| | | | - Shin Yi Ng
- Division of Anaesthesiology, Singapore General Hospital, Singapore, Singapore
| | - Sewa Duu Wen
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore
| | - Ghee Chee Phua
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore
| | - Carrie Kah-Lai Leong
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore
| |
Collapse
|
99900
|
Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B, Marioni JC, Stegle O. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol 2020; 21:111. [PMID: 32393329 PMCID: PMC7212577 DOI: 10.1186/s13059-020-02015-1] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/13/2020] [Indexed: 12/17/2022] Open
Abstract
Technological advances have enabled the profiling of multiple molecular layers at single-cell resolution, assaying cells from multiple samples or conditions. Consequently, there is a growing need for computational strategies to analyze data from complex experimental designs that include multiple data modalities and multiple groups of samples. We present Multi-Omics Factor Analysis v2 (MOFA+), a statistical framework for the comprehensive and scalable integration of single-cell multi-modal data. MOFA+ reconstructs a low-dimensional representation of the data using computationally efficient variational inference and supports flexible sparsity constraints, allowing to jointly model variation across multiple sample groups and data modalities.
Collapse
Affiliation(s)
- Ricard Argelaguet
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK.
| | - Damien Arnol
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Danila Bredikhin
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yonatan Deloro
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Britta Velten
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John C Marioni
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK.
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
| | - Oliver Stegle
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK.
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|