51
|
Devising Powerful Genetics, Biochemical and Structural Tools in the Functional Analysis of Phosphatidylinositol Transfer Proteins (PITPs) Across Diverse Species. Methods Cell Biol 2012; 108:249-302. [DOI: 10.1016/b978-0-12-386487-1.00013-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
52
|
Zhang L, Mao YS, Janmey PA, Yin HL. Phosphatidylinositol 4, 5 bisphosphate and the actin cytoskeleton. Subcell Biochem 2012; 59:177-215. [PMID: 22374091 DOI: 10.1007/978-94-007-3015-1_6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Dynamic changes in PM PIP(2) have been implicated in the regulation of many processes that are dependent on actin polymerization and remodeling. PIP(2) is synthesized primarily by the type I phosphatidylinositol 4 phosphate 5 kinases (PIP5Ks), and there are three major isoforms, called a, b and g. There is emerging evidence that these PIP5Ks have unique as well as overlapping functions. This review will focus on the isoform-specific roles of individual PIP5K as they relate to the regulation of the actin cytoskeleton. We will review recent advances that establish PIP(2) as a critical regulator of actin polymerization and cytoskeleton/membrane linkages, and show how binding of cytoskeletal proteins to membrane PIP(2) might alter lateral or transverse movement of lipids to affect raft formation or lipid asymmetry. The mechanisms for specifying localized increase in PIP(2) to regulate dynamic actin remodeling will also be discussed.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, 75390-9040, Dallas, TX, USA
| | | | | | | |
Collapse
|
53
|
Abstract
Phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] are required for the activity of many different ion channels. This chapter will highlight various aspects of this paradigm, by discussing current knowledge on four different ion channel families: inwardly rectifying K(+) (Kir) channels, KCNQ voltage gated K(+) channels, voltage gated Ca(2+) (VGCC) channels and Transient Receptor Potential (TRP) channels. Our main focus is to discuss functional aspects of this regulation, i.e. how changes in the concentration of PtdIns(4,5)P(2) in the plasma membrane upon phospholipase C activation may modulate the activity of ion channels, and what are the major determinants of this regulation. We also discuss how channels act as coincidence detectors sensing phosphoinositide levels and other signalling molecules. We also briefly discuss the available methods to study phosphoinositide regulation of ion channels, and structural aspects of interaction of ion channel proteins with these phospholipids. Finally, in several cases the effect of PtdIns(4,5)P(2) is more complex than a simple dependence of ion channel activity on the lipid, and we will discuss some these complexities.
Collapse
Affiliation(s)
- Nikita Gamper
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, UK,
| | | |
Collapse
|
54
|
An SW, Cha SK, Yoon J, Chang S, Ross EM, Huang CL. WNK1 promotes PIP₂ synthesis to coordinate growth factor and GPCR-Gq signaling. Curr Biol 2011; 21:1979-87. [PMID: 22119528 DOI: 10.1016/j.cub.2011.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/04/2011] [Accepted: 11/01/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND PLC-β signaling is generally thought to be mediated by allosteric activation by G proteins and Ca(2+). Although availability of the phosphatidylinositol-4,5-biphosphate (PIP(2)) substrate is limiting in some cases, its production has not been shown to be independently regulated as a signaling mechanism. WNK1 protein kinase is known to regulate ion homeostasis and cause hypertension when expression is increased by gene mutations. However, its signaling functions remain largely elusive. RESULTS Using diacylglycerol-stimulated TRPC6 and inositol trisphosphate-mediated Ca(2+) transients as cellular biosensors, we show that WNK1 stimulates PLC-β signaling in cells by promoting the synthesis of PIP(2) via stimulation of phosphatidylinositol 4-kinase IIIα. WNK1 kinase activity is not required. Stimulation of PLC-β by WNK1 and by Gα(q) are synergistic; WNK1 activity is essential for regulation of PLC-β signaling by G(q)-coupled receptors, and basal input from G(q) is necessary for WNK1 signaling via PLC-β. WNK1 further amplifies PLC-β signaling when it is phosphorylated by Akt kinase in response to insulin-like growth factor. CONCLUSIONS WNK1 is a novel regulator of PLC-β that acts by controlling substrate availability. WNK1 thereby coordinates signaling between G protein and Akt kinase pathways. Because PIP(2) is itself a signaling molecule, regulation of PIP(2) synthesis by WNK1 also allows the cell to initiate PLC signaling while independently controlling the effects of PIP(2) on other targets. These findings describe a new signaling pathway for Akt-activating growth factors, a mechanism for G protein-growth factor crosstalk, and a means to independently control PLC signaling and PIP(2) availability.
Collapse
Affiliation(s)
- Sung-Wan An
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
55
|
Kim YJ, Guzman-Hernandez ML, Balla T. A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. Dev Cell 2011; 21:813-24. [PMID: 22075145 PMCID: PMC3235737 DOI: 10.1016/j.devcel.2011.09.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/27/2011] [Accepted: 09/12/2011] [Indexed: 11/18/2022]
Abstract
Polyphosphoinositides are lipid signaling molecules generated from phosphatidylinositol (PtdIns) with critical roles in vesicular trafficking and signaling. It is poorly understood where PtdIns is located within cells and how it moves around between membranes. Here we identify a hitherto-unrecognized highly mobile membrane compartment as the site of PtdIns synthesis and a likely source of PtdIns of all membranes. We show that the PtdIns-synthesizing enzyme PIS associates with a rapidly moving compartment of ER origin that makes ample contacts with other membranes. In contrast, CDP-diacylglycerol synthases that provide PIS with its substrate reside in the tubular ER. Expression of a PtdIns-specific bacterial PLC generates diacylglycerol also in rapidly moving cytoplasmic objects. We propose a model in which PtdIns is synthesized in a highly mobile lipid distribution platform and is delivered to other membranes during multiple contacts by yet-to-be-defined lipid transfer mechanisms.
Collapse
Affiliation(s)
- Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, National Institutes of Health, Bethesda, MD 20892
| | - Maria Luisa Guzman-Hernandez
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, National Institutes of Health, Bethesda, MD 20892
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
56
|
Cooper KG, Winfree S, Malik-Kale P, Jolly C, Ireland R, Knodler LA, Steele-Mortimer O. Activation of Akt by the bacterial inositol phosphatase, SopB, is wortmannin insensitive. PLoS One 2011; 6:e22260. [PMID: 21779406 PMCID: PMC3136525 DOI: 10.1371/journal.pone.0022260] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 06/22/2011] [Indexed: 01/25/2023] Open
Abstract
Salmonella enterica uses effector proteins translocated by a Type III Secretion System to invade epithelial cells. One of the invasion-associated effectors, SopB, is an inositol phosphatase that mediates sustained activation of the pro-survival kinase Akt in infected cells. Canonical activation of Akt involves membrane translocation and phosphorylation and is dependent on phosphatidyl inositide 3 kinase (PI3K). Here we have investigated these two distinct processes in Salmonella infected HeLa cells. Firstly, we found that SopB-dependent membrane translocation and phosphorylation of Akt are insensitive to the PI3K inhibitor wortmannin. Similarly, depletion of the PI3K regulatory subunits p85α and p85ß by RNAi had no inhibitory effect on SopB-dependent Akt phosphorylation. Nevertheless, SopB-dependent phosphorylation does depend on the Akt kinases, PDK1 and rictor-mTOR. Membrane translocation assays revealed a dependence on SopB for Akt recruitment to Salmonella ruffles and suggest that this is mediated by phosphoinositide (3,4) P(2) rather than phosphoinositide (3,4,5) P(3). Altogether these data demonstrate that Salmonella activates Akt via a wortmannin insensitive mechanism that is likely a class I PI3K-independent process that incorporates some essential elements of the canonical pathway.
Collapse
Affiliation(s)
- Kendal G. Cooper
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Seth Winfree
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Preeti Malik-Kale
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Carrie Jolly
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Robin Ireland
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Leigh A. Knodler
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Olivia Steele-Mortimer
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| |
Collapse
|
57
|
Optical probing of a dynamic membrane interaction that regulates the TREK1 channel. Proc Natl Acad Sci U S A 2011; 108:2605-10. [PMID: 21262820 DOI: 10.1073/pnas.1015788108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
TREK channels produce background currents that regulate cell excitability. These channels are sensitive to a wide variety of stimuli including polyunsaturated fatty acids (PUFAs), phospholipids, mechanical stretch, and intracellular acidification. They are inhibited by neurotransmitters, hormones, and pharmacological agents such as the antidepressant fluoxetine. TREK1 knockout mice have impaired PUFA-mediated neuroprotection to ischemia, reduced sensitivity to volatile anesthetics, altered perception of pain, and a depression-resistant phenotype. Here, we investigate TREK1 regulation by Gq-coupled receptors (GqPCR) and phospholipids. Several reports indicate that the C-terminal domain of TREK1 is a key regulatory domain. We developed a fluorescent-based technique that monitors the plasma membrane association of the C terminus of TREK1 in real time. Our fluorescence and functional experiments link the modulation of TREK1 channel function by internal pH, phospholipid, and GqPCRs to TREK1-C-terminal domain association to the plasma membrane, where increased association results in greater activity. In keeping with this relation, inhibition of TREK1 current by fluoxetine is found to be accompanied by dissociation of the C-terminal domain from the membrane.
Collapse
|
58
|
Balla T. Green light to illuminate signal transduction events. Trends Cell Biol 2009; 19:575-86. [PMID: 19818623 DOI: 10.1016/j.tcb.2009.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/03/2009] [Accepted: 08/11/2009] [Indexed: 11/17/2022]
Abstract
When cells are exposed to hormones that act on cell surface receptors, information is processed through the plasma membrane into the cell interior via second messengers generated in the inner leaflet of the plasma membrane. Individual biochemical steps along this cascade have been characterized from ligand binding to receptors through to activation of guanine nucleotide binding proteins and their downstream effectors such as adenylate cyclase or phospholipase C. However, the complexity of temporal and spatial integration of these molecular events requires that they are studied in intact cells. The great expansion of fluorescent techniques and improved imaging technologies such as confocal and TIRF microscopy combined with genetically-engineered protein modules has provided a completely new approach to signal transduction research. Spatial definition of biochemical events followed with real-time temporal resolution has become a standard goal, and several new techniques are now breaking the resolution barrier of light microscopy.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
59
|
Klasen K, Corey EA, Kuck F, Wetzel CH, Hatt H, Ache BW. Odorant-stimulated phosphoinositide signaling in mammalian olfactory receptor neurons. Cell Signal 2009; 22:150-7. [PMID: 19781634 DOI: 10.1016/j.cellsig.2009.09.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 09/14/2009] [Indexed: 01/28/2023]
Abstract
Recent evidence has revived interest in the idea that phosphoinositides (PIs) may play a role in signal transduction in mammalian olfactory receptor neurons (ORNs). To provide direct evidence that odorants indeed activate PI signaling in ORNs, we used adenoviral vectors carrying two different fluorescently tagged probes, the pleckstrin homology (PH) domains of phospholipase C delta 1 (PLC delta 1) and the general receptor of phosphoinositides (GRP1), to monitor PI activity in the dendritic knobs of ORNs in vivo. Odorants mobilized PI(4,5)P(2)/IP(3) and PI(3,4,5)P(3), the substrates and products of PLC and PI3K. We then measured odorant activation of PLC and PI3K in olfactory ciliary-enriched membranes in vitro using a phospholipid overlay assay and ELISAs. Odorants activated both PLC and PI3K in the olfactory cilia within 2s of odorant stimulation. Odorant-dependent activation of PLC and PI3K in the olfactory epithelium could be blocked by enzyme-specific inhibitors. Odorants activated PLC and PI3K with partially overlapping specificity. These results provide direct evidence that odorants indeed activate PI signaling in mammalian ORNs in a manner that is consistent with the idea that PI signaling plays a role in olfactory transduction.
Collapse
Affiliation(s)
- K Klasen
- Whitney Laboratory, Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Steigemann P, Gerlich DW. Cytokinetic abscission: cellular dynamics at the midbody. Trends Cell Biol 2009; 19:606-16. [PMID: 19733077 DOI: 10.1016/j.tcb.2009.07.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/18/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
The intercellular canal containing the midbody is one of the most prominent structures in dividing animal cells, yet its function in the completion of cytokinesis by abscission remains largely unknown. This is because of its small size, which makes it difficult to investigate the cytoskeletal and membrane dynamics underlying abscission by standard light microscopy. The advent of new fluorescent probes and imaging technologies, along with sophisticated perturbation tools, provides new possibilities to elucidate the molecular control of this essential cell biological process. Here we discuss the control of midbody assembly and current models for the mechanism of abscission in animal cells. We highlight new methodologies that will facilitate testing and refining of these models.
Collapse
Affiliation(s)
- Patrick Steigemann
- Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ), Schafmattstr. 18, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
61
|
Abstract
Phosphoinositides constitute only a small fraction of cellular phospholipids, yet their importance in the regulation of cellular functions can hardly be overstated. The rapid metabolic response of phosphoinositides after stimulation of certain cell surface receptors was the first indication that these lipids could serve as regulatory molecules. These early observations opened research areas that ultimately clarified the plasma membrane role of phosphoinositides in Ca(2+) signaling. However, research of the last 10 years has revealed a much broader range of processes dependent on phosphoinositides. These lipids control organelle biology by regulating vesicular trafficking, and they modulate lipid distribution and metabolism more generally via their close relationship with lipid transfer proteins. Phosphoinositides also regulate ion channels, pumps, and transporters as well as both endocytic and exocytic processes. The significance of phosphoinositides found within the nucleus is still poorly understood, and a whole new research concerns the highly phosphorylated inositols that also appear to control multiple nuclear processes. The expansion of research and interest in phosphoinositides naturally created a demand for new approaches to determine where, within the cell, these lipids exert their effects. Imaging of phosphoinositide dynamics within live cells has become a standard cell biological method. These new tools not only helped us localize phosphoinositides within the cell but also taught us how tightly phosphoinositide control can be linked with distinct effector protein complexes. The recent progress allows us to understand the underlying causes of certain human diseases and design new strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|