51
|
Hsu JL, van den Boomen DJH, Tomasec P, Weekes MP, Antrobus R, Stanton RJ, Ruckova E, Sugrue D, Wilkie GS, Davison AJ, Wilkinson GWG, Lehner PJ. Plasma membrane profiling defines an expanded class of cell surface proteins selectively targeted for degradation by HCMV US2 in cooperation with UL141. PLoS Pathog 2015; 11:e1004811. [PMID: 25875600 PMCID: PMC4397069 DOI: 10.1371/journal.ppat.1004811] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/13/2015] [Indexed: 11/24/2022] Open
Abstract
Human cytomegalovirus (HCMV) US2, US3, US6 and US11 act in concert to prevent immune recognition of virally infected cells by CD8+ T-lymphocytes through downregulation of MHC class I molecules (MHC-I). Here we show that US2 function goes far beyond MHC-I degradation. A systematic proteomic study using Plasma Membrane Profiling revealed US2 was unique in downregulating additional cellular targets, including: five distinct integrin α-chains, CD112, the interleukin-12 receptor, PTPRJ and thrombomodulin. US2 recruited the cellular E3 ligase TRC8 to direct the proteasomal degradation of all its targets, reminiscent of its degradation of MHC-I. Whereas integrin α-chains were selectively degraded, their integrin β1 binding partner accumulated in the ER. Consequently integrin signaling, cell adhesion and migration were strongly suppressed. US2 was necessary and sufficient for degradation of the majority of its substrates, but remarkably, the HCMV NK cell evasion function UL141 requisitioned US2 to enhance downregulation of the NK cell ligand CD112. UL141 retained CD112 in the ER from where US2 promoted its TRC8-dependent retrotranslocation and degradation. These findings redefine US2 as a multifunctional degradation hub which, through recruitment of the cellular E3 ligase TRC8, modulates diverse immune pathways involved in antigen presentation, NK cell activation, migration and coagulation; and highlight US2’s impact on HCMV pathogenesis. As the largest human herpesvirus, HCMV is a paradigm of viral immune evasion and has evolved multiple mechanisms to evade immune detection and enable survival. The HCMV genes US2, US3, US6 and US11 promote virus persistence by their ability to downregulate cell surface MHC. We developed ‘Plasma Membrane Profiling’ (PMP), an unbiased SILAC-based proteomics technique to ask whether MHC molecules are the only focus of these genes, or whether additional cellular immunoreceptors are also targeted. PMP compares the relative abundance of cell surface receptors between control and viral gene expressing cells. We found that whereas US3, US6 and US11 were remarkably MHC specific, US2 modulated expression of a wide variety of cell surface immunoreceptors. US2-mediated proteasomal degradation of integrin α-chains blocked integrin signaling and suppressed cell adhesion and migration. All US2 substrates were degraded via the cellular E3 ligase TRC8, and in a remarkable example of cooperativity between HCMV immune-evasins, UL141 requisitioned US2 to target the NK cell ligand CD112 for proteasomal degradation. HCMV US2 and UL141 are therefore modulators of multiple immune-related pathways and act as a multifunctional degradation hub that inhibits the migration, immune recognition and killing of HCMV-infected cells.
Collapse
Affiliation(s)
- Jye-Lin Hsu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Peter Tomasec
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Eva Ruckova
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Daniel Sugrue
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Gavin S. Wilkie
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | | | - Paul J. Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
52
|
Berkovich R, Togasaki DM, Cen SY, Steinman L. CD4 cell response to interval therapy with natalizumab. Ann Clin Transl Neurol 2015; 2:570-4. [PMID: 26000328 PMCID: PMC4435710 DOI: 10.1002/acn3.190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/30/2015] [Accepted: 02/01/2015] [Indexed: 11/16/2022] Open
Abstract
Natalizumab treatment alters peripheral CD4 cells counts in multiple sclerosis (MS) patients, providing a way to monitor the pharmacodynamic effects of the drug. The study was undertaken to assess whether CD4 cell counts correlate with different phases of natalizumab treatment of relapsing MS patients, including during a 12-week planned treatment interruption, and whether that might provide insights on lymphocyte trafficking. Clinical outcomes, MRI data, and CD4 cell counts were assessed at baseline prior to initiating natalizumab, while on regular dosing, at the end of the 12-week extended dosing interval, and at the time of reinitiation of natalizumab. The 12-week interruption was well tolerated and not associated with return of MS activity, disability progression, or new or worsened MRI data. Observed significant shifts in CD4 counts – dramatically increasing from the baseline while on treatment and decreasing back to the baseline level off treatment, then rising in a similar manner on natalizumab reinitiation, suggest that these measurements may aid in monitoring modulation of lymphocyte trafficking and cell redistribution.
Collapse
Affiliation(s)
- Regina Berkovich
- Neurology Department, Keck School of Medicine, University of Southern California Los Angeles, California
| | - Daniel M Togasaki
- Neurology Department, Keck School of Medicine, University of Southern California Los Angeles, California
| | - Steven Y Cen
- Neurology Department, Keck School of Medicine, University of Southern California Los Angeles, California
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford University Stanford, California
| |
Collapse
|
53
|
Role of the immunogenic and tolerogenic subsets of dendritic cells in multiple sclerosis. Mediators Inflamm 2015; 2015:513295. [PMID: 25705093 PMCID: PMC4325219 DOI: 10.1155/2015/513295] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 01/01/2015] [Accepted: 01/01/2015] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder in the central nervous system (CNS) characterized by inflammation and demyelination as well as axonal and neuronal degeneration. So far effective therapies to reverse the disease are still lacking; most therapeutic drugs can only ameliorate the symptoms or reduce the frequency of relapse. Dendritic cells (DCs) are professional antigen presenting cells (APCs) that are key players in both mediating immune responses and inducing immune tolerance. Increasing evidence indicates that DCs contribute to the pathogenesis of MS and might provide an avenue for therapeutic intervention. Here, we summarize the immunogenic and tolerogenic roles of DCs in MS and review medicinal drugs that may affect functions of DCs and have been applied in clinic for MS treatment. We also describe potential therapeutic molecules that can target DCs by inducing anti-inflammatory cytokines and inhibiting proinflammatory cytokines in MS.
Collapse
|
54
|
Intrathecal IgG synthesis: a resistant and valuable target for future multiple sclerosis treatments. Mult Scler Int 2015; 2015:296184. [PMID: 25653878 PMCID: PMC4306411 DOI: 10.1155/2015/296184] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/02/2023] Open
Abstract
Intrathecal IgG synthesis is a key biological feature of multiple sclerosis (MS). When acquired early, it persists over time. A growing body of evidence suggests that intrathecal Ig-secreting cells may be pathogenic either by a direct action of toxic IgG or by locally secreting bystander toxic products. Intrathecal IgG synthesis depends on the presence of CNS lymphoid organs, which are strongly linked at anatomical level to cortical subpial lesions and at clinical level to the impairment slope in progressive MS. As a consequence, targeting CNS lymphoid lesions could be a valuable new target in MS, especially during the progressive phase. As intrathecal IgGs are end-products of these lymphoid lesions, intrathecal IgG synthesis may be considered as a specific marker of the persistence of these inflammatory lesions. Here we review the effect upon intrathecal IgG synthesis of all drugs ever used in MS. Except for steroids, all these therapeutic strategies, including rituximab, failed to decrease intrathecal IgG synthesis, with the exception of a questionable incomplete action of natalizumab. Thus, IgG synthesis is a robust marker of persistent intrathecal inflammation and its complete normalization should be one of the goals in future therapeutic strategies.
Collapse
|
55
|
Antoniol C, Stankoff B. Immunological Markers for PML Prediction in MS Patients Treated with Natalizumab. Front Immunol 2015; 5:668. [PMID: 25601865 PMCID: PMC4283628 DOI: 10.3389/fimmu.2014.00668] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/11/2014] [Indexed: 12/15/2022] Open
Abstract
Natalizumab (NTZ), a monoclonal antibody recognizing the alpha4 integrin chain, has been approved for the treatment of active multiple sclerosis, but expose to the onset of a rare side effect, progressive multifocal leukoencephalopathy (PML). Estimating the individual risk of PML in NTZ-treated patients is a major challenge, and therapeutic strategies are mainly guided by the overall PML risk assessed by identified risk factors: JC virus (JCV) seropositivity, treatment duration (with peak incidence after 24 months), and the previous use of immunosuppressive therapies. Given that this stratification does not yet allow a precise individual prediction of PML, other predictive markers are needed, and several immunological biomarkers have been described. Quantification of anti-JCV antibody levels may improve individual predictive value, with higher baseline titers indicating increased risk. Other immunological biomarkers such as leukocyte cell membrane markers (CD49d, CD11a, and CD62L), detection of circulating JCV-specific activated T effector memory cells (TEM) or genetic screening have been proposed. In this review, we discuss how recent progress in immunology has paved the way for «new combined monitoring», which will include immunological screening, in NTZ-treated patients.
Collapse
Affiliation(s)
- Caroline Antoniol
- AP-HP, Hôpital Saint-Antoine , Paris , France ; Centre Hospitalier Universitaire de Dijon, Université de Bourgogne , Dijon , France
| | - Bruno Stankoff
- AP-HP, Hôpital Saint-Antoine , Paris , France ; Sorbonne Universités, Université Pierre et Marie Curie, UMR S 1127, CNRS UMR 7225, and l'Institut du Cerveau et de la Moelle Épinière (ICM) , Paris , France
| |
Collapse
|
56
|
Mastorodemos V, Ioannou M, Verginis P. Cell-based modulation of autoimmune responses in multiple sclerosis and experimental autoimmmune encephalomyelitis: therapeutic implications. Neuroimmunomodulation 2015; 22:181-95. [PMID: 24852748 DOI: 10.1159/000362370] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/20/2014] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is a prototypic autoimmune inflammatory disorder of the central nervous system (CNS). MS pathogenesis is a complex phenomenon that is influenced by genetic and environmental factors that lead to the dysregulation of immune homeostasis and tolerance. It has been shown that pathogenic T lymphocyte subsets, such as T helper 1 (Th1) and Th17 cells, play a crucial role in the autoimmune cascade influencing disease initiation, progression and subsequent tissue damage during MS. On the other hand, several mechanisms have been described in both patients and animal models of MS with the potential to modulate myelin-specific autoimmune responses and to facilitate amelioration of disease pathology. To this end, regulatory T cells (Tregs) are considered to be a powerful cell subset not only in the maintenance of homeostasis but also in the re-establishment of tolerance. Along these lines, other cell subsets such as dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), γδ T cells and natural killer (NK) cells have been shown to regulate the autoimmune response in the CNS under certain circumstances. This review will attempt to summarize the relevant knowledge of the regulatory mechanisms exerted by immune cells in MS that could hold the promise for the design of novel therapeutic strategies.
Collapse
|
57
|
Ellwardt E, Zipp F. Molecular mechanisms linking neuroinflammation and neurodegeneration in MS. Exp Neurol 2014; 262 Pt A:8-17. [DOI: 10.1016/j.expneurol.2014.02.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022]
|
58
|
A risk classification for immunosuppressive treatment-associated progressive multifocal leukoencephalopathy. J Neurovirol 2014; 21:623-31. [DOI: 10.1007/s13365-014-0303-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
|
59
|
Mitroulis I, Alexaki VI, Kourtzelis I, Ziogas A, Hajishengallis G, Chavakis T. Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol Ther 2014; 147:123-135. [PMID: 25448040 DOI: 10.1016/j.pharmthera.2014.11.008] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023]
Abstract
Infection or sterile inflammation triggers site-specific attraction of leukocytes. Leukocyte recruitment is a process comprising several steps orchestrated by adhesion molecules, chemokines, cytokines and endogenous regulatory molecules. Distinct adhesive interactions between endothelial cells and leukocytes and signaling mechanisms contribute to the temporal and spatial fine-tuning of the leukocyte adhesion cascade. Central players in the leukocyte adhesion cascade include the leukocyte adhesion receptors of the β2-integrin family, such as the αLβ2 and αMβ2 integrins, or of the β1-integrin family, such as the α4β1-integrin. Given the central involvement of leukocyte recruitment in different inflammatory and autoimmune diseases, the leukocyte adhesion cascade in general, and leukocyte integrins in particular, represent key therapeutic targets. In this context, the present review focuses on the role of leukocyte integrins in the leukocyte adhesion cascade. Experimental evidence that has implicated leukocyte integrins as targets in animal models of inflammatory disorders, such as experimental autoimmune encephalomyelitis, psoriasis, inflammatory bone loss and inflammatory bowel disease as well as preclinical and clinical therapeutic applications of antibodies that target leukocyte integrins in various inflammatory disorders are presented. Finally, we review recent findings on endogenous inhibitors that modify leukocyte integrin function, which could emerge as promising therapeutic targets.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Vasileia I Alexaki
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ioannis Kourtzelis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Athanassios Ziogas
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
60
|
Warnke C, Stettner M, Lehmensiek V, Dehmel T, Mausberg AK, von Geldern G, Gold R, Kümpfel T, Hohlfeld R, Mäurer M, Stangel M, Straeten V, Limmroth V, Weber T, Kleinschnitz C, Wattjes MP, Svenningsson A, Olsson T, Hartung HP, Hermsen D, Tumani H, Adams O, Kieseier BC. Natalizumab exerts a suppressive effect on surrogates of B cell function in blood and CSF. Mult Scler 2014; 21:1036-44. [PMID: 25392339 DOI: 10.1177/1352458514556296] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/08/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Natalizumab for multiple sclerosis (MS) increases the risk of progressive multifocal leukoencephalopathy (PML). OBJECTIVE We aimed to assess the effect of natalizumab on cellular composition and functional B cell parameters including patients with natalizumab-associated PML (n=37). METHODS Cellular composition by flow cytometry, levels of immunoglobulin (Ig)G/IgM by immunonephelometry, and oligoclonal bands by isoelectric focusing were studied in blood and cerebrospinal fluid. RESULTS In MS patients treated with natalizumab without PML (n=59) the proportion of CD19+ B cells was higher in blood, but lower in cerebrospinal fluid compared with MS patients not treated with natalizumab (n=17). The CD4/CD8-ratio in cerebrospinal fluid was lower, and IgG and IgM levels as well as the IgG index dropped in longitudinal samples during natalizumab therapy. Oligoclonal bands persisted, but the total amount of the intrathecally produced IgG fraction, and the polyclonal intrathecal IgG reactivity to measles, rubella, and zoster declined. At the time of diagnosis of PML patients with natalizumab-associated PML had low total IgG levels in blood and cerebrospinal fluid. CONCLUSIONS Natalizumab impacts B and T cell distribution and exerts an inhibitory effect on surrogates of B cell function in periphery and in cerebrospinal fluid, potentially contributing to the increased risk of developing PML.
Collapse
Affiliation(s)
- Clemens Warnke
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Mark Stettner
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | | | - Thomas Dehmel
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Anne K Mausberg
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Gloria von Geldern
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Ralf Gold
- Department of Neurology, Ruhr University, Bochum, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mathias Mäurer
- Department of Neurology, Caritas Hospital, Bad Mergentheim, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Vera Straeten
- Department of Neurology, Johannes Wesling Hospital Minden, Minden, Germany
| | | | - Thomas Weber
- Department of Neurology, Marienhospital Hamburg, Hamburg, Germany
| | | | - Mike P Wattjes
- MS Center Amsterdam and Department of Radiology, Nuclear Medicine & PET Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Anders Svenningsson
- Department of Pharmacology and Clinical Neuroscience, Umea University Hospital, Umea, Sweden
| | - Tomas Olsson
- Department of Neurology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Derik Hermsen
- Institute for Clinical Chemistry and Laboratory Diagnostics, University Hospital Duesseldorf, Germany
| | | | - Ortwin Adams
- Institute for Virology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Bernd C Kieseier
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
61
|
Raine T. Vedolizumab for inflammatory bowel disease: Changing the game, or more of the same? United European Gastroenterol J 2014; 2:333-44. [PMID: 25360311 DOI: 10.1177/2050640614550672] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/09/2014] [Indexed: 12/11/2022] Open
Abstract
Two decades ago, the first reports of the use of monoclonal antibodies targeting tumour-necrosis factor α heralded a revolution in treatment options for moderate to severe Crohn's disease and ulcerative colitis. Nonetheless, patients with refractory disease or loss of treatment response are all too familiar to gastroenterologists. Preventing the infiltration of the gastrointestinal mucosa by circulating cells of the immune system using antibodies targeting the adhesion molecules involved represents an attractive new treatment option. Vedolizumab has recently received European and US regulatory approval for treatment of ulcerative colitis and Crohn's disease on the basis of encouraging results from one of the largest phase III trial programmes ever conducted in the field of inflammatory bowel diseases and promising safety data. Are we now seeing another revolution in the management of inflammatory bowel disease, and how can this new drug best be used in clinical practice?
Collapse
Affiliation(s)
- Tim Raine
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
62
|
Peripherally triggered and GSK-3β-driven brain inflammation differentially skew adult hippocampal neurogenesis, behavioral pattern separation and microglial activation in response to ibuprofen. Transl Psychiatry 2014; 4:e463. [PMID: 25313506 PMCID: PMC4350524 DOI: 10.1038/tp.2014.92] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/24/2014] [Accepted: 08/13/2014] [Indexed: 12/14/2022] Open
Abstract
Both familial and sporadic forms of Alzheimer disease (AD) present memory impairments. It has been proposed that these impairments are related to inflammation in relevant brain areas such as the hippocampus. Whether peripherally triggered and neuron-driven brain inflammation produce similar and equally reversible alterations is a matter of discussion. Here we studied the effects of ibuprofen administration on a familial AD mouse model overexpressing GSK-3β that presents severe brain inflammation. We compared these effects with those observed in a peripherally triggered brain inflammation model based on chronic lipopolysaccharide (LPS) administration. Both proinflammatory stimuli produced equivalent reversible morphological alterations in granule neurons; however, GSK-3β had a much more prominent role in newborn neuron connectivity, causing alterations that were not reversed by ibuprofen. Although both insults triggered similar behavioral impairments, ibuprofen rescued this defect in LPS-treated mice but did not produce any improvement in GSK-3β-overexpressing animals. This observation could be attributable to the different microglial phenotype induced by ibuprofen treatment. These data may be clinically relevant for AD therapies, as GSK-3β appears to determine the efficacy of ibuprofen treatment.
Collapse
|
63
|
Zaheer F, Berger JR. Treatment-related progressive multifocal leukoencephalopathy: current understanding and future steps. Ther Adv Drug Saf 2014; 3:227-39. [PMID: 25083238 DOI: 10.1177/2042098612453849] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating disorder of the brain caused by a ubiquitous polyomavirus, JC virus. PML is almost always associated with some underlying immunosuppression and acquired immune deficiency syndrome has been the most common predisposing disorder. Recently, different pharmacological agents have been demonstrated to increase the risk of PML. Therapies that predispose people to PML can be classified into three categories: therapies that uniquely increase the risk for the disorder, such as the monoclonal antibodies natalizumab and efalizumab; therapies that appear to increase the risk in individuals already at risk of PML due to pre-existing conditions, such as rituximab and mycophenolate mofetil; and therapies with a mechanism of action that might suggest a potential for increased PML risk and/or with which rare cases of PML have been observed. Unlike the latter two classes, therapeutic agents uniquely increasing the risk of PML are associated with a much greater prevalence of the disorder and a latent interval from the time of drug initiation to the development of PML. PML development with pharmacological agents has provided new insight into the pathogenesis of this devastating disorder. This review focuses on the risks of PML with multiple pharmacological agents, the proposed pathogenesis with these agents, and potential risk mitigation strategies.
Collapse
Affiliation(s)
- Fariha Zaheer
- Department of Neurology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Joseph R Berger
- Department of Neurology, University of Kentucky, Kentucky Clinic Room L-445, 740 S. Limestone St., Lexington, KY 40536, USA
| |
Collapse
|
64
|
Kivisäkk P, Francois K, Mbianda J, Gandhi R, Weiner HL, Khoury SJ. Effect of natalizumab treatment on circulating plasmacytoid dendritic cells: a cross-sectional observational study in patients with multiple sclerosis. PLoS One 2014; 9:e103716. [PMID: 25075741 PMCID: PMC4116240 DOI: 10.1371/journal.pone.0103716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/05/2014] [Indexed: 11/19/2022] Open
Abstract
Objectives Dendritic cells (DCs) serve a critical role both in promoting and inhibiting adaptive immunity. The goal of this study was to investigate the effect of natalizumab (NTZ) treatment on DC numbers, phenotype, and function in patients with multiple sclerosis (MS). Methods Frequency and phenotype of myeloid and plasmacytoid DCs (MDCs and PDCs, respectively) were analyzed in blood from two separate cohorts of untreated, interferon-treated, or NTZ-treated MS patients. In addition, PDCs were stimulated with CpG-containing oligonucleotides or co-cultured with homologous T cells in the presence or absence of NTZ in vitro to determine functional effects of NTZ treatment. Results We observed that NTZ treatment was associated with a 25–50% reduction in PDC frequency in peripheral blood as compared to untreated MS patients, while the frequency of MDCs was unchanged. PDCs in NTZ-treated patients displayed a mature, activated phenotype with increased expression of HLA-DR, TLR9, CCR7, IL-6 and IL-12. In contrast, in vitro treatment with NTZ did not increase markers of PDC activation or their ability to induce T cell differentiation. Conclusion Our study shows that NTZ treatment is associated with a reduced frequency of PDCs in the peripheral circulation, but that PDCs in NTZ-treated individuals display an activated phenotype. Taken together the data suggests that transmigration of activated PDCs is preferentially affected by blockade of integrin α4 leading to an increased frequency of activated PDCs in blood.
Collapse
Affiliation(s)
- Pia Kivisäkk
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Katiana Francois
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Julvet Mbianda
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roopali Gandhi
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Howard L. Weiner
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Partners Multiple Sclerosis Center, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samia J. Khoury
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Partners Multiple Sclerosis Center, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Abu Haidar Neuroscience Institute, American University of Beirut, Beirut, Lebanon
- * E-mail:
| |
Collapse
|
65
|
Carruthers RL, Berger J. Progressive multifocal leukoencephalopathy and JC Virus-related disease in modern neurology practice. Mult Scler Relat Disord 2014; 3:419-30. [DOI: 10.1016/j.msard.2014.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 11/25/2022]
|
66
|
Abstract
Natalizumab (Tysabri®) is a humanized monoclonal antibody against the α4 chain of integrins and was the first targeted therapy to be approved for the treatment of relapsing-remitting multiple sclerosis (RRMS). Natalizumab acts as a selective adhesion molecule antagonist, which binds very late antigen (VLA)-4 and inhibits the translocation of activated VLA-4-expressing leukocytes across the blood-brain barrier into the CNS. In a pivotal phase III clinical trial, natalizumab 300 mg intravenously every 4 weeks for 2 years in adults with RRMS significantly reduced the annualized relapse rate and the risk of sustained progression of disability compared with placebo, as well as significantly increasing the proportion of relapse-free patients at 1 and 2 years. Natalizumab also significantly reduced the number of T2-hyperintense, gadolinium-enhancing and T1-hypointense lesions on magnetic resonance imaging, and significantly reduced the volume of T2-hyperintense and T1-hypointense lesions compared with placebo. Natalizumab recipients generally experienced improved health-related quality of life at 1-2 years. Natalizumab was generally well tolerated in pivotal trials. The only adverse events that were more frequent with natalizumab monotherapy than with placebo were fatigue and allergic reactions. The main safety and tolerability issue with natalizumab is the incidence of progressive multifocal leukoencephalopathy (PML). As long as the risk of PML is managed effectively, natalizumab is a valuable therapeutic option for adults with highly active relapsing forms of multiple sclerosis.
Collapse
|
67
|
Planas R, Martin R, Sospedra M. Long-term safety and efficacy of natalizumab in relapsing-remitting multiple sclerosis: impact on quality of life. PATIENT-RELATED OUTCOME MEASURES 2014; 5:25-33. [PMID: 24741337 PMCID: PMC3983075 DOI: 10.2147/prom.s41768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Natalizumab was the first monoclonal antibody to be approved for the treatment of relapsing-remitting multiple sclerosis (RRMS) based on its short-term efficacy and overall tolerability. However, the incidence of treatment-associated progressive multifocal leukoencephalopathy (PML), an infection of the brain caused by the John Cunningham virus, jeopardized this efficacious treatment from the beginning. Eight years after licensing of natalizumab, long-term studies confirm the considerable and sustained efficacy of natalizumab, although the PML complication still threatens one of the most successful treatments available for RRMS. During these years, considerable progress has been made in identification of risk factors that allow more effective management of PML risk. In addition, long-term studies to define better when to start or stop treatment and to optimize treatment strategies after cessation of natalizumab are ongoing, and hopefully will improve management and will allow natalizumab to remain as a valuable therapeutic option for patients with highly active RRMS.
Collapse
Affiliation(s)
- Raquel Planas
- Neuroimmunology and MS Research, Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research, Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research, Department of Neurology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
68
|
Sáenz-Cuesta M, Osorio-Querejeta I, Otaegui D. Extracellular Vesicles in Multiple Sclerosis: What are They Telling Us? Front Cell Neurosci 2014; 8:100. [PMID: 24734004 PMCID: PMC3975116 DOI: 10.3389/fncel.2014.00100] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/17/2014] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles secreted by almost all cell types. They are classified depending on their biogenesis and size into exosomes and microvesicles or according to their cell origin. EVs play a role in cell-to-cell communication, including contact-free cell synapsis, carrying active membrane proteins, lipids, and genetic material both inside the particle and on their surface. They have been related to several physiological and pathological conditions. In particular, increasing concentrations of EVs have been found in many autoimmune diseases including multiple sclerosis (MS). MS is a central nervous system (CNS) demyelinating disease characterized by relapsing of symptoms followed by periods of remission. Close interaction between endothelial cells, leukocytes, monocytes, and cells from CNS is crucial for the development of MS. This review summarizes the pathological role of EVs in MS and the relationship of EVs with clinical characteristics, therapy, and biomarkers of the disease.
Collapse
Affiliation(s)
- Matías Sáenz-Cuesta
- Multiple Sclerosis Unit, Neuroscience Area, Biodonostia Health Research Institute , San Sebastián , Spain ; Spanish Network on Multiple Sclerosis , Madrid , Spain
| | - Iñaki Osorio-Querejeta
- Multiple Sclerosis Unit, Neuroscience Area, Biodonostia Health Research Institute , San Sebastián , Spain ; Spanish Network on Multiple Sclerosis , Madrid , Spain
| | - David Otaegui
- Multiple Sclerosis Unit, Neuroscience Area, Biodonostia Health Research Institute , San Sebastián , Spain ; Spanish Network on Multiple Sclerosis , Madrid , Spain
| |
Collapse
|
69
|
Lobatón T, Vermeire S, Van Assche G, Rutgeerts P. Review article: anti-adhesion therapies for inflammatory bowel disease. Aliment Pharmacol Ther 2014; 39:579-94. [PMID: 24479980 DOI: 10.1111/apt.12639] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 12/31/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND A high proportion of patients with inflammatory bowel disease (IBD) do not achieve clinical remission with the current therapies including mesalazine (mesalamine), immunossupresants (IMS) and antibodies against tumour necrosis factor (anti-TNF). Moreover, IMS and anti-TNF involve a nonnegligible risk for infections and/or malignancies. The anti-adhesion molecules are one of the most interesting new treatments because of their gut-selectivity. AIM To review the physiopathology of the adhesion molecules and the current drugs targeting this mechanism. METHODS We performed a literature review in PubMed and in clinicaltrials.gov using the terms 'anti-adhesion molecules', 'inflammatory bowel disease', 'natalizumab', 'vedolizumab', 'AMG181', 'Etrolizumab', 'PF-00547659', 'AJM300', 'Alicaforsen' and 'CCX282-B' up to November 2013. RESULTS A total of eight drugs were found including those targeting the α4β1, α4β7 or αEβ7 integrins as well as the ICAM-1 and MAdCAM-1 addressins and the chemokine receptor 9. The rationale for these drugs is the blockade of gut-homing T lymphocytes and the ones targeting the α4β7/MAdCAM-1 interaction presented the most promising results in luminal disease. Vedolizumab, an α4β7 antibody, has completed phase 3 trials with very positive results especially for ulcerative colitis. However, many questions remain unanswered such as the effect of these therapies in perianal disease and extraintestinal manifestations. CONCLUSIONS The blockade of the α4β7/MAdCAM-1 interaction and especially vedolizumab is an effective and safe gut-specific treatment for IBD. Further studies are needed to clarify the efficacy and safety of the other anti-adhesion drugs and to define the specific indications of these therapies in the different scenarios of IBD.
Collapse
Affiliation(s)
- T Lobatón
- Department of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
70
|
Monaco MCG, Major EO. The link between VLA-4 and JC virus reactivation. Expert Rev Clin Immunol 2014; 8:63-72. [DOI: 10.1586/eci.11.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
71
|
Qiu C. Epidemiological findings of vascular risk factors in Alzheimer’s disease: implications for therapeutic and preventive intervention. Expert Rev Neurother 2014; 11:1593-607. [DOI: 10.1586/ern.11.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
72
|
Schaaf SM, Pitt D, Racke MK. What happens when natalizumab therapy is stopped? Expert Rev Neurother 2014; 11:1247-50. [DOI: 10.1586/ern.11.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
73
|
Tomita T. Secretase inhibitors and modulators for Alzheimer’s disease treatment. Expert Rev Neurother 2014; 9:661-79. [DOI: 10.1586/ern.09.24] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
74
|
Bonnan M. Intrathecal immune reset in multiple sclerosis: exploring a new concept. Med Hypotheses 2013; 82:300-9. [PMID: 24417802 DOI: 10.1016/j.mehy.2013.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/10/2013] [Accepted: 12/19/2013] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis impairment is mainly driven by the progressive phase, whose pathology remains elusive. No drug has yet been able to halt this phase so therapeutic management remains challenging. It was recently demonstrated that late disability correlates with the spreading of cortical subpial lesions, and tertiary lymphoid organs (TLO) were identified in close apposition with these lesions. TLO are of crucial importance since they are able to mount a complete local immune response, as observed in the intrathecal compartment from the moment MS is diagnosed (i.e. oligoclonal bands). This article examines the consequences of this intrathecal response: giving a worst clinical prognostic value and bearing arguments for possible direct brain toxicity, intrathecal secretion should be targeted by drugs abating both B-lymphocytes and plasma cells. Another consequence is that intrathecal secretion has value as a surrogate marker of the persistence of an ongoing intrathecal immune reaction after treatment. Although it is still unsure which mechanism or byproduct secreted by TLO triggers cortical lesions, we propose to target TLO components as a new therapeutic avenue in progressive MS. Whereas it was long considered that the inability of therapies to penetrate the blood-brain-barrier was a crucial obstacle, our proposed strategy will take advantage of the properties of the BBB to safely reset the intrathecal immune system in order to halt the slow axonal burning underlying secondary MS. We review the literature in support of the rationale for treating MS with intrathecal drugs dedicated to clearing the local immune response. Since many targets are involved, achieving this goal may require a combination of monoclonal antibodies targeting each cell sub-type. Hope might be rekindled with a one-shot intrathecal multi-drug treatment in progressive MS.
Collapse
Affiliation(s)
- Mickael Bonnan
- Service de Neurologie, Hôpital F. Mitterrand, 4 bd Hauterive, 64046 Pau, France.
| |
Collapse
|
75
|
Tschanz JT, Norton MC, Zandi PP, Lyketsos CG. The Cache County Study on Memory in Aging: factors affecting risk of Alzheimer's disease and its progression after onset. Int Rev Psychiatry 2013; 25:673-85. [PMID: 24423221 PMCID: PMC4089882 DOI: 10.3109/09540261.2013.849663] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Cache County Study on Memory in Aging is a longitudinal, population-based study of Alzheimer's disease (AD) and other dementias. Initiated in 1995 and extending to 2013, the study has followed over 5,000 elderly residents of Cache County, Utah (USA) for over twelve years. Achieving a 90% participation rate at enrolment, and spawning two ancillary projects, the study has contributed to the literature on genetic, psychosocial and environmental risk factors for AD, late-life cognitive decline, and the clinical progression of dementia after its onset. This paper describes the major study contributions to the literature on AD and dementia.
Collapse
Affiliation(s)
- JoAnn T. Tschanz
- Department of Psychology, Utah State University,Center for Epidemiologic Studies, Utah State University
| | - Maria C. Norton
- Center for Epidemiologic Studies, Utah State University,Department of Family, Consumer & Human Development, Utah State University
| | - Peter P. Zandi
- Bloomberg School of Public Health, Johns Hopkins University
| | | |
Collapse
|
76
|
Singh V, Prajeeth CK, Gudi V, Bénardais K, Voss EV, Stangel M. 2-Chlorodeoxyadenosine (cladribine) induces apoptosis in human monocyte-derived dendritic cells. Clin Exp Immunol 2013; 173:288-97. [PMID: 23607690 DOI: 10.1111/cei.12109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2013] [Indexed: 12/21/2022] Open
Abstract
2-Chlorodeoxyadenosine (cladribine, CdA) is an immunosuppressive drug that is licensed to treat hairy cell leukaemia, and has been shown recently to have beneficial effects in patients with multiple sclerosis (MS). The therapeutic effects of CdA have been suggested to be mediated partly through its potent toxicity towards lymphocytes. However, the effects of CdA on other immune cells are poorly understood. In the present study, we investigated the effects of CdA on the induction of apoptosis in human monocytes, monocyte-derived immature (ImDC) and mature (mDC) dendritic cells. Treatment of monocytes with CdA strongly induced apoptosis after 24 h, while apoptosis induction in DC was evident after 72 h. Furthermore, CdA treatment strongly induced caspase-3 and caspase-9 in monocytes, whereas activation of caspases was undetected in DC. The mitochondrial membrane potential in DC was reduced significantly after CdA treatment. DNA hypodiploid assessment showed fragmented nuclei in DC after CdA treatment together with activation of p53 protein. These results revealed that CdA induces caspase-independent apoptosis in DC and suggest cell type specific effects of CdA. This mechanism may contribute to the effect of CdA in autoimmune diseases.
Collapse
Affiliation(s)
- V Singh
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
77
|
Brothers HM, Wilcock DM. Are inflammatory profiles the key to personalized Alzheimer's treatment? Neurodegener Dis Manag 2013; 3:343-351. [PMID: 25614767 DOI: 10.2217/nmt.13.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is currently no disease-modifying treatment for Alzheimer's disease (AD) and the need is great as the number of people diagnosed with AD is predicted to steadily increase. Inflammation is associated with AD, and is predictive of more advanced disease pathology and cognitive impairment. Moreover, preventing inflammation reduces the risk of developing AD. However, clinical trials with anti-inflammatory treatment have not been successful. One reason may be that there is diversity in the immune response and reducing immune activity with anti-inflammatories is not appropriate in all conditions. Recently, we have begun to apply categorizations, used to characterize the peripheral immune response, to the immune processes of the brain. When we do this, we are able to describe an individual's inflammatory profile within this spectrum. We have observed that patients with early AD are distributed across two broad categories of immune activation. If we recognize the diversity within this cohort of individuals with early AD and use information about immune phenotypes to guide the choice of treatment, then we may expect better clinical outcomes.
Collapse
Affiliation(s)
- Holly M Brothers
- University of Kentucky, Sanders-Brown Center on Aging, Department of Physiology, Lexington, KY 40536, USA
| | - Donna M Wilcock
- University of Kentucky, Sanders-Brown Center on Aging, Department of Physiology, Lexington, KY 40536, USA
| |
Collapse
|
78
|
Bellizzi A, Nardis C, Anzivino E, Rodìo DM, Fioriti D, Mischitelli M, Chiarini F, Pietropaolo V. Human polyomavirus JC reactivation and pathogenetic mechanisms of progressive multifocal leukoencephalopathy and cancer in the era of monoclonal antibody therapies. J Neurovirol 2013; 18:1-11. [PMID: 22290500 DOI: 10.1007/s13365-012-0080-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/28/2011] [Accepted: 01/09/2012] [Indexed: 12/12/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the neurotropic human polyomavirus JC (JCV) lytic infection of oligodendrocytes. PML was first described as a complication of lymphoproliferative disorders more than 50 years ago and emerged as a major complication of human immunodeficiency virus (HIV) infection in the 1980s. Despite the ubiquity of this virus, PML is rare and always seen in association with underlying immunosuppressive condition, such as HIV infection, autoimmune diseases, cancer, and organ transplantation. JCV remains quiescent in the kidneys, where it displays a stable archetypal non-coding control region (NCCR). Conversely, rearranged JCV NCCR, including tandem repeat patterns found in the brain of PML patients, have been associated with neurovirulence. The specific site and mechanism of JCV NCCR transformation is unknown. According to one model, during the course of immunosuppression, JCV departs from its latent state and after entering the brain, productively infects and destroys oligodendrocytes. Although the majority of PML cases occur in severely immunesuppressed individuals, PML has been increasingly diagnosed in patients treated with biological therapies such as monoclonal antibodies (mAbs) that modulate immune system functions: in fact, CD4+ and CD8+ T lymphopenia, resulting from this immunomodulatory therapy, are the primary risk factor. Furthermore, JCV reactivation in nonpermissive cells after treatment with mAbs, such as intestinal epithelial cells in Crohn's disease patients, in association with other host tumor-inducing factors, could provide valid information on the role of JCV in several malignancies, such as colorectal cancer.
Collapse
Affiliation(s)
- A Bellizzi
- Department of Health Sciences and Infectious Diseases, Sapienza University, P.le Aldo Moro, 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Griffith JW, Luster AD. Targeting cells in motion: migrating toward improved therapies. Eur J Immunol 2013; 43:1430-5. [PMID: 23580465 PMCID: PMC3772080 DOI: 10.1002/eji.201243183] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/31/2013] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
The development of clinical therapeutics that interfere with the migration of leukocytes has revolutionized the treatment of multiple sclerosis and holds great promise for the treatment of a wide range of inflammatory diseases. As the molecules essential for the multi-step adhesion cascade that mediates cellular migration have been elucidated, the number of potential targets available to modulate leukocyte trafficking has increased exponentially. In this Viewpoint, we briefly review our current understanding of these mole-cular targets and how these targets vary by tissue and leukocyte subset with emphasis on T cells. We then describe the two currently approved therapeutics that target cell migration, natalizumab and fingolimod, and discuss how an improved understanding of their function could pave the way for the development of safer and more efficacious therapies for inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jason W. Griffith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
80
|
Therapies for multiple sclerosis: translational achievements and outstanding needs. Trends Mol Med 2013; 19:309-19. [DOI: 10.1016/j.molmed.2013.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 02/06/2023]
|
81
|
Abstract
Progressive multifocal leukoencephalopathy (PML) is a severe, often fatal, opportunistic viral infection of the central nervous system that is mainly seen in the context of AIDS and certain monoclonal immune-suppressive therapies. The causative agent, a polyoma virus, named JC virus infects only humans and there is no animal model for PML. This update focuses on information gathered in recent years on the pathogenesis of the disorder, on several clinical aspects associated with diagnosis and therapy, and on the immune reconstitution inflammatory syndrome (IRIS), a complication associated with removal of immunosuppressive therapy in PML.
Collapse
Affiliation(s)
- Israel Steiner
- Department of Neurology, Rabin Medical Center-Beilinson Campus, 49100 Petach Tikva, Israel.
| | | |
Collapse
|
82
|
Bettcher BM, Kramer JH. Inflammation and clinical presentation in neurodegenerative disease: a volatile relationship. Neurocase 2013; 19:182-200. [PMID: 22515699 PMCID: PMC3733377 DOI: 10.1080/13554794.2011.654227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A proposed immune mechanism that potentially modifies or exacerbates neurodegenerative disease presentation in older adults has received considerable attention in the past decade, with recent studies demonstrating a strong link between pro-inflammatory markers and neurodegeneration. The overarching aim of the following review is to synthesize recent research that supports a possible relationship between inflammation and clinical features of neurodegenerative diseases, including risk of development, cognitive and clinical correlates, and progression of the specified diseases. Specific emphasis is placed on providing a temporal context for the association between inflammation and neurodegeneration.
Collapse
Affiliation(s)
- Brianne Magouirk Bettcher
- Neurology Department, Memory and Aging Center, University of California, San Francisco, CA 94143-1207, USA.
| | | |
Collapse
|
83
|
Crenshaw DG, Gottschalk WK, Lutz MW, Grossman I, Saunders AM, Burke JR, Welsh-Bohmer KA, Brannan SK, Burns DK, Roses AD. Using genetics to enable studies on the prevention of Alzheimer's disease. Clin Pharmacol Ther 2013; 93:177-85. [PMID: 23249780 PMCID: PMC4131283 DOI: 10.1038/clpt.2012.222] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Curing Alzheimer's disease (AD) remains an elusive goal; indeed, it may even prove to be impossible, given the nature of the disease. Although modulating disease progression is an attractive target and will alleviate the burden of the most severe stages, this strategy will not reduce the prevalence of the disease itself. Preventing or (as described in this article) delaying the onset of cognitive impairment and AD will provide the greatest benefit to individuals and society by pushing the onset of disease into the later years of life. Because of the high variability in the age of onset of the disease, AD prevention studies that do not stratify participants by age-dependent disease risk will be operationally challenging, being large in size and of long duration. We present a composite genetic biomarker to stratify disease risk so as to facilitate clinical studies in high-risk populations. In addition, we discuss the rationale for the use of pioglitazone to delay the onset of AD in individuals at high risk.
Collapse
Affiliation(s)
- D G Crenshaw
- Joseph & Kathleen Bryan Alzheimer's Disease Research Center, Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Nuyts AH, Lee WP, Bashir-Dar R, Berneman ZN, Cools N. Dendritic cells in multiple sclerosis: key players in the immunopathogenesis, key players for new cellular immunotherapies? Mult Scler 2013; 19:995-1002. [DOI: 10.1177/1352458512473189] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many studies have demonstrated the role of the adaptive immune system in the pathogenesis of multiple sclerosis (MS). Recent data suggest that dendritic cells (DCs), which are innate immune cells, also contribute to the pathogenesis of MS. In patients with MS, DCs are abundantly present in brain lesions, and display an altered phenotype and/or function as compared with this in healthy controls. DCs are thus in the position to pathologically influence the effector function of (auto-reactive) T and B cells. Interestingly, current first-line immunomodulating therapies for MS have been shown to restore DC phenotype and function, albeit in a non-specific manner. To date, clinical trials using agents specifically targeting DC function are ongoing. Moreover, several studies worldwide are currently investigating possible strategies to develop tolerogenic DCs. This review focuses on the phenotypic and functional alterations of conventional DCs and plasmacytoid DCs in patients with MS. Furthermore, we discuss how existing immunomodulating therapies for MS patients affect DC function and address future perspectives in the development of immunotherapies specifically targeting DCs.
Collapse
Affiliation(s)
- AH Nuyts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp University Hospital, Belgium
| | - WP Lee
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp University Hospital, Belgium
| | - R Bashir-Dar
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp University Hospital, Belgium
| | - ZN Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp University Hospital, Belgium
| | - N Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp University Hospital, Belgium
| |
Collapse
|
85
|
Haanstra KG, Hofman SO, Lopes Estêvão DM, Blezer ELA, Bauer J, Yang LL, Wyant T, Csizmadia V, 't Hart BA, Fedyk ER. Antagonizing the α4β1 integrin, but not α4β7, inhibits leukocytic infiltration of the central nervous system in rhesus monkey experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2013; 190:1961-73. [PMID: 23365083 DOI: 10.4049/jimmunol.1202490] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immune system is characterized by the preferential migration of lymphocytes through specific tissues (i.e., tissue tropism). Tissue tropism is mediated, in part, by the α(4) integrins expressed by T lymphocytes. The α(4)β(1) integrin mediates migration of memory T lymphocytes into the CNS, whereas the α(4)β(7) integrin mediates migration preferentially into gastrointestinal tissue. This paradigm was established primarily from investigations in rodents; thus, the objective of this investigation was to determine if blocking the α(4)β(7) integrin exclusively would affect migration of T lymphocytes into the CNS of primates. The effects of the dual α(4)β(1) and α(4)β(7) antagonist natalizumab were compared with those of the α(4)β(7) antagonist vedolizumab on experimental autoimmune encephalomyelitis in the rhesus monkey. Animals received an initial i.v. bolus of placebo, natalizumab (30 mg/kg), or vedolizumab (30 mg/kg) before intracutaneous immunization with recombinant human myelin oligodendrocyte glycoprotein and then Ab once weekly thereafter. Natalizumab prevented CNS inflammation and demyelination significantly (p < 0.05), compared with time-matched placebo control animals, whereas vedolizumab did not inhibit these effects, despite saturating the α(4)β(7) integrin in each animal for the duration of the investigation. These results demonstrate that blocking α(4)β(7) exclusively does not inhibit immune surveillance of the CNS in primates.
Collapse
Affiliation(s)
- Krista G Haanstra
- Biomedical Primate Research Centre, 2280 GH Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Romme Christensen J, Börnsen L, Hesse D, Krakauer M, Sørensen PS, Søndergaard HB, Sellebjerg F. Cellular sources of dysregulated cytokines in relapsing-remitting multiple sclerosis. J Neuroinflammation 2012; 9:215. [PMID: 22978757 PMCID: PMC3503813 DOI: 10.1186/1742-2094-9-215] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/06/2012] [Indexed: 11/30/2022] Open
Abstract
Background Numerous cytokines are implicated in the immunopathogenesis of multiple sclerosis (MS), but studies are often limited to whole blood (WB) or peripheral blood mononuclear cells (PBMCs), thereby omitting important information about the cellular origin of the cytokines. Knowledge about the relation between blood and cerebrospinal fluid (CSF) cell expression of cytokines and the cellular source of CSF cytokines is even more scarce. Methods We studied gene expression of a broad panel of cytokines in WB from relapsing-remitting multiple sclerosis (RRMS) patients in remission and healthy controls (HCs). Subsequently we determined the gene expression of the dysregulated cytokines in isolated PBMC subsets (CD4+, CD8+T-cells, NK-cells, B-cells, monocytes and dendritic cells) from RRMS patients and HCs and in CSF-cells from RRMS patients in clinical relapse and non-inflammatory neurological controls (NIND). Results RRMS patients had increased expression of IFN-gamma (IFNG), interleukin (IL) 1-beta (IL1B), IL7, IL10, IL12A, IL15, IL23, IL27, lymphotoxin-alpha (LTA) and lymphotoxin-beta (LTB) in WB. In PBMC subsets the main sources of pro-inflammatory cytokines were T- and B-cells, whereas monocytes were the most prominent source of immunoregulatory cytokines. In CSF-cells, RRMS patients had increased expression of IFNG and CD19 and decreased expression of IL10 and CD14 compared to NINDs. CD19 expression correlated with expression of IFNG, IL7, IL12A, IL15 and LTA whereas CD14 expression correlated with IL10 expression. Conclusions Using a systematic approach, we show that expression of pro-inflammatory cytokines in peripheral blood primarily originates from T- and B-cells, with an important exception of IFNG which is most strongly expressed by NK-cells. In CSF-cell studies, B-cells appear to be enriched in RRMS and associated with expression of pro-inflammatory cytokines; contrarily, monocytes are relatively scarce in CSF from RRMS patients and are associated with IL10 expression. Thus, our findings suggest a pathogenetic role of B-cells and an immunoregulatory role of monocytes in RRMS.
Collapse
Affiliation(s)
- Jeppe Romme Christensen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen, 2100, Denmark.
| | | | | | | | | | | | | |
Collapse
|
87
|
Yousef S, Planas R, Chakroun K, Hoffmeister-Ullerich S, Binder TMC, Eiermann TH, Martin R, Sospedra M. TCR Bias and HLA Cross-Restriction Are Strategies of Human Brain-Infiltrating JC Virus-Specific CD4+T Cells during Viral Infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:3618-30. [DOI: 10.4049/jimmunol.1201612] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
88
|
Iaffaldano P, Lucchese G, Trojano M. Treating multiple sclerosis with natalizumab. Expert Rev Neurother 2012; 11:1683-92. [PMID: 22091593 DOI: 10.1586/ern.11.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Natalizumab is the first monoclonal antibody approved for the treatment of relapsing multiple sclerosis. Pivotal trials demonstrated the efficacy of natalizumab on clinical and paraclinical measures of disease activity and disability progression. Although a direct comparison has not been performed yet, natalizumab seems to be more efficacious than the currently available immunomodulant drugs, such as IFN-β and glatiramer acetate. Despite its efficacy, the occurrence of an increased risk of progressive multifocal leukoencephalopathy with the treatment, raises concerns about its widespread use in multiple sclerosis patients. This paper provides an overview of the most relevant results from the Phase I-IV studies on natalizumab and highlights the challenges addressed to minimize and manage its adverse events in clinical practice.
Collapse
Affiliation(s)
- Pietro Iaffaldano
- Department of Neurosciences and Sense Organs, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | | | | |
Collapse
|
89
|
Peripheral accumulation of newly produced T and B lymphocytes in natalizumab-treated multiple sclerosis patients. Clin Immunol 2012; 145:19-26. [PMID: 22892399 DOI: 10.1016/j.clim.2012.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 11/24/2022]
Abstract
The anti-α4 monoclonal antibody natalizumab inhibits lymphocyte extravasation into the central nervous system and increases peripheral T and B lymphocytes in multiple sclerosis patients. To investigate whether the lymphocyte accumulation was due to a higher lymphocyte production, an altered homeostasis, or a differential transmigration of lymphocyte subsets through endothelia, T-cell receptor excision circles and kappa-deleting recombination excision circles were quantified before and after treatment, T-cell receptor repertoire was analyzed by spectratyping, and T- and B-lymphocyte subset migration was studied using transwell coated with vascular and lymphatic endothelial cells. We found that the number of newly produced T and B lymphocytes is increased because of a high release and of a low propensity of naïve subsets to migrate across endothelial cells. In some patients this resulted in an enlargement of T-cell heterogeneity. Because new lymphocyte production ensures the integrity of immune surveillance, its quantification could be used to monitor natalizumab therapy safety.
Collapse
|
90
|
Pathogenesis of the immune reconstitution inflammatory syndrome in HIV-infected patients. Curr Opin Infect Dis 2012; 25:312-20. [PMID: 22562000 DOI: 10.1097/qco.0b013e328352b664] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The immune reconstitution inflammatory syndrome (IRIS) is an important clinical complication in HIV-infected patients initiating antiretroviral therapy. This review focuses on the latest literature pertaining to the pathogenesis of IRIS. RECENT FINDINGS The clinical manifestations of IRIS are heterogeneous due to the variety of opportunistic infections that are associated with this inflammatory syndrome. However, the disproportionate inflammation is a defining hallmark for which common mechanisms are suspected. Lymphopenia-induced proliferation in the context of systemic immune activation, presence of high antigenic exposure and a wider availability of interleukin-7 contribute to the exacerbated immune response underlying IRIS. Defect in pathogen clearance by phagocytes might favor high pathogen burden, which in turn is thought to activate both innate immune cells and pathogen-specific T cells upon correction of the CD4 T-cell lymphopenia, predisposing to IRIS. This common scenario might be further invigorated by functional impairments among regulatory T cells. SUMMARY Further insight into the cellular mechanisms driving IRIS is urgently needed. Understanding the relative contribution of distinct effector and regulatory T-cell subsets, and innate immune components to IRIS is required to inspire future therapeutic approaches.
Collapse
|
91
|
H(1)R expression by CD11B(+) cells is not required for susceptibility to experimental allergic encephalomyelitis. Cell Immunol 2012; 278:27-34. [PMID: 23121973 DOI: 10.1016/j.cellimm.2012.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/08/2012] [Accepted: 06/29/2012] [Indexed: 01/03/2023]
Abstract
The histamine H(1) receptor (Hrh1/H(1)R) was identified as an autoimmune disease gene in experimental allergic encephalomyelitis (EAE), the principal autoimmune model of multiple sclerosis (MS). Previously, we showed that selective re-expression of H(1)R by endothelial cells or T cells in H(1)RKO mice significantly reduced or complemented EAE severity and cytokine responses, respectively. H(1)R regulates innate immune cells, which in turn influences peripheral and central nervous system CD4(+) T cell effector responses. Therefore, we selectively re-expressed H(1)R in CD11b(+) cells of H(1)RKO mice to test the hypothesis that H(1)R signaling in these cells contributes to EAE susceptibility. We demonstrate that transgenic re-expression of H(1)R by H(1)RKO-CD11b(+) cells neither complements EAE susceptibility nor T cell cytokine responses highlighting the cell-specific effects of Hrh1 in the pathogenesis of EAE and MS, and the need for cell-specific targeting in optimizing therapeutic interventions based on such genes.
Collapse
|
92
|
Sallusto F, Impellizzieri D, Basso C, Laroni A, Uccelli A, Lanzavecchia A, Engelhardt B. T-cell trafficking in the central nervous system. Immunol Rev 2012; 248:216-27. [DOI: 10.1111/j.1600-065x.2012.01140.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
93
|
Gan Y, Liu R, Wu W, Bomprezzi R, Shi FD. Antibody to α4 integrin suppresses natural killer cells infiltration in central nervous system in experimental autoimmune encephalomyelitis. J Neuroimmunol 2012; 247:9-15. [PMID: 22503411 DOI: 10.1016/j.jneuroim.2012.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/08/2012] [Accepted: 03/16/2012] [Indexed: 12/26/2022]
Abstract
Natalizumab inhibits the influx of leukocytes into the central nervous system (CNS) via blockade of alpha-4 subunit of very late activation antigen (VLA)-4. The association of natalizumab therapy with progressive multifocal leukoencephalopathy (PML) suggests a disturbance of CNS immune surveillance in a small percentage of Multiple Sclerosis (MS) patients exposed to the medication. Natural killer (NK) cells are known to play an important role in modulating the evolution of different phases of this lymphocyte mediated disease, and we investigated the effects of natalizumab on the NK cell phenotype and infiltration in the CNS in experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Our data show that both resting (from naïve mice) and activated (from EAE mice) NK cells express high levels of VLA-4, and anti-VLA-4 antibody treatment significantly decreases NK cells frequency in the CNS of EAE mice. Moreover, we find that anti-VLA-4 possibly impairs NK cells migratory potential, since unblocked VLA-4 expression levels were downregulated on those NK cells that penetrate the CNS. These data suggest that treatment with antibody to VLA-4 may alter immune surveillance of the CNS by impacting NK cell functions and might contribute to the understanding of the mechanisms leading to the development of PML in some MS patients.
Collapse
Affiliation(s)
- Yan Gan
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | | | | | | | | |
Collapse
|
94
|
de Andrés C, Teijeiro R, Alonso B, Sánchez-Madrid F, Martínez ML, Guzmán de Villoria J, Fernández-Cruz E, Sánchez-Ramón S. Long-term decrease in VLA-4 expression and functional impairment of dendritic cells during natalizumab therapy in patients with multiple sclerosis. PLoS One 2012; 7:e34103. [PMID: 22496780 PMCID: PMC3319565 DOI: 10.1371/journal.pone.0034103] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/24/2012] [Indexed: 11/18/2022] Open
Abstract
Myeloid and plasmacytoid dendritic cells (mDCs, pDCs) are central to the initiation and the regulation of immune processes in multiple sclerosis (MS). Natalizumab (NTZ) is a humanized monoclonal antibody approved for the treatment of MS that acts by blocking expression of VLA-4 integrins on the surface of leukocytes. We determined the proportions of circulating DC subsets and analyzed expression of VLA-4 expression in 6 relapsing-remitting MS patients treated with NTZ for 1 year. VLA-4 expression levels on pDCs and mDCs decreased significantly during follow-up. In vitro coculture of peripheral blood mononuclear cells and pDCs, with different doses of NTZ in healthy controls (HC) and MS patients showed dose-dependent down-regulation of VLA-4 expression levels in both MS patients and HC, and reduced functional ability to stimulate antigen-specific T-lymphocyte responses. The biological impact of NTZ may in part be attributable to inhibition of transmigration of circulating DCs into the central nervous system, but also to functional impairment of interactions between T cells and DC.
Collapse
Affiliation(s)
- Clara de Andrés
- Department of Neurology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Pre-existing T- and B-cell defects in one progressive multifocal leukoencephalopathy patient. PLoS One 2012; 7:e34493. [PMID: 22496817 PMCID: PMC3319584 DOI: 10.1371/journal.pone.0034493] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/01/2012] [Indexed: 11/19/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) usually occurs in patients with severe immunosuppression, hematological malignancies, chronic inflammatory conditions or receiving organ transplant. Recently, PML has also been observed in patients treated with monoclonal antibodies. By taking advantage of the availability of samples from a multiple sclerosis (MS) patient treated with natalizumab, the antibody anti-α4 integrin, who developed PML and was monitored starting before therapy initiation, we investigated the fate of T and B lymphocytes in the onset of PML. Real-time PCR was used to measure new T- and B-cell production by means of T-cell receptor excision circle (TREC) and K-deleting recombination excision circle (KREC) analysis and to quantify transcripts for CD34, terminal-deoxynucleotidyltransferase, and V pre-B lymphocyte gene 1. T- and B-cell subsets and T-cell heterogeneity were measured by flow cytometry and spectratyping. The data were compared to those of untreated and natalizumab-treated MS patients and healthy donors. Before therapy, a patient who developed PML had a low TREC and KREC number; TRECs remained low, while KRECs and pre-B lymphocyte gene 1 transcripts peaked at 6 months of therapy and then decreased at PML diagnosis. Flow cytometry confirmed the deficient number of newly produced T lymphocytes, counterbalanced by an increase in TEMRA cells. The percentage of naive B cells increased by approximately 70% after 6 months of therapy, but B lymphocyte number remained low for the entire treatment period. T-cell heterogeneity and immunoglobulins were reduced. Although performed in a single patient, all results showed that an immune deficit, together with an increase in newly produced B cells a few months after therapy initiation, may predispose the patient to PML. These findings indicate the TREC/KREC assay is a potential tool to identify patients at risk of developing PML and may provide insights into the immunological involvement of monoclonal antibody-associated therapies.
Collapse
|
96
|
Harrer A, Pilz G, Einhaeupl M, Oppermann K, Hitzl W, Wipfler P, Sellner J, Golaszewski S, Afazel S, Haschke-Becher E, Trinka E, Kraus J. Lymphocyte subsets show different response patterns to in vivo bound natalizumab--a flow cytometric study on patients with multiple sclerosis. PLoS One 2012; 7:e31784. [PMID: 22363732 PMCID: PMC3282779 DOI: 10.1371/journal.pone.0031784] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
Natalizumab is an effective monoclonal antibody therapy for the treatment of relapsing-remitting multiple sclerosis (RRMS) and interferes with immune cell migration into the central nervous system by blocking the α(4) subunit of very-late activation antigen-4 (VLA-4). Although well tolerated and very effective, some patients still suffer from relapses in spite of natalizumab therapy or from unwanted side effects like progressive multifocal leukoencephalopathy (PML). In search of a routine-qualified biomarker on the effectiveness of natalizumab therapy we applied flow cytometry and analyzed natalizumab binding to α(4) and α(4) integrin surface levels on T-cells, B-cells, natural killer (NK) cells, and NKT cells from 26 RRMS patients under up to 72 weeks of therapy. Four-weekly infusions of natalizumab resulted in a significant and sustained increase of lymphocyte-bound natalizumab (p<0.001) which was paralleled by a significant decrease in detectability of the α(4) integrin subunit on all lymphocyte subsets (p<0.001). We observed pronounced natalizumab accumulations on T and B cells at single measurements in all patients who reported clinical disease activity (n = 4). The natalizumab binding capacity of in vitro saturated lymphocytes collected during therapy was strongly diminished compared to treatment-naive cells indicating a therapy-induced reduction of α(4). Summing up, this pilot study shows that flow cytometry is a useful method to monitor natalizumab binding to lymphocytes from RRMS patients under therapy. Investigating natalizumab binding provides an opportunity to evaluate the molecular level of effectiveness of natalizumab therapy in individual patients. In combination with natalizumab saturation experiments, it possibly even provides a means of studying the feasability of patient-tailored infusion intervals. A routine-qualified biomarker on the basis of individual natalizumab saturation on lymphocyte subsets might be an effective tool to improve treatment safety.
Collapse
Affiliation(s)
- Andrea Harrer
- Department of Neurology, Christian-Doppler-Klinik, Paracelsus Medical University, Salzburg, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Clarkson BD, Héninger E, Harris MG, Lee J, Sandor M, Fabry Z. Innate-adaptive crosstalk: how dendritic cells shape immune responses in the CNS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:309-33. [PMID: 21948376 DOI: 10.1007/978-1-4614-0106-3_18] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous group of professional antigen presenting cells that lie in a nexus between innate and adaptive immunity because they recognize and respond to danger signals and subsequently initiate and regulate effector T-cell responses. Initially thought to be absent from the CNS, both plasmacytoid and conventional DCs as well as DC precursors have recently been detected in several CNS compartments where they are seemingly poised for responding to injury and pathogens. Additionally, monocyte-derived DCs rapidly accumulate in the inflamed CNS where they, along with other DC subsets, may function to locally regulate effector T-cells and/or carry antigens to CNS-draining cervical lymph nodes. In this review we highlight recent research showing that (a) distinct inflammatory stimuli differentially recruit DC subsets to the CNS; (b) DC recruitment across the blood-brain barrier (BBB) is regulated by adhesion molecules, growth factors, and chemokines; and (c) DCs positively or negatively regulate immune responses in the CNS.
Collapse
Affiliation(s)
- Benjamin D Clarkson
- Department of Pathology and Laboratory Medicine, 6130 MSC University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Gensicke H, Leppert D, Yaldizli Ö, Lindberg RLP, Mehling M, Kappos L, Kuhle J. Monoclonal antibodies and recombinant immunoglobulins for the treatment of multiple sclerosis. CNS Drugs 2012; 26:11-37. [PMID: 22171583 DOI: 10.2165/11596920-000000000-00000] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and degenerative disease leading to demyelination and axonal damage in the CNS. Autoimmunity plays a central role in MS pathogenesis. Per definition, monoclonal antibodies are recombinant biological compounds with a well defined target, thus carrying the promise of targeting pathogenic cells or molecules with high specificity, avoiding undesired off-target effects. Natalizumab was the first monoclonal antibody to be approved for the treatment of MS. Several other monoclonal antibodies are in development and have demonstrated promising efficacy in phase II studies. They can be categorized according to their mode of action into compounds targeting (i) leukocyte migration into the CNS (natalizumab); (ii) cytolytic antibodies (rituximab, ocrelizumab, ofatumumab, alemtuzumab); or (iii) antibodies and recombinant proteins targeting cytokines and chemokines and their receptors (daclizumab, ustekinumab, atacicept, tabalumab [Ly-2127399], secukinumab [AIN457]). In this review, we discuss the specific molecular targets, clinical efficacy and safety of these compounds and discuss criteria to anticipate the position of monoclonal antibodies in the diversifying armamentarium of MS therapy in the coming years.
Collapse
Affiliation(s)
- Henrik Gensicke
- Neurology, Department of Medicine, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
99
|
Planas R, Jelčić I, Schippling S, Martin R, Sospedra M. Natalizumab treatment perturbs memory- and marginal zone-like B-cell homing in secondary lymphoid organs in multiple sclerosis. Eur J Immunol 2011; 42:790-8. [PMID: 22144343 DOI: 10.1002/eji.201142108] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/21/2011] [Accepted: 11/15/2011] [Indexed: 11/09/2022]
Abstract
Natalizumab, an antibody against the α4 subunit of α4 integrins, has been approved for multiple sclerosis (MS) therapy based on its high efficacy and safety profile. However, natalizumab has been associated with the development of progressive multifocal leukoencephalopathy (PML), a disorder caused by JC virus (JCV) infection. In order to improve our understanding of the mechanism of action of natalizumab and to identify possible risk factors for PML development, we have characterized in detail the cell blood composition in MS patients treated with natalizumab for more than 30 months. Natalizumab induced the release of lymphoid- but not myeloid precursor cells, which resulted in a chronic increase ofT-, NK- and particularly B cells. While the percentage of recent thymic emigrants (RTEs), naϊve, effector or memory T cells remained unchanged during treatment, a higher percentage of memory- and marginal zone (MZ)-like, but not of naϊve B cells, was observed, which most likely is due to a decreased retention of these cells within the splenic MZ. The ability of natalizumab to influence B-cell migration and homeostasis through the splenic MZ, where JCV has been detected, adds to the list of natalizumab effects and may contribute to PML development by disseminating JCV.
Collapse
Affiliation(s)
- Raquel Planas
- Institute for Neuroimmunology and Clinical MS Research, Center for Molecular Neurobiology Hamburg, University Medical Center-Eppendorf, Hamburg, UKE, Germany
| | | | | | | | | |
Collapse
|
100
|
Modulation of inflammatory pathways by the immune cholinergic system. Amino Acids 2011; 45:73-85. [PMID: 22194043 DOI: 10.1007/s00726-011-1192-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 11/30/2011] [Indexed: 01/13/2023]
Abstract
Research done in the past years pointed to a novel function of cholinergic transmission. It has been shown that cholinergic transmission can modulate various aspects of the immune function, whether innate or adaptive. Cholinergic transmission affects immune cell proliferation, cytokine production, T helper differentiation and antigen presentation. Theses effects are mediated by cholinergic muscarinic and nicotinic receptors and other cholinergic components present in immune cells, such as acetylcholinesterase (AChE) and cholineacetyltransferase. The α7 nicotinic acetylcholine receptor was designated anti-inflammatory activity and has shown promise in pre-clinical models of inflammatory disorders. We herein describe the various components of the immune cholinergic system, and specifically the immune suppressive effects of α7 activation. This activation can be accomplished either by direct stimulation or indirectly, by inhibition of AChE. Thus, the presence of the immune cholinergic system can pave the way for novel immunomodulatory agents, or to the broadening of use of known cholinergic agents.
Collapse
|