51
|
Yao Y, Zhong J, Zhang L, Khan S, Chen W. CartiMorph: A framework for automated knee articular cartilage morphometrics. Med Image Anal 2024; 91:103035. [PMID: 37992496 DOI: 10.1016/j.media.2023.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 08/25/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
We introduce CartiMorph, a framework for automated knee articular cartilage morphometrics. It takes an image as input and generates quantitative metrics for cartilage subregions, including the percentage of full-thickness cartilage loss (FCL), mean thickness, surface area, and volume. CartiMorph leverages the power of deep learning models for hierarchical image feature representation. Deep learning models were trained and validated for tissue segmentation, template construction, and template-to-image registration. We established methods for surface-normal-based cartilage thickness mapping, FCL estimation, and rule-based cartilage parcellation. Our cartilage thickness map showed less error in thin and peripheral regions. We evaluated the effectiveness of the adopted segmentation model by comparing the quantitative metrics obtained from model segmentation and those from manual segmentation. The root-mean-squared deviation of the FCL measurements was less than 8%, and strong correlations were observed for the mean thickness (Pearson's correlation coefficient ρ∈[0.82,0.97]), surface area (ρ∈[0.82,0.98]) and volume (ρ∈[0.89,0.98]) measurements. We compared our FCL measurements with those from a previous study and found that our measurements deviated less from the ground truths. We observed superior performance of the proposed rule-based cartilage parcellation method compared with the atlas-based approach. CartiMorph has the potential to promote imaging biomarkers discovery for knee osteoarthritis.
Collapse
Affiliation(s)
- Yongcheng Yao
- CU Lab of AI in Radiology (CLAIR), Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Junru Zhong
- CU Lab of AI in Radiology (CLAIR), Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Liping Zhang
- CU Lab of AI in Radiology (CLAIR), Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheheryar Khan
- School of Professional Education and Executive Development, The Hong Kong Polytechnic University, Hong Kong, China
| | - Weitian Chen
- CU Lab of AI in Radiology (CLAIR), Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
52
|
Patnaik R, Riaz S, Sivani BM, Faisal S, Naidoo N, Rizzo M, Banerjee Y. Evaluating the potential of Vitamin D and curcumin to alleviate inflammation and mitigate the progression of osteoarthritis through their effects on human chondrocytes: A proof-of-concept investigation. PLoS One 2023; 18:e0290739. [PMID: 38157375 PMCID: PMC10756552 DOI: 10.1371/journal.pone.0290739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/14/2023] [Indexed: 01/03/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder primarily affecting the elderly, characterized by a prominent inflammatory component. The long-term side effects associated with current therapeutic approaches necessitate the development of safer and more efficacious alternatives. Nutraceuticals, such as Vitamin D and curcumin, present promising therapeutic potentials due to their safety, efficacy, and cost-effectiveness. In this study, we utilized a proinflammatory human chondrocyte model of OA to assess the anti-inflammatory properties of Vitamin D and curcumin, with a particular focus on the Protease-Activated Receptor-2 (PAR-2) mediated inflammatory pathway. Employing a robust siRNA approach, we effectively modulated the expression of PAR-2 to understand its role in the inflammatory process. Our results reveal that both Vitamin D and curcumin attenuate the expression of PAR-2, leading to a reduction in the downstream proinflammatory cytokines, such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin 6 (IL-6), and Interleukin 8 (IL-8), implicated in the OA pathogenesis. Concurrently, these compounds suppressed the expression of Receptor Activator of Nuclear Factor kappa-Β Ligand (RANKL) and its receptor RANK, which are associated with PAR-2 mediated TNF-α stimulation. Additionally, Vitamin D and curcumin downregulated the expression of Interferon gamma (IFN-γ), known to elevate RANKL levels, underscoring their potential therapeutic implications in OA. This study, for the first time, provides evidence of the mitigating effect of Vitamin D and curcumin on PAR-2 mediated inflammation, employing an siRNA approach in OA. Thus, our findings pave the way for future research and the development of novel, safer, and more effective therapeutic strategies for managing OA.
Collapse
Affiliation(s)
- Rajashree Patnaik
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Sumbal Riaz
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Bala Mohan Sivani
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Shemima Faisal
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Nerissa Naidoo
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Yajnavalka Banerjee
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
- Centre for Medical Education, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
53
|
Li M, Xia Z, Li X, lan L, Mo X, Xie L, Zhan Y, Li W. Difference in quantitative MRI measurements of cartilage between Wiberg type III patella and stable patella based on a 3.0-T synthetic MRI sequence. Eur J Radiol Open 2023; 11:100526. [PMID: 37953964 PMCID: PMC10632675 DOI: 10.1016/j.ejro.2023.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/17/2023] [Accepted: 09/30/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose The purpose of this study was to investigate the difference between the quantitative MRI values of Wiberg type III and stable patellar cartilage, and to improve the accuracy of MRI quantification in early patellar cartilage damage. Methods The knee joints of 94 healthy volunteers were scanned by a GE Signa Pioneer 3.0-T synthetic MRI machine. According to the Wiberg classification, the patella was divided into types I-III. Types I-II made up the stable patella group, and type III made up the unstable patella group. Two radiologists independently measured patellar cartilage thickness and quantitative synthetic MRI values (T1, T2, PD) in both groups. Interobserver agreement for quantitative variables was assessed using the Bland-Altman method. A third radiologist assessed differences in measurements. Results The medial T2 and T1 value of Wiberg III patella did not show a normal distribution (all P > 0.05). Compared with the stable group, the Wiberg type III group had thinner cartilage of the medial surface of the patella (P < 0.05), lower cartilage T2 and PD values (P < 0.05), but a similar cartilage T1 value (P > 0.05). There was no significant difference in the cartilage thickness, T1, T2, or PD value of the lateral patella between the Wiberg type III and the stable group (P > 0.05). Conclusion There were certain differences in the cartilage thickness of the medial surface of the patella and the quantitative value of synthetic MRI in Wiberg type III patellas. Quantitative studies of patellar cartilage MRI measurements need to consider the influence of patellar morphology.
Collapse
Affiliation(s)
- Min Li
- The Second Affiliated Hospital of Guangxi Medical University, Department of Radiology, Nanning, Guangxi 530007, China
| | - Zhenyuan Xia
- The Second Affiliated Hospital of Guangxi Medical University, Department of Radiology, Nanning, Guangxi 530007, China
| | - Xiaohua Li
- The Second Affiliated Hospital of Guangxi Medical University, Department of Radiology, Nanning, Guangxi 530007, China
| | - Lan lan
- The Second Affiliated Hospital of Guangxi Medical University, Department of Radiology, Nanning, Guangxi 530007, China
| | - Xinxin Mo
- The Second Affiliated Hospital of Guangxi Medical University, Department of Radiology, Nanning, Guangxi 530007, China
| | - La Xie
- The Second Affiliated Hospital of Guangxi Medical University, Department of Radiology, Nanning, Guangxi 530007, China
| | - Yu Zhan
- The Second Affiliated Hospital of Guangxi Medical University, Department of Radiology, Nanning, Guangxi 530007, China
| | - Weixiong Li
- The Second Affiliated Hospital of Guangxi Medical University, Department of Radiology, Nanning, Guangxi 530007, China
| |
Collapse
|
54
|
Kong K, Jin M, Zhao C, Qiao H, Chen X, Li B, Rong K, Zhang P, Shan Y, Xu Z, Chang Y, Li H, Zhai Z. Mechanical overloading leads to chondrocyte degeneration and senescence via Zmpste24-mediated nuclear membrane instability. iScience 2023; 26:108119. [PMID: 37965144 PMCID: PMC10641493 DOI: 10.1016/j.isci.2023.108119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 11/16/2023] Open
Abstract
Patients with OA and varus knees are subject to abnormal mechanical environment and objective of this study was to investigate the molecular mechanisms underlying chondrocyte senescence caused by mechanical overloading and the role of Zmpste24-mediated nuclear membrane instability in varus knees. Finite element analysis showed that anteromedial region of tibial plateau experienced the most mechanical stress in an osteoarthritis patient with a varus knee. Immunohistochemistry exhibited lower Zmpste24 expression and higher expression of senescence marker p21 in the anteromedial region. Animal experiments and cell-stretch models also demonstrated an inverse relationship between Zmpste24 and mechanically induced senescence. Zmpste24 overexpression rescued cartilage degeneration and senescence in vitro by scavenging ROS. In conclusion, anteromedial tibial plateau is exposed to abnormal stress in varus knees, downregulation of Zmpste24, and nuclear membrane stability may explain increased senescence in this region. Zmpste24 and nuclear membrane stability are potential targets for treating osteoarthritis caused by abnormal alignment.
Collapse
Affiliation(s)
- Keyu Kong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minghao Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chen Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuzhuo Chen
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, College of Stomatology, Ninth People’s Hospital, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baixing Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pu Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Shan
- Suzhou Ninth People’s Hospital, Department of Orthopedics, Suzhou Ninth Hospital affiliated to Soochow University, Suzhou, China
| | - Zhengquan Xu
- Suzhou Municipal Hospital, Department of Orthopedics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Yongyun Chang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiwu Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zanjing Zhai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
55
|
Roemer FW, Jarraya M, Collins JE, Kwoh CK, Hayashi D, Hunter DJ, Guermazi A. Structural phenotypes of knee osteoarthritis: potential clinical and research relevance. Skeletal Radiol 2023; 52:2021-2030. [PMID: 36161341 PMCID: PMC10509066 DOI: 10.1007/s00256-022-04191-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 02/02/2023]
Abstract
A joint contains many different tissues that can exhibit pathological changes, providing many potential targets for treatment. Researchers are increasingly suggesting that osteoarthritis (OA) comprises several phenotypes or subpopulations. Consequently, a treatment for OA that targets only one pathophysiologic abnormality is unlikely to be similarly efficacious in preventing or delaying the progression of all the different phenotypes of structural OA. Five structural phenotypes have been proposed, namely the inflammatory, meniscus-cartilage, subchondral bone, and atrophic and hypertrophic phenotypes. The inflammatory phenotype is characterized by marked synovitis and/or joint effusion, while the meniscus-cartilage phenotype exhibits severe meniscal and cartilage damage. Large bone marrow lesions characterize the subchondral bone phenotype. The hypertrophic and atrophic OA phenotype are defined based on the presence large osteophytes or absence of any osteophytes, respectively, in the presence of concomitant cartilage damage. Limitations of the concept of structural phenotyping are that they are not mutually exclusive and that more than one phenotype may be present. It must be acknowledged that a wide range of views exist on how best to operationalize the concept of structural OA phenotypes and that the concept of structural phenotypic characterization is still in its infancy. Structural phenotypic stratification, however, may result in more targeted trial populations with successful outcomes and practitioners need to be aware of the heterogeneity of the disease to personalize their treatment recommendations for an individual patient. Radiologists should be able to define a joint at risk for progression based on the predominant phenotype present at different disease stages.
Collapse
Affiliation(s)
- Frank W Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, 820 Harrison Avenue, FGH Building, 4th floor, Boston, MA, 02118, USA.
- Department of Radiology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany.
| | - Mohamed Jarraya
- Department of Radiology, Massachusetts General Hospital, Harvard University, 55 Fruit St, Boston, MA, 02114, USA
| | - Jamie E Collins
- Orthopaedics and Arthritis Center of Outcomes Research, Brigham and Women's Hospital, Harvard Medical, School, 75 Francis Street, BTM Suite 5016, Boston, MA, 02115, USA
| | - C Kent Kwoh
- University of Arizona Arthritis Center, The University of Arizona College of Medicine, 1501 N. Campbell Avenue, Suite, Tucson, AZ, 8303, USA
| | - Daichi Hayashi
- Department of Radiology, Stony Brook University Renaissance School of Medicine, State University of New York, 101 Nicolls Rd, HSc Level 4, Room 120, Stony Brook, NY, 11794-8460, USA
| | - David J Hunter
- Department of Rheumatology, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Reserve Rd, St. Leonards, 2065, NSW, Australia
| | - Ali Guermazi
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, 820 Harrison Avenue, FGH Building, 4th floor, Boston, MA, 02118, USA
- Department of Radiology, VA Boston Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA, 02132, USA
| |
Collapse
|
56
|
Wirth W, Ladel C, Maschek S, Wisser A, Eckstein F, Roemer F. Quantitative measurement of cartilage morphology in osteoarthritis: current knowledge and future directions. Skeletal Radiol 2023; 52:2107-2122. [PMID: 36380243 PMCID: PMC10509082 DOI: 10.1007/s00256-022-04228-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Quantitative measures of cartilage morphology ("cartilage morphometry") extracted from high resolution 3D magnetic resonance imaging (MRI) sequences have been shown to be sensitive to osteoarthritis (OA)-related change and also to treatment interventions. Cartilage morphometry is therefore nowadays widely used as outcome measure for observational studies and randomized interventional clinical trials. The objective of this narrative review is to summarize the current status of cartilage morphometry in OA research, to provide insights into aspects relevant for the design of future studies and clinical trials, and to give an outlook on future developments. It covers the aspects related to the acquisition of MRIs suitable for cartilage morphometry, the analysis techniques needed for deriving quantitative measures from the MRIs, the quality assurance required for providing reliable cartilage measures, and the appropriate participant recruitment criteria for the enrichment of study cohorts with knees likely to show structural progression. Finally, it provides an overview over recent clinical trials that relied on cartilage morphometry as a structural outcome measure for evaluating the efficacy of disease-modifying OA drugs (DMOAD).
Collapse
Affiliation(s)
- Wolfgang Wirth
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020 Salzburg, Austria
- Ludwig Boltzmann Inst. for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | | | - Susanne Maschek
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020 Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Anna Wisser
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020 Salzburg, Austria
- Ludwig Boltzmann Inst. for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Felix Eckstein
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020 Salzburg, Austria
- Ludwig Boltzmann Inst. for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Frank Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA USA
- Department of Radiology, Universitätsklinikum Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
57
|
Ng JQ, Jafarov TH, Little CB, Wang T, Ali AM, Ma Y, Radford GA, Vrbanac L, Ichinose M, Whittle S, Hunter DJ, Lannagan TRM, Suzuki N, Goyne JM, Kobayashi H, Wang TC, Haynes DR, Menicanin D, Gronthos S, Worthley DL, Woods SL, Mukherjee S. Loss of Grem1-lineage chondrogenic progenitor cells causes osteoarthritis. Nat Commun 2023; 14:6909. [PMID: 37907525 PMCID: PMC10618187 DOI: 10.1038/s41467-023-42199-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Osteoarthritis (OA) is characterised by an irreversible degeneration of articular cartilage. Here we show that the BMP-antagonist Gremlin 1 (Grem1) marks a bipotent chondrogenic and osteogenic progenitor cell population within the articular surface. Notably, these progenitors are depleted by injury-induced OA and increasing age. OA is also caused by ablation of Grem1 cells in mice. Transcriptomic and functional analysis in mice found that articular surface Grem1-lineage cells are dependent on Foxo1 and ablation of Foxo1 in Grem1-lineage cells caused OA. FGFR3 signalling was confirmed as a promising therapeutic pathway by administration of pathway activator, FGF18, resulting in Grem1-lineage chondrocyte progenitor cell proliferation, increased cartilage thickness and reduced OA. These findings suggest that OA, in part, is caused by mechanical, developmental or age-related attrition of Grem1 expressing articular cartilage progenitor cells. These cells, and the FGFR3 signalling pathway that sustains them, may be effective future targets for biological management of OA.
Collapse
Affiliation(s)
- Jia Q Ng
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Toghrul H Jafarov
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Christopher B Little
- Raymond Purves Bone & Joint Research Laboratories, Kolling Institute, University of Sydney Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Tongtong Wang
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Abdullah M Ali
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Yan Ma
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Georgette A Radford
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Laura Vrbanac
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mari Ichinose
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Samuel Whittle
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Rheumatology Unit, The Queen Elizabeth Hospital, Woodville South, SA, Australia
| | - David J Hunter
- Northern Clinical School, University of Sydney, St. Leonards, Sydney, NSW, Australia
| | - Tamsin R M Lannagan
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Nobumi Suzuki
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Jarrad M Goyne
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Hiroki Kobayashi
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Timothy C Wang
- Department of Medicine and Irving Cancer Research Center, Columbia University, New York, NY, USA
| | - David R Haynes
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Danijela Menicanin
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel L Worthley
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- Colonoscopy Clinic, Brisbane, QLD, Australia.
| | - Susan L Woods
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | | |
Collapse
|
58
|
Jan Vilim, Ghazalova T, Petulova E, Horackova A, Stepankova V, Chaloupkova R, Bednar D, Damborsky J, Prokop Z. Computer-assisted stabilization of fibroblast growth factor FGF-18. Comput Struct Biotechnol J 2023; 21:5144-5152. [PMID: 37920818 PMCID: PMC10618113 DOI: 10.1016/j.csbj.2023.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023] Open
Abstract
The fibroblast growth factors (FGF) family holds significant potential for addressing chronic diseases. Specifically, recombinant FGF18 shows promise in treating osteoarthritis by stimulating cartilage formation. However, recent phase 2 clinical trial results of sprifermin (recombinant FGF18) indicate insufficient efficacy. Leveraging our expertise in rational protein engineering, we conducted a study to enhance the stability of FGF18. As a result, we obtained a stabilized variant called FGF18-E4, which exhibited improved stability with 16 °C higher melting temperature, resistance to trypsin and a 2.5-fold increase in production yields. Moreover, the FGF18-E4 maintained mitogenic activity after 1-week incubation at 37 °C and 1-day at 50 °C. Additionally, the inserted mutations did not affect its binding to the fibroblast growth factor receptors, making FGF18-E4 a promising candidate for advancing FGF-based osteoarthritis treatment.
Collapse
Affiliation(s)
- Jan Vilim
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Enantis Ltd., INBIT, Kamenice 34, 625 00 Brno, Czech Republic
| | | | - Eliska Petulova
- Enantis Ltd., INBIT, Kamenice 34, 625 00 Brno, Czech Republic
| | - Aneta Horackova
- Enantis Ltd., INBIT, Kamenice 34, 625 00 Brno, Czech Republic
| | | | | | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
59
|
Gan L, Deng Z, Wei Y, Li H, Zhao L. Decreased expression of GEM in osteoarthritis cartilage regulates chondrogenic differentiation via Wnt/β-catenin signaling. J Orthop Surg Res 2023; 18:751. [PMID: 37794464 PMCID: PMC10548561 DOI: 10.1186/s13018-023-04236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND GEM (GTP-binding protein overexpressed in skeletal muscle) is one of the atypical small GTPase subfamily members recently identified as a regulator of cell differentiation. Abnormal chondrogenesis coupled with an imbalance in the turnover of cartilaginous matrix formation is highly relevant to the onset and progression of osteoarthritis (OA). However, how GEM regulates chondrogenic differentiation remains unexplored. METHODS Cartilage tissues were obtained from OA patients and graded according to the ORASI and ICRS grading systems. The expression alteration of GEM was detected in the Grade 4 cartilage compared to Grade 0 and verified in OA mimic culture systems. Next, to investigate the specific function of GEM during these processes, we generated a Gem knockdown (Gem-Kd) system by transfecting siRNA targeting Gem into ATDC5 cells. Acan, Col2a1, Sox9, and Wnt target genes of Gem-Kd ATDC5 cells were detected during induction. The transcriptomic sequencing analysis was performed to investigate the mechanism of GEM regulation. Wnt signaling pathways were verified by real-time PCR and immunoblot analysis. Finally, a rescue model generated by treating Gem-KD ATDC5 cells with a Wnt signaling agonist was established to validate the mechanism identified by RNA sequencing analysis. RESULTS A decreased expression of GEM in OA patients' cartilage tissues and OA mimic chondrocytes was observed. While during chondrogenesis differentiation and cartilage matrix formation, the expression of GEM was increased. Gem silencing suppressed chondrogenic differentiation and the expressions of Acan, Col2a1, and Sox9. RNA sequencing analysis revealed that Wnt signaling was downregulated in Gem-Kd cells. Decreased expression of Wnt signaling associated genes and the total β-CATENIN in the nucleus and cytoplasm were observed. The exogenous Wnt activation exhibited reversed effect on Gem loss-of-function cells. CONCLUSION These findings collectively validated that GEM functions as a novel regulator mediating chondrogenic differentiation and cartilage matrix formation through Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Lu Gan
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhonghao Deng
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yiran Wei
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | | | - Liang Zhao
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
60
|
Karsdal MA, Tambiah J, Felson D, Ladel C, Nikolov NP, Hodgins D, Bihlet AR, Neogi T, Baatenburg de Jong C, Bay-Jensen AC, Baron R, Laslop A, Mobasheri A, Kraus VB. Reflections from the OARSI 2022 clinical trials symposium: The pain of OA-Deconstruction of pain and patient-reported outcome measures for the benefit of patients and clinical trial design. Osteoarthritis Cartilage 2023; 31:1293-1302. [PMID: 37380011 PMCID: PMC11184959 DOI: 10.1016/j.joca.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) drug development is hampered by a number of challenges. One of the main challenges is the apparent discordance between pain and structure, which has had a significant impact on drug development programs and has led to hesitance among stakeholders. Since 2017, the Clinical Trials Symposium (CTS) has been hosted under the Osteoarthritis Research Society International (OARSI) leadership. OARSI and the CTS steering committee yearly invite and encourage discussions on selected special subject matter between regulators, drug developers, clinicians, clinical researchers, biomarker specialists, and basic scientists to progress drug development in the OA field. METHOD The main topic for the 2022 OARSI CTS was to elucidate the many facets of pain in OA and to enable a discussion between regulators (Food and Drug Administration (FDA) and the European Medicines Agency (EMA)) and drug developers to clarify outcomes and study designs for OA drug development. RESULTS Signs or symptoms indicative of nociceptive pain occur in 50-70% of OA patients, neuropathic-like pain in 15-30% of patients, and nociplastic pain in 15-50% of patients. Weight-bearing knee pain is associated with bone marrow lesions and effusions. There are currently no simple objective functional tests whose improvements correlate with patient perceptions. CONCLUSIONS The CTS participants, in collaboration with the FDA and EMA, raised several suggestions that they consider key to future clinical trials in OA including the need for more precise differentiation of pain symptoms and mechanisms, and methods to reduce placebo responses in OA trials.
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience, Herlev, Denmark; Southern Danish University, Odense, Denmark.
| | - J Tambiah
- Biosplice Therapeutics, San Diego, USA
| | - D Felson
- Boston University School of Medicine, Boston, MA, USA
| | - C Ladel
- CHL4special Consultancy, Darmstadt, Germany
| | - N P Nikolov
- Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - D Hodgins
- Dynamic Metrics Limited, Codicote, UK
| | | | - T Neogi
- Boston University School of Medicine, Boston, MA, USA
| | | | | | - R Baron
- University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - A Laslop
- Committee for Medicinal Products for Human Use (CHMP), European Medicines Agency, Amsterdam, the Netherlands; Bundesamt für Sicherheit im Gesundheitswesen (BASG), Vienna, Austria
| | - A Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liege, Belgium
| | - V B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
61
|
Neogi T, Colloca L. Placebo effects in osteoarthritis: implications for treatment and drug development. Nat Rev Rheumatol 2023; 19:613-626. [PMID: 37697077 PMCID: PMC10615856 DOI: 10.1038/s41584-023-01021-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/13/2023]
Abstract
Osteoarthritis (OA) is the most common form of arthritis worldwide, affecting ~500 million people, yet there are no effective treatments to halt its progression. Without any structure-modifying agents, management of OA focuses on ameliorating pain and improving function. Treatment approaches typically have modest efficacy, and many patients have contraindications to recommended pharmacological treatments. Drug development for OA is hindered by the gradual and progressive nature of the disease and the targeting of established disease in clinical trials. Additionally, new medications for OA cannot receive regulatory approval without demonstrating improvements in both structure (pathological features of OA) and symptoms (reduced pain and/or improved function). In clinical trials, people with OA show high 'placebo responses', which hamper the ability to identify new effective treatments. Placebo responses refer to the individual variability in response to placebos given in the context of clinical trials and other settings. Placebo effects refer specifically to short-lasting improvements in symptoms that occur because of physiological changes. To mitigate the effects of the placebo phenomenon, we must first understand what it is, how it manifests, how to identify placebo responders in OA trials and how these insights can be used to improve clinical trials in OA. Leveraging placebo responses and effects in clinical practice might provide additional avenues to augment symptom management of OA.
Collapse
Affiliation(s)
- Tuhina Neogi
- Section of Rheumatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luana Colloca
- Department of Pain and Translation Symptom Science, School of Nursing, University of Maryland, Baltimore, MD, USA.
- Placebo Beyond Opinions Center, School of Nursing, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
62
|
Gong J, Nhan J, St-Pierre JP, Gillies ER. Designing polymers for cartilage uptake: effects of architecture and molar mass. J Mater Chem B 2023; 11:8804-8816. [PMID: 37668597 DOI: 10.1039/d3tb01417g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Osteoarthritis (OA) is a progressive disease, involving the progressive breakdown of cartilage, as well as changes to the synovium and bone. There are currently no disease-modifying treatments available clinically. An increasing understanding of the disease pathophysiology is leading to new potential therapeutics, but improved approaches are needed to deliver these drugs, particularly to cartilage tissue, which is avascular and contains a dense matrix of collagens and negatively charged aggrecan proteoglycans. Cationic delivery vehicles have been shown to effectively penetrate cartilage, but these studies have thus far largely focused on proteins or nanoparticles, and the effects of macromolecular architectures have not yet been explored. Described here is the synthesis of a small library of polycations composed of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-(3-aminopropyl)methacrylamide (APMA) with linear, 4-arm, or 8-arm structures and varying degrees of polymerization (DP) by reversible addition fragmentation chain-transfer (RAFT) polymerization. Uptake and retention of the polycations in bovine articular cartilage was assessed. While all polycations penetrated cartilage, uptake and retention generally increased with DP before decreasing for the highest DP. In addition, uptake and retention were higher for the linear polycations compared to the 4-arm and 8-arm polycations. In general, the polycations were well tolerated by bovine chondrocytes, but the highest DP polycations imparted greater cytotoxicity. Overall, this study reveals that linear polymer architectures may be more favorable for binding to the cartilage matrix and that the DP can be tuned to maximize uptake while minimizing cytotoxicity.
Collapse
Affiliation(s)
- Jue Gong
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.
| | - Jordan Nhan
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada.
| | - Jean-Philippe St-Pierre
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada.
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B9, Canada
| |
Collapse
|
63
|
Bay-Jensen AC, Attur M, Samuels J, Thudium CS, Abramson SB, Karsdal MA. Pathological tissue formation and degradation biomarkers correlate with patient reported pain outcomes: an explorative study. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100379. [PMID: 37342785 PMCID: PMC10277584 DOI: 10.1016/j.ocarto.2023.100379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Background The lack of disease modifying drugs in Osteoarthritis (OA) may be attributed to the difficulty in robust response based on patient-reported outcomes (PROs) linked to drug mechanism of action. Joint tissue turnover biomarkers are associated with disease progression. A subset of patients has elevated serum levels of CRP metabolite (CRPM). This explorative study investigates the associations between PROs and joint tissue turnover markers in patients with high or low CRPM. Methods Serum of 146 knee OA patients of the New York Inflammation cohort and 21 healthy donors were assessed for biomarkers of collagen degradation (C1M, C2M, C3M, C4M), formation (PRO-C1, PRO-C2, PRO-C3, PRO-C4), and CRPM. Mean (SD) age was 62.5 (10.1); BMI, 26.6 (3.6); 62% women; and, 67.6% had symptomatic OA. WOMAC pain, stiffness, function, and total were recorded at baseline and at two-year follow-up. Associations were adjusted for race, sex, age, BMI, and NSAID. Results There was no difference in markers between donors and patients. C2M correlated with the WOMAC scores in all CRPM groups. Significant correlations were observed between PROs and PRO-C4, C1M, and C3M in the CRPMhigh group. The best predictive models for improvement were found for function and total with AUCs of 0.74 (p < 0.01) and 0.78 (p < 0.01). The best predictive models for worsening were found for function and total with AUCs of 0.84 (p < 0.01) and 0.80 (p < 0.05). Conclusion We hypothesize that collagen markers are prognostic tools for segregating patient populations in clinical trials.
Collapse
Affiliation(s)
| | - Mukundan Attur
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY-10003, USA
| | - Jonathan Samuels
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY-10003, USA
| | | | - Steven B. Abramson
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY-10003, USA
| | | |
Collapse
|
64
|
Eckstein F, Maschek S, Culvenor A, Sharma L, Roemer F, Duda G, Wirth W. Which risk factors determine cartilage thickness and composition change in radiographically normal knees? - Data from the Osteoarthritis Initiative. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100365. [PMID: 37207279 PMCID: PMC10188628 DOI: 10.1016/j.ocarto.2023.100365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Objective Therapy for osteoarthritis ideally aims at preserving structure before radiographic change occurs. This study tests: a) whether longitudinal deterioration in cartilage thickness and composition (transverse relaxation-time T2) are greater in radiographically normal knees "at risk" of incident osteoarthritis than in those without risk factors; and b) which risk factors may be associated with these deteriorations. Design 755 knees from the Osteoarthritis Initiative were studied; all were bilaterally Kellgren Lawrence grade [KLG] 0 initially, and had magnetic resonance images available at 12- and 48-month follow-up. 678 knees were "at risk", whereas 77 were not (i.e., non-exposed reference). Cartilage thickness and composition change was determined in 16 femorotibial subregions, with deep and superficial T2 being analyzed in a subset (n = 59/52). Subregion values were used to compute location-independent change scores. Results In KLG0 knees "at risk", the femorotibial cartilage thinning score (-634 ± 516 μm) over 3 years exceeded the thickening score by approximately 20%, and was 27% greater (p < 0.01; Cohen D -0.27) than the thinning score in "non-exposed" knees (-501 ± 319 μm). Superficial and deep cartilage T2 change, however, did not differ significantly between both groups (p ≥ 0.38). Age, sex, body mass index, knee trauma/surgery history, family history of joint replacement, presence of Heberden's nodes, repetitive knee bending were not significantly associated with cartilage thinning (r2<1%), with only knee pain reaching statistical significance. Conclusions Knees "at risk" of incident knee OA displayed greater cartilage thinning scores than those "non-exposed". Except for knee pain, the greater cartilage loss was not significantly associated with demographic or clinical risk factors.
Collapse
Affiliation(s)
- F. Eckstein
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology & Ludwig Boltzmann Intitute of Arthritis & Rehabilitation (LBIAR), Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
- Corresponding author. Institute of Anatomy & Cell Biology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
| | - S. Maschek
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology & Ludwig Boltzmann Intitute of Arthritis & Rehabilitation (LBIAR), Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
| | - A. Culvenor
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology & Ludwig Boltzmann Intitute of Arthritis & Rehabilitation (LBIAR), Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health La Trobe University, Bundoora, Australia
| | - L. Sharma
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago IL, USA
| | - F.W. Roemer
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg & Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA
| | - G.N. Duda
- Julius Wolff Institute, Berlin-Brandenburg Institute of Health at Charité – Universitätsmedizin Berlin, Germany
| | - W. Wirth
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology & Ludwig Boltzmann Intitute of Arthritis & Rehabilitation (LBIAR), Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
| |
Collapse
|
65
|
Vincent TL, Conaghan PG. Are pro-regenerative therapies the future of osteoarthritis disease modification? Osteoarthritis Cartilage 2023; 31:1152-1153. [PMID: 37196977 DOI: 10.1016/j.joca.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Affiliation(s)
- Tonia L Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, UK.
| |
Collapse
|
66
|
Jansen MP, Roemer FW, Marijnissen AKCA, Kloppenburg M, Blanco FJ, Haugen IK, Berenbaum F, Lafeber FPJG, Welsing PMJ, Mastbergen SC, Wirth W. Exploring the differences between radiographic joint space width and MRI cartilage thickness changes using data from the IMI-APPROACH cohort. Skeletal Radiol 2023; 52:1339-1348. [PMID: 36607356 DOI: 10.1007/s00256-022-04259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Longitudinal weight-bearing radiographic joint space width (JSW) and non-weight-bearing MRI-based cartilage thickness changes often show weak correlations. The current objective was to investigate these correlations, and to explore the influence of different factors that could contribute to longitudinal differences between the two methods. METHODS The current study included 178 participants with medial osteoarthritis (OA) out of the 297 knee OA participants enrolled in the IMI-APPROACH cohort. Changes over 2 years in medial JSW (ΔJSWmed), minimum JSW (ΔJSWmin), and medial femorotibial cartilage thickness (ΔMFTC) were assessed using linear regression, using measurements from radiographs and MRI acquired at baseline, 6 months, and 1 and 2 years. Pearson R correlations were calculated. The influence of cartilage quality (T2 mapping), meniscal extrusion (MOAKS scoring), potential pain-induced unloading (difference in knee-specific pain scores), and increased loading (BMI) on the correlations was analyzed by dividing participants in groups based on each factor separately, and comparing correlations (slope and strength) between groups using linear regression models. RESULT Correlations between ΔMFTC and ΔJSWmed and ΔJSWmin were statistically significant (p < 0.004) but weak (R < 0.35). Correlations were significantly different between groups based on cartilage quality and on meniscal extrusion: only patients with the lowest T2 values and with meniscal extrusion showed significant moderate correlations. Pain-induced unloading or BMI-induced loading did not influence correlations. CONCLUSIONS While the amount of loading does not seem to make a difference, weight-bearing radiographic JSW changes are a better reflection of non-weight-bearing MRI cartilage thickness changes in knees with higher quality cartilage and with meniscal extrusion.
Collapse
Affiliation(s)
- Mylène P Jansen
- Department of Rheumatology & Clinical Immunology, HP G02.228 Heidelberglaan 100 3584CX, Utrecht, The Netherlands.
| | - Frank W Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, USA
- Department of Radiology, Universitätsklinikum Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anne Karien C A Marijnissen
- Department of Rheumatology & Clinical Immunology, HP G02.228 Heidelberglaan 100 3584CX, Utrecht, The Netherlands
| | - Margreet Kloppenburg
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
- Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Francisco J Blanco
- Departamento de Fisioterapia Y Medicina, Grupo de Investigación de Reumatología (GIR), INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS. Centro de Investigación CICA, Universidad de A Coruña, A Coruña, Spain. Servicio de Reumatologia, INIBIC- Universidade de A Coruña, A Coruña, Spain
| | - Ida K Haugen
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Francis Berenbaum
- Department of Rheumatology, AP-HP Saint-Antoine Hospital, Paris, France
- INSERM, Sorbonne University, Paris, France
| | - Floris P J G Lafeber
- Department of Rheumatology & Clinical Immunology, HP G02.228 Heidelberglaan 100 3584CX, Utrecht, The Netherlands
| | - Paco M J Welsing
- Department of Rheumatology & Clinical Immunology, HP G02.228 Heidelberglaan 100 3584CX, Utrecht, The Netherlands
| | - Simon C Mastbergen
- Department of Rheumatology & Clinical Immunology, HP G02.228 Heidelberglaan 100 3584CX, Utrecht, The Netherlands
| | - Wolfgang Wirth
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Ludwig Boltzmann Inst. for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| |
Collapse
|
67
|
Englund M, Turkiewicz A. Pain in clinical trials for knee osteoarthritis: estimation of regression to the mean. THE LANCET. RHEUMATOLOGY 2023; 5:e309-e311. [PMID: 38251596 DOI: 10.1016/s2665-9913(23)00090-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 01/23/2024]
Affiliation(s)
- Martin Englund
- Clinical Epidemiology Unit, Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, SE-221 00 Lund, Sweden.
| | - Aleksandra Turkiewicz
- Clinical Epidemiology Unit, Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, SE-221 00 Lund, Sweden
| |
Collapse
|
68
|
Gezer HH, Ostor A. What is new in pharmacological treatment for osteoarthritis? Best Pract Res Clin Rheumatol 2023; 37:101841. [PMID: 37302928 DOI: 10.1016/j.berh.2023.101841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease in which structural changes of hyaline articular cartilage, subchondral bone, ligaments, capsule, synovium, muscles, and periarticular changes are involved. The knee is the most commonly affected joint, followed by the hand, hip, spine, and feet. Different pathological mechanisms are at play in each of these various involvement sites. Although systemic inflammation is more prominent in hand OA, knee and hip OA have been associated with excessive joint load and injury. As OA has varied phenotypes and the primarily affected tissues differ, treatment options must be tailored accordingly. In recent years, ongoing efforts have been made to develop disease-modifying options that halt or slow disease progression. Many are still in clinical trials, and as insights into the pathogenesis of OA evolve, novel therapeutic strategies will be developed. In this chapter, we provide an overview of the novel and emerging strategies in the management of OA.
Collapse
Affiliation(s)
- Halise Hande Gezer
- Marmara University School of Medicine, PMR Department Rheumatology Division, Istanbul, Turkiye
| | - Andrew Ostor
- Cabrini Medical Centre, Monash University, Melbourne & ANU, Canberra, Australia.
| |
Collapse
|
69
|
Li S, Cao P, Chen T, Ding C. Latest insights in disease-modifying osteoarthritis drugs development. Ther Adv Musculoskelet Dis 2023; 15:1759720X231169839. [PMID: 37197024 PMCID: PMC10184265 DOI: 10.1177/1759720x231169839] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/29/2023] [Indexed: 05/19/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent and severely debilitating disease with an unmet medical need. In order to alleviate OA symptoms or prevent structural progression of OA, new drugs, particularly disease-modifying osteoarthritis drugs (DMOADs), are required. Several drugs have been reported to attenuate cartilage loss or reduce subchondral bone lesions in OA and thus potentially be DMOADs. Most biologics (including interleukin-1 (IL-1) and tumor necrosis factor (TNF) inhibitors), sprifermin, and bisphosphonates failed to yield satisfactory results when treating OA. OA clinical heterogeneity is one of the primary reasons for the failure of these clinical trials, which can require different therapeutic approaches based on different phenotypes. This review describes the latest insights into the development of DMOADs. We summarize in this review the efficacy and safety profiles of various DMOADs targeting cartilage, synovitis, and subchondral bone endotypes in phase 2 and 3 clinical trials. To conclude, we summarize the reasons for clinical trial failures in OA and suggest possible solutions.
Collapse
Affiliation(s)
- Shengfa Li
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peihua Cao
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tianyu Chen
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, 261 Industry Road, Guangzhou 510515, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Clinical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
70
|
Assi R, Quintiens J, Monteagudo S, Lories RJ. Innovation in Targeted Intra-articular Therapies for Osteoarthritis. Drugs 2023; 83:649-663. [PMID: 37067759 DOI: 10.1007/s40265-023-01863-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/18/2023]
Abstract
Osteoarthritis is the most common chronic joint disease characterized by progressive damage to the joints, leading to pain and loss of function. There is currently no cure or disease-modifying therapy for osteoarthritis. Hence, the increasing disease prevalence linked with ageing and obesity represents a substantial socio-economic burden. Intra-articular therapy by injection of drugs into affected joints can optimize local drug bioavailability, while reducing risks of systemic toxicity, a concern in an ageing patient population. In this review, we investigate the current landscape of intra-articular drug therapies for osteoarthritis, including established approaches and those in clinical development. We performed a literature review using PubMed, complemented with a search for clinical trials using the ClinicalTrials.gov repository. Additionally, conference abstracts and presentations were identified and systematic snowballing was applied. Identified drugs were divided into several groups by main mechanism of action, and include drugs that reduce inflammation (anti-inflammatory), drugs aiming to prevent or reverse structural damage (structure modifying), drugs that aim to reduce the pain, and other drugs with a specific target. Most studies have been performed for osteoarthritis of the knee, a joint that is easily accessible for intra-articular treatments. Optimal therapy would provide symptomatic relief, while preventing further damage to the joint. The field of intra-articular drug therapies for osteoarthritis is rapidly evolving with clear challenges identified: definition of relevant outcome measures, optimization of clinical trial set-ups, and dealing with placebo responses. While many uncertainties persist, it appears that the innovation in drug development and improved clinical trial set-up may finally deliver successful therapies for this important disease.
Collapse
Affiliation(s)
- Reem Assi
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Jolien Quintiens
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
- Division of Rheumatology, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Silvia Monteagudo
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Rik J Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium.
- Division of Rheumatology, University Hospitals Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
71
|
Schnitzer T, Pueyo M, Deckx H, van der Aar E, Bernard K, Hatch S, van der Stoep M, Grankov S, Phung D, Imbert O, Chimits D, Muller K, Hochberg MC, Bliddal H, Wirth W, Eckstein F, Conaghan PG. Evaluation of S201086/GLPG1972, an ADAMTS-5 inhibitor, for the treatment of knee osteoarthritis in ROCCELLA: a phase 2 randomized clinical trial. Osteoarthritis Cartilage 2023:S1063-4584(23)00737-9. [PMID: 37059327 DOI: 10.1016/j.joca.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To evaluate the efficacy and safety of the anti-catabolic ADAMTS-5 inhibitor S201086/GLPG1972 for the treatment of symptomatic knee osteoarthritis. DESIGN ROCCELLA (NCT03595618) was a randomized, double-blind, placebo-controlled, dose-ranging, phase 2 trial in adults (aged 40-75 years) with knee osteoarthritis. Participants had moderate-to-severe pain in the target knee, Kellgren-Lawrence grade 2 or 3 and Osteoarthritis Research Society International joint space narrowing (grade 1 or 2). Participants were randomized 1:1:1:1 to once-daily oral S201086/GLPG1972 75, 150 or 300 mg, or placebo for 52 weeks. The primary endpoint was change from baseline to week 52 in central medial femorotibial compartment cartilage thickness (cMFTC) assessed quantitatively by magnetic resonance imaging. Secondary endpoints included change from baseline to week 52 in radiographic joint space width, Western Ontario and McMaster Universities Osteoarthritis Index total and subscores, and pain (visual analogue scale). Treatment-emergent adverse events (TEAEs) were also recorded. RESULTS Overall, 932 participants were enrolled. No significant differences in cMFTC cartilage loss were observed between placebo and S201086/GLPG1972 therapeutic groups: placebo vs 75 mg, P = 0.165; vs 150 mg, P = 0.939; vs 300 mg, P = 0.682. No significant differences in any of the secondary endpoints were observed between placebo and treatment groups. Similar proportions of participants across treatment groups experienced TEAEs. CONCLUSIONS Despite enrolment of participants who experienced substantial cartilage loss over 52 weeks, during the same time period, S201086/GLPG1972 did not significantly reduce rates of cartilage loss or modify symptoms in adults with symptomatic knee osteoarthritis.
Collapse
Affiliation(s)
- T Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - M Pueyo
- Institut de Recherches Internationales Servier (IRIS), Suresnes, France
| | - H Deckx
- Galapagos NV, Mechelen, Belgium.
| | | | - K Bernard
- Institut de Recherches Internationales Servier (IRIS), Suresnes, France.
| | - S Hatch
- Galapagos Inc., Waltham, Massachusetts, USA.
| | | | - S Grankov
- Institut de Recherches Internationales Servier (IRIS), Suresnes, France.
| | - D Phung
- Galapagos NV, Mechelen, Belgium.
| | - O Imbert
- Institut de Recherches Internationales Servier (IRIS), Suresnes, France.
| | - D Chimits
- Institut de Recherches Internationales Servier (IRIS), Suresnes, France.
| | - K Muller
- Galapagos NV, Mechelen, Belgium.
| | - M C Hochberg
- Departments of Medicine and Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | - H Bliddal
- The Parker Institute, Copenhagen, Denmark.
| | - W Wirth
- Chondrometrics GmbH, Ainring, Germany; Institute of Anatomy and Cell Biology and Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria.
| | - F Eckstein
- Chondrometrics GmbH, Ainring, Germany; Institute of Anatomy and Cell Biology and Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria.
| | - P G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and National Institute for Health and Care Research (NIHR) Leeds Biomedical Research Centre, Leeds, UK.
| |
Collapse
|
72
|
Householder NA, Raghuram A, Agyare K, Thipaphay S, Zumwalt M. A Review of Recent Innovations in Cartilage Regeneration Strategies for the Treatment of Primary Osteoarthritis of the Knee: Intra-articular Injections. Orthop J Sports Med 2023; 11:23259671231155950. [PMID: 37138944 PMCID: PMC10150434 DOI: 10.1177/23259671231155950] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 05/05/2023] Open
Abstract
Background The pathology of primary osteoarthritis (OA) begins with structural cartilage damage, which initiates a self-propagating inflammatory pathway that further exacerbates cartilage deterioration. Current standard of care for knee primary OA involves treating the inflammatory symptoms to manage pain, which includes intra-articular (IA) injections of cortisone, an anti-inflammatory steroid, followed by a series of joint-cushioning hyaluronic acid gel injections. However, these injections do not delay the progression of primary OA. More focus on the underlying cellular pathology of OA has prompted researchers to develop treatments targeting the biochemical mechanisms of cartilage degradation. Purpose Researchers have yet to develop a United States Food and Drug Administration (FDA)-approved injection that has been demonstrated to significantly regenerate damaged articular cartilage. This paper reviews the current research on experimental injections aimed at achieving cellular restoration of the hyaline cartilage tissue of the knee joint. Study Design Narrative review. Methods The authors conducted a narrative literature review examining studies on primary OA pathogenesis and a systematic review of non-FDA-approved IA injections for the treatment of primary OA of the knee, described as "disease-modifying osteoarthritis drugs" in phase 1, 2, and 3 clinical trials. Conclusion New treatment approaches for primary OA investigate the potential of genetic therapies to restore native cartilage. It is clear that the most promising IA injections that could improve treatment of primary OA are bioengineered advanced-delivery steroid-hydrogel preparations, ex vivo expanded allogeneic stem cell injections, genetically engineered chondrocyte injections, recombinant fibroblast growth factor therapy, injections of selective proteinase inhibitors, senolytic therapy via injections, injectable antioxidant therapies, injections of Wnt pathway inhibitors, injections of nuclear factor-kappa β inhibitors, injections of modified human angiopoietin-like-3, various potential viral vector-based genetic therapy approaches, and RNA genetic technology administered via injections.
Collapse
Affiliation(s)
| | - Akshay Raghuram
- School of Medicine, Texas Tech University
Health Sciences Center, Lubbock, Texas, USA
| | - Kofi Agyare
- School of Medicine, Texas Tech University
Health Sciences Center, Lubbock, Texas, USA
| | - Skyler Thipaphay
- School of Medicine, Texas Tech University
Health Sciences Center, Lubbock, Texas, USA
| | - Mimi Zumwalt
- School of Medicine, Texas Tech University
Health Sciences Center, Lubbock, Texas, USA
- Mimi Zumwalt, MD, Orthopaedics
Department, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 9436,
Lubbock, TX 79430-9436, USA ()
| |
Collapse
|
73
|
Ng JQ, Jafarov TH, Little CB, Wang T, Ali A, Ma Y, Radford GA, Vrbanac L, Ichinose M, Whittle S, Hunter D, Lannagan TRM, Suzuki N, Goyne JM, Kobayashi H, Wang TC, Haynes D, Menicanin D, Gronthos S, Worthley DL, Woods SL, Mukherjee S. Loss of Grem1-articular cartilage progenitor cells causes osteoarthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534651. [PMID: 37034712 PMCID: PMC10081168 DOI: 10.1101/2023.03.29.534651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Osteoarthritis (OA), which carries an enormous disease burden across the world, is characterised by irreversible degeneration of articular cartilage (AC), and subsequently bone. The cellular cause of OA is unknown. Here, using lineage tracing in mice, we show that the BMP-antagonist Gremlin 1 (Grem1) marks a novel chondrogenic progenitor (CP) cell population in the articular surface that generates joint cartilage and subchondral bone during development and adulthood. Notably, this CP population is depleted in injury-induced OA, and with age. OA is also induced by toxin-mediated ablation of Grem1 CP cells in young mice. Transcriptomic analysis and functional modelling in mice revealed articular surface Grem1-lineage cells are dependent on Foxo1; ablation of Foxo1 in Grem1-lineage cells led to early OA. This analysis identified FGFR3 signalling as a therapeutic target, and injection of its activator, FGF18, caused proliferation of Grem1-lineage CP cells, increased cartilage thickness, and reduced OA pathology. We propose that OA arises from the loss of CP cells at the articular surface secondary to an imbalance in progenitor cell homeostasis and present a new progenitor population as a locus for OA therapy.
Collapse
Affiliation(s)
- Jia Q. Ng
- Adelaide Medical School, Faculty of Health and Medical Sciences University of Adelaide, Adelaide, SA, Australia
- These authors contributed equally
| | - Toghrul H. Jafarov
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- These authors contributed equally
| | - Christopher B. Little
- Raymond Purves Bone & Joint Research Laboratories, Kolling Institute, University of Sydney Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Tongtong Wang
- Adelaide Medical School, Faculty of Health and Medical Sciences University of Adelaide, Adelaide, SA, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Abdullah Ali
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Yan Ma
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Georgette A Radford
- Adelaide Medical School, Faculty of Health and Medical Sciences University of Adelaide, Adelaide, SA, Australia
| | - Laura Vrbanac
- Adelaide Medical School, Faculty of Health and Medical Sciences University of Adelaide, Adelaide, SA, Australia
| | - Mari Ichinose
- Adelaide Medical School, Faculty of Health and Medical Sciences University of Adelaide, Adelaide, SA, Australia
| | - Samuel Whittle
- Adelaide Medical School, Faculty of Health and Medical Sciences University of Adelaide, Adelaide, SA, Australia
- Rheumatology Unit, The Queen Elizabeth Hospital, Woodville South, SA, Australia
| | - David Hunter
- Northern Clinical School, University of Sydney, St. Leonards, Sydney, NSW, Australia
| | - Tamsin RM Lannagan
- Adelaide Medical School, Faculty of Health and Medical Sciences University of Adelaide, Adelaide, SA, Australia
| | - Nobumi Suzuki
- Adelaide Medical School, Faculty of Health and Medical Sciences University of Adelaide, Adelaide, SA, Australia
| | - Jarrad M. Goyne
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Hiroki Kobayashi
- Adelaide Medical School, Faculty of Health and Medical Sciences University of Adelaide, Adelaide, SA, Australia
| | - Timothy C. Wang
- Department of Medicine and Irving Cancer Research Center, Columbia University, New York, NY USA
| | - David Haynes
- Adelaide Medical School, Faculty of Health and Medical Sciences University of Adelaide, Adelaide, SA, Australia
| | - Danijela Menicanin
- Adelaide Medical School, Faculty of Health and Medical Sciences University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Adelaide Medical School, Faculty of Health and Medical Sciences University of Adelaide, Adelaide, SA, Australia
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel L. Worthley
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Colonoscopy Clinic, Brisbane, Qld, Australia
- These authors contributed equally, corresponding authors
| | - Susan L. Woods
- Adelaide Medical School, Faculty of Health and Medical Sciences University of Adelaide, Adelaide, SA, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- These authors contributed equally, corresponding authors
| | - Siddhartha Mukherjee
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- These authors contributed equally, corresponding authors
| |
Collapse
|
74
|
Lin J, Jia S, Zhang W, Nian M, Liu P, Yang L, Zuo J, Li W, Zeng H, Zhang X. Recent Advances in Small Molecule Inhibitors for the Treatment of Osteoarthritis. J Clin Med 2023; 12:1986. [PMID: 36902773 PMCID: PMC10004353 DOI: 10.3390/jcm12051986] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Osteoarthritis refers to a degenerative disease with joint pain as the main symptom, and it is caused by various factors, including fibrosis, chapping, ulcers, and loss of articular cartilage. Traditional treatments can only delay the progression of osteoarthritis, and patients may need joint replacement eventually. As a class of organic compound molecules weighing less than 1000 daltons, small molecule inhibitors can target proteins as the main components of most drugs clinically. Small molecule inhibitors for osteoarthritis are under constant research. In this regard, by reviewing relevant manuscripts, small molecule inhibitors targeting MMPs, ADAMTS, IL-1, TNF, WNT, NF-κB, and other proteins were reviewed. We summarized these small molecule inhibitors with different targets and discussed disease-modifying osteoarthritis drugs based on them. These small molecule inhibitors have good inhibitory effects on osteoarthritis, and this review will provide a reference for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shantou University Medical College, Shantou 515041, China
| | - Weifei Zhang
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Mengyuan Nian
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peng Liu
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Li Yang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianwei Zuo
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
75
|
Roemer F, Maschek S, Wisser A, Guermazi A, Hunter D, Eckstein F, Wirth W. Worsening of Articular Tissue Damage as Defined by Semi-Quantitative MRI Is Associated With Concurrent Quantitative Cartilage Loss Over 24 Months. Cartilage 2023; 14:39-47. [PMID: 36624993 PMCID: PMC10076901 DOI: 10.1177/19476035221147677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE To assess the association of worsening of magnetic resonance imaging (MRI) semi-quantitative (SQ) tissue features with concurrent change in quantitative (Q) cartilage thickness measurements over 24 months within the Foundation for the National Institutes of Health (FNIH) Biomarker Consortium study. METHODS In all, 599 participants were included. SQ assessment included cartilage damage, meniscal extrusion and damage, osteophytes, bone marrow lesions (BMLs), and effusion- and Hoffa-synovitis. Change in medial compartment Q cartilage thickness was stratified by concurrent ipsicompartmental SQ changes. Between-group comparisons were performed using analysis of covariance (ANCOVA) with adjustment for age, sex, and body mass index (BMI). Results were presented as adjusted mean difference. RESULTS Knees with any increase in SQ cartilage scores in the medial compartment (n = 268) showed more Q cartilage loss compared to knees that remained stable (mean adjusted difference [MAD] = -0.16 mm, 95% confidence interval [CI]: [-0.19, -0.13] mm). Knees with any increase in meniscal extrusion in the medial compartment (n = 98) showed more Q cartilage loss than knees without (MAD = -0.18 mm, 95% CI: [-0.22, -0.14] mm. Comparable findings were seen for meniscal damage worsening. Regarding BMLs, an increase by one subregion resulted in a MAD of Q cartilage loss of -0.10 mm, 95% CI: [-0.14, -0.06] mm, while this effect almost tripled for change in two or more subregions. Increase in either effusion- and/or Hoffa-synovitis by one grade resulted in a MAD of -0.07 mm, 95% CI: [-0.10, -0.03] mm. CONCLUSION Worsening of SQ cartilage damage, meniscal extrusion and damage, number of subregions affected by BML, maximum size of BMLs and worsening of effusion- and/or Hoffa synovitis is associated with increased Q cartilage loss.
Collapse
Affiliation(s)
- Frank Roemer
- Friedrich-Alexander-Universitat Erlangen-Nürnberg, Erlangen, Germany
| | - Susanne Maschek
- Paracelsus Medizinische Privatuniversität, Salzburg, Austria
| | - Anna Wisser
- Paracelsus Medizinische Privatuniversität, Salzburg, Austria
| | | | - David Hunter
- The University of Sydney, Sydney, NSW, Australia
| | - Felix Eckstein
- Paracelsus Medizinische Privatuniversität, Salzburg, Austria
| | - Wolfgang Wirth
- Paracelsus Medizinische Privatuniversität, Salzburg, Austria
| |
Collapse
|
76
|
Nolte T, Westfechtel S, Schock J, Knobe M, Pastor T, Pfaehler E, Kuhl C, Truhn D, Nebelung S. Getting Cartilage Thickness Measurements Right: A Systematic Inter-Method Comparison Using MRI Data from the Osteoarthritis Initiative. Cartilage 2023; 14:26-38. [PMID: 36659857 PMCID: PMC10076900 DOI: 10.1177/19476035221144744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Magnetic resonance imaging is the standard imaging modality to assess articular cartilage. As the imaging surrogate of degenerative joint disease, cartilage thickness is commonly quantified after tissue segmentation. In lack of a standard method, this study systematically compared five methods for automatic cartilage thickness measurements across the knee joint and as a function of region and sub-region: 3D mesh normals (3D-MN), 3D nearest neighbors (3D-NN), 3D ray tracing (3D-RT), 2D centerline normals (2D-CN), and 2D surface normals (2D-SN). DESIGN Based on the manually segmented femoral and tibial cartilage of 507 human knee joints, mean cartilage thickness was computed for the entire femorotibial joint, 4 joint regions, and 20 subregions using these methods. Inter-method comparisons of mean cartilage thickness and computation times were performed by one-way analysis of variance (ANOVA), Bland-Altman analyses and Lin's concordance correlation coefficient (CCC). RESULTS Mean inter-method differences in cartilage thickness were significant in nearly all subregions (P < 0.001). By trend, mean differences were smallest between 3D-MN and 2D-SN in most (sub)regions, which is also reflected by highest quantitative inter-method agreement and CCCs. 3D-RT was prone to severe overestimation of up to 2.5 mm. 3D-MN, 3D-NN, and 2D-SN required mean processing times of ≤5.3 s per joint and were thus similarly efficient, whereas the time demand of 2D-CN and 3D-RT was much larger at 133 ± 29 and 351 ± 10 s per joint (P < 0.001). CONCLUSIONS In automatic cartilage thickness determination, quantification accuracy and computational burden are largely affected by the underlying method. Mesh and surface normals or nearest neighbor searches should be used because they accurately capture variable geometries while being time-efficient.
Collapse
Affiliation(s)
- Teresa Nolte
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany
| | - Simon Westfechtel
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany
| | - Justus Schock
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany
| | - Matthias Knobe
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Faculty of Medicine, University Hospital Aachen, Aachen, Germany
| | - Torsten Pastor
- Department of Orthopaedic and Trauma Surgery, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Elisabeth Pfaehler
- Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
77
|
DePhillipo NN, Hendesi H, Aman ZS, Lind DRG, Smith J, Dodge GR. Preclinical Use of FGF-18 Augmentation for Improving Cartilage Healing Following Surgical Repair: A Systematic Review. Cartilage 2023; 14:59-66. [PMID: 36541606 PMCID: PMC10076894 DOI: 10.1177/19476035221142010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To evaluate the efficacy of fibroblast growth factor-18 (FGF-18) augmentation for improving articular cartilage healing following surgical repair in preclinical (in vivo) animal models. DESIGN A systematic review was performed evaluating the efficacy of FGF-18 augmentation with cartilage surgery compared with cartilage surgery without FGF-18 augmentation in living animal models. Eligible intervention groups were FGF-18 treatment in conjunction with orthopedic procedures, including microfracture, osteochondral auto/allograft transplantation, and cellular-based repair. Outcome variables were: International Cartilage Repair Society (ICRS) score, modified O'Driscoll histology score, tissue infill score, qualitative histology, and adverse events. Descriptive statistics were recorded and summarized for each included study. RESULTS In total, 493 studies were identified and 4 studies were included in the final analysis. All studies were randomized controlled trials evaluating in vivo use of recombinant human FGF-18 (rhFGF-18). Animal models included ovine (n = 3) and equine (n = 1), with rhFGF-18 use following microfracture (n = 3) or osteochondral defect repair (n = 1). The rhFGF-18 was delivered via intra-articular injection (n = 2), collagen membrane scaffold (n = 1), or both (n = 1). All studies reported significant, positive improvements in cartilage defect repair with rhFGF-18 compared with controls based on ICRS score (n = 4), modified O'Driscoll score (n = 4), tissue infill (n = 3), and expression of collagen type II (n = 4) (P < 0.05). No adverse events were reported with the intra-articular administration of this growth factor, indicating short-term safety and efficacy of rhFGF-18 in vivo. CONCLUSION This systematic review provides evidence that rhFGF-18 significantly improves cartilage healing at 6 months postoperatively following microfracture or osteochondral defect repair in preclinical randomized controlled trials.
Collapse
Affiliation(s)
- Nicholas N DePhillipo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Mechano-Therapeutics LLC, Philadelphia, PA, USA
| | - Honey Hendesi
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zachary S Aman
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dane R G Lind
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Smith
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND, USA
| | - George R Dodge
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Mechano-Therapeutics LLC, Philadelphia, PA, USA
| |
Collapse
|
78
|
Salman LA, Ahmed G, Dakin SG, Kendrick B, Price A. Osteoarthritis: a narrative review of molecular approaches to disease management. Arthritis Res Ther 2023; 25:27. [PMID: 36800974 PMCID: PMC9938549 DOI: 10.1186/s13075-023-03006-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive degenerative whole joint disease that affects the articular cartilage, subchondral bone, ligaments, capsule, and synovium. While it is still believed to be a mechanically driven disease, the role of underlying co-existing inflammatory processes and mediators in the onset of OA and its progression is now more appreciated. Post-traumatic osteoarthritis (PTOA) is a subtype of OA that occurs secondary to traumatic joint insults and is widely used in pre-clinical models to help understand OA in general. There is an urgent need to develop new treatments as the global burden is considerable and expanding. In this review, we focus on the recent pharmacological advances in the treatment of OA and summarize the most significant promising agents based on their molecular effects. Those are classified here into broad categories: anti-inflammatory, modulation of the activity of matrix metalloproteases, anabolic, and unconventional pleiotropic agents. We provide a comprehensive analysis of the pharmacological advances in each of these areas and highlight future insights and directions in the OA field.
Collapse
Affiliation(s)
- Loay A Salman
- Present Address: Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
- Orthopedics Department, Hamad General Hospital, Hamad Medical Corporation, PO Box 3050, Doha, Qatar.
| | - Ghalib Ahmed
- Orthopedics Department, Hamad General Hospital, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Stephanie G Dakin
- Present Address: Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Benjamin Kendrick
- Present Address: Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Andrew Price
- Present Address: Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| |
Collapse
|
79
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8:56. [PMID: 36737426 PMCID: PMC9898571 DOI: 10.1038/s41392-023-01330-w] [Citation(s) in RCA: 481] [Impact Index Per Article: 240.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder that leads to disability and affects more than 500 million population worldwide. OA was believed to be caused by the wearing and tearing of articular cartilage, but it is now more commonly referred to as a chronic whole-joint disorder that is initiated with biochemical and cellular alterations in the synovial joint tissues, which leads to the histological and structural changes of the joint and ends up with the whole tissue dysfunction. Currently, there is no cure for OA, partly due to a lack of comprehensive understanding of the pathological mechanism of the initiation and progression of the disease. Therefore, a better understanding of pathological signaling pathways and key molecules involved in OA pathogenesis is crucial for therapeutic target design and drug development. In this review, we first summarize the epidemiology of OA, including its prevalence, incidence and burdens, and OA risk factors. We then focus on the roles and regulation of the pathological signaling pathways, such as Wnt/β-catenin, NF-κB, focal adhesion, HIFs, TGFβ/ΒΜP and FGF signaling pathways, and key regulators AMPK, mTOR, and RUNX2 in the onset and development of OA. In addition, the roles of factors associated with OA, including MMPs, ADAMTS/ADAMs, and PRG4, are discussed in detail. Finally, we provide updates on the current clinical therapies and clinical trials of biological treatments and drugs for OA. Research advances in basic knowledge of articular cartilage biology and OA pathogenesis will have a significant impact and translational value in developing OA therapeutic strategies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
80
|
Wirth W, Maschek S, Marijnissen ACA, Lalande A, Blanco FJ, Berenbaum F, van de Stadt LA, Kloppenburg M, Haugen IK, Ladel CH, Bacardit J, Wisser A, Eckstein F, Roemer FW, Lafeber FPJG, Weinans HH, Jansen M. Test-retest precision and longitudinal cartilage thickness loss in the IMI-APPROACH cohort. Osteoarthritis Cartilage 2023; 31:238-248. [PMID: 36336198 DOI: 10.1016/j.joca.2022.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/22/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate the test-retest precision and to report the longitudinal change in cartilage thickness, the percentage of knees with progression and the predictive value of the machine-learning-estimated structural progression score (s-score) for cartilage thickness loss in the IMI-APPROACH cohort - an exploratory, 5-center, 2-year prospective follow-up cohort. DESIGN Quantitative cartilage morphology at baseline and at least one follow-up visit was available for 270 of the 297 IMI-APPROACH participants (78% females, age: 66.4 ± 7.1 years, body mass index (BMI): 28.1 ± 5.3 kg/m2, 55% with radiographic knee osteoarthritis (OA)) from 1.5T or 3T MRI. Test-retest precision (root mean square coefficient of variation) was assessed from 34 participants. To define progressor knees, smallest detectable change (SDC) thresholds were computed from 11 participants with longitudinal test-retest scans. Binary logistic regression was used to evaluate the odds of progression in femorotibial cartilage thickness (threshold: -211 μm) for the quartile with the highest vs the quartile with the lowest s-scores. RESULTS The test-retest precision was 69 μm for the entire femorotibial joint. Over 24 months, mean cartilage thickness loss in the entire femorotibial joint reached -174 μm (95% CI: [-207, -141] μm, 32.7% with progression). The s-score was not associated with 24-month progression rates by MRI (OR: 1.30, 95% CI: [0.52, 3.28]). CONCLUSION IMI-APPROACH successfully enrolled participants with substantial cartilage thickness loss, although the machine-learning-estimated s-score was not observed to be predictive of cartilage thickness loss. IMI-APPROACH data will be used in subsequent analyses to evaluate the impact of clinical, imaging, biomechanical and biochemical biomarkers on cartilage thickness loss and to refine the machine-learning-based s-score. CLINICALTRIALS GOV IDENTIFICATION NCT03883568.
Collapse
Affiliation(s)
- W Wirth
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria; Ludwig Boltzmann Inst. for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria; Chondrometrics GmbH, Freilassing, Germany.
| | - S Maschek
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria; Chondrometrics GmbH, Freilassing, Germany.
| | - A C A Marijnissen
- University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| | - A Lalande
- Institut de Recherches Internationales Servier, Suresnes, France.
| | - F J Blanco
- Grupo de Investigación de Reumatología (GIR), INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS. Centro de Investigación CICA, Departamento de Fisioterapia y Medicina, Universidad de A Coruña, A Coruña, Spain.
| | - F Berenbaum
- Department of Rheumatology, AP-HP Saint-Antoine Hospital, Paris, France; INSERM, Sorbonne University, Paris, France.
| | - L A van de Stadt
- Rheumatology, Leiden University Medical Center, Leiden, the Netherlands.
| | - M Kloppenburg
- Rheumatology, Leiden University Medical Center, Leiden, the Netherlands; Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - I K Haugen
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway.
| | - C H Ladel
- CHL4special consultancy, Darmstadt, Germany.
| | - J Bacardit
- School of Computing, Newcastle University, Newcastle, United Kingdom.
| | - A Wisser
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria; Ludwig Boltzmann Inst. for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria; Chondrometrics GmbH, Freilassing, Germany.
| | - F Eckstein
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria; Ludwig Boltzmann Inst. for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria; Chondrometrics GmbH, Freilassing, Germany.
| | - F W Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, USA; Department of Radiology, Universitätsklinikum Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - F P J G Lafeber
- University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| | - H H Weinans
- University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| | - M Jansen
- University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
81
|
Huang H, Lin Y, Jiang Y, Yao Q, Chen R, Zhao YZ, Kou L. Recombinant protein drugs-based intra articular drug delivery systems for osteoarthritis therapy. Eur J Pharm Biopharm 2023; 183:33-46. [PMID: 36563886 DOI: 10.1016/j.ejpb.2022.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/05/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease. It weakens the motor function of patients and imposes a significant economic burden on society. The current medications commonly used in clinical practice do not meet the need for the treatment of OA. Recombinant protein drugs (RPDs) can treat OA by inhibiting inflammatory pathways, regulating catabolism/anabolism, and promoting cartilage repair, thereby showing promise as disease-modifying OA drugs (DMOADs). However, the rapid clearance and short half-life of them in the articular cavity limit their clinical translation. Therefore, the reliable drug delivery systems for extending drug treatment are necessary for the further development. This review introduces RPDs with therapeutic potential for OA, and summarizes their research progress on related drug delivery systems, and make proper discussion on the certain keys for optimal development of this area.
Collapse
Affiliation(s)
- Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yujie Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Yiling Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China; Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Wenzhou 325027, China.
| |
Collapse
|
82
|
Huang Y, Lobenhoffer P, Jiang XY. Development of knee-preserving osteotomy in China. Sci Bull (Beijing) 2023; 68:125-128. [PMID: 36653214 DOI: 10.1016/j.scib.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ye Huang
- Knee Preservation Clinical and Research Center, Beiiing Jishuitan Hospital, Beijing 100035, China
| | | | - Xie-Yuan Jiang
- Traumatology Department, Beijing Jishuitan Hospital, Beijing 100035, China.
| |
Collapse
|
83
|
Abstract
Osteoarthritis (OA) is a highly prevalent joint disease that is associated with pain, loss of function, and high direct and indirect economic costs. The current therapeutic options are inadequate, providing only a moderate symptom relief without the possibility of disease modification. While treatment options and personalized medicines are increasing for many complex diseases, OA drug development has been impeded by the advanced state of disease at the time of diagnosis and intervention, heterogeneity in both symptoms and rates of progression, and a lack of validated biomarkers and relevant outcome measures. This review article summarizes the OA landscape, including therapies in development as potential OA treatments, potential biomarkers undergoing evaluation by the US Food and Drug Administration, and a summary of current OA treatment guidelines, with a particular focus on the knee OA.
Collapse
Affiliation(s)
- Sarah Kennedy
- Biosplice Therapeutics Inc., San Diego, CA, United States
| | | | - Nancy E Lane
- University of California, Davis, CA, United States.
| |
Collapse
|
84
|
Knee Osteoarthritis-How Close Are We to Disease-Modifying Treatment: Emphasis on Metabolic Type Knee Osteoarthritis. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010140. [PMID: 36676089 PMCID: PMC9866724 DOI: 10.3390/life13010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Osteoarthritis (OA) is a whole-joint disease that affects cartilage, bone, and synovium as well as ligaments, menisci, and muscles [...].
Collapse
|
85
|
Trippel SB. Harnessing Growth Factor Interactions to Optimize Articular Cartilage Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:135-143. [PMID: 37052852 DOI: 10.1007/978-3-031-25588-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The failure of cartilage healing is a major impediment to recovery from joint disease or trauma. Growth factors play a central role in cell function and have been proposed as potential therapeutic agents to promote cartilage repair. Decades of investigation have identified many growth factors that promote the formation of cartilage in vitro and in vivo. However, very few of these have progressed to human trials. A growth factor that robustly augments articular cartilage healing remains elusive. This is not surprising. Articular cartilage repair involves multiple cellular processes and it is unlikely that any single agent will be able to optimally regulate all of them. It is more likely that multiple regulatory molecules may be required to optimize the maintenance and restoration of articular cartilage. If this is the case, then interactions among growth factors may be expected to play a key role in determining their therapeutic value. This review explores the hypothesis that growth factor interactions could help optimize articular cartilage healing.
Collapse
Affiliation(s)
- Stephen B Trippel
- Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
86
|
Kleinschmidt AC, Singh A, Hussain S, Lovell GA, Shee AW. How Effective Are Non-Operative Intra-Articular Treatments for Bone Marrow Lesions in Knee Osteoarthritis in Adults? A Systematic Review of Controlled Clinical Trials. Pharmaceuticals (Basel) 2022; 15:ph15121555. [PMID: 36559005 PMCID: PMC9787030 DOI: 10.3390/ph15121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Knee osteoarthritis (KOA) is a progressive joint disease and a leading source of chronic pain and disability. OA-bone marrow lesions (BMLs) are a recognised aetiopathological feature of KOA. Several intra-articular injectable therapies are recommended and used for management of KOA. This systematic review assessed the efficacy and safety of intra-articular therapies for improving OA-BMLs and reducing pain in adults with KOA. The study was conducted following registered review protocol (PROSPERO CRD42020189461) and six bibliographic databases, and two clinical trial registries were searched. We included eight randomised clinical trials involving 1294 participants, reported in 12 publications from 2016 to 2021. Two studies of sprifermin, one of autologous protein solution (APS) and one of high-dose TissueGene-C, reported a positive effect on OA-BMLs under 1-year follow-up. Two studies with corticosteroids reported mixed findings with no beneficial effect beyond 14 weeks of follow-up. One study assessing platelet-rich plasma found no significant improvement in OA-BMLs at 12 months follow-up. Knee pain was improved in two studies evaluating TissueGene-C and one study assessing APS; the remaining studies found no improvement in knee pain. Overall, we found mixed evidence on the efficacy of intra-articular therapy for improving OA-BMLs in KOA. Additional studies with long-term follow-up are needed to confirm the effect of various intra-articular therapies on OA-BMLs in KOA.
Collapse
Affiliation(s)
- Alexander C. Kleinschmidt
- Wakefield Sports + Exercise Medicine Clinic, Ground Floor, 120 Angas Street, Adelaide, SA 5000, Australia
- Correspondence:
| | - Ambrish Singh
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Salman Hussain
- Czech National Centre for Evidence-Based Healthcare and Knowledge Translation, Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Gregory A. Lovell
- Research Institute for Sport and Exercise, University of Canberra, Bruce, ACT 2617, Australia
| | - Anna Wong Shee
- Deakin Rural Health, Deakin University, Warrnambool, VIC 3280, Australia
- Grampians Health, Ballarat, VIC 3280, Australia
| |
Collapse
|
87
|
Sun D, Liu X, Xu L, Meng Y, Kang H, Li Z. Advances in the Treatment of Partial-Thickness Cartilage Defect. Int J Nanomedicine 2022; 17:6275-6287. [PMID: 36536940 PMCID: PMC9758915 DOI: 10.2147/ijn.s382737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/23/2022] [Indexed: 04/17/2024] Open
Abstract
Partial-thickness cartilage defects (PTCDs) of the articular surface is the most common problem in cartilage degeneration, and also one of the main pathogenesis of osteoarthritis (OA). Due to the lack of a clear diagnosis, the symptoms are often more severe when full-thickness cartilage defect (FTCDs) is present. In contrast to FTCDs and osteochondral defects (OCDs), PTCDs does not injure the subchondral bone, there is no blood supply and bone marrow exudation, and the nearby microenvironment is unsuitable for stem cells adhesion, which completely loses the ability of self-repair. Some clinical studies have shown that partial-thickness cartilage defects is as harmful as full-thickness cartilage defects. Due to the poor effect of conservative treatment, the destructive surgical treatment is not suitable for the treatment of partial-thickness cartilage defects, and the current tissue engineering strategies are not effective, so it is urgent to develop novel strategies or treatment methods to repair PTCDs. In recent years, with the interdisciplinary development of bioscience, mechanics, material science and engineering, many discoveries have been made in the repair of PTCDs. This article reviews the current status and research progress in the treatment of PTCDs from the aspects of diagnosis and modeling of PTCDs, drug therapy, tissue transplantation repair technology and tissue engineering ("bottom-up").
Collapse
Affiliation(s)
- Daming Sun
- Wuhan Sports University, Wuhan, People’s Republic of China
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Xiangzhong Liu
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Liangliang Xu
- Wuhan Sports University, Wuhan, People’s Republic of China
| | - Yi Meng
- Wuhan Sports University, Wuhan, People’s Republic of China
| | - Haifei Kang
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, People’s Republic of China
| | - Zhanghua Li
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
88
|
Caxaria S, Kouvatsos N, Eldridge SE, Alvarez‐Fallas M, Thorup A, Cici D, Barawi A, Arshed A, Strachan D, Carletti G, Huang X, Bharde S, Deniz M, Wilson J, Thomas BL, Pitzalis C, Cantatore FP, Sayilekshmy M, Sikandar S, Luyten FP, Pap T, Sherwood JC, Day AJ, Dell'Accio F. Disease modification and symptom relief in osteoarthritis using a mutated GCP-2/CXCL6 chemokine. EMBO Mol Med 2022; 15:e16218. [PMID: 36507558 PMCID: PMC9832835 DOI: 10.15252/emmm.202216218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
We showed that the chemokine receptor C-X-C Motif Chemokine Receptor 2 (CXCR2) is essential for cartilage homeostasis. Here, we reveal that the CXCR2 ligand granulocyte chemotactic protein 2 (GCP-2) was expressed, during embryonic development, within the prospective permanent articular cartilage, but not in the epiphyseal cartilage destined to be replaced by bone. GCP-2 expression was retained in adult articular cartilage. GCP-2 loss-of-function inhibited extracellular matrix production. GCP-2 treatment promoted chondrogenesis in vitro and in human cartilage organoids implanted in nude mice in vivo. To exploit the chondrogenic activity of GCP-2, we disrupted its chemotactic activity, by mutagenizing a glycosaminoglycan binding sequence, which we hypothesized to be required for the formation of a GCP-2 haptotactic gradient on endothelia. This mutated version (GCP-2-T) had reduced capacity to induce transendothelial migration in vitro and in vivo, without affecting downstream receptor signaling through AKT, and chondrogenic activity. Intra-articular adenoviral overexpression of GCP-2-T, but not wild-type GCP-2, reduced pain and cartilage loss in instability-induced osteoarthritis in mice. We suggest that GCP-2-T may be used for disease modification in osteoarthritis.
Collapse
Affiliation(s)
- Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Nikolaos Kouvatsos
- Wellcome Centre for Cell‐Matrix Research, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Suzanne E Eldridge
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Mario Alvarez‐Fallas
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Anne‐Sophie Thorup
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Daniela Cici
- Rheumatology Clinic, Department of Medical and Surgical SciencesUniversity of FoggiaFoggiaItaly
| | - Aida Barawi
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Ammaarah Arshed
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Danielle Strachan
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Giulia Carletti
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Xinying Huang
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Sabah Bharde
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Melody Deniz
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Jacob Wilson
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Bethan L Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | | | - Manasi Sayilekshmy
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Frank P Luyten
- Department of Development and Regeneration, Skeletal Biology and Engineering Research CenterKU LeuvenLeuvenBelgium
| | - Thomas Pap
- Institute of Musculoskeletal MedicineUniversity Hospital MünsterMünsterGermany
| | - Joanna C Sherwood
- Institute of Musculoskeletal MedicineUniversity Hospital MünsterMünsterGermany
| | - Anthony J Day
- Wellcome Centre for Cell‐Matrix Research, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine & Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Francesco Dell'Accio
- William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
89
|
Kim H, Seo J, Lee Y, Park K, Perry TA, Arden NK, Mobasheri A, Choi H. The current state of the osteoarthritis drug development pipeline: a comprehensive narrative review of the present challenges and future opportunities. Ther Adv Musculoskelet Dis 2022; 14:1759720X221085952. [PMID: 36504595 PMCID: PMC9732806 DOI: 10.1177/1759720x221085952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
In this narrative review article, we critically assess the current state of the osteoarthritis (OA) drug development pipeline. We discuss the current state-of-the-art in relation to the development and evaluation of candidate disease-modifying OA drugs (DMOADs) and the limitations associated with the tools and methodologies that are used to assess outcomes in OA clinical trials. We focus on the definition of DMOADs, highlight the need for an updated definition in the form of a consensus statement from all the major stakeholders, including academia, industry, regulatory agencies, and patient organizations, and provide a summary of the results of recent clinical trials of novel DMOAD candidates. We propose that DMOADs should be more appropriately targeted and investigated according to the emerging clinical phenotypes and molecular endotypes of OA. Based on the findings from recent clinical trials, we propose key topics and directions for the development of future DMOADs.
Collapse
Affiliation(s)
- Heungdeok Kim
- Institute of Bio Innovation Research, Kolon
Life Science, Inc., Seoul, South Korea
| | - Jinwon Seo
- Institute of Bio Innovation Research, Kolon
Life Science, Inc., Seoul, South Korea
| | - Yunsin Lee
- Institute of Bio Innovation Research, Kolon
Life Science, Inc., Seoul, South Korea
| | - Kiwon Park
- Institute of Bio Innovation Research, Kolon
Life Science, Inc., Seoul, South Korea
| | - Thomas A. Perry
- Centre for Osteoarthritis Pathogenesis Versus
Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford,
UK
| | - Nigel K. Arden
- Versus Arthritis Centre for Sport, Exercise and
Osteoarthritis, University of Oxford, Oxford, UK
- Botnar Research Centre, Nuffield Orthopaedic
Centre, Oxford, UK
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and
Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State
Research Institute Center for Innovative Medicine, Vilnius, Lithuania
- Department of Orthopedics and Department of
Rheumatology and Clinical Immunology, University Medical Center Utrecht,
Utrecht, The Netherlands
- Department of Joint Surgery, The First
Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- World Health Organization Collaborating Center
for Public Health Aspects of Musculoskeletal Health and Aging, Université de
Liège, Liège, Belgium
| | - Heonsik Choi
- Healthcare Research Institute, Kolon Advanced
Research Center, Kolon Industries, Inc., 110 Magokdong-ro, Gangseo-gu, Seoul
07793, South Korea
| |
Collapse
|
90
|
Kuhns BD, Reuter JM, Hansen VL, Soles GL, Jonason JH, Ackert-Bicknell CL, Wu CL, Giordano BD. Whole-genome RNA sequencing identifies distinct transcriptomic profiles in impingement cartilage between patients with femoroacetabular impingement and hip osteoarthritis. J Orthop Res 2022. [PMID: 36463522 DOI: 10.1002/jor.25485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Femoroacetabular impingement (FAI) has a strong clinical association with the development of hip osteoarthritis (OA); however, the pathobiological mechanisms underlying the transition from focal impingement to global joint degeneration remain poorly understood. The purpose of this study is to use whole-genome RNA sequencing to identify and subsequently validate differentially expressed genes (DEGs) in femoral head articular cartilage samples from patients with FAI and hip OA secondary to FAI. Thirty-seven patients were included in the study with whole-genome RNA sequencing performed on 10 gender-matched patients in the FAI and OA cohorts and the remaining specimens were used for validation analyses. We identified a total of 3531 DEGs between the FAI and OA cohorts with multiple targets for genes implicated in canonical OA pathways. Quantitative reverse transcription-polymerase chain reaction validation confirmed increased expression of FGF18 and WNT16 in the FAI samples, while there was increased expression of MMP13 and ADAMTS4 in the OA samples. Expression levels of FGF18 and WNT16 were also higher in FAI samples with mild cartilage damage compared to FAI samples with severe cartilage damage or OA cartilage. Our study further expands the knowledge regarding distinct genetic reprogramming in the cartilage between FAI and hip OA patients. We independently validated the results of the sequencing analysis and found increased expression of anabolic markers in patients with FAI and minimal histologic cartilage damage, suggesting that anabolic signaling may be increased in early FAI with a transition to catabolic and inflammatory gene expression as FAI progresses towards more severe hip OA. Clinical significance:Cam-type FAI has a strong clinical association with hip OA; however, the cellular pathophysiology of disease progression remains poorly understood. Several previous studies have demonstrated increased expression of inflammatory markers in FAI cartilage samples, suggesting the involvement of these inflammatory pathways in the disease progression. Our study further expands the knowledge regarding distinct genetic reprogramming in the cartilage between FAI and hip OA patients. In addition to differences in inflammatory gene expression, we also identified differential expression in multiple pathways involved in hip OA progression.
Collapse
Affiliation(s)
- Benjamin D Kuhns
- Center for Regenerative and Personalized Medicine, Steadman-Philippon Research Institute, Vail, Colorado, USA
| | - John M Reuter
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Victoria L Hansen
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Gillian L Soles
- Department of Orthopedic Surgery, University of California Davis Health System, Sacramento, California, USA
| | - Jennifer H Jonason
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Cheryl L Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chia-Lung Wu
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Brian D Giordano
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
91
|
Mathiessen A, Ashbeck EL, Huang E, Bedrick EJ, Kwoh CK, Duryea J. Cartilage Topography Assessment With Local-Area Cartilage Segmentation for Knee Magnetic Resonance Imaging. Arthritis Care Res (Hoboken) 2022; 74:2013-2023. [PMID: 34219396 PMCID: PMC8727638 DOI: 10.1002/acr.24745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Local-area cartilage segmentation (LACS) software was developed to segment medial femur (MF) cartilage on magnetic resonance imaging (MRI). Our objectives were 1) to extend LACS to the lateral femur (LF), medial tibia (MT), and lateral tibia (LT), 2) to compare LACS to an established manual segmentation method, and 3) to visualize cartilage responsiveness over each cartilage plate. METHODS Osteoarthritis Initiative participants with symptomatic knee osteoarthritis (OA) were selected, including knees selected at random (n = 40) and knees identified with loss of cartilage based on manual segmentation (Chondrometrics GmbH), an enriched sample of 126 knees. LACS was used to segment cartilage in the MF, LF, MT, and LT on sagittal 3D double-echo steady-state MRI scans at baseline and at 2-year follow-up. We compared LACS and Chondrometrics average thickness measures by estimating the correlation in each cartilage plate and estimating the standardized response mean (SRM) for 2-year cartilage change. We illustrated cartilage loss topographically with SRM heatmaps. RESULTS The estimated correlation between LACS and Chondrometrics measures was r = 0.91 (95% confidence interval [95% CI] 0.86, 0.94) for LF, r = 0.93 (95% CI 0.89, 0.95) for MF, r = 0.97 (95% CI 0.96, 0.98) for LT, and r = 0.87 (95% CI 0.81, 0.91) for MT. Estimated SRMs for LACS and Chondrometrics measures were similar in the random sample, and SRM heatmaps identified subregions of LACS-measured cartilage loss. CONCLUSION LACS cartilage thickness measurement in the MF and LF and tibia correlated well with established manual segmentation-based measurement, with similar responsiveness to change, among knees with symptomatic knee OA. LACS measurement of cartilage plate topography enables spatiotemporal analysis of cartilage loss in future knee OA studies.
Collapse
Affiliation(s)
- Alexander Mathiessen
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Diakonhjemmet Hospital, Department of Rheumatology, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Erin L. Ashbeck
- University of Arizona Arthritis Center, the University of Arizona College of Medicine, Tucson, AZ, USA
| | - Emily Huang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward John Bedrick
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - C. Kent Kwoh
- University of Arizona Arthritis Center, the University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jeffrey Duryea
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
92
|
Kato D, Matsushita M, Takegami Y, Mishima K, Kamiya N, Osawa Y, Imagama S, Kitoh H. Gain-of-Function of FGFR3 Accelerates Bone Repair Following Ischemic Osteonecrosis in Juvenile Mice. Calcif Tissue Int 2022; 111:622-633. [PMID: 36069912 DOI: 10.1007/s00223-022-01019-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
Abstract
Bone collapse, bone deformity, and a long treatment period are major clinical problems associated with juvenile ischemic osteonecrosis (JIO). Accelerating the process of bone repair in JIO is expected to shorten the treatment duration and better maintain morphology. We previously indicated that both bone formation and resorption were accelerated following distraction osteogenesis-mediated limb lengthening in genetically engineered mutant mice with a gain-of-function mutation in fibroblast growth factor receptor 3 (FGFR3) gene (i.e., Fgfr3 mice). The purpose of this study was to investigate the role of FGFR3 in the bone repair process following surgically induced ischemic osteonecrosis in the mutant mice. Epiphyseal deformity was less in the Fgfr3 mice compared to the wild-type mice at 6 weeks following ischemic osteonecrosis in skeletally immature age. Assessment of the morphology by micro-computed tomography (CT) revealed that the trabecular bone volume was increased in the Fgfr3 mice. Dynamic bone histomorphometry revealed increased rates of bone formation and mineral apposition in the Fgfr3 mice at 4 weeks post-surgery. The number of tartrate-resistant acid phosphatase (TRAP)-positive cells rapidly increased, and the numbers of TdT-mediated dUTP nick-end labeling (TUNEL)-positive cells rapidly decreased in the Fgfr3 mice. Vascular endothelial growth factor (VEGF) expression was increased at the earlier phase post-surgery in the Fgfr3 mice. The activation of FGFR3 signaling shortens the time needed for bone repair after ischemic osteonecrosis by accelerating revascularization, bone resorption, and new bone formation. Our findings are clinically relevant as a new potential strategy for the treatment of JIO.
Collapse
Affiliation(s)
- Daisaku Kato
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masaki Matsushita
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Yasuhiko Takegami
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenichi Mishima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Nobuhiro Kamiya
- Department of Sports Medicine, Tenri University, 80 Tainosho-cho, Tenri, 632-0071, Japan
| | - Yusuke Osawa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroshi Kitoh
- Department of Orthopaedic Surgery, Aichi Children's Health and Medical Center, 7-426 Morioka-cho, Obu, 474-8710, Japan
- Department of Comprehensive Pediatric Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
93
|
Emulsion Gel: a Dual Drug Delivery Platform for Osteoarthritis Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
94
|
Zhao XX, Xie WQ, Xiao WF, Li HZ, Naranmandakh S, Bruyere O, Reginster JY, Li YS. Perlecan: Roles in osteoarthritis and potential treating target. Life Sci 2022; 312:121190. [PMID: 36379311 DOI: 10.1016/j.lfs.2022.121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Osteoarthritis (OA) is the most common joint disease, affecting hundreds of millions of people globally, which leads to a high cost of treatment and further medical care and an apparent decrease in patient prognosis. The recent view of OA pathogenesis is that increased vascularity, bone remodeling, and disordered turnover are influenced by multivariate risk factors, such as age, obesity, and overloading. The view also reveals the gap between the development of these processes and early stage risk factors. This review presents the latest research on OA-related signaling pathways and analyzes the potential roles of perlecan, a typical component of the well-known protective structure against osteoarthritic pericellular matrix (PCM). Based on the experimental results observed in end-stage OA models, we summarized and analyzed the role of perlecan in the development of OA. In normal cartilage, it plays a protective role by maintaining the integrin of PCM and sequesters growth factors. Second, perlecan in cartilage is required to not only activate vascular epithelium growth factor receptor (VEGFR) signaling of endothelial cells for vascular invasion and catabolic autophagy, but also for different signaling pathways for the catabolic and anabolic actions of chondrocytes. Finally, perlecan may participate in pain sensitization pathways.
Collapse
Affiliation(s)
- Xiao-Xuan Zhao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Wen-Qing Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wen-Feng Xiao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Heng-Zhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Sukhbaatar district, 14201 Ulaanbaatar, Mongolia
| | - Olivier Bruyere
- Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart Tilman B23, 4000 Liège, Belgium
| | - Jean-Yves Reginster
- Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart Tilman B23, 4000 Liège, Belgium.
| | - Yu-Sheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
95
|
Pishgar F, Ashraf-ganjouei A, Dolatshahi M, Guermazi A, Zikria B, Cao X, Wan M, Roemer FW, Dam E, Demehri S. Conventional MRI-derived subchondral trabecular biomarkers and their association with knee cartilage volume loss as early as 1 year: a longitudinal analysis from Osteoarthritis Initiative. Skeletal Radiol 2022; 51:1959-1966. [PMID: 35366094 PMCID: PMC9414671 DOI: 10.1007/s00256-022-04042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To study associations between MRI-derived subchondral trabecular biomarkers obtained from conventional MRI sequences and knee cartilage loss over 12 and 24 months, using the FNIH osteoarthritis (OA) biomarkers consortium. MATERIALS AND METHODS Data of the 600 subjects in the FNIH OA biomarkers consortium (a nested case-control study within Osteoarthritis Initiative [OAI]) were extracted from the online database. Baseline knee MRI (intermediate-weighted (IW) sequences) were evaluated to determine conventional MRI-derived trabecular thickness (cTbTh) and bone-to-total ratio (cBV/TV). The measurements for medial and lateral volumes of cartilages using baseline, 12-, and 24-month knee MRI were extracted from the OAI database, and cartilage volume loss over 12 and 24 months of follow-up were determined using Relative Change Index. The association between conventional MRI-based subchondral trabecular biomarkers and cartilage volume loss were studied using logistic regression models, adjusted for relevant confounders including age, sex, body mass index (BMI), vitamin D use, Kellgren Lawrence grade (KLG), and tibiofemoral alignment. RESULTS Higher medial cTbTh and cBV/TV at baseline were associated with increased odds of medial tibial cartilage volume loss over 12 months (ORs: 1.01 [1.00-1.02] and 1.24 [1.10-1.39] per 1-SD change) and 24 months (ORs: 1.01 [1.00-1.02] and 1.22 [1.08-1.37], per 1-SD change). No significant association was observed between medial subchondral trabecular biomarkers and lateral tibial or femoral (medial or lateral) cartilage volume loss over the first and second follow-up years. CONCLUSIONS Conventional MRI-derived subchondral trabecular biomarkers (higher medial cTbTh and cBV/TV) may be associated with increased medial tibial cartilage volume loss as early as 1 year.
Collapse
Affiliation(s)
- Farhad Pishgar
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 4240, Baltimore, MD 21287, USA
| | - Amir Ashraf-ganjouei
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Science Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Dolatshahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Guermazi
- Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA, USA
| | - Bashir Zikria
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frank W. Roemer
- Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA, USA,Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Erik Dam
- Machine Learning Section, Department of Computer Science, University of Copenhagen, Kobenhavns, Denmark
| | - Shadpour Demehri
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 4240, Baltimore, MD 21287, USA
| |
Collapse
|
96
|
Kim JS, Borges S, Clauw DJ, Conaghan PG, Felson DT, Fleming TR, Glaser R, Hart E, Hochberg M, Kim Y, Kraus VB, Lapteva L, Li X, Majumdar S, McAlindon TE, Mobasheri A, Neogi T, Roemer FW, Rothwell R, Shibuya R, Siegel J, Simon LS, Spindler KP, Nikolov NP. FDA/Arthritis Foundation osteoarthritis drug development workshop recap: Assessment of long-term benefit. Semin Arthritis Rheum 2022; 56:152070. [PMID: 35870222 PMCID: PMC9452453 DOI: 10.1016/j.semarthrit.2022.152070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To summarize proceedings of a workshop convened to discuss the current state of science in the disease of osteoarthritis (OA), identify the knowledge gaps, and examine the developmental and regulatory challenges in bringing these products to market. DESIGN Summary of the one-day workshop held virtually on June 22nd, 2021. RESULTS Speakers selected by the Planning Committee presented data on the current approach to assessment of OA therapies, biomarkers in OA drug development, and the assessment of disease progression and long-term benefit. CONCLUSIONS Demonstrated by numerous failed clinical trials, OA is a challenging disease for which to develop therapeutics. The challenge is magnified by the slow time of onset of disease and the need for clinical trials of long duration and/or large sample size to demonstrate the effect of an intervention. The OA science community, including academia, pharmaceutical companies, regulatory agencies, and patient communities, must continue to develop and test better clinical endpoints that meaningfully reflect disease modification related to long-term patient benefit.
Collapse
Affiliation(s)
- Jason S Kim
- The Arthritis Foundation, 1355 Peachtree St NE, Suite 600, Atlanta, GA 30309, USA.
| | | | | | | | | | | | - Rachel Glaser
- US Food and Drug Administration, Silver Spring, MD, USA
| | | | - Marc Hochberg
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yura Kim
- US Food and Drug Administration, Silver Spring, MD, USA
| | | | | | | | | | | | | | - Tuhina Neogi
- Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Conaghan P, Simon LS. Tackling Unmet Medical Need: How Slow-Release Intra-articular Corticosteroids Could Play a Role in Improving Quality of Life and Reducing Risk in Osteoarthritis. EUROPEAN MEDICAL JOURNAL 2022. [DOI: 10.33590/emj/10023791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis (OA) is the fastest growing cause of disability worldwide, but, with few proven therapeutic options, it is an underserved condition. With increasingly ageing populations contributing to a rising global prevalence, this unmet need only threatens to worsen in the coming years. To date, researchers have tried and failed in their bids to develop new ways to treat the pain and loss of function that significantly impacts health-related quality of life (HrQoL) and leaves people vulnerable to accumulating disability and at risk of cardiovascular disease (CVD), comorbidities, and mortality. Now, a novel way to deliver one of the only proven interventions for pain and inflammation, corticosteroid injections, is on the horizon for knee OA. Slow-release formulations could possibly prolong the clinical benefit of a single injection from 6 weeks to 6 months, providing a new option to improve HrQoL for people with OA, and maybe even breaking the cycle of inflammation that likely contributes to progression.
In this key opinion leader article, Philip Conaghan and Lee Simon discuss OA’s significant Quality of life (QoL) and long-term health impact. They also outline the current, inadequate treatment landscape, and explain how slow-release corticosteroids could potentially help tackle a huge unmet medical need.
Collapse
|
98
|
Zaripova L, Pallav M, Tazhibaeva D, Kabdualieva N, Aitbayeva Z, Beglarova G, Yermentayeva L, Niyazbekova K. Biological Therapy for Osteoarthritis, Efficacy and Safety: Focus on Monoclonal Antibodies against Nerve Growth Factor and Fibroblast Growth Factor-18. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is the most common chronic progressive musculoskeletal disease, affected cartilage, and surrounded tissues: Subchondral bones, ligaments, and meniscus. Current OA treatment based on non-steroidal anti-inflammatory drugs, acetaminophen (paracetamol), opioids, and intra-articular corticosteroid injections do not prevent the progression of the disease. Understanding of the pathogenesis of OA with continued structural damage accompanied by chronic pain led to appearance of monoclonal antibodies to fibroblast growth factor-18 (FGF)-18 and anti-nerve growth factor (NGF). This review provides an overview of biological therapy with FGF-18 and anti-NGF for OA. Search process was conducted in PubMed and Google Scholar for the following terms: “FGF-18” or “anti-NGF” and “OA,” “monoclonal antibody” and “OA.” Results of the analysis of clinical trials revealed that therapy targeting NGF resulted in significant analgesic effect and functional improvement of joints in OA; however, it was associated with considerable increase in adverse events. The mon\oclonal antibody to FGF-18 demonstrated the structure-modifying effects on cartilage with decrease the cartilage loss and improvement of cartilage thickness. However, further clinical longitudinal studies characterized the risk-benefit are needed to establish safety and efficacy of these medications.
Collapse
|
99
|
Fan T, Chen S, Zeng M, Li J, Wang X, Ruan G, Cao P, Zhang Y, Chen T, Ou Q, Wang Q, Wluka AE, Cicuttini F, Ding C, Zhu Z. Osteophytes mediate the associations between cartilage morphology and changes in knee symptoms in patients with knee osteoarthritis. Arthritis Res Ther 2022; 24:217. [PMID: 36076236 PMCID: PMC9454107 DOI: 10.1186/s13075-022-02905-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
AIMS To investigate whether the associations between cartilage defects and cartilage volumes with changes in knee symptoms were mediated by osteophytes. METHODS Data from the Vitamin D Effects on Osteoarthritis (VIDEO) study were analyzed as a cohort. The Western Ontario and McMaster Universities Osteoarthritis Index was used to assess knee symptoms at baseline and follow-up. Osteophytes, cartilage defects, and cartilage volumes were measured using magnetic resonance imaging at baseline. Associations between cartilage morphology and changes in knee symptoms were assessed using linear regression models, and mediation analysis was used to test whether these associations were mediated by osteophytes. RESULTS A total of 334 participants (aged 50 to 79 years) with symptomatic knee osteoarthritis were included in the analysis. Cartilage defects were significantly associated with change in total knee pain, change in weight-bearing pain, and change in non-weight-bearing pain after adjustment for age, sex, body mass index, and intervention. Cartilage volume was significantly associated with change in weight-bearing pain and change in physical dysfunction after adjustment. Lateral tibiofemoral and patellar osteophyte mediated the associations of cartilage defects with change in total knee pain (49-55%) and change in weight-bearing pain (61-62%) and the association of cartilage volume with change in weight-bearing pain (27-30%) and dysfunction (24-25%). Both cartilage defects and cartilage volume had no direct effects on change in knee symptoms. CONCLUSIONS The significant associations between cartilage morphology and changes in knee symptoms were indirect and were partly mediated by osteophytes.
Collapse
Affiliation(s)
- Tianxiang Fan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shibo Chen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Muhui Zeng
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Li
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangfeng Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peihua Cao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianyu Chen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qianhua Ou
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qianyi Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Anita E Wluka
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Flavia Cicuttini
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
100
|
Hayashi K, Tsunoda T, Tobo Y, Ichikawa F, Shimose T. Effects of pericapsular soft tissue and realignment exercises for patients with osteoarthritis of the hip and Harris Hip Score below 60 points. Curr Med Res Opin 2022; 38:1567-1578. [PMID: 35694906 DOI: 10.1080/03007995.2022.2088716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate the effectiveness of pericapsular soft tissue and realignment (PSTR) exercises for patients with osteoarthritis (OA) of the hip and Harris Hip Score (HHS) below 60 points. Most previous studies of hip exercise have not been applied for patients with moderate to severe hip OA, especially those with an HHS below 60 points. Most studies of hip exercise in OA have involved muscle strength training, stretching, functional training and aerobic fitness programs, and have not included pelvic realignment exercise. We investigated the effect of pelvic realignment exercise for patients with hip OA and HHS below 60 points. METHODS Design: multicenter, prospective, observational, single-arm study. Setting: clinical examination on an outpatient basis. Participants: 193 patients with hip OA and HHS below 60 points. Interventions: patient education and supervised PSTR exercises. Outcome measures: primary outcome: HHS; secondary outcomes: changes in numerical rating scale (NRS) scores, abduction of range of motion, Timed Up and Go (TUG) test within 30 min after PSTR exercises at baseline and other six items, full analysis set (FAS, all participants who performed PSTR exercises) and subgroup analysis (participants with minimal joint space (MJS) of 0 mm at baseline). RESULTS FAS analysis (N = 193): significant differences in HHS were found between baseline and 3 month follow-up, and between baseline and 6 month follow-up in the Unilateral and Bilateral OA groups (p < .001). All mean differences were within the 95% confidence interval. Significant improvement in NRS scores, abduction of range of motion, and TUG test within 30 min after PSTR exercises were found at baseline (p < .001). Subgroup analysis (N = 130): the results revealed significant differences (p < .001) in HHS and NRS, abduction of range of motion and TUG test within 30 min after PSTR exercises at baseline, as in the FAS analysis. CONCLUSION Our findings suggested that PSTR exercises were effective for patients with HHS below 60 points, even those with MJS of 0 mm. CLINICAL TRIALS REGISTRY 20 July 2017 (UMIN000028277).
Collapse
Affiliation(s)
- Kazuo Hayashi
- Arthritis Center, Fukuoka Wajiro Hospital, Fukuoka, Japan
| | - Toshiharu Tsunoda
- Department of Orthopaedic Surgery, Asama General Hospital, Nagano, Japan
| | - Yuki Tobo
- Department of Rehabilitation, Fukuoka Wajiro Hospital, Fukuoka, Japan
| | - Fumiaki Ichikawa
- Department of Rehabilitation, Asama General Hospital, Nagano, Japan
| | | |
Collapse
|