51
|
Kumar A, Knapp-Mohammady M, Mishra PC, Suhai S. A theoretical study of structures and electron affinities of radical anions of guanine-cytosine, adenine-thymine, and hypoxanthine-cytosine base pairs. J Comput Chem 2004; 25:1047-59. [PMID: 15067680 DOI: 10.1002/jcc.20020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adiabatic electron affinities (AEA) and structural perturbations due to addition of an excess electron to each of the neutral guanine-cytosine (G-C), adenine-thymine (A-T), and hypoxanthine-cytosine (HX-C) base pairs were studied using the self-consistent charge, density functional tight-binding (SCC-DFTB-D) method, augmented by the empirical London dispersion energy term. Performance of the SCC-DFTB-D method was examined by comparing the calculated results using it with those obtained from experiment as well as ab initio and other different density functional theoretical studies. An excellent agreement between the SCC-DFTB-D results and those obtained by the other calculations regarding the structural modifications, hydrogen bonding, and dissociation energies of the neutral and radical anion base pairs was found. It is shown that adiabatic electron affinity can be better predicted by considering reaction enthalpies of formation of the respective neutral and anionic base pairs from their respective molecular components instead of taking the difference between their total energies. The calculated AEAs of the base pairs were compared with those obtained by the bracketing method from Schaefer and coworkers, where a satisfactory agreement was found. It shows applicability of the SCC-DFTB-D method to study charged DNA models at a highly economical computational cost.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Physics, Banaras Hindu University, Varanasi-221 005, India
| | | | | | | |
Collapse
|
52
|
Subirana JA, Soler-Lopez M. Cations as hydrogen bond donors: a view of electrostatic interactions in DNA. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:27-45. [PMID: 12598364 DOI: 10.1146/annurev.biophys.32.110601.141726] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cations are bound to nucleic acids in a solvated state. High-resolution X-ray diffraction studies of oligonucleotides provide a detailed view of Mg2+, and occasionally other ions bound to DNA. In a survey of several such structures, certain general observations emerge. First, cations bind preferentially to the guanine base in the major groove or to phosphate group oxygen atoms. Second, cations interact with DNA most frequently via water molecules in their primary solvation shell, direct ion-DNA contacts being only rarely observed. Thus, the solvated ions should be viewed as hydrogen bond donors in addition to point charges. Finally, ion interaction sites are readily exchangeable: The same site may be occupied by any ion, including spermine, as well as by a water molecule.
Collapse
Affiliation(s)
- Juan A Subirana
- Departament d'Enginyeria Quimica, Universitat Politecnica de Catalunya, Barcelona, Spain.
| | | |
Collapse
|
53
|
Menchise V, De Simone G, Tedeschi T, Corradini R, Sforza S, Marchelli R, Capasso D, Saviano M, Pedone C. Insights into peptide nucleic acid (PNA) structural features: the crystal structure of a D-lysine-based chiral PNA-DNA duplex. Proc Natl Acad Sci U S A 2003; 100:12021-6. [PMID: 14512516 PMCID: PMC218706 DOI: 10.1073/pnas.2034746100] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Indexed: 11/18/2022] Open
Abstract
Peptide nucleic acids (PNAs) are oligonucleotide analogues in which the sugar-phosphate backbone has been replaced by a pseudopeptide skeleton. They bind DNA and RNA with high specificity and selectivity, leading to PNA-RNA and PNA-DNA hybrids more stable than the corresponding nucleic acid complexes. The binding affinity and selectivity of PNAs for nucleic acids can be modified by the introduction of stereogenic centers (such as D-Lys-based units) into the PNA backbone. To investigate the structural features of chiral PNAs, the structure of a PNA decamer containing three D-Lys-based monomers (namely H-GpnTpnApnGpnAdlTdlCdlApnCpnTpn-NH2, in which pn represents a pseudopeptide link and dl represents a D-Lys analogue) hybridized with its complementary antiparallel DNA has been solved at a 1.66-A resolution by means of a single-wavelength anomalous diffraction experiment on a brominated derivative. The D-Lys-based chiral PNA-DNA (LPD) heteroduplex adopts the so-called P-helix conformation. From the substantial similarity between the PNA conformation in LPD and the conformations observed in other PNA structures, it can be concluded that PNAs possess intrinsic conformational preferences for the P-helix, and that their flexibility is rather restricted. The conformational rigidity of PNAs is enhanced by the presence of the chiral centers, limiting the ability of PNA strands to adopt other conformations and, ultimately, increasing the selectivity in molecular recognition.
Collapse
Affiliation(s)
- Valeria Menchise
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 6, I-80134 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Ng HL, Dickerson RE. Mediation of the A/B-DNA helix transition by G-tracts in the crystal structure of duplex CATGGGCCCATG. Nucleic Acids Res 2002; 30:4061-7. [PMID: 12235390 PMCID: PMC137100 DOI: 10.1093/nar/gkf515] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The crystal structure of the DNA dodecamer duplex CATGGGCCCATG lies on a structural continuum along the transition between A- and B-DNA. The dodecamer possesses the normal vector plot and inclination values typical of B-DNA, but has the crystal packing, helical twist, groove width, sugar pucker, slide and x-displacement values typical of A-DNA. The structure shows highly ordered water structures, such as a double spine of water molecules against each side of the major groove, stabilizing the GC base pairs in an A-like conformation. The different hydration of GC and AT base pairs provides a physical basis for solvent-dependent facilitation of the A<-->B helix transition by GC base pairs. Crystal structures of CATGGGCCCATG and other A/B-DNA intermediates support a 'slide first, roll later' mechanism for the B-->A helix transition. In the distribution of helical parameters in protein-DNA crystal structures, GpG base steps show A-like properties, reflecting their innate predisposition for the A conformation.
Collapse
Affiliation(s)
- Ho-Leung Ng
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
55
|
McGregor TD, Bousfield W, Qu Y, Farrell N. Circular dichroism study of the irreversibility of conformational changes induced by polyamine-linked dinuclear platinum compounds. J Inorg Biochem 2002; 91:212-9. [PMID: 12121778 DOI: 10.1016/s0162-0134(02)00398-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this work, the reversibility of both the B-->Z and B-->A conformational change in polymer DNA induced by polynuclear platinum compounds was studied. The compounds examined were: [[trans-PtCl(NH(3))(2)](2)[NH(2) (CH(2))(6)NH(2)]](2+) (BBR3005); [[trans-PtCl(NH(3))(2)](2)[mu-spermine-N1,N12]](4+) (BBR3535); [[trans-PtCl(NH(3))(2)](2)[mu-spermidine-N1,N8]](3+) (BBR3571); [[trans-PtCl(NH(3))(2)](2)[mu-BOC-spermidine]](2+) (BBR3537); and [[trans-PtCl(NH(3))(2)](2)[mu-trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)NH(2))(2)]](4+) (BBR3464). The conformational changes were assessed by circular dichroism and the reversibility of the transitions was tested by subsequent titration with the DNA intercalator ethidium bromide (EtBr). Fluorescent quenching was also used to assess the ability of ethidium bromide to intercalate into A and/or Z-DNA induced by the compounds. The results were compared with those produced by the simple hexamminecobalt cation [Co(NH(3))(6)](3+). The data suggest that while conformational changes induced by electrostatic interactions are confirmed to be reversible, covalent binding induces irreversible changes in both the A and Z conformation. The relevance of these changes to the novel biological action of polynuclear platinum compounds is discussed.
Collapse
Affiliation(s)
- Tracey D McGregor
- Department of Chemistry, Virginia Commonwealth University, 101 West Main Street, Richmond, VA 23284-2006, USA
| | | | | | | |
Collapse
|
56
|
Lankas F, Cheatham TE, Spacková N, Hobza P, Langowski J, Sponer J. Critical effect of the N2 amino group on structure, dynamics, and elasticity of DNA polypurine tracts. Biophys J 2002; 82:2592-609. [PMID: 11964246 PMCID: PMC1302048 DOI: 10.1016/s0006-3495(02)75601-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Unrestrained 5-20-ns explicit-solvent molecular dynamics simulations using the Cornell et al. force field have been carried out for d[GCG(N)11GCG]2 (N, purine base) considering guanine*cytosine (G*C), adenine*thymine (A*T), inosine*5-methyl-cytosine (I*mC), and 2-amino-adenine*thymine (D*T) basepairs. The simulations unambiguously show that the structure and elasticity of N-tracts is primarily determined by the presence of the amino group in the minor groove. Simulated A-, I-, and AI-tracts show almost identical structures, with high propeller twist and minor groove narrowing. G- and D-tracts have small propeller twisting and are partly shifted toward the A-form. The elastic properties also differ between the two groups. The sequence-dependent electrostatic component of base stacking seems to play a minor role. Our conclusions are entirely consistent with available experimental data. Nevertheless, the propeller twist and helical twist in the simulated A-tract appear to be underestimated compared to crystallographic studies. To obtain further insight into the possible force field deficiencies, additional multiple simulations have been made for d(A)10, systematically comparing four major force fields currently used in DNA simulations and utilizing B and A-DNA forms as the starting structure. This comparison shows that the conclusions of the present work are not influenced by the force field choice.
Collapse
Affiliation(s)
- Filip Lankas
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, and Center for Complex Molecular Systems and Biomolecules, 182 23 Praha 8, Czech Republic.
| | | | | | | | | | | |
Collapse
|
57
|
van Dam L, Korolev N, Nordenskiöld L. Polyamine-nucleic acid interactions and the effects on structure in oriented DNA fibers. Nucleic Acids Res 2002; 30:419-28. [PMID: 11788703 PMCID: PMC99836 DOI: 10.1093/nar/30.2.419] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fibrous oriented calf thymus DNA containing the natural polyamines spermidine (Spd) and putrescine (Put), and the degradation polyamines cadaverine (Cad) and 1,3-diaminopropane (DAP), have been investigated at different water contents using nuclear magnetic resonance (NMR) methods, fiber X-ray diffraction and gravimetric measurements. When judged by X-ray only the DAP and Spd samples seem to undergo a B-A-form transition at reduced water activity. Solid-state two-dimensional rotor-synchronized magic angle spinning (2D-syncMAS) 31P-NMR, however, shows the A-form to be present also in the Put sample, and it appears that the separation between the amine units of diamines is correlated with the amount of A-form present. In addition, the solid-state NMR data show the polyamine-bound DNA samples to have a significant deviation from the ordinary B-form DNA structure, displaying similar amounts of BI and BII nucleotide conformations. The low water content of the samples suggest that the polyamines themselves act as hydrators of DNA. Water 2H-NMR results are in agreement with this observation. The quadrupolar splittings of the polyamine 2H signals for samples at low water content indicate some preferential spatial orientations of the polyamines in the ordered DNA environment. The polyamines show relatively fast macroscopic diffusion as detected by NMR self-diffusion measurements.
Collapse
Affiliation(s)
- Lorens van Dam
- Physical Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
58
|
Pavlov V, Kong Thoo Lin P, Rodilla V. Cytotoxicity, DNA binding and localisation of novel bis-naphthalimidopropyl polyamine derivatives. Chem Biol Interact 2001; 137:15-24. [PMID: 11518561 DOI: 10.1016/s0009-2797(01)00165-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bis-naphthalimidopropyl spermidine (BNIPSpd), spermine (BNIPSpm) and oxa-spermine (BNIPOSpm) showed high in vitro cytotoxicity against human breast cancer MCF-7 cells with IC(50) values of 1.38, 2.91 and 8.45 microM, respectively. These compounds were found to effectively displace the intercalating agent ethidium bromide bound to the calf thymus DNA using fluorimetric methods (C(50) 0.08-0.12 microM) and their apparent equilibrium binding constants (K(app)) were calculated to be in the range of 10.5-18 x 10(7) M(-1). Furthermore, strong stabilisation of calf thymus DNA duplex in the presence of bis-naphthalimidopropyl polyamine derivatives (BNIPSpd, BNIPSpm and BNIPOSpm) was observed by UV spectrophotometric analysis (T(m)=93.3-97 degrees C compared with 75 degrees C for calf thymus DNA without drug). Because of their inherent fluorescence, these compounds were localised preferentially inside the nucleus as evidenced by their direct observation under the fluorescence microscope. The results obtained suggest that the cytotoxic activity of the bis-naphthalimidopropyl polyamines may be in part, caused by their effects on DNA.
Collapse
Affiliation(s)
- V Pavlov
- School of Applied Sciences, The Robert Gordon University, St. Andrew Street, Aberdeen AB25 1HG, Scotland, UK
| | | | | |
Collapse
|
59
|
Abstract
A preorganized cationic receptor 2 for cytosine (C) is described which is composed of trans-a2PtII (a= NH3 or CH3NH2) cross-linked modules with adenine (A), guanine (G), and uracil (U) or thymine (T) model nucleobases. The functions of these three modules are as follows: i) Adenine orientates the two other bases at right angles, thus producing the L-shape of the receptor. ii) Guanine is the primary receptor. iii) Uracil or thymine act as coreceptors. Compared with the normal Watson-Crick pair between G and C, the association constant between 2 and C increases by a factor of 3 (in DMSO). As deduced from 1H NMR spectroscopy and confirmed by the X-ray crystal structure of the C adduct 4b, cytosine is fixed through five hydrogen bonds to the receptor, one of which involves the aromatic H(5) of C. A comparison of C binding is made with a structurally related linkage isomer receptor as well as the precursor molecule trans[alpha2PtAG]2+. The potential of modular, cationic receptors is illustrated.
Collapse
Affiliation(s)
- M S Lüth
- Fachbereich Chemie der Universität Dortmund, Germany
| | | | | |
Collapse
|
60
|
Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E. Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment. J Chem Phys 2001. [DOI: 10.1063/1.1329889] [Citation(s) in RCA: 917] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
61
|
Wahl MC, Sundaralingam M. B-form to A-form conversion by a 3'-terminal ribose: crystal structure of the chimera d(CCACTAGTG)r(G). Nucleic Acids Res 2000; 28:4356-63. [PMID: 11058136 PMCID: PMC113134 DOI: 10.1093/nar/28.21.4356] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2000] [Revised: 08/23/2000] [Accepted: 09/08/2000] [Indexed: 11/13/2022] Open
Abstract
The crystal structure of the chimerical decamer d(CCACTAGTG)r(G), bearing a 3'-terminal ribo-guanidine, has been solved and refined at 1.8 A resolution (R-factor 16.6%; free R-factor 22.8%). The decamer crystallizes in the orthorhombic space group P2(1)2(1)2(1) with unit cell constants a = 23.90 A, b = 45.76 A and c = 49.27 A. The structure was solved by molecular replacement using the coordinates of the isomorphous chimera r(GCG)d(TATACGC). The final model contains one duplex and 77 water molecules per asymmetric unit. Surprisingly, all residues adopt a conformation typical for A-form nucleic acids (C3'-endo type sugar pucker) although the all-DNA analog, d(CCACTAGTGG), has been crystallized in the B-form. Comparing circular dichroism spectra of the chimera and the corresponding all-DNA sequence reveals a similar trend of the former molecule to adopt an A-like conformation in solution. The results suggest that the preference of ribonucleotides for the A-form is communicated into the 5'-direction of an oligonucleotide strand, although direct interactions of the 2'-hydroxyl group can only be discerned with nucleotides in the 3'-direction of a C3'-endo puckered ribose. These observations imply that forces like water-mediated contacts, the concerted motions of backbone torsion angles, and stacking preferences, are responsible for such long-range influences. This bi-directional structural communication originating from a ribonucleotide can be expected to contribute to the stability of the A-form within all-RNA duplexes.
Collapse
Affiliation(s)
- M C Wahl
- The Ohio State University, Laboratory of Biological Macromolecular Structure, Departments of Chemistry, Biochemistry, and the Ohio State Biochemistry Program, 012 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210-1002, USA
| | | |
Collapse
|
62
|
Deng H, Bloomfield VA, Benevides JM, Thomas GJ. Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy. Nucleic Acids Res 2000; 28:3379-85. [PMID: 10954608 PMCID: PMC110699 DOI: 10.1093/nar/28.17.3379] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Revised: 06/20/2000] [Accepted: 07/03/2000] [Indexed: 11/12/2022] Open
Abstract
Four genomic DNAs of differing GC content (Micrococcus luteus, 72% GC; Escherichia coli, 50% GC; calf thymus, 42% GC; Clostridium perfringens, 27% GC) have been employed as targets of interaction by the cationic polyamines spermidine ([H(3)N(CH(2))(3)NH(2)(CH(2))(4)NH(3)](3+)) and spermine ([(CH(2))(4)(NH(2)(CH(2))(3)NH(3))(2)](4+)). In solutions containing 60 mM DNA phosphate (approximately 20 mg DNA/ml) and either 1, 5 or 60 mM polyamine, only Raman bands associated with the phosphates exhibit large spectral changes, demonstrating that B-DNA phosphates are the primary targets of interaction. Phosphate perturbations, which are independent of base composition, are consistent with a model of non-specific cation binding in which delocalized polyamines diffuse along DNA while confined by the strong electrostatic potential gradient perpendicular to the helix axis. This finding provides experimental support for models in which polyamine-induced DNA condensation is driven by non-specific electrostatic binding. The Raman spectra also demonstrate that major groove sites (guanine N7 and thymine C5H(3)) are less affected than phosphates by polyamine-DNA interactions. Modest dependence of polyamine binding on genome base composition suggests that sequence context plays only a secondary role in recognition. Importantly, the results demonstrate that polyamine binding has a negligible effect on the native B-form secondary structure. The capability of spermidine or spermine to bind and condense genomic B-DNA without disrupting the native structure must be taken into account when considering DNA organization within bacterial nucleoids or cell nuclei.
Collapse
Affiliation(s)
- H Deng
- Department of Biochemistry, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | |
Collapse
|
63
|
Ng HL, Kopka ML, Dickerson RE. The structure of a stable intermediate in the A <--> B DNA helix transition. Proc Natl Acad Sci U S A 2000; 97:2035-9. [PMID: 10688897 PMCID: PMC15749 DOI: 10.1073/pnas.040571197] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA dodecamer CATGGGCCCATG in a crystal structure of resolution 1.3 A has a conformation intermediate between A and B DNA. This trapping of a stable intermediate suggests that the A and B DNA families are not discrete, as previously believed. The structure supports a base-centered rather than a backbone-centered mechanism for the A <--> B transition mediated by guanine tracts. Interconversion between A and B DNA provides another means for regulating protein-DNA recognition.
Collapse
Affiliation(s)
- H L Ng
- Molecular Biology Institute, University of California, Los Angeles, CA 90095-1570, USA
| | | | | |
Collapse
|
64
|
Heinemann U, Mueller U, Heumann H, Sprinzl M. Structural Studies of Model RNA Helices with Relevance to Aminoacyl-tRNA Synthetase Specificity and HIV Reverse Transcription. J Biomol Struct Dyn 2000; 17 Suppl 1:39-45. [PMID: 22607405 DOI: 10.1080/07391102.2000.10506602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Abstract We describe high-resolution crystal structures of synthetic nucleic-acid fragments determined as part of an effort to understand determinants of sequence-specific protein binding on the level of double-helix structure. In a first set of experiments, 7-base-pair RNA duplexes representing the acceptor-stem helix of Escherichia coli tRNA(Ala) and variants thereof were characterized at atomic resolution. The structures revealed a standard A-form double helix locally perturbed by a G·U wobble base pair at sequence position 3/70 of the tRNA. The G·U pair shows a characteristic hydration pattern which must be considered an integral part of the double-helix structure. It does not seem to exert a global effect on the duplex structure. A second experiment concerned the chimeric DNA-RNA hybrid structure formed transiently during initiation of minus-strand synthesis by the reverse transcriptase of HIV-1. The crystal structure of an 8-base-pair duplex with an RNA template strand derived from HIV-1 and a complementary strand representing the junction between the tRNA(Lys,3) RNA primer and the newly synthesized DNA strand was solved at a resolution of 1.9 Å. As before, the double helix was found to adopt standard A-type conformation with only local variations of backbone conformation. Based on the global helix structure as present in the crystal, it remains difficult to explain the preference of the reverse-transcriptase-associated RNAse H activity for certain sites of the template strand. Structural plasticity near the main cleavage site in suggested to govern cutting preferences. In both systems investigated, structural studies by NMR spectroscopy were carried out by others in parallel. In both cases, the solution structures are in partial disagreement with the crystallographic results by describing a significantly higher level of deviation from the canonical A-conformation.
Collapse
Affiliation(s)
- U Heinemann
- a Forschungsgruppe Kristallographie, Max-Delbrück-Centrum für Molekulare Medizin (MDC) , Robert-Rössle-Str. 10 , D-13092 , Berlin , Germany
| | | | | | | |
Collapse
|
65
|
Hobza P, Sponer J. Structure, energetics, and dynamics of the nucleic Acid base pairs: nonempirical ab initio calculations. Chem Rev 1999; 99:3247-76. [PMID: 11749516 DOI: 10.1021/cr9800255] [Citation(s) in RCA: 814] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- P Hobza
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, 182 23 Prague 8, Czech Republic
| | | |
Collapse
|
66
|
Abstract
The accuracy of DNA replication results from both the intrinsic DNA polymerase fidelity and the DNA sequence. Although the recent structural studies on polymerases have brought new insights on polymerase fidelity, the role of DNA sequence and structure is less well understood. Here, the analysis of the crystal structures of hotspots for polymerase slippage including (CA)n and (A)n tracts in different intermolecular contexts reveals that, in the B-form, these sequences share common structural alterations which may explain the high rate of replication errors. In particular, a two-faced "Janus-like" structure with shifted base-pairs in the major groove but an apparent normal geometry in the minor groove constitutes a molecular decoy specifically suitable to mislead the polymerases. A model of the rat polymerase beta bound to this structure suggests that an altered conformation of the nascent template-primer duplex can interfere with correct nucleotide incorporation by affecting the geometry of the active site and breaking the rules of base-pairing, while at the same time escaping enzymatic mechanisms of error discrimination which scan for the correct geometry of the minor groove.In contrast, by showing that the A-form greatly attenuates the sequence-dependent structural alterations in hotspots, this study suggests that the A-conformation of the nascent template-primer duplex at the vicinity of the polymerase active site will contribute to fidelity. The A-form may play the role of a structural buffer which preserves the correct geometry of the active site for all sequences. The detailed comparison of the conformation of the nascent template-primer duplex in the available crystal structures of DNA polymerase-DNA complexes shows that polymerase beta, the least accurate enzyme, is unique in binding to a B-DNA duplex even close to its active site. This model leads to several predictions which are discussed in the light of published experimental data.
Collapse
Affiliation(s)
- Y Timsit
- Institut de Biologie Physico-Chimique, CNRS - UPR 9080, 13, rue Pierre et Marie Curie, Paris, 75005, France.
| |
Collapse
|
67
|
Abstract
The distribution of sodium and chlorine ions around DNA is presented from two molecular dynamics simulations of the DNA fragment d(C(5)T(5)). (A(5)G(5)) in explicit solvent with 0.8 M additional NaCl salt. One simulation was carried out for 10 ns with the CHARMM force field that keeps the DNA structure close to A-DNA, the other for 12 ns with the AMBER force field that preferentially stabilizes B-DNA conformations (, Biophys. J. 75:134-149). From radial distributions of sodium and chlorine ions a primary ion shell is defined. The ion counts and residence times of ions within this shell are compared between conformations and with experiment. Ordered sodium ion sites were found in minor and major grooves around both A and B-DNA conformations. Changes in the surrounding hydration structure are analyzed and implications for the stabilization of A-DNA and B-DNA conformations are discussed.
Collapse
Affiliation(s)
- M Feig
- Department of Chemistry and Institute for Molecular Design, University of Houston, 4800 Calhoun, Houston, Texas 77204-5641 USA
| | | |
Collapse
|
68
|
Kypr J, Chládková J, Zimulová M, Vorlícková M. Aqueous trifluorethanol solutions simulate the environment of DNA in the crystalline state. Nucleic Acids Res 1999; 27:3466-73. [PMID: 10446234 PMCID: PMC148588 DOI: 10.1093/nar/27.17.3466] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We took 28 fragments of DNA whose crystal structures were known and used CD spectroscopy to search for conditions stabilising the crystal structures in solution. All 28 fragments switched into their crystal structures in 60-80% aqueous trifluorethanol (TFE) to indicate that the crystals affected the conformation of DNA like the concentrated TFE. The fragments crystallising in the B-form also underwent cooperative TFE-induced changes that took place within the wide family of B-form structures, suggesting that the aqueous and crystal B-forms differed as well. Spermine and magnesium or calcium cations, which were contained in the crystallisation buffers, promoted or suppressed the TFE-induced changes of several fragments to indicate that the crystallisation agents can decide which of the possible structures is adopted by the DNA fragment in the crystal.
Collapse
Affiliation(s)
- J Kypr
- Academy of Sciences of the Czech Republic, Institute of Biophysics, Královopolská 135, CZ-61265 Brno, Czech Republic
| | | | | | | |
Collapse
|
69
|
Meiss G, Gast FU, Pingoud AM. The DNA/RNA non-specific Serratia nuclease prefers double-stranded A-form nucleic acids as substrates. J Mol Biol 1999; 288:377-90. [PMID: 10329148 DOI: 10.1006/jmbi.1999.2694] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A steady-state kinetic analysis of the cleavage of the oligonucleotides d(CGCTTTTTTGC) (d(y)), d(GCAAAAAAGCG) (d(r)), r(CGCUUUUUUGC) (r(y)) and r(GCAAAAAAGCG) (r(r)) in single and double-stranded form by the extracellular Serratia marcescens endonuclease, in conjunction with structural data from a circular dichroism spectroscopic analysis of these substrates, suggests that oligonucleotides adopting the A-conformation are preferred over those adopting the B-conformation as substrates. Relative catalytic efficiencies (kcat/KM) for the cleavage of the homo- and heteroduplexes follow the order r(r).r(y) (1.0)>r(r).d(y) (0.9)>d(r). r(y) (0.7)>d(r).d(y) (0.3). The purine-rich single-stranded oligonucleotides r(r) and d(r), are cleaved more efficiently than the pyrimidine-rich oligonucleotides, r(y) and d(y), presumably because they adopt helical structures with pronounced base stacking. Except for the double-stranded oligodeoxynucleotide substrate, the individual strands are cleaved more efficiently when incorporated into a duplex, than in a single-stranded form. Cleavage experiments with various polynucleotides, including a viroid RNA and a specifically designed 167 bp DNA, confirm that double-stranded A-form nucleic acids are preferentially attacked by Serratia nuclease. In an attempt to analyze the basis of these preferences, we have mutated the amino acid residues Tyr76 and Trp123 of Serratia nuclease. These residues are located close to the active site and are conserved in all members of the Serratia nuclease family, suggesting that they could be involved in substrate binding, e.g. by stacking interactions with the bases, which could lead to the cleavage preferences observed. However, only effects on the activity, but no change of the sequence or substrate preferences, were detected upon substitution of these amino acid residues, ruling out any involvement of these residues in the A-form preference of Serratia nuclease.
Collapse
Affiliation(s)
- G Meiss
- Institut für Biochemie, Heinrich-Buff-Ring 58, Justus-Liebig-Universität Giessen, D-35392, Germany
| | | | | |
Collapse
|
70
|
Abstract
The hydration patterns around the RNA Watson-Crick and non-Watson-Crick base pairs in crystals are analyzed and described. The results indicate that (i) the base pair hydration is mostly "in-plane"; (ii) eight hydration sites surround the Watson-Crick G-C and A-U base pairs, with five in the deep and three in the shallow groove, an observation which extends the characteristic isostericity of Watson-Crick pairs; (iii) while the hydration around G-C base pairs is well defined, the hydration around A-U base pairs is more diffuse; (iv) the hydration sites close to the phosphate groups are the best defined and the most recurrent ones; (v) a string of water molecules links the two shallow groove 2'-hydroxyl groups, and (vi) the water molecules fit into notches, the size and accessibility of which are almost as important as the number and strength of the hydrophilic groups lining the cavity. Residence times of water molecules at specific hydration sites, inferred from molecular dynamics simulations, are discussed in the light of present data.
Collapse
Affiliation(s)
- P Auffinger
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Modélisations et Simulations des Acides Nucléiques, UPR 9002, Strasbourg, France
| | | |
Collapse
|
71
|
Affiliation(s)
- M Feig
- Department of Chemistry Institute for Molecular Design University of Houston, 4800 Calhoun Houston, TX 77204-5641, USA
| | | |
Collapse
|
72
|
Abstract
Water distributions around phosphate groups in 59 B-, A-, and Z-DNA crystal structures were analyzed. It is shown that the waters are concentrated in six hydration sites per phosphate and that the positions and occupancies of these sites are dependent on the conformation and type of nucleotide. The patterns of hydration that are characteristic of the backbone of the three DNA helical types can be attributed in part to the interactions of these hydration sites.
Collapse
Affiliation(s)
- B Schneider
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic
| | | | | |
Collapse
|
73
|
Lüth MS, Freisinger E, Glahé F, Lippert B. Mixed Adenine, Guanine Nucleobase Quartets: Metal-Modified Forms of an Open U and a Closed Rectangle. Inorg Chem 1998. [DOI: 10.1021/ic9808495] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marc Sven Lüth
- Fachbereich Chemie, University of Dortmund, D-44221 Dortmund, Germany
| | - Eva Freisinger
- Fachbereich Chemie, University of Dortmund, D-44221 Dortmund, Germany
| | - Frank Glahé
- Fachbereich Chemie, University of Dortmund, D-44221 Dortmund, Germany
| | - Bernhard Lippert
- Fachbereich Chemie, University of Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
74
|
Mueller U, Maier G, Mochi Onori A, Cellai L, Heumann H, Heinemann U. Crystal structure of an eight-base pair duplex containing the 3'-DNA-RNA-5' junction formed during initiation of minus-strand synthesis of HIV replication. Biochemistry 1998; 37:12005-11. [PMID: 9724510 DOI: 10.1021/bi981152y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During initiation of minus-strand synthesis by HIV-1 reverse transcriptase, a 3'-DNA-RNA-5' junction is formed involving the 3'-end of tRNAlys,3. The HIV-RT-associated RNase H cleaves the RNA template strand specifically, opposite the newly synthesized DNA strand. We have determined the crystal structure at 1.9 A resolution of an eight-base pair hybrid duplex representing the junction to identify global or local structural perturbations which may be recognized by HIV-RT RNase H. The junction octamer is in a global A-type conformation throughout. A base pair step with distinct stacking geometry and variable backbone conformation is located next to the main endonucleolytic cleavage site. This base pair step may serve as a recognition site for HIV-RT RNase H.
Collapse
MESH Headings
- Base Composition
- Crystallization
- Crystallography, X-Ray
- DNA, Viral/biosynthesis
- DNA, Viral/chemistry
- HIV Reverse Transcriptase/chemistry
- HIV-1/genetics
- Models, Molecular
- Nucleic Acid Conformation
- Nucleic Acid Heteroduplexes/biosynthesis
- Nucleic Acid Heteroduplexes/chemistry
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- Ribonuclease H/chemistry
- Virus Replication/genetics
Collapse
Affiliation(s)
- U Mueller
- Forschungsgruppe Kristallographie, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
75
|
Mo Y, Vaessen B, Johnston K, Marmorstein R. Structures of SAP-1 bound to DNA targets from the E74 and c-fos promoters: insights into DNA sequence discrimination by Ets proteins. Mol Cell 1998; 2:201-12. [PMID: 9734357 DOI: 10.1016/s1097-2765(00)80130-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
SAP-1 is a member of the Ets transcription factors and cooperates with SRF protein to activate transcription of the c-fos protooncogene. The crystal structures of the conserved ETS domain of SAP-1 bound to DNA sequences from the E74 and c-fos promoters reveal that a set of conserved residues contact a GGA core DNA sequence. Discrimination for sequences outside this core is mediated by DNA contacts from conserved and nonconserved protein residues and sequence-dependent DNA structural properties characteristic of A-form DNA structure. Comparison with the related PU.1/DNA and GABPalpha/beta/DNA complexes provides general insights into DNA discrimination between Ets proteins. Modeling studies of a SAP-1/SRF/DNA complex suggest that SRF may modulate SAP-1 binding to DNA by interacting with its ETS domain.
Collapse
Affiliation(s)
- Y Mo
- The Wistar Institute, Department of Chemistry, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
76
|
Schnell JR, Berman J, Bloomfield VA. Insertion of telomere repeat sequence decreases plasmid DNA condensation by cobalt (III) hexaammine. Biophys J 1998; 74:1484-91. [PMID: 9512044 PMCID: PMC1299494 DOI: 10.1016/s0006-3495(98)77860-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Telomere repeat sequence (TRS) DNA is found at the termini of most eukaryotic chromosomes. The sequences are highly repetitive and G-rich (e.g., [C(1-3)A/TG(1-3)]n for the yeast Saccharomyces cerevisiae) and are packaged into nonnucleosomal protein-DNA structures in vivo. We have used total intensity light scattering and electron microscopy to monitor the effects of yeast TRS inserts on in vitro DNA condensation by cobalt (III) hexaammine. Insertion of 72 bp of TRS into a 3.3-kb plasmid depresses condensation as seen by light scattering and results in a 22% decrease in condensate thickness as measured by electron microscopy. Analysis of toroidal condensate dimensions suggests that the growth stages of condensation are inhibited by the presence of a TRS insert. The depression in total light scattering intensity is greater when the plasmid is linearized with the TRS at an end (39-49%) than when linearized with the TRS in the interior (18-22%). Circular dichroism of a 95-bp fragment containing the TRS insert gives a spectrum that is intermediate between the A-form and B-form, and the anomalous condensation behavior of the TRS suggests a noncanonical DNA structure. We speculate that under conditions in which the plasmid DNA condenses, the telomeric insert assumes a helical geometry that is similar to the A-form and is incompatible with packing into the otherwise B-form lattice of the condensate interior.
Collapse
Affiliation(s)
- J R Schnell
- Department of Biochemistry, University of Minnesota, St. Paul 55108, USA
| | | | | |
Collapse
|
77
|
Cheatham TE, Kollman PA. Insight into the stabilization of A-DNA by specific ion association: spontaneous B-DNA to A-DNA transitions observed in molecular dynamics simulations of d[ACCCGCGGGT]2 in the presence of hexaamminecobalt(III). Structure 1997; 5:1297-311. [PMID: 9351805 DOI: 10.1016/s0969-2126(97)00282-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Duplex DNA is more than a simple information carrier. The sequence-dependent structure and its inherent deformability, in concert with the subtle modulating effects of the environment, play a crucial role in the regulation and packaging of DNA. Recent advances in force field and simulation methodologies allow molecular dynamics simulations to now represent the specific effects of the environment. An understanding of the environmental dependence of DNA structure gives insight into how histones are able to package DNA, how various proteins are able to bind and modulate nucleic acid structure and will ultimately aid the design of molecules to package DNA for more effective gene therapy. RESULTS Molecular dynamics simulations of d[ACCCGCGGGT]2 in solution in the presence of hexaamminecobalt(III) [Co(NH3)6(3+)] show stabilization of A-DNA and spontaneous B-DNA to A-DNA transitions, which is consistent with experimental results from NMR and Raman spectroscopic and X-ray crystallographic studies. In the absence of Co(NH3)6(3+), A-DNA to B-DNA transitions are observed instead. In addition to their interaction with the guanines in the major groove, Co(NH3)6(3+) ions bridge opposing strands in the bend across the major groove, probably stabilizing A-DNA. CONCLUSIONS The simulation methods and force fields have advanced to a sufficient level that some representation of the environment can be seen in nanosecond length molecular dynamics simulations. These simulations suggest that, in addition to the general explanation of A-DNA stabilization by dehydration, hydration and ion association in the major groove stabilize A-DNA.
Collapse
Affiliation(s)
- T E Cheatham
- Division of Computer Research and Technology, National Institutes of Health, Bethesda, MD 20892-5626, USA
| | | |
Collapse
|